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We study representations of the Schrödinger algebra in terms of operators in nonrelativistic conformal
field theories. We prove a correspondence between primary operators and eigenstates of few-body systems
in a harmonic potential. Using the correspondence we compute analytically the energy of fermions at
unitarity in a harmonic potential near two and four spatial dimensions. We also compute the energy of
anyons in a harmonic potential near the bosonic and fermionic limits.
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I. INTRODUCTION

Conformal field theories (CFTs) form a special class of
relativistic quantum field theories, where the Poincaré
symmetry group is enlarged to the group of conformal
transformations. One element of the conformal algebra is
dilatation: CFTs are always scale invariant. The conformal
algebra and its representation have been studied exten-
sively [1].

In this paper we study nonrelativistic counterparts of
relativistic conformal field theories. There are several ex-
amples of such theories beside the trivial noninteracting
theories. Nonrelativistic particles interacting through a
1=r2 potential is one such example. The physically most
important example in three spatial dimensions is the theory
describing spin-1=2 fermions with pointlike interaction
fine-tuned to infinite scattering length (fermions at unitar-
ity) [2]. Such fermionic systems have been created and
studied experimentally. Theories describing anyons
present another class of nonrelativistic CFTs, but in two
spatial dimensions.

The nonrelativistic analog of the conformal algebra is
the so-called Schrödinger algebra [3,4]. While the
Schrödinger algebra has been studied before [5–7], we
are mostly interested in the representations of the
Schrödinger algebra in terms of operators. We show that
the concept of primary operators can be directly transferred
to nonrelativistic theories. In addition, we show that there
is an operator-state correspondence: a primary operator
(with some exceptions) corresponds to an eigenstate of a
few-particle system in a harmonic potential. The scaling
dimension of the operator coincides with the energy of
the corresponding eigenstate, divided by the oscillator
frequency.

The operator-state correspondence allows us to translate
the problem of finding the energy eigenvalues of a few-
fermion state at unitarity, or a few-anyon state, in a har-
monic potential to another problem of finding the anoma-
lous dimensions of composite operators in the
nonrelativistic conformal field theory in free space. The
latter problem is amenable to standard diagrammatic tech-
niques for fermions at unitarity near two or four spatial
dimensions, or for anyons near the bosonic and fermionic

limits. We present a few examples of such calculations in
this paper. In particular, we compute the ground state
energy of up to six fermions at unitarity in a harmonic
potential near two and four dimensions, and interpolate the
results to find the energy in three dimensions. We also
compute the ground state energy of up to four anyons in
a harmonic potential.

II. SCHRÖDINGER ALGEBRA

A. Derivation of the algebra

We briefly review the Schrödinger algebra [3,4]. For
definiteness, consider a nonrelativistic theory described
by a second-quantized field  ��x� (where � is the spin
index) which satisfies the commutation or anticommuta-
tion relation

 � ��x�;  
y
��y��� � ��x� y����: (1)

Throughout this paper, we use nonrelativistic natural units
@ � m � 1 where m is a particle mass. We consider a
general spatial dimension d. Define the number density
and momentum density,
 

n�x� �  y�x� �x�;

ji�x� � �
i
2
� y�x�@i �x� � @i 

y�x� �x��

(2)

(summation over spin indices is implied). Their commuta-
tors are
 

�n�x�; n�y�� � 0; �n�x�; ji�y�� � �in�y�@i��x� y�;

(3a)

�ji�x�; jj�y�� � �i�jj�x�@i � ji�y�@j���x� y�: (3b)

The Schrödinger algebra is formed by the following
operators:

 N �
Z
dxn�x�; Pi �

Z
dxji�x�;

Mij �
Z
dx�xijj�x� � xjji�x��;

(4)

PHYSICAL REVIEW D 76, 086004 (2007)

1550-7998=2007=76(8)=086004(14) 086004-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.086004


 Ki �
Z
dxxin�x�; C �

Z
dx
x2

2
n�x�;

D �
Z
dxxiji�x�;

(5)

and the Hamiltonian H. The operators in Eq. (4) have
simple physical interpretation: N is the particle number,
Pi is the momentum, and Mij is the orbital angular mo-
mentum. In a scale-invariant theory like unitary fermions,
these operators form a closed algebra. All commutators
except those that involve H can be found from Eqs. (3).
First N commutes with all other operators:

 �N; any� � 0: (6)

The commutator of the angular momentum Mij with an
operator is determined by the transformation properties of
the latter under rotations,

 �Mij; N� � �Mij; C� � �Mij; D� � 0; (7)

 �Mij; Pk� � i��ikPj � �jkPi�;

�Mij; Kk� � i��ikKj � �jkKi�;
(8)

 �Mij;Mkl� � i��ikMjk � �jkMil � �ilMkj � �jlMki�:

(9)

The remaining commutators are

 �Pi; Pj� � �Ki; Kj� � �Ki; C� � 0; �Ki; Pj� � i�ijN;

(10)

 �D;Pi� � iPi; �D;Ki� � �iKi; �D;C� � �2iC:

(11)

Now let us find the commutators of the Hamiltonian H
with other operators. Conservation of particle number,
momentum, and angular momentum implies that

 �H;N� � �H;Pi� � �H;Mij� � 0: (12)

On the other hand, the continuity equation implies that

 �H; n� � �i@tn � i@iji; (13)

from which it follows that

 �H;Ki� � �iPi; �H;C� � �iD: (14)

The computation of the last commutator �H;D� requires
the condition of scale invariance. For definiteness, let us
consider fermions at unitarity, described by the
Hamiltonian
 

H �
Z
dx

1

2
@i 

y
�@i � �

1

2

Z
dxdy y��x� 

y
��y�

	 V�jx� yj� ��y� ��x�; (15)

where V�jx� yj� is a short-range potential with infinite
scattering length. We note that D is an operator of dilata-

tion,

 e�i�D �x�ei�D � ed�=2 �e�x�; (16)

from which one finds

 e�i�DHei�D � e2�H0; (17)

where H0 is the same as H but the potential V is replaced
with a new potential:

 V�r� ! V 0�r� � e�2�V�e��r�: (18)

If V corresponds to infinite scattering length, then V 0 also
corresponds to infinite scattering length. From the point of
view of long-distance physics, H0 � H. Therefore, we find

 �D;H� � 2iH: (19)

It is clear that Eq. (19) is simply the condition of scale
invariance, and hence must hold for noninteracting anyons
in two spatial dimensions.

A more lengthy proof, which can be given for particles at
unitarity, is to use the momentum conservation equation

 @tji � @j�ij � 0; (20)

where �ij is the stress tensor, which can be defined for a
generic potential V�jx� yj� (see Appendix B). The com-
mutator is then

 �D;H� � i
Z
dx�ii�x�: (21)

At unitarity, one can show that (see Appendix B)

 

Z
dx�ii�x� � 2H; (22)

and Eq. (19) follows.
The Schrödinger algebra is summarized in Appendix A.

B. Local operators and representations
of the Schrödinger algebra

We introduce the notation of local operators O�t; x� as
operators which depend on the position in time and space
t; x so that

 O �t; x� � eiHt�iPixiO�0�e�iHt�iPixi : (23)

A local operator O is said to have scaling dimension �O if

 �D;O�0�� � i�OO�0�; (24)

and to have particle number NO if

 �N;O�0�� � NOO�0�: (25)

We shall consider only operators with well-defined particle
number and scaling dimension. Examples of such opera-
tors are  and  y; � � � y � d=2 and �N � N y �
1. In the case of fermions at unitarity, a more complicated
local operator is
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 ��x� � lim
y!x
jx� yjd�2 #�x� "�y�: (26)

The presence of the prefactor jx� yjd�2 guarantees that
the matrix elements of the operator ��x� between two
states in the Hilbert space are finite.1 The scaling dimen-
sion of � is �� � 2. This can be found applying elemen-
tary dimension counting to Eq. (26):

 �� � 2� � �d� 2��x � 2
d
2
� �d� 2���1� � 2:

(27)

Let us look at the set of all local operators Oa�t; x�.
These operators, put at t � 0 and x � 0, form a represen-
tation of the Schrödinger algebra: for any operator A in the
algebra

 �A;Oa�0�� � AabOb�0�: (28)

We shall discuss the irreducible representations of the
Schrödinger algebra.

First we notice that if O has dimension �O, then �Pi;O�
has dimension �O � 1:

 �D; �Pi;O�� � �Pi; �D;O�� � ��D;Pi�;O�

� �Pi; i�OO� � �iPi;O�

� i��O � 1��Pi;O�: (29)

Analogously the dimensions of �KiO�, �C;O�, and �H;O�
are �O � 1, �O � 2, and �O � 2, respectively:

 �D; �Ki;O�� � i��O � 1��Ki;O�; (30)

 �D; �C;O�� � i��O � 2��C;O�; (31)

 �D; �H;O�� � i��O � 2��H;O�: (32)

Assuming that the dimensions of operators are bounded
from below, if one starts with a given operator and repeat-
edly takes its commutator with Ki and C, one lowers the
dimension of the operator until it cannot be lowered fur-
ther. The last operator O obtained this way has the property

 �Ki;O� � �C;O� � 0: (33)

Operators that commute with Ki and C will be called
primary operators (quasiprimary operators in the terminol-
ogy of Ref. [7]). In general, �Ki;O� � 0 does not imply
that �C;O� � 0, and vice versa.

Starting with a primary operator O, one can build up a
tower of operators by taking commutators with Pi and H.
In other words, starting with primary operators one can
build up whole towers of operators by taking their space
and time derivatives. For example, the operators with

dimension �O � 1 in the tower are �Pi;O� 
 i@iO. At
the next level (dimension �O � 2), the following are pos-
sible:

 �H;O� � �i@tO; �Pi; �Pj;O�� 
 �@i@jO: (34)

Commuting the operators in Eq. (34) with Ki and C, we get
back the operators in the lower rungs of the tower.

It is easy to see that the operators built from a primary
operator by taking space and time derivatives form an
irreducible representation of the Schrödinger algebra. It
is also possible to show that the full set of all local
operators can be decomposed into irreducible representa-
tions, each of which is built upon a single primary operator.
The task of finding the spectrum of dimensions of all local
operators reduces to finding the dimensions of primary
operators.

For an operator O�t; x� with dimension �O at an arbi-
trary spacetime point, the following commutation relations
hold,

 �Pi;O� � i@iO; �H;O� � �i@tO; (35)

 �D;O� � i�2t@t � xi@i ��O�O: (36)

Moreover, if O is a primary operator then

 �Ki;O� � ��it@i � NOxi�O; (37)

 �C;O� � �i�t2@t � txi@i � t�O�O�
x2

2
NOO: (38)

The exponentiated version of Eq. (36) is

 e�i�DO�t; x�ei�D � e��OO�e2�t; e�x�: (39)

For any set of n operators, one can define an n-point
correlation function,
 

Gn�t1; x1; t2; x2; . . . ; tn; xn�

� h0jTO1�t1; x1�O2�t2; x2� . . .On�tn; xn�j0i; (40)

where T is time ordering. Clearly for Gn to be nonzero it is
necessary thatNO1

� NO2
� � � � � NOn

� 0. If all Oi have
definite dimensions then this correlation function has a
scaling property

 Gn�e
2�ti; e

�xi� � exp
�
��

Xn
i�1

�Oi

�
Gn�ti; xi�; (41)

which follows from Eq. (39) and ei�Dj0i � j0i.
The correlation functions of primary operators are fur-

ther constrained [7]. As an example, consider the two-point
correlation function of a primary operator O with its
Hermitian conjugate:

 G�t; x� � h0jTO�t; x�Oy�0�j0i: (42)

Using h0j�Ki; TO�x�Oy�y��j0i � 0 and Eq. (37) one ob-
tains

1The condition of unitarity requires that the wave function of
N spin-up and M spin-down fermions ��x1; x2; . . . ; xN;
y1; y2; . . . ; yM� behaves like jxi � yjj2�d when jxi � yjj ! 0
for any pair of fermions with opposite spins i; j.

NONRELATIVISTIC CONFORMAL FIELD THEORIES PHYSICAL REVIEW D 76, 086004 (2007)

086004-3



 ��it@i � NOxi�G�t; x� � 0: (43)

Combining with the scale invariance, the two-point corre-
lation function is determined up to an overall coefficient,

 G�t; x� � Ct��O exp
�
�iNO

jxj2

2t

�
: (44)

C. Correspondence to states in a harmonic potential

We now show that each primary operator corresponds to
an energy eigenstate of a system in a harmonic potential.
We set the oscillator frequency of the harmonic potential !
to 1. The total Hamiltonian of the system in a harmonic
potential is

 Hosc � H � C: (45)

Consider a primary operator O put at t � 0 and x � 0.
Let O be constructed from annihilation operators, so that
Oy acts nontrivially on the vacuum j0i. Consider the
following state

 j�Oi � e�HOyj0i: (46)

If the particle number of Oy is NOy , then j�Oi is an
NOy-body state. Let us show that j�Oi is an eigenstate of
the Hamiltonian: Hosc � H � C. Indeed

 Hoscj�Oi � e�H�eHHosce�H�Oyj0i: (47)

We now use the formula

 eHHosce
�H � Hosc � �H;Hosc� �

1
2�H; �H;Hosc�� � � � � :

(48)

Using the commutation relations in Appendix A, we find
that all terms in the � � � vanish, and the right-hand side is
equal to C� iD. Therefore

 Hoscj�Oi � e�H�C� iD�Oyj0i

� e�HOy�C� iD�j0i � e�H�C� iD;Oy�j0i:

(49)

However, both C and D annihilate the vacuum, Cj0i �
Dj0i � 0, and since O is a primary operator, �C;Oy� � 0.
Thus, using �D;Oy� � ��D;O�y � i�OO

y, we obtain

 Hoscj�Oi � e�H�OO
yj0i � �Oj�Oi; (50)

i.e., j�Oi is an eigenstate of the system of NOy particles in
a harmonic potential, with the energy eigenvalue �O

(times @!).
It is known that the eigenstates ofHosc are organized into

ladders with spacing between steps equal to 2 [8,9]. The
raising and lowering operators within a ladder are [8]

 L� � H � C� iD; (51)

 L� � H � C� iD: (52)

Let us show that the state j�Oi is annihilated by L� and
hence is the lowest state in its ladder. Indeed, using the
identity

 eHL�e
�H � �C; (53)

we find

 L�j�Oi � e�HeHL�e
�HOyj0i � �e�HCOyj0i

� �e�HOyCj0i � 0: (54)

Clearly, in order to correspond to a nontrivial eigenstate
of Hosc, Oy must not annihilate the vacuum: Oyj0i � 0.
We shall consider the operators O that are built from the
fundamental annihilation operators of the field theories.

D. Simple examples: One and two-body
operators/states

Let us illustrate this correspondence using one-particle
and two-particle operators  and � at unitarity. The op-
erator  has scaling dimension d=2, which matches the
ground state energy of one particle in a harmonic potential
in spatial dimension d. The operator � has scaling dimen-
sion 2. The ground state of two particles at unitarity in a
harmonic potential has the wave function

 ��x; y� /
e��x

2�y2�=2

jx� yjd�2
; (55)

and the ground state energy is also 2.

III. EXAMPLE 1: FERMIONS AT UNITARITY

In this section, we compute the scaling dimensions of
some operators in the theory describing spin-1=2 fermions
at unitarity. In order to have a small parameter for pertur-
bative expansions, we shall work near two and four spatial
dimensions, and then, interpolate the results to the physical
three spatial dimensions. Since the energy eigenvalues of
two and three fermions in a harmonic potential can be
found exactly, we can use these cases to test our expansions
and interpolation schemes. In the cases of more than three
fermions, only numerical results exist. Our analytical cal-
culations, as we will see, are consistent with the numerical
ones.

There are two field-theoretical representations of fermi-
ons at unitarity, one becoming weakly coupled as d! 4
and the other becoming weakly coupled as d! 2 [10,11].
We shall consider these two cases separately.

A. Near four spatial dimensions

1. Fixed point

In the first representation, the Lagrangian density de-
scribing fermions at unitarity is
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 L � i y�@t � �
1
2jr �j

2 � i��@t��
1
4jr�j

2

� g y"  
y
# �� g # "�

�: (56)

The canonical dimensions of the fermion field  � and the
boson field � are both d=2. Therefore the coupling con-
stant g is relevant at weak coupling below d � 4. There are
three other relevant terms one can add to the Lagrangian
density (56): �� 

y
� � and ��g2=c0����. �� is a chemi-

cal potential for each spin component of fermions and here
we consider the system at zero density �� � 0.
Furthermore we assume that the system is fine-tuned so
that the coefficient in front of ��� satisfies

 

1

c0
�
Z dk

�2��d
1

k2 : (57)

[�c0�
�1 is zero in dimensional regularization.] This condi-

tion is equivalent to the fine-tuning to the infinite scattering
length. We denote the propagators of  and � by G�p� and
D�p�, respectively.

The renormalization of the theory can be performed in
the standard way considering 	 � 4� d to be a small
parameter for perturbation. There is a one-loop self-energy
diagram for � which is logarithmically divergent (Fig. 1).
Integrating out modes in the momentum shell e�s�< k<
�, we obtain

 ��p� �
g2

c0
� ig2

Z dk

�2��d�1
G
�
p
2
� k

�
G
�
p
2
� k

�

� �
g2

8�2

�
p0 �

p2

4

�
ln

�

e�s�
; (58)

which corresponds to the wave-function renormalization of
�

 Z� � 1�
g2

8�2 s: (59)

The anomalous dimension of � is found by the standard
formula

 
� � �
1

2

@ lnZ�
@s

�
g2

16�2 : (60)

There is no divergent one-particle irreducible diagram
that renormalizes the  # "�� coupling. As a result, the �
function that governs the running of g,

 

@g
@s
� ��g�; (61)

is determined by the dimension of g:

 ��g� �
�
2�

d
2
� 
�

�
g �

	
2
g�

g3

16�2 : (62)

There is a fixed point located at

 g2 � 8�2	: (63)

At this fixed point, the theory is a nonrelativistic CFT
describing fermions at unitarity.

2. Scaling dimensions of operators

Since the one-fermion operator  is not renormalized, its
scaling dimension is

 � �
d
2
: (64)

Using the operator-state correspondence, we find that there
is a one-fermion state in a harmonic potential with energy
�d=2�!, which is obvious.

The two-fermion operator �, on the other hand, has a
scaling dimension different from its canonical dimension
d=2. At the fixed point,

 �� �
d
2
� 
� � 2: (65)

This is, of course, consistent with Eq. (27). Since there is
no other contribution to ��, Eq. (65) is exact to all order in
	. According to the operator-state correspondence, this
implies the existence of a two-fermion state with zero
orbital angular momentum and energy 2!. The wave
function of this state is given by Eq. (55).

Let us look at three-fermion operators. The simplest
operator is � ". This operator has zero orbital angular
momentum l � 0. The diagram that contributes to its
anomalous dimension to order 	 is depicted in Fig. 2. It
is evaluated as

FIG. 1. One-loop self-energy diagram to renormalize the wave
function of �.

FIG. 2. One-loop diagram to renormalize the three-fermion
operator � ".
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 � ig2
Z dk

�2��d�1
G�k�D�k�G��k� � �

g2

6�2 ln
�

e�s�
:

(66)

Therefore the renormalized operator differs from the bare
operator by a rescaling factor: �� "�ren � Z�1

� "
� ", where

 Z� " � 1�
g2

6�2 s: (67)

At the fixed point,�@ lnZ� "=@s � 4	=3 is the anomalous
dimension of the composite operator � " (more precisely,
the nontrivial part of the anomalous dimension because
there is a trivial part equal to 
�). We thus find the scaling
dimension

 �� " � �� � � " �
4
3	 � 4� 5

6	: (68)

According to the operator-state correspondence, � " cor-
responds to a three-fermion state with l � 0 and energy
equal to

 E�0�3 � �4�
5
6	�O�	

2��!: (69)

This state continues to the first excited state of three
fermions in a harmonic potential at d � 3. Even within
the leading correction in 	, the result extrapolated to 	 � 1,
E�0�3 
 4:83!, is not too far from the true result of
4:666 22! at d � 3.

The three-fermion ground state in a harmonic potential
at d � 3 has l � 1. There are two lowest l � 1 operators
near four spatial dimensions; �r " and �r�� ". Let us
consider the renormalization of a general operator
a�r " � b�r��. Inserting this operator into Fig. 2, we
find
 

� ig2
Z dk

�2��d�1
�a��k� q� � b�k� p��

	G�k�D�k� p�G��k� q�

� �
g2

6�2

�
a� 5b

6
p�

5a� 7b
12

q

�
ln

�

e�s�
: (70)

In order to have well-defined anomalous dimensions, this
should be proportional to ap� bq. Thus we have two
solutions �a; b� / �1; 1� and �a; b� / �2;�1�, which have
anomalous dimensions 4	=3 and �	=3, respectively. The
first possibility corresponds to the operator r�� "�, that is
obviously not a primary operator. Its scaling dimension is
trivially equal to �� " � 1 (corresponding to an excitation
in the center of mass motion). The other operator 2�r " �
�r�� " has the nontrivial scaling dimension

 �2�r "��r�� " � �� � � " � 1� 1
3	 � 5� 5

6	: (71)

The operator-state correspondence tells us that the three-
fermion state with l � 1 in a harmonic potential has the
energy

 E�1�3 � �5�
5
6	�O�	

2��!: (72)

The extrapolation to 	 � 1 gives E�1�3 
 4:17!, which is
not too far from the true ground state energy 4:272 72! at
d � 3.

We now turn to the four-fermion state with l � 0 repre-
sented by the operator �2. The first nontrivial correction to
its scaling dimension is of order 	2 given by the diagram
depicted in Fig. 3. The two-loop integral can be performed
analytically and we find

 ��2 � 4� 8	2 ln
27

16
: (73)

Thus the ground state of four fermions in a harmonic
potential has the energy

 E�0�4 �

�
4� 8	2 ln

27

16
�O�	3�

�
!: (74)

The correction, although it is of order 	2, has the large
coefficient. Therefore, in order to extrapolate to 	 � 1, we
shall not use Eq. (73) directly but will combine it with a
result near two spatial dimensions.

For a general even number of fermions N � 2n, the
operator �n corresponds to the ground state in a harmonic
potential with l � 0. Its scaling dimension is given by

 ��n � N � N�N � 2�	2 ln
27

16
�O�	3�: (75)

When N � 2n� 1 is odd, the operators �n " and
2�nr " ��

n�1�r�� " correspond to states with orbital
angular momentum l � 0 and l � 1, respectively. Their
scaling dimensions are

 ��n " � N � 1�
4N � 7

6
	�O�	2� (76)

and

 �2�nr "��n�1�r�� " � N � 2�
2N � 21

18
	�O�	2�:

(77)

According to the operator-state correspondence, the energy

FIG. 3. One-loop diagram to renormalize the four-fermion
operator �2.
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of N-fermion state in a harmonic potential is simply given
by E�l�N � �O!.

The leading-order results [E�0�N � N! for even N and
E�0�N � �N � 1�! and E�1�N � �N � 2�! for odd N] can be
easily understood by recalling that, in the limit of d! 4
from below, fermion pairs at unitarity form pointlike bo-
sons and they do not interact with each other or with extra
fermions [10,12]. So the ground state for N � 2n fermions
consists of n free composite bosons, each of which has the
lowest energy 2! in a harmonic potential at d � 4. When
N � 2n� 1, the ground state has l � 0 and consists of n
composite bosons and one extra fermion in the lowest
energy states. In order to have an l � 1 state, one of the
n� 1 particles has to be excited to the first excited state,
which costs additional 1!. At d � 4, we observe the odd-
even staggering in the ground state energy as E�0�N �
�E�0�N�1 � E

�0�
N�1�=2 � 1! for odd N.

B. Near two spatial dimensions

1. Fixed point

The other field-theoretical representation of fermions at
unitarity is provided by the Lagrangian density

 L � i y�@t � �
1
2jr �j

2 � �g2 y"  
y
#  # ": (78)

Again we consider the system at zero density �� � 0.
When �	 � d� 2 is small, the coupling �g2 is renormalized
by the logarithmically divergent one-loop diagram (Fig. 4).
The renormalization group equation for �g2 is

 

@ �g2

@s
� � �	 �g2 �

�g4

2�
: (79)

The fixed point is located at

 �g 2 � 2� �	: (80)

At this fixed point, the theory is a nonrelativistic CFT
describing fermions at unitarity.

2. Scaling dimensions of operators

The scaling dimensions of the one-fermion operator  
and the two-fermion operator  # " (its renormalization is
given by Fig. 5) are given by the same formulas as around
four dimensions; � � d=2 and � # " � 2. Here we con-
centrate our attention on three-fermion operators. The
simplest operator is  " #r ", which has the orbital angular
momentum l � 1. By considering the diagram where one
more fermion line is attached to Fig. 5, the renormalization
of this operator is given by

 

� i �g2
Z dk

�2��d�1

�
p3 �

p1 � p2

2
� k

�
G
�
p1 � p2

2
� k

�
G
�
p1 � p2

2
� k

�
� i �g2

Z dk

�2��d�1

�
p2 � p3

2
� k� p1

�

	G
�
p2 � p3

2
� k

�
G
�
p2 � p3

2
� k

�
�

3 �g2

4�
�p2 � p1� ln

�

e�s�
: (81)

Therefore the renormalized operator is � " #r "�ren �
�Z " #r " �

�1 " #r ", where

 Z " #r " � 1�
3 �g2

4�
s: (82)

At the fixed point, the anomalous dimension becomes

 " #r " � �@ lnZ " #r "=@s � �3 �	=2. So the scaling di-
mension of the operator  " #r " is

 � " #r " �
3d
2
� 1� 
 " #r " � 4: (83)

According to the operator-state correspondence, the
ground state energy of three fermions in a harmonic po-
tential is given by

 E�1�3 � �4�O� �	
2��!: (84)

For three-fermion operators with l � 0, the calculation
is somewhat more involved, because there are three lowest

FIG. 4. One-loop diagram to renormalize the four-point vertex
coupling �g2.

FIG. 5. One-loop diagram to renormalize the two-fermion
operator  # ".
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operators that can mix with each other:  " #r2 ",  "r # �
r ", and  " #@t ". The linear combinations with well-
defined anomalous dimensions are

(i) r � � " #r "� with 
 � �3 �	=2,
(ii)  " #@t " with 
 � �3	=2,
(iii)  " #�i@t �

1
2r

2� " with 
 � � �	.

The first operator is not a primary operator. Its scaling
dimension is trivially equal to � " #r " � 1 (corresponding
to an excitation of the center of mass motion). The third
operator annihilates the vacuum and thus does not corre-
spond to any eigenstate of the system in a harmonic
potential. The second operator is, therefore, the one that
corresponds to the lowest energy eigenstate of three fer-
mions in a harmonic potential with l � 0. The energy of
this state is

 E�0�3 �

�
3d
2
� 2�

3

2
�	
�
! � �5�O� �	2��!: (85)

We can develop the same analysis for operators having
more than three fermion numbers. The lowest four-fermion
operator with l � 0 is  " #r " � r #. Its anomalous di-
mension is computed to be �3 �	, which corresponds to the
ground state energy in a harmonic potential

 E�0�4 � �6� �	�O� �	2��!: (86)

For five fermions, the operator  " #�r " � r #�r "
with the anomalous dimension �7 �	=2 corresponds to the
ground state in a harmonic potential with l � 1. Its energy
is given by

 E�1�5 � �8� �	�O� �	2��!: (87)

We can find two nontrivial operators with l � 0
corresponding to the lowest two energy eigenstates of
five fermions in a harmonic potential. The opera-
tors a " #�r " �r #�r2 " �b "ri #�r " �r #�ri " �
c " #��rir "� �r #�ri " �d " #�r " �r #�i@t " with
 

�a; b; c; d� / ��19
���
3
p
� 5

������
35
p

;�16
���
3
p
;

� 6
������
35
p

� 6
���
3
p
; 16

������
35
p
� (88)

have well-defined anomalous dimensions ��51���������
105
p

� �	=16. Therefore, there are five-fermion states with
l � 0 and energies equal to

 E�0�5 �

�
9�

11�
��������
105
p

16
�	�O� �	2�

�
!: (89)

Finally, the lowest six-fermion operator with l � 0 is
 " #�r " � r #��r " � r #�. Its anomalous dimension is
computed to be �5 �	, which corresponds to the ground
state energy in a harmonic potential

 E�0�6 � �10� 2 �	�O� �	2��!: (90)

We note that the leading-order results for E�l�N can be
easily understood by recalling that, in the limit of d! 2
from above, fermions at unitarity become noninteracting
[10,12]. So the energy eigenvalue of each N-fermion state
is just a sum of single particle energies in a harmonic
potential at d � 2. Clearly, the ground state energy shows
the shell structure at d � 2.

C. Interpolations to d � 3 and discussion

We determined the exact scaling dimensions of the one-
fermion operator  and the two-fermion operator � �
 # " in arbitrary spatial dimension d. For the scaling
dimensions of N-fermion operators with N � 3, a few
lowest-order terms in the expansions over �	 � d� 2 and
	 � 4� 	 were computed as summarized in Table I.
According to the operator-state correspondence, we find
that the ground state of three fermions in a harmonic
potential has the orbital angular momentum l � 1 near
d � 2, while l � 0 near d � 4. So there must be at least
one level crossing between the states with l � 0 and l � 1
as d increases. Using the 	 expansions, the spatial dimen-
sion at which this level crossing occurs can be estimated to
be d 
 3:4, which means that the three-fermion ground
state at d � 3 has l � 1. The same level crossing has to
occur for the five-fermion case about d 
 3:64, which
implies the five-fermion ground state with l � 1 at d �
3. On the other hand, the ground state of four or six
fermions in a harmonic potential has zero orbital angular
momentum near d � 2 and d � 4. Thus the level crossing

TABLE I. Scaling dimensions of operators corresponding to N-fermion states with orbital angular momentum l in a harmonic
potential. Known results for the energy eigenvalues E�l�N at d � 3 are also shown in units of @! [13–15].

�	 � d� 2 expansion 	 � 4� d expansion Known value at d � 3

N � 2 (l � 0) 2 2 2
N � 3 (l � 0) 5�O� �	2� 4� 5

6 	�O�	
2� 4.666 22

N � 3 (l � 1) 4�O� �	2� 5� 5
6 	�O�	

2� 4.272 72
N � 4 (l � 0) 6� �	�O� �	2� 4� 8	2 ln27

16�O�	
3� 5:1� 0:1 / 5:07� 0:01

N � 5 (l � 0) 9� 11�
������
105
p

16 �	�O� �	2� 6� 13
6 	�O�	

2� -
N � 5 (l � 1) 8� �	�O� �	2� 7� 11

18 	�O�	
2� 7:6� 0:1

N � 6 (l � 0) 10� 2 �	�O� �	2� 6� 24	2 ln27
16�O�	

3� 8:7� 0:1 / 8:67� 0:03
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with higher orbital angular momentum states is unlikely
and we expect l � 0 for the ground state at d � 3.

In order to make quantitative discussions, we can use the
Padé approximants to interpolate the two expansions
around d � 2 and d � 4. For each operator, we approxi-
mate its scaling dimension as a function of d � 2� �	 by a
ratio of two polynomials;

 �X=Y� �
a0 � a1 �	� � � � � aX �	X

1� b1 �	� � � � � bY �	Y
: (91)

We demand that the series expansions of (91) around d � 2
and d � 4 match the computed results. X� Y is fixed by
the number of known terms in the two expansions, while
there is a freedom in distributing the sum between X and Y.

The different four Padé approximants for the scaling
dimension of each three-fermion operator are plotted as
functions of d in Fig. 6. We find the behaviors of the Padé
approximants are quite consistent with the exact results
both for l � 0 (left panel) and l � 1 (right panel). For
three-fermions with l � 0, the interpolated results at d �
3 are
 

�3=0� � 4:71; �2=1� � 4:7;

�1=2� � 4:72; �0=3� � 4:72:
(92)

We see that all Padé approximants give very close results in
a small interval E�0�3 
 4:71� 0:01. The harmonic oscil-
lator frequency ! was set to 1 again. This is close to the
exact result 4.666 22 at d � 3 [13], while the numbers
obtained by the Padé interpolations are slight overesti-
mates of the exact value.

Similarly, for three fermions with l � 1, the interpolated
results are given by

 

�3=0� � 4:29; �2=1� � 4:3;

�1=2� � 4:32; �0; 3� � 4:29;
(93)

which span a small interval E�1�3 
 4:30� 0:02. Again the
result is very close to, but slightly larger than the exact
value 4.272 72 at d � 3 [13]. One may expect that these
agreements will be further improved once additional terms
in the expansions around d � 2 and d � 4 are included.

For four fermions with l � 0, the Padé interpolations to
d � 3 give
 

�4=0� � 5:55; �3=1� � 4:94; �2=2� � 4:94;

�1=3� � 4:90; �0=4� � 6:17:
(94)

Some of these estimates are not too far from the numerical
result 5:1� 0:1 [14] and 5:07� 0:01 [15] at d � 3, but the
results span a larger interval E�0�4 
 5:53� 0:64. This may
be because the coefficient of the next-to-leading-order
correction around d � 4 is sizable compared to the leading
term. If one excluded the two extremely asymmetric cases
[4=0] and [0=4] where all terms in the Padé approximant
come to the numerator or denominator, one would have a
rather small interval about E�0�4 
 4:92� 0:02.

For five fermions with l � 0, the interpolated results at
d � 3 are given by
 

�3=0� � 7:71; �2=1� � 7:64;

�1=2� � 7:66; �0=3� � 7:82;
(95)

which are in an interval E�0�5 
 7:73� 0:09. On the other
hand, for five fermions with l � 1, the interpolated results
are

432

4

4.5

5

d

EN=3
  (l=0)

[h−−ω]

432

4

4.5

5

d

EN=3
  (l=1)

[h−−ω]

FIG. 6 (color online). Energy of three fermions in a harmonic potential with l � 0 (left panel) and l � 1 (right panel) as functions of
spatial dimension d. The four solid curves, although hard to distinguish, represent different Padé approximants interpolating the
expansions around d � 2 and d � 4. The dashed (dotted) lines are extrapolations from the 	 � 4� d ( �	 � d� 2) expansions. The
symbols (	) indicate the exact values for each d [9].
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�3=0� � 7:10; �2=1� � 7:16;

�1=2� � 7:19; �0=3� � 7:09;
(96)

which are in an interval E�1�5 
 7:14� 0:05. We findE�1�5 <

E�0�5 at d � 3, which means l � 1 for the five-fermion
ground state in a harmonic potential. However, its energy
eigenvalue is a substantial underestimate of the numerical
result 7:6� 0:1 at d � 3 [14].

For six fermions with l � 0, the Padé interpolations to
d � 3 give
 

�4=0� � 10:1; �3=1� � 7:92; �2=2� � 7:92;

�1=3� � 7:80; �0=4� � 16:4:
(97)

The results now span a considerably larger interval E�0�6 

12:1� 4:3, probably because of the huge next-to-leading-
order coefficient around d � 4. The large error signals the
worse convergence of the series expansions as the number
of fermions increases. If the two extremely asymmetric
cases [4=0] and [0=4] were excluded, one would have
E�0�6 
 7:86� 0:06. For comparison, the numerical result
is 8:7� 0:1 [14] and 8:67� 0:03 [15] at d � 3.

As the number of fermions goes to infinity, one can
expect the series expansions over �	 � d� 2 and 	 � 4�
	 for the ground state energy break down. Indeed, the
energy of N fermions at unitarity in a harmonic potential
scales with different powers of N in different spatial di-
mensions as EN � N�d�1�=d for sufficiently large N.
Therefore it is not surprising that our extrapolations to d �
3 do not work well for five and six fermions. It is possible
that the situation is improved once we know the next terms
in the expansions around d � 2 and d � 4.

Here we comment on the convergence of the �	 and 	
expansions. Since the exact integral equation to determine
the energy eigenvalues of three fermions in a harmonic
potential is known [9], one can estimate the radii of con-
vergence of the expansions around d � 2 and d � 4 by
studying their asymptotic behaviors. It turns out that the
expansions for the three-fermion state with l � 0 are con-
vergent when j �	j & 1:0 or j	j & 0:48, while those with
l � 1 are convergent when j �	j & 1:0 or j	j & 1:4. On

this basis, we speculate that the expansions over �	 � d�
2 and 	 � 4� d have nonzero radii of convergence for
systems with a finite number of particles. The full details
will be reported elsewhere [16].

IV. EXAMPLE 2: ANYONS

Anyons in two spatial dimensions present another ex-
ample of a nonrelativistic CFT. In this section, we compute
the scaling dimensions of some operators near the bosonic
limit and the fermionic limit, where perturbative expan-
sions in terms of statistical parameter � are available. Our
analytical results, as we will see, are consistent with results
obtained by the conventional Rayleigh-Schrödinger pertur-
bation theory in a harmonic potential or numerical
simulations.

The field-theoretical representation of anyons is pro-
vided by the following Lagrangian density where a non-
relativistic field ’ is minimally coupled to a Chern-Simons
gauge field a� � �a0;a�:

 

L �
1

4�
@ta	 a�

1

2�
a0r	 a�

1

2�
�r � a�2

� i’��@t � ia0�’�
1

2
j�r� ia�’j2 �

v
4
�’�’�2:

(98)

’ is either a bosonic or fermionic field. We denote the
propagator of’ byG�p�. In the Coulomb gauge � � 0, the
only nonvanishing components of the a� propagator are

 Di0�p� � �D0i�p� � �2i�
	ijpj
p2 : (99)

We define the three-point vertex �0 � �1, �i�p; p
0� �

�pi � p
0
i�=2m and the four-point vertex �ij � ��ij=m.

The contact interaction coupling v has to be fine-tuned
so that the system is scale invariant. We start with the case
where ’ is bosonic.

FIG. 7. One-loop diagrams to renormalize the contact interaction coupling v.
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A. Near the bosonic limit

1. Fixed points

There are two one-loop diagrams which are logarithmi-
cally divergent and renormalize the coupling v (Fig. 7).
Integrating out modes in the momentum shell e�s�< k<
�, the first diagram is evaluated as

 � 4
Z dk

�2��3
G�k��0D0i�k��ijDj0�k��0

� �i
4�2

�
ln

�

e�s�
; (100)

while the second one as

 

v2

2

Z dk

�2��3
G�k�G��k� � i

v2

4�
ln

�

e�s�
: (101)

Therefore the renormalization group equation for v is

 

@v
@s
�

4�2

�
�
v2

4�
: (102)

We find two fixed points located at [17]

 v � �4j�j: (103)

At these fixed points, the theory is a nonrelativistic CFT.
The repulsive (upper sign) or attractive (lower sign) contact
interaction corresponds to a different boundary condition
imposed on the s-wave two-body wave function at origin
�r�j�j=� [18,19].

2. Scaling dimensions of operators

Since the one-body operator ’ is not renormalized, its
scaling dimension is �’ � 1, independent of �. Using the
operator-state correspondence, we find that there is a one-
anyon state in a harmonic potential with energy 1!, which
is obvious.

The two-body operator ’2 is renormalized by the dia-
grams depicted in Fig. 8, which are potentially logarithmi-
cally divergent and contribute to the anomalous dimension
to order �. Since the first diagram turns out to be finite, we
can concentrate on the second diagram which is given by

 i
v
2

Z dk

�2��3
G�k�G��k� � �

v
4�

ln
�

e�s�
: (104)

Therefore the renormalized operator differs from the bare
operator by a rescaling factor: �’2�ren � Z�1

’2 ’2, where

 Z’2 � 1�
v

4�
s: (105)

At the fixed point, 
’2 � �@ lnZ’2=@s � �j�j=� is the
anomalous dimension of the composite operator ’2. We
thus find the scaling dimension

 �’2 � 2�’ � 
’2 � 2�
j�j
�
: (106)

According to the operator-state correspondence, ’2 corre-
sponds to a two-anyon state in a harmonic potential with
energy equal to

 E2 �

�
2�
j�j
�

�
!: (107)

It is straightforward to generalize our analysis to the
lowest N-anyon operator ’N . Its scaling dimension is
given by

 �’N � N �
N�N � 1�

2

j�j
�
; (108)

and therefore, the corresponding N-anyon state in a har-
monic potential has the energy EN � �’N!. This result
coincides with the exact energy eigenvalues ofN anyons in
a harmonic potential [20–22].

B. Near the fermionic limit

Scaling dimensions of operators

If ’ is a fermionic field, the contact interaction term
�’�’�2 vanishes and the left diagram in Fig. 7 turns out to
be finite. Therefore, the system is automatically scale
invariant. We denote the statistical parameter in this case
by �0 � �� �.

Let us first look at the lowest two-body operators ’ri’.
Inserting this operator into the left diagram of Fig. 8, its

FIG. 8. One-loop diagrams to renormalize the two-anyon operators.
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renormalization is given by
 

i
Z dk

�2��3
�p2 � k�iG�p1 � k����p1; p1 � k�D�
�k��
�p2; p2 � k�G�p2 � k�

� i
Z dk

�2��3
�p1 � k�iG�p1 � k����p1; p1 � k�D�
�k��
�p2; p2 � k�G�p2 � k� � i

�0

�
	ij�p2 � p1�j ln

�

e�s�
: (109)

We thus find the linear combinations ’rx’� i’ry’with
well-defined anomalous dimensions 
 � ��0=�. There-
fore, the scaling dimensions of such operators are

 �’rx’�i’ry’ � 3�
�0

�
: (110)

The operator-state correspondence tells us that the two-
anyon states in a harmonic potential have the energies

 E2 �

�
3�

�0

�

�
!: (111)

This result coincides with the exact energy eigenvalues of
two anyons in a harmonic potential.

Similarly, we can find the lowest three-body operator
’rx’ry’ has a vanishing anomalous dimension to order
�0. Therefore, the ground state energy of three anyons in a
harmonic potential near the fermionic limit is given by

 E3 � �5�O��02��!: (112)

The same result has been derived using the conventional
Rayleigh-Schrödinger perturbation theory up to order �02

[20].
We now turn to the four-anyon case. There are four

lowest operators that can mix with each other:
’rx’ry’rxx’, ’rx’ry’rxy’, ’rx’ry’ryy’, and
’rx’ry’@t’. The linear combinations with well-defined
anomalous dimensions are

(i) ’rx’ry’@t’ with 
 � 0,
(ii) ’rx’ry’r2’ with 
 � 0,
(iii) ’rx’ry’�rx � iry�2’ with 
 � 5

2
�0
� ,

(iv) ’rx’ry’�rx � iry�2’ with 
 � � 5
2
�0
� .

The combination of the first two operators
’rx’ry’�i@t �

1
2r

2�’ annihilates the vacuum and thus
does not correspond to any eigenstate of the system in a
harmonic potential. The other three operators, therefore,
correspond to the energy eigenstates of four anyons in a
harmonic potential. According to the operator-state corre-
spondence, the energies of these three states are given by
 

E4 � �8�O��02��! and

E4 �

�
8�

5

2

�0

�
�O��02�

�
!:

(113)

To our knowledge, these analytical results have not been
derived so far. Our numbers are consistent with slopes
observed in the numerical simulation [23].

V. CONCLUSION

In this paper we study Schrödinger algebra and its
representation in terms of operators. We show that irreduc-
ible representations are built upon primary operators. We
also point out a correspondence between primary operators
and eigenstates in a harmonic potential. We illustrate this
connection by computing the energy eigenvalues of up to
six fermions at unitarity in a harmonic potential using
expansions over 4� d and d� 2, as well as the energy
eigenvalues of up to four anyons in a harmonic potential
using expansions over � and �� �.
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APPENDIX A: COMMUTATORS IN THE
SCHRÖDINGER ALGEBRA

The Schrödinger algebra is formed from the operators
N, D, Mij, Ki, Pi, C, H. The commutators of N and Mij

with other operators are

 �N;D� � �N;Mij� � �N;Ki� � �N;Pi� � �N;C�

� �N;H� � 0; (A1)

 �Mij;Mkl� � i��ikMjk � �jkMil � �ilMkj � �jlMki�;

(A2)

 �Mij; Kk� � i��ikKj � �jkKi�;

�Mij; Pk� � i��ikPj � �jkPi�;
(A3)

TABLE II. Part of the Schrödinger algebra. Given are the
values of �A;B�.

Pj Kj D C H

Pi 0 �i�ijN �iPi �iKi 0
Ki i�ijN 0 iKi 0 iPi
D iPj �iKj 0 �2iC 2iH
C iKj 0 2iC 0 iD
H 0 �iPj �2iH �iD 0
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 �Mij; C� � �Mij; D� � �Mij; H� � 0: (A4)

The rest of the algebra is summarized in Table II.

APPENDIX B: THE STRESS TENSOR

We will find the stress tensor �ij which appears in the
momentum conservation equation:

 @tji � @j�ij � 0: (B1)

From the evolution equation for the field operators  and
 y it follows that

 @t�j�x�� �
1

4
� yr2r �r2r y �r2 yr 

� r yr2 ��x� �
Z
dyrxV�x� y�:n�x�n�y�:;

(B2)

where : � � � : denotes normal ordering [i.e., :n�x�n�y�: �

 y��x� 
y
��y� ��y� ��x�]. It is not obvious that the right-

hand side of Eq. (B2) can be written as the derivative of a
stress tensor. To do that, let us introduce the Laplace
transform ��Q� of the function rV�r�:

 4�rV�r� �
Z 1

0
dQ��Q�e�Qr: (B3)

In other words, we write the potential V�r� as a superpo-
sition of Yukawa potentials,

 V�r� �
Z 1

0
dQ��Q�

e�Qr

4�r
: (B4)

We also introduce, for each value of Q, an auxiliary field
�Q�x�,

 �Q�x� �
Z
dy

e�Qjx�yj

4�jx� yj
n�y�: (B5)

It satisfies the equation

 ��r2 �Q2��Q�x� � n�x�: (B6)

The stress tensor can now be introduced:
 

�ij �
1

2
�@i 

y@j � @j 
y@i � �

1

4
�ijr

2n

�
Z 1

0
dQ��Q�:

�
�@i�Q@j�Q

�
�ij
2
��r�Q�2 �Q2�2

Q�

�
:: (B7)

By using Eq. (B6) it is straightforward to verify that
Eq. (B1) is satisfied.

Notice that �ij is not unique. For example, one can
replace

 �ij ! �ij � �@i@j � �ijr
2�� (B8)

with any � without destroying the momentum
conservation.

Let us now show that if V�r� is a short-range potential
with infinite scattering length, then

 

Z
dx�ii�x� � 2H: (B9)

By using Eq. (B6) and the following property of the
Yukawa potential,

 

Z
dx

e�Qjx�yj

4�jx� yj
e�Qjx�zj

4�jx� zj
�
e�Qjy�zj

8�Q
(B10)

(which can be shown, e.g., by using the Fourier trans-
forms), we find

 

Z
dx�ii�x� � 2T � V

�
Z
dQdxdy��Q�Q

e�Qjx�yj

8�
:n�x�n�y�:;

(B11)

where T is the kinetic energy and V is the potential energy.
Since V�r� is a short-range potential giving an infinite
scattering length, the low-energy physics does not change
when one rescales the potential as

 V�r� ! �2V��r�: (B12)

In particular the Hamiltonian is unchanged under the trans-
formation (B12). Setting � � 1� 	, 	� 1 and expanding
H to the linear order in 	, we find

 

Z
dQdxdy��Q�Q

e�Qjx�yj

8�
:n�x�n�y�:=V: (B13)

Therefore, we obtain Eq. (B9).
One can use this relationship to prove that in the normal

phase (above the critical temperature), the bulk viscosity of
a Fermi gas at unitarity is identically zero. Indeed, the bulk
viscosity is given by Kubo’s formula:

 � � lim
!!0

1

9!

Z 1
0
dt
Z
dxei!th��ii�t; x�;�jj�0; 0��i;

(B14)

but the integral over x can be taken according to Eq. (B9).
Moreover, as h�H;O�i � 0 in thermal equilibrium for any
operator O, the bulk viscosity is zero. This result was
derived previously using a different approach [24].
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