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I. INTRODUCTION

The finite-temperature field theory is defined by consid-
ering the Euclidean space-time which is compactified in
the ‘‘time’’ direction whose inverse circumference is a
temperature T, with the usual periodic boundary conditions
for boson fields and antiperiodic conditions for fermion
fields. In particular, the gauge field is periodic in time, so
the theory is no longer invariant under arbitrary gauge
transformations. Only time-periodic gauge transformations
are allowed and hence the number of gauge invariants
increases. The new invariant is the holonomy or the eigen-
values of the Polyakov line that winds along the compact
time direction [1]:

 L � P exp
�Z 1=T

0
dtA4

���������j ~xj!1: (1)

This invariant together with the topological charge and the
magnetic charge can be used for the classification of the
field configurations [2]; its zero vacuum average is one of
the common criteria of confinement.

A generalization of the usual Belavin-Polyakov-
Schwartz-Tyupkin (BPST) instantons [3] for arbitrary tem-
peratures and holonomies is the Kraan-van Baal-Lee-Lu
(KvBLL) caloron with nontrivial holonomy [4–6]. It is a
self-dual electrically neutral configuration with unit topo-
logical charge and arbitrary holonomy. This solution was
constructed by Kraan and van Baal [4] and Lee and Lu [6]
for the SU(2) gauge group, and in [5] for the general SU(N)
case; it has been named the KvBLL caloron (recently, the
exact solutions of higher topological charge were con-
structed and discussed [7,8]). There are plenty of lattice
studies supporting the presence of these solutions [9]; see
also [10] for a very brief review. In a recent paper [11] the
caloron ensemble was studied analytically; although some
contributions were neglected there, the results are in very
good agreement with phenomenology.

The holonomy is called ‘‘trivial’’ if the Polyakov loop
(1) acquires values belonging to the group center Z�N�. For
this case the KvBLL caloron reduces to the periodic
Harrington-Shepard [12] caloron known before. The latter

is purely an SU(2) configuration and its quantum weight
was studied in detail by Gross, Pisarski, and Yaffe [2].

The KvBLL caloron in the theory with the SU(N) gauge
group on the space R3 � S1 can be interpreted as a com-
posite of N distinct fundamental monopoles (dyons)
[13,14] (see Fig. 1). As was proven in [5,15], the exact
KvBLL gauge field reduces to a superposition of BPS [16]
dyons, when the separation %i between dyons is large (in
units of inverse temperature). On the contrary, the KvBLL
caloron reduces to the usual BPST instanton, when the
distances %l between all the dyons become small compared
to the inverse nontriviality of holonomy.

We refer the reader to the papers [5,15] for the detailed
discussion and construction of the caloron solutions, to the
original works [4] for the SU(2) case, and to further works
on higher topological charge solutions [7,8].

This paper is in the series of papers [15,17–20] where
we calculate the functional determinant for KvBLL calo-
rons with nontrivial holonomy [4,6] in the finite-
temperature Yang-Mills theory.

Here we calculate the 1-loop gluonic and ghost func-
tional determinants for the case of an arbitrary SU(N)
gauge group. The calculation is performed in the limit of
far-separated dyon constituents and up to an overall nu-
merical constant. The constant for the gluonic determinant
remains known only for the SU(2) case [17,21].
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FIG. 1 (color online). The action density of the SU�3� KvBLL
caloron as a function of z, t at fixed x � y � 0; eigenvalues of A4

at spatial infinity are �1 � �0:307T, �2 � �0:013T, �3 �
0:32T. The action density is periodic in the t direction. At large
dyon separation the density becomes static (left panel, %1;2 �
1=T, %3 � 2=T). As the separation decreases the action density
becomes more like a 4d lump (right panel, %1;2 � 1=�3T�, %3 �
2=�3T�). The axes are in units of inverse temperature 1=T.*ssliz@list.ru
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We find new 3-particle interactions arising between
constituent dyons due to the gluonic determinant. These
terms were not present in the fermionic (fundamental-
representation) determinant and also vanished in the
SU(2) gluonic determinant.

Similar to our previous results, the determinant is infra-
red divergent, the leading divergence is proportional to the
volume or the system, and there are, of course, several
subleading divergent terms. It is not surprising and was
known long ago [2,22] that nontrivial holonomy increases
the effective action by a factor proportional to the volume.
Nevertheless, that does not make the studies of nontrivial
holonomy unphysical, since in the ensemble of many
calorons the moduli space integrals can compensate the
above divergences.

Since there are subleading divergences coming from the
Coulomb tail of dyon fields, it is natural that the result
would also depend on the position of the large ball, with
which we make the infrared cutoff. We will display this
dependence, but we note that it is unphysical unless the box
in not a real border of plasma region. One could also expect
that the quantum corrections will dump the Coulomb tails
of dyons.

We present the relevant notations in Sec. II and illustrate
the notations by the old results. The method of computa-
tion is described in Sec. III and the actual computations are
carried out in subsequent sections and appendixes. The
final result is presented in Sec. VI.

We do not draw here any physical conclusions on the
behavior of the whole caloron ensemble since that is now a
separate business [11,23]. Our results could be useful for
extending Ref. [23] to the SU�N > 2� case and including
the corrections due to the nonzero modes in the work [11].

II. NOTATIONS AND REVIEW

Consider the SU(N) Yang-Mills theory and a caloron
solution with the asymptotics [24]

 A� !
~x!1

2���4diag��1; . . . ; �N�:

For the SU(2) case the standard choice is �1 � �!,
�2 � ! where 0 � !< 1

2 . As usual, we set the tempera-
ture T � 1 throughout the computation, and restore the
temperature dependence only in the final result.

The caloron can be viewed as composed of dyons (BPS
monopoles with A4 playing the role of a Higgs field), the
inverse dyon size � being defined as

 �l � �l�1 ��l; �N � �1 ��N � 1: (2)

Traditionally the first N � 1 dyons are called the ‘‘M
dyons’’ and the Nth dyon is called the ‘‘L dyon,’’ because
an additional gauge transformation is needed for it to have
correct asymptotics.

We also introduce a notation

 v mn � 2���m ��n� mod 2�; (3)

which coincides with v � v21 and �v � v12 used previously
in the SU(2) calculations.

The positions of dyon centers are denoted by yi. The
distance from the ith dyon center to a point x is denoted as
~x� ~yi � ri; for the SU(2) case the standard notation is
r1 � s; r2 � r [17]. The distance between dyon cores is
denoted by rij � j ~rj � ~rij.

It is convenient to use a so-called ‘‘algebraic gauge,’’ in
which the asymptotic gauge field is vanishing at the ex-
pense of introducing twisted boundary conditions for field
fluctuations. The twist a� ~x; 1=T� � e�i�a� ~x; 0� is hence
related to the holonomy as � � 2�diag��1; . . . ; �N�. The
holonomy and, correspondingly, the twist could also be
multiplied by elements of the center of the gauge group
e2�i�k=N�. It does not affect the adjoint gauge field and
determinant but it affects fundamental determinants [15]:
 

log Det��r2
N� �

X
n

�
�
4
P00��n�rn;n�1 �

1

2
P��n�V

�3�

�
�n log�n

6
�

logrn;n�1

12�rn;n�1

�
� cN

�
1

6
log��O�1=r� (4)

where

 cN � �
13

72
�
�2

216
�

log�
6
�
� 0�2�

�2 : (5)

P is a periodical function with a period 2� such that

 P�v� �
q2�2�� q�2

12�2 ; q � v mod 2�: (6)

The determinant in the adjoint representation of SU(2)
reads [17,20]
 

log Det��D2
2� � VP�v� � 2�P00�v�r12 �

3�� 4v

3�
logv

�
3�� 4�v

3�
log�v�

2

3
log��

5

3
log�2��

� c2 �
1

r12

�
1

v
�

1

�v
�

23�
54
�

8�E
3�
�

74

9�

�
4

3�
log

�
v�vr2

12

�2

��
�O

�
1

r2
12

�
: (7)

Now we proceed to the calculation of the SU(N) adjoint-
representation determinant.

III. METHOD OF COMPUTATION

For self-dual fields the gluonic and ghost determinants
over nonzero modes for the background gauge fixing are
related [25] to the adjoint scalar determinant in the same
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background: Det0�W��� � Det��D2�4, where W�� is the
quadratic form for spin-1, adjoint-representation quantum
fluctuations and D2 is the covariant Laplace operator for
spin-0, adjoint-representation ghost fields. So the total
contribution to the effective action of gluon and ghost
determinants is 2 log Det��D2� which corresponds to two
physical degrees of freedom.

We calculate the quantum determinant by integrating its
variation with respect to parameters P of the solution,
following [15,17,18,26]. In this case the problem reduces
to a four dimensional integral of the gauge field variation
multiplied by a vacuum current, which can be expressed
through the Green function known implicitly for any self-
dual configuration,

 

@ log Det��D2	A
�
@P

� �
Z
d4x tr�@PA�J��; (8)

where J� is the vacuum current in the external background,
determined by the Green function:

 J� � D
!

�G �GD
 

�: (9)

Here G is the periodical Green function of the covariant
Laplace operator in the adjoint representation

 �D2
xG�x; y� � ��4��x� y�; (10)

 G �x; y� �
X�1

n��1

G�x4; ~x; y4 � n; ~y�: (11)

The Green functions in the self-dual backgrounds are
known explicitly [27,28] if the gauge field is expressed in
terms of the Atiyah-Drinfeld-Hitchin-Manin (ADHM)
construction [29]: A� � vy@�v. These look quite simple
for the fundamental representation [30]

 Gfund�x; y� �
vy�x�v�y�

4�2�x� y�2
; (12)

but become more complicated for the adjoint representa-
tion [31–33]
 

Gab�x; y� �
1
2 tr tahv�x�jv�y�itbhv�y�jv�x�i

4�2�x� y�2

�
1

4�2

Z 1=2

�1=2
dz1dz2dz3dz4M�z1; z2; z3; z4�

�
1

2
tr�V y�x; z1�V �x; z2�t

a�

� tr�V y�y; z4�V �y; z3�t
b�; (13)

where ta are Hermitian fundamental-representation gener-
ators of SU(N) normalized to tr tatb � 1

2�
ab; V �x; z� is one

of the components of v [see Eq. (B21)]; and M is a piece-
wise rational function [34]. Fortunately we do not need an
explicit form of this function for the SU(N) caloron since in
the large separation limit the contribution of the last term

(or M-term) is exponentially small away from the dyons.
Near the dyons, the field is essentially reduced to the
SU(2), so one can use there the results of [17,32].

In what follows it will be convenient to split the periodic
propagator into three parts and consider them separately:
 

G�x; y� � Gr�x; y� �Gs�x; y� � Gm�x; y�;

Gs�x; y� � G�x; y�;

Gr�x; y� � Gm�x; y� �
X
n�0

G�x4; ~x; y4 � n; ~y�:

(14)

Here Gm�x; y� corresponds to the part of the propagator
arising from the M-term. The vacuum current (9) will also
be split into three parts, ‘‘singular,’’ ‘‘regular,’’ and ‘‘M,’’
in accordance with (14)

 J� � Jr
� � J

s
� � J

m
�: (15)

As was proposed in [17] we divide the space into regions
surrounding the dyons and the remaining space (outer
region). Near each of the dyons the gauge field becomes
essentially the SU(2) dyon configuration plus an additional
constant-field background. In this region we can use the
results of [17]. In the outer region, far from the exponential
cores of the dyons, the vacuum current considerably sim-
plifies and we only have to perform integration in (8).

In the following two sections we give results for these
two domains, and in Sec. we combine them together and
integrate over the space.

IV. CORE DOMAIN

In this section we write a contribution to the variation of
the total determinant arising from the core region of a
dyon. We take a ball of radius R around the dyon. In that
region the field is approximately the one of the SU(2) dyon,
embedded along one of the simple roots, plus an extra
constant A4 field [5]. More precisely, in the fundamental
representation the gauge field near the lth dyon is a zero
N � N matrix with only a 2� 2 block at the lth position
filled by the BPS dyon gauge field, plus a constant diagonal
N � N matrix [15],
 

Al
th block 2�2
� � Adyon

� ��l; ~x� ~yl�

� 2�i
�
�l ��l�1

2

�
��412�2;

Aoutside lth block 2�2
� � 2�i diag��1; . . . ; �N���4:

(16)

Under the action of the SU(2) subgroup, the adjoint repre-
sentation of SU(N) splits into one triplet, 2�N � 2� dou-
blets, and �N � 2�2 singlets. The determinant of the
arbitrary SU(2) configuration embedded into SU(N) is
then expressed as a sum of the SU(2) adjoint-
representation determinant plus 2�N � 2� fundamental-
representation determinants [35].

As is seen from Eq. (16), the SU(2) dyon field is accom-
plished by the constant diagonal matrix. This matrix can be
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killed by a gauge transformation, which is not periodical,
and thus can change the determinant. It is equivalent to the additional twist of boundary conditions for the 2�N � 2�
fundamental-representation determinants.

As a demonstration let us consider the SU(3) case. The fundamental gauge field reads

 A� �
Adyon
�2�2

0
0

0 0 0

0@ 1A� 2�i��4

�1��2

2 0 0

0 �1��2

2 0
0 0 �3

0B@
1CA: (17)

In the adjoint representation of SU(3) in an appropriate basis it becomes

 Â � �

Âdyon
�3�3 0 0 0

0 �Adyon
�2�2 � i���4��3 � �2� 0 0

0 0 Adyon
�2�2 � i���4��3 � �2� 0

0 0 0 0

0
BBBB@

1
CCCCA: (18)

So, there is one block 3� 3 giving an adjoint-
representation dyon field and two 2� 2 blocks giving a
fundamental-representation dyon accomplished by a unit
matrix. As it was shown in [15] this extra unit matrix only
changes an IR divergent part of the dyon determinant (the
one, depending on radius of the ball). These divergences
cancel with the terms in the outer-region determinant
depending on the radius of the holes R, as is shown in
Appendix A. So we can freely drop them.

Summing up one adjoint [(A4)] and 2�N � 2� funda-
mental dyon determinants [(A3)] for all N dyons, we
obtain the following contribution to the derivative of the
caloron determinant from the considered domain:

 @P
X
n

�
�
�6� N��n log��n�

3
� log��n�

�
� IR; (19)

where ‘‘IR’’ denotes the IR divergent terms.

V. OUTER DOMAIN

We proceed to consider the far domain, i.e. the region of
space outside the dyons’ cores. The caloron field becomes
diagonal with O�e��iri� precision, and this significantly
simplifies the results. For instance, the 4th component of
the fundamental caloron gauge field reads

 Amn4 � i�mn
�
2��m �

1

2rm
�

1

2rm�1

�
: (20)

In what follows, we will consider the derivative of the
determinant with respect to �m. It turns out that in this
domain only A4 depends on �m nontrivially [5]. Thus we
need only the 4th component of the vacuum current as
follows from (8). As we know from the SU(2) case, this
component of the current is especially simple [17]:

 JSU�2�
4 �

i
2
T3P

0

�
v�

1

r1
�

1

r2

�
: (21)

The natural generalization of this expression is

 

JSU�N�
4 �

N

diag

n;m � 1

�
i
2
P0
�
2���m ��n� �

1

2rm
�

1

2rm�1

�
1

2rn
�

1

2rn�1

��
: (22)

The expression in brackets is simply the eigenvalue of
the gauge field (20) in the adjoint representation. This
formula is definitely right for large rm, where the field
becomes almost constant [2,36] and generalizes the
SU(2) expression. Moreover, we check it by a direct com-
putation in Appendix B. We conclude that
 

�tr�@PA�J�� �
1

2

X
n;m

@PP
�
vmn �

1

2rm
�

1

2rm�1
�

1

2rn

�
1

2rn�1

�
(23)

where

 v mn � 2���m ��n�: (24)

The variation over P can be integrated up to a constant,
and the integral over space will be performed in the next
section.

Integration

In order to get a variation of the determinant we have to
integrate in Eq. (23) over the space with N spherical holes
of radius R. The following integrals will be very helpful:
 Z � 1

2rm
�

1

2rm�1
�

1

2rn
�

1

2rn�1

�
2
d3x

’��rm;n� rm�1;n�1� rm;n�1� rm�1;n� rm;m�1� rn;n�1�;

(25)
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Z � 1

2rm
�

1

2rm�1
�

1

2rn
�

1

2rn�1

�
3
d3x

’ �3� log
�
rm;n�1

rn;m�1

rm;n;m�1

rn;m;n�1

rn;m�1;n�1

rm;n�1;m�1

�
(26)

where rnm � j ~yn � ~ymj is the distance between dyons and

 2rlmn � rlm � rmn � rnl (27)

is the perimeter of the triangle, formed by lth, mth, nth
dyons. The ’ sign means that we drop all the terms
dependent on the radius of the holes R since they cancel
precisely with the dyons’ IR divergences as discussed in

Appendix A. To derive the last equation we used

 

Z 1

rnrmrl
d3x ’ �4� logrnml � C:

It is important to point out that Eq. (26) is not applicable
for the casem � n� 1, since it diverges. The reason is that
the divergences near dyon cores are not balanced anymore.
Nevertheless it is straightforward to verify that if one
replaces a zero rnn under the logarithm in Eq. (26) by
some fixed �, then it is still valid up to a constant, which
cancels in the final result.

So we can integrate in Eq. (23)

 

Z 1

2

X
m;n

P
�
vmn �

1

2rm
�

1

2rm�1
�

1

2rn
�

1

2rn�1

�
d3x ’

X
m;n

�
4
P00�vmn��rm;n � rm�1;n�1 � rm;n�1 � rm�1;n � rm;m�1

� rn;n�1� �
X
m;n

	vmn
 � �
2�

log
�
rm;n�1

rn;m�1

rm;n;m�1

rn;m;n�1

rn;m�1;n�1

rm;n�1;m�1

�

�
X
n;m

1

2
P�vmn�V

�3�: (28)

We denote 	vmn
 � vmn mod 2�. To simplify the above expression we use the identity

 

X
m;n

	vmn
 � �
4�

log
rm;n;m�1rn;m�1;n�1

rn;m;n�1rm;n�1;m�1
�
X
m;n

�n log rm;n;m�1 �
X
n

log rn;n�1: (29)

Then Eq. (28) becomes
 

log Det��D2
N�

far �
Z 1

2

X
m;n

P
�
vmn �

1

2rm
�

1

2rm�1
�

1

2rn
�

1

2rn�1

�
d3x

’ �
X
m;n

	vmn
 � �
2�

log
�
rm;n�1

rn;m�1

�
�
X
m;n

2�n logrm;n;m�1 � 2
X
n

logrn;n�1

�
X
m;n

�
4
P00�vmn��rm;n � rm�1;n�1 � rm;n�1 � rm�1;n � rm;m�1 � rn;n�1� �

X
m;n

1

2
P�vmn�V

�3�: (30)

The ‘‘R-terms’’ are exactly the ones of Eq. (A6) but with
R appearing as a lower limit of integration; this provides
their cancellation when we add the core contribution. The
second equality in (30) is valid when the variation does not
involve changing of the far region. Note that the logr

r
correction comes only from the far region, so we can
calculate it. It comes from the next P0000 term in the
Taylor series; this term obviously involves 4-center
Coulomb integrals:

 

Z d3x
r1r2r3r4

; (31)

taken over R3 with holes around centers. Since this integral
converges both in the IR and UV (near the holes), it can
involve only logarithms of some dimensionless combina-
tions of distances between these four points, divided by the
distance. In the approximation that the dyons are spread
homogeneously, such terms would be of order of unity, and

we neglect them. The only large logarithms come from the
case where three of the four points coincide; in this case the
integral diverges as the logarithm near the ith dyon:

 

Z
R4nBR

1

r3
i rj
� 4�

log�rij=R�

rij
�O�1=rij�: (32)

So for the correction to log Det��D2�, one sums all the
contributions of the form (32). Note that PIV � 2

� is a
constant, so some terms cancel in the sum. The result for
N > 2 is

 log Det��D2�correction � �
6� N

6�

XN
n>m

log rnm
rnm

: (33)

For N � 2 the coefficient is doubled and becomes � 8
3� ,

since there are more coincident points. This matches our
SU(2) result [Eq. (60) in [17]].
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VI. THE RESULT

From Eqs. (19) and (30), we can conclude that for large dyons’ separations, %m � 1=�m � 1=�m�1, the SU(N) caloron
determinant is the sum of these expressions plus some integration constant and logr

r improvement (33). Restoring the
temperature dependence we obtain

 

log Det��D2
N� � �

X
m;n

	vmn
 � �
2�

log
�
rm;n�1

rn;m�1

�
�
X
m;n

2�n logrm;n;m�1 � 2
X
n

logrn;n�1

�
X
m;n

�
4
P00�vmn�T�rm;n � rm�1;n�1 � rm;n�1 � rm�1;n � rm;m�1 � rn;n�1� �

X
m;n

1

2
P�vmn�T3V�3�

�
X
n

�6� N��n log�n
3

�
X
n

log�n �
6� N

6�
logrnmT
rnmT

� cN: (34)

Note that the coefficient � 6�N
6� should be doubled for the

N � 2 case.
The contribution to the effective action from nonzero

modes of gluons and ghosts would be

 �Seff � � log
Det��D2�

�Det0W���
1=2
� log Det��D2�: (35)

The constant cN will, of course, contain a standard UV
divergence, cN � c� N

3 log�PV, coming from the instan-
ton determinant [37], where �PV is a Pauli-Villars mass.
This divergence, together with � �PV

g
�����
2�
p �4N coming from zero

modes, gives the standard Yang-Mills 	 function and is
commonly incorporated into the running coupling:

 ��11=3�N
PV e�	8�

2=g2��PV�
 � ��11=3�N (36)

where � is the scale parameter obtained here through the
‘‘transmutation of dimensions.’’

Now let us combine with the result for SU(N) caloron
zero modes [38,39] and the classical action 8�2=g2��PV�.
The caloron measure is [39]

 Z
G
! ’ 26N�4N

�
1�

X
m

1

4�%m

�
1

�m�1
�

1

�m

��
�
Y
n

�nd
3%1 . . . d3%N�1d

4
: (37)

So the total contribution of one caloron to the effective
action becomes

 e�Seff 

�
�e�E

4�T

�
�11=3�N

CN
Z
�Det��D2

N��
�1

�
8�2

g2��PV�

�
2N
�

1�
X
m

1

4�%m

�
1

�m�1
�

1

�m

��Y
n

�nd
3%1 . . . d3%N�1d

4
: (38)

We have collected the factor 4�e��ET=� because it is the
natural argument of the running coupling constant at non-
zero temperatures [36,40]. When we have done so in the
SU(2) case [17], we got a constant numerically very close
to 1, so we expect the constant C to be of order of unity.
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APPENDIX A: CANCELLATION OF IR
DIVERGENCES OF DYONS

Consider the field near the dyon constituent of the
SU(N) caloron. In the fundamental representation it is
given by Eq. (16). In the adjoint representation this field
looks like one block with the SU(2) BPS dyon in the
SU(2)-adjoint representation (3� 3) and 2�N � 2� blocks
with the SU(2) BPS dyon in the SU(2)-fundamental repre-
sentation (2� 2) plus a constant part, specified below:

 

�iAadj
const � �diag�0; 0; 0;���1 ��2 � 2�3�;���1 ��2 � 2�3�;��. . .�;��. . .�; . . . ;���1 ��2 � 2�N�;

� ��1 ��2 � 2�N�; �3 ��4; �4 ��3; . . . �all pairs without �1; �2� . . . ; 0; 0; . . .�: (A1)
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There are N � 2 zeroes in the end, corresponding to ele-
ments of the Cartan subalgebra other than T3. Let us check
the size of the matrix (A1):

 3� 4�N � 2� � �N � 2��N � 3� � �N � 2� � N2 � 1;

which is as it should be for the adjoint representation of
SU(N).

This constant background is exactly equivalent to twist-
ing the boundary conditions. So we have to sum the loga-
rithms of the determinants for one adjoint-representation
SU(2) dyon, 2�N � 2� differently twisted fundamental-
representation SU(2) dyons, and a determinant for �N �
2��N � 3� different constant A4 field eigenvalues. It would
be interesting to check that this is asymptotically the same

as the adjoint determinant for the far region that we will
calculate below.

In [15] we proved that the twisting of boundary con-
ditions for the fundamental-representation determinant re-
sults in the shifting of the argument of P, where P is the
standard perturbative potential

 P�v� �
1

3�2��2
v2�2�� v�2

��������mod2�
: (A2)

Now we can just write the result (for the first dyon, for
simplicity), as a sum of the formula taken from [17] for the
triplet [SU(2) adjoint representation]:

 @P log Det��D2�near dyon � @P

�
~cdyon�1 �

8

3
�1 log��1� � log�m �

Z R
P
�
2��1 �

1

r

�
4�r2dr

�
(A3)

with 2�N � 2� formulas from [15] for the SU(2) dyon with twisted boundary conditions [‘‘twist’’ is a corresponding matrix
element of Eq. (A1)] [41],
 

@P log Det��r2�near dyon �
X2�N�2�

i�1

@P

�
ĉdyon�1 �

log��1�

6
�1 �

Z R 1

2

�
P
�
2���1 � ��1 ��2�=2� �

1

2r
� i�Aadj

const�2i�1

�

� P
�

2���2 � ��1 ��2�=2� �
1

2r
� i�Aadj

const�2i�2

��
4�r2dr

�
; (A4)

and with a constant-field determinant for the remaining matrix elements of �D2 (i.e. twists without background field),

 @P log Det��D2�const
near dyon �

X�N�2��N�3�

i�1

@P
Z R

0

1

2
P��i�Aadj

const�2�4�N�2��i�4�r2dr:

Totally, we get

 @P log Det��D2�near dyon � @P

�
cdyon�m �

�
8

3
�
N � 2

3

�
log��m��m � log�m

�
� �R-terms�: (A5)

And it is easy to check explicitly that the ‘‘R-terms’’ exactly match the asymptotics of far-from-dyons domain (see the
Sec. V),

 �R-terms� � lim
ri�1!1

Z RX
i>j

�P
�

2���i ��j� �
1

2ri
�

1

2ri�1
�

�
1

2rj
�

1

2rj�1

��
4�r2

1dr1: (A6)

So we conclude that the R-terms are trivial and exactly
match the contributions from the outer region, as it should
be, of course, since the result cannot depend on the radius
of the auxiliary balls that we have chosen.

APPENDIX B: CALCULATION OF THE
CURRENTS FOR THE OUTER DOMAIN

1. Singular current

The contribution of the singular part of the propagator to
the variation of the determinant is 4 times the fundamental-
representation result [2,25], if we write this variation in

terms of the fundamental representation. So we just take
our old result from [15] (that formula was not written there
explicitly; it was in our intermediate computations). For
the component Jsi it is quite natural to introduce bipolar
spatial coordinates with unit basis vectors r̂i �

ri
jrj , ŝi �

ri�1

jrj , n� �
r̂�ŝ
jr̂�ŝj . In these coordinates the current (already

multiplied by 4) is

 Js i
4 � �

i�r3
i � s

3
i �

12�2r3
i s

3
i

; (B1)
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 Js i
� � �

i�ri � si�
�������������������������������������������������������������������������������������������������������������������
��%i � ri � si��d� ri � si��%i � ri � si��%i � ri � si�

p
4�2r2

i s
2
i �%i � ri � si�

2 ; (B2)

 Js i
r̂i
� 0; Js i

ŝi
� 0: (B3)

We also remind the reader about the notations: ri � x� yi
is a vector from the ith dyon center to the current point,
si � ri�1; and %i � jyi � yi�1j is a distance between these
two dyons. Also, the standard ‘‘circular rule’’ rN�1 � r1 is
implied.

2. M-term current

Let us prove that the contribution to the current from the
M-term of the adjoint propagator is zero with exponential
precision (i.e. it decays exponentially out of the dyon
cores). As was shown in [17], when making the propagator
periodic the M-term simplifies to
 

Gmab�x; y� �
1

8�2

Z 1=2

�1=2
dzdz0M�z; z0�

� tr�v2y�x; z�v2�x; z��a�

� tr�v2y�y; z0�v2�y; z0��b�; (B4)

since the property v�yn; z� � e2�inzv�y; z� used to derive
that result still holds for the SU(N) ADHMN [28,29]
construction. Here M�z1; z2; z; z� � ��z1 � z2�M�z1; z�.

First of all, we note that only the lower components of v
are left and only the Cartan (diagonal) components are
nonzero: From Eq. (B34) we see that for each m the
function sm�z�, and hence v2

m�z�, is peaked near z � �m
and exponentially decays away from this point. So
v2y
m �x; z�v2

n�x; z� � �mn with exponential precision. This
leads us to the conclusion that
 

Gmab�x; y� / �a2Cartan�b2Cartan;

Gmab�x; y� � Gmab�y; x�:
(B5)

The second equation means that the terms with derivatives
in the expression for the current (9) cancel each other. It
follows from the first one that the adjoint action of A on Gm

gives zero since both A and Gm lie approximately in the
Cartan subalgebra. Therefore we conclude that

 Jm
� ’ 0: (B6)

3. Regular current

The adjoint-representation regular current is

 Jab � Dac
x Gcb�x; y� � Gac�x; y�Dcb

y (B7)

where a; b; c � 1; . . . ; N2 � 1 and we take the regular part
of the propagator:

 

�Gr�ab�x; y� �
X
n�0

4

8�2�x� yn�2

� tr	tahv�x�jv�yn�it
bhv�yn�jv�x�i
;

yin � yi � �i4n: (B8)

It is possible to rewrite these formulas in the fundamental
notations and evaluate them explicitly. Some details of the
calculation together with a short review of ADHM con-
struction are presented below. We denote the adjoint in-
dices by a; b; c � 1; . . . ; N2 � 1 and fundamental indices
by i; j; k; l; m; n � 1; . . . ; N.

First we represent the covariant derivatives in the fun-
damental representation. With the help of the identities
 

D
!ad
� tr�tdAtbB� � tr	ta�D

!

�A�t
bB� taAtb�BD

 

��
;

tr�taAtdB�D
 db
� � tr	ta�AD

 

��tbB� taAtb�D
!

�B�
;
(B9)

one gets for Jab the obvious four terms plus
��4�2 tr	tavyx vyt

bvyy vx
=�
2n3� from the derivative acting

on the denominator.
All the terms in the adjoint current have the form

tr	taBtbC
. The variation of the determinant has the form
��AcTcabJ

ab. To write it in the fundamental representation
we use the identities

 AcTcab � 2 tr�tb	ta; A
� (B10)

where A � Aiti and

 taijt
a
kl � 1=2��il�jk � 1=N�ij�kl�: (B11)

The Hermitian generators ta are normalized as tr�tatb� �
1=2 [for SU(2) these are �a=2]. We get

 �AcTcab tr�taBtbC� � 1
2 tr�B� tr��AC� � 1

2 tr�C� tr��AB�:

(B12)

So in terms of the fundamental indices (i; j � 1; . . . ; N) we
get for the current Jij (that is to be coupled to A in the
fundamental representation to get the variation of the
determinant)

 �Jr
��
ij�x� �

X
n�0;fB;Cg

1

4�2�x� yn�
2 �tr�B�C

ij � tr�C�Bij�

� ��4

X
n�0

1

�2�x� yn�3
�tr�E�Fij � tr�F�Eij�:

(B13)

Here

 E � vyx vyn � b; F � vyynvx � by (B14)
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and we put y � x (so that now yin � xi � �i4n) according to Eq. (9). The set f�B;C�g consists of four pairs taken from
Eqs. (B7) and (B9):

 f�B;C�g � f�Dxv
y
x vyn ; v

y
ynvx�; �v

y
x vyn ; Dxv

y
ynvx�; �v

y
x vynDy; v

y
ynvx�; �v

y
x vyn ; v

y
ynvxDy�g: (B15)

Since the current and the field are approximately diagonal
in the fundamental representation, we consider the diago-
nal components �Jr

��
i � �Jr

��
ii. In these notations the con-

tribution to Eq. (B13) can be rewritten as
 

�Jr
��
i�x� �

XN
j�1

X
n�0

� X
f�B;C�g

1

4�2�x� yn�2
�BjCi � CjBi�

�
��4

�2�x� yn�
3 �EjFi � FjEi�

�
: (B16)

From Eqs. (B15) and (B16) we get 8� 2 terms in the
resulting contribution to the current. Now in order to
calculate explicitly these B;C;E; F we need ADHMN
construction. A brief review and a calculation follow.

4. Expressions of the ADHMN construction

The basic object in the ADHMN construction [28,29] is
the �2� N� � 2 matrix � linear in the space-time variable
x and depending on an additional compact variable z
belonging to the unit circle:

 �K
	�z;x� �

�
�m	�z�; K�m; 1�m�N;
�B�z�� x����	; K�N��; 1� �� 2;

(B17)

where �;	 � 1, 2 and m � 1; . . . ; N; � � �i ~; 12�. As
usual, the superscripts number rows of a matrix and the
subscripts number columns. The functions �m	�z� forming a
N � 2 matrix carry information about color orientations of
the constituent dyons, encoded in the N two-spinors �:

 �m	�z� � ��z��m��m	 : (B18)

The quantities �m	 transform as contravariant spinors of the
gauge group SU(N) but as covariant spinors of the spatial
SU(2) group. The 2� 2 matrix B is a differential operator
in z and depends on the positions of the dyons in the 3d
space ~ym and the overall position in time 
4 � x4:

 B�	�z� �
��	@z
2�i

�
Â�	�z�

2�i
(B19)

with

 Â�z� � A��; ~A�z� � 2�i~ym�z�; A4 � 2�i
4;

(B20)

where inside the interval �m � z � �m�1, ~y�z� � ~ym is

the position of the mth dyon with inverse size �m �
�m�1 ��m.

One has to find N quantities vKn �x�, n � 1; . . . ; N,

 vKn �x� �
�
v1m
n �x�; K � m; 1 � m � N;
v2�
n �z; x�; K � N � �; 1 � � � 2;

(B21)

which are normalized independent solutions of the differ-
ential equation
 

�y�m �z�v1m
n � 	By�z� � x�y�
�	v

2	
n �z; x� � 0;

vy1m
l v1l

n �
Z 1=2

�1=2
dzvy2m

� v2�
n � �mn ;

(B22)

or, in shorthand notation,

 �yv � 0; vyv � 1N: (B23)

Note that only the lower component v2 depends on z.
Expressing v as

 v�x� �
�
�1n
u�x�

�
��1=2; u�x� � �By � xy��1�y;

(B24)

let us find u�z; x�—the main object of ADHM construc-
tion. It is the solution to the equation

 �By � xy�u � �y; By � xy �
@z

2�i
� ry�z�: (B25)

Define the Green functions as

 f � ��y���1; G � ��B� x�y�B� x���1;

�ij�x� � �ij � �
�
i G

�	�y�j
(B26)

where �i � 1; . . . ; N�, ��;	 � 1; 2�. One can note that

 f � �G�1 � �y���1 � G�G�yi �
�1
ij �G: (B27)

Acting on (B27) with �y on the right yields

 G�yj � f�yi �ij: (B28)

The Green function is expressed as follows:

 f�z; z0� � sm�z�fmns
y
n �z0� � 2�s�z; z0��	z
	z0
; (B29)

 fmn � F�1
mn: (B30)

The functions appearing in Eq. (B29) are
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sm�z� � e2�ix0�z��m�
sinh	2�rm��m�1 � z�


sinh�2�rm�m�
�m	z
 � e2�ix0�z��m�

sinh	2�rm�1�z��m�1�


sinh�2�rm�1�m�1�
�m;	z
�1;

s�z; z0� � e2�ix0�z�z0�
sinh�2�r	z
�minfz; z0g ��	z
�� sinh�2�r	z
��	z
�1 �maxfz; z0g��

r	z
 sinh�2�r	z
�	z
�
;

 ui � �B� x�f�
y
j �ji �

�
@z

2�i
� r��

�
sfk�z�fkj�

y
j �ji; (B31)

and the convenient notation ri � x� yi is a vector from the ith dyon to the current point. First we note that Fij and�ij are
diagonal matrices with exponential precision,

 fij ’ 2��ij�ri � ri�1 � %i�
�1; (B32)

 �ij ’ �ij
ri � ri�1 � %i
ri � ri�1 � %i

: (B33)

To pass to the periodical gauge we multiply v�x� from the right by gij � �ije2�i�ix0 . Totally within the exponential
precision we get for v

 vi�x; z� �
��ij�

�1=2
ii e2�i�ix0

�B� x�si�z�fii�
y
i �

1=2
ii e

2�i�ix0

 !
no index summations: (B34)

Consider the covariant derivative of vi�x� in the periodical gauge (integration over z is assumed):

 D�hv�x�j � @�hvj � @�hvjvihvj � @�hvj�1� jvihvj� � @�hvj�f�y � �hvj@��f�y � �hvjB�f�y

� �v2y�f�y; v2y�f�B� x�y� � fii�i�
1=2
ii e

�2�i�ix0�B� x�ysyi �z���f�
y; f�B� x�y�

� fii�i�
1=2
ii e

�2�i�ix0�B� x�ysyi �z���si�z�fii�
y
i ; �si�z�fiis

y
i �z
0� � 2�s�z; z0���B� x�y�; (B35)

 jv�x�iD� � ��D�hv�x��
y: (B36)

5. Formula for the regular current

Let us denote D � �B� x�. We will, in a moment,
express Eq. (B15) through c and b, defined as
 

c � D�v
y
x vy

� ��nf2
ii�i�Ds�z��

y��s�z�fs
y�z0� � 2�s�z; z0��

� e�2�in�z0��i�Ds�z0��yi e
�2�i�in

� ��nf2
ii�i� ~D ~s�z��y��~s�z�f~sy�z0� � 2�~s�z; z0��

� ~D ~s�z0��yi e
�2�inz0 : (B37)

Here~means that the time dependence is separated (so that
~s is time independent) and integration over z and z0 is
assumed. To derive this we used

 Dyx v2
y � �D

y
y � n�v2

y � ��v
1
y � nv

2
y (B38)

following from Eq. (B23), and noticed that the first term
cancels with the scalar product of upper components. For b
we easily get

 b � vyx vy

� exp��2�i�in�=�i ��if
2
ii�i��Ds�

ye�2�inzDs��yi :

(B39)

We also need the following formulas:

 vyx vyD
�y�
� � �cyn!�n; (B40)

 vyy vx � by; (B41)

 bn!�n � by; (B42)

 vyy vxD
�y�
� � �D

�y�
� vyy vx � 2A�v

y
y vx � �cn!�n � 2Aby;

(B43)

 D�x�� vyy vx � �v
y
y vxD

�x�
� � 2Avyy vx � cy � 2Aby:

(B44)

In the total sum, changing n! �n does not affect the
expression since we divide by n2, so we can make n! �n
in the whole expression by conjugating b and then drop
n! �n.
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Then the set of f�B;C�g in Eq. (B15) becomes
 

f�B;C�g � f�c; by�; �b; cy � 2Aby�; ��cyn!�n; by�;

�b;�cn!�n � 2Aby�g: (B45)

Totally, we get for the current (B16) (the index � is
hidden in c)
 

�Jr
��
i�x� �

X
n�0;j�1;...;N

2cjb
y
i � 2cyj bi � 4Ajbib

y
j

4�n2

� ��4

bjb
y
i

�2n3 � �i$ j�: (B46)

There are only terms with �i� � �j� in the current that we
are calculating.

Now, by these explicit formulas, the current can be
evaluated by performing integrals over z, z0 and summing
over n. The reference formulas for summation can be
found e.g. in [17]. We used MATHEMATICA for these calcu-
lations. Below, the result is presented.

Just for illustration and a consistency check, we write
first for the SU(2) case. For SU(2) the ADHMN data is
taken to be �1 � �!, �2 � !, �1 � 2!, �2 � 1� 2!.
So we get for the current (here we write the diagonal
matrix, which couples to the gauge field in the fundamental
representation)

 �Jr4�
1 � ��Jr4�

2

�

�
iP0

�
2���1 ��2� �

1

r
�

1

s

�
�

i

12�2

�
1

s3 �
1

r3

��
:

(B47)

As usual, the current is expressed as a derivative of the
perturbative potential P. The second term in this expres-
sion cancels exactly with the contribution of the singular
current. Totally, adding the singular current, we get for the
‘‘far region’’ contribution to the variation

 

� log Det��D2�far �
Z

far
��Afund

41 � A
fund
42 �

� P0
�

2���1 ��2� �
1

r
�

1

s

�

�
Z

far
�P

�
2���1 ��2� �

1

r
�

1

s

�
:

(B48)

We recall the convenient notation: ri � x� yi is a vector
from the ith dyon to the current point, si � ri�1, and a
standard ‘‘circular rule’’ rN�1 � r1. For SU(2) we set r �
r1, s � s1 � r2.

For the SU(N) case we get the total result:

 � log Det��D2�far �
Z

far

XN
i;j�1

�
�
2��i �

1

2ri
�

1

2si

�
P0
�

2���i ��j� �
1

2ri
�

1

2si
�

�
1

2rj
�

1

2sj

��
sgn��i ��j�

�
Z

far

X
i>j

�P
�

2���i ��j� �
1

2ri
�

1

2si
�

�
1

2rj
�

1

2sj

��
: (B49)

Note that the spatial part of the regular current cancels exactly with the singular part of the current. This proves Eq. (23).
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