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A new kind of Q-balls is found: Q-balls in a nonlinear sigma model. Their main properties are
presented together with those of their self-gravitating generalization, sigma model Q-stars. A simple
special limit of solutions which are bound by gravity alone (‘‘sigma stars’’) is also discussed briefly. The
analysis is based on calculating the mass, global U�1� charge and binding energy for families of solutions
parametrized by the central value of the scalar field. Two kinds (differing by the potential term) of the new
sigma model Q-balls and Q-stars are analyzed. They are found to share some characteristics while
differing in other respects like their properties for weak central scalar fields which depend strongly on the
form of the potential term. They are also compared with their ordinary counterparts and although similar
in some respects, significant differences are found like the existence of an upper bound on the central
scalar field. A special subset of the sigma model Q-stars contains those which do not possess a flat space
limit. Their relation with sigma star solutions is discussed.
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I. INTRODUCTION

Q-balls [1] occur in a wide variety of (theoretical)
physical contexts. They appear naturally in the minimal
supersymmetric standard model [2,3] as condensates of
squarks or sleptons. The larger ones (Q * 1015) can have
a crucial cosmological significance as dark matter candi-
dates [4] if they are stable or long living, or (since they
carry baryon or lepton number) as a possible explanation
for the baryon asymmetry in the Universe [3] and the
baryon to dark matter ratio [5]. Small Q-balls [6] can be
produced even more easily in high temperatures and may
also be found as dark matter. They may also be produced in
colliders for direct inspection of their interesting properties
[2,7]. See also e.g. Enqvist and Mazumdar [8] and Dine
and Kusenko [9] for further reviews. A large number of
discussions of various other aspects of Q-balls exists al-
ready with different approaches: analytic [6,10–12],
mixed—analytic and numerical [13–17], numerical simu-
lations [18,19] for addressing more complicated issues like
scattering (not yet in 3 spatial dimensions) and so on.

All the above-mentioned Q-ball studies are based on the
‘‘original’’ flat space Q-balls. However, it is evident that
for a large enough mass scale, gravitational effects become
important and one needs to study Q-stars [20–22]. The
existence of Q-stars was demonstrated by Friedberg et al.
[23] and by Lynn [24]. Further studies revealed more
features like the fact that gravity limits the size of
Q-balls [25] or the properties of spinning Q-stars [16], or
made generalizations like Q-stars with nonminimal cou-
pling to gravity [26].

Furthermore, unifying theories (typically in higher di-
mensions) lead frequently to nonlinear sigma models, so
Q-balls and Q-stars should be studied in these models as
well. Although topological solitons in nonlinear sigma

models [27] have been studied for decades, it seems that
nontopological solitons of the same models have received
very little attention. This work will be devoted to a special
type of those: Q-balls and their self-gravitating counter-
parts, i.e. sigma model Q-stars.

II. GENERAL CONSIDERATIONS

Sigma model Q-balls and Q-stars are spherically sym-
metric solutions of the field equations derived from the
action

 S �
Z

d4x
������
jgj

q �
1

2
E�j�j��r�����r��� �U�j�j�

�
1

16�G
R
�
; (2.1)

where E�j�j� is a non-negative dimensionless function,
which may be interpreted as a Weyl factor of a conformally
flat (two-dimensional) target space metric. A particularly
simple system which will be studied here is theO�3� sigma
model [27] which corresponds to E�j�j� � 1=�1�
j�j2=m2�2. This is the conformal factor of a target space
of S2 with a diameter m.

The function U�j�j� is a non-negative potential which
will be chosen such asQ-ball solutions will exist as will be
explained below. More notations and conventions: r� is
the covariant derivative, the signature is ��;�;�;�� and
R���� � @����� � @����� � � � � . G is Newton’s constant
and G�� will denote the Einstein tensor.

The field equations derived from the action (2.1) are
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(2.2)
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which is equivalent to
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�U�j�j�g�� � 0: (2.4)

It is well known that in flat space and a proper choice of
potential which ‘‘contains any attractive interaction how-
ever weak’’ [21], the ‘‘linear’’ system (E�j�j� � 1) has
nontopological solitons stabilized by the global U�1�
charge Q. The U�1� current density in the general case is
given by the slightly modified expression

 j� � �
i
2
E�j�j����@����@����: (2.5)

The simplest way to obtain nonvanishing U�1� charge is to
allow a uniform rotation in target space (‘‘field space’’),

 � � F�xk�ei!t (2.6)

and indeed it can be proven [6,21] that this must be the
form of the field which minimizes the energy within the
sector of a given Q in the linear theory. The generalization
to the ‘‘nonlinear’’ case is straightforward. The condition
of finite charge leads to the boundary condition F�xk� ! 0
at infinity.

If we assume further spherical symmetry, F�xk� will
depend only on the radial coordinate r and the line element
will take the usual form

 ds2 � A2�r�dt2 � B2�r�dr2 � r2�d�2 � sin2�d’2�:

(2.7)

Note that the ei!t factor indeed modifies the energy-
momentum tensor but keeps it static.

Einstein equations (2.4) for Q-stars become
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and they should be supplemented by the scalar field equa-
tion
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The charge and mass are given by

 Q � 4�!
Z 1

0
drr2�B=A�E�F�F2; (2.12)
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We note that the sigma Q-star can be viewed as a bound
state of jQj elementary bosons (that is, it is stable against
decay into free bosons) if M=m< jQj. Without loss of
generality we will assume !> 0 so we will have Q> 0
as well.

Actually, we have to solve a system of three differential
equations: Eq. (2.11) and only two of the three equa-
tions (2.8), (2.9), and (2.10). By taking combinations of
those three we get two first order equations (which may be
obtained directly from the G�� equations).

It is more comfortable and efficient to introduce a di-
mensionless mass function M�r� and use it instead of the
metric function B�r� following the definition

 1�
1

B2 �
2GM�r�

r
�

2M�r�
mr

: (2.14)

Note that M�r� is the accumulated mass up to radial
coordinate r and the total mass of the Q-star is the limit
M�1� which we simply abbreviate by M where there is no
danger for ambiguity. Since the solutions are localized,
M�r� becomes essentially constant quite fast (this is one
reason for using it instead of B�r�), and using the numerical
radial end point instead of infinity is accurate enough. It is
also simpler and more natural to revert to an angular field
� defined by

 j�j � m tan��=2�: (2.15)

It is straightforward to rewrite the field equations in
terms of M�r� and ��r� and actually to cast them in a
dimensionless form which is ready for numerical solution.
We get
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where we use a dimensionless potential function u��� and
define x � mr, �! � !=m, and � � 4�Gm2.

Actually, the flat space limit of this system with a
conserved global charge have been studied already to
some extent under the title ‘‘Q-lumps’’ [28,29], which
refer to solutions which carry additional topological
charge. This kind of topological solutions exists only in
lower dimensionality or at most as stringlike in four di-
mensions. However, we will be able to find flat space (as
well as self-gravitating) spherical solutions (in four space-
time dimensions) since we give up topological nontrivial-
ity. Therefore, our solutions may be simply regarded as
sigma model Q-balls and Q-stars stabilized by the global
charge alone. Within the context of the present discussion,
the difference between Q-balls and Q-lumps is just a
difference in the boundary conditions: both kinds require
��1� � 0 (for finite charge) butQ-lumps exist for ��0� �
� while the sigma Q-balls we find need ��0�<�=2.
These boundary conditions are related to the potential
functions and it turns out thatQ-balls andQ-stars are easily
obtained for a large family of potentials having a global
minimum at � � 0 and another local one. We will use the
simple form u��� � sin2���=8� �sinp���=p with p �
3, 4 so the potentials (whose local minimum is always at
� � �=2) are

 u23��� �
sin2���

8
�
�sin3���

3
;

u24��� �
sin2���

8
�
�sin4���

4
:

(2.19)

We will see that the difference between the corresponding
solutions will be analogous to those between the 2-3-4 and
the 2-4-6 potentials of the linear system [17].

The first term in both potentials is just a simple mass
term which adds up with the! term as in the linear system.
The normalization is such that m is still the mass of the
elementary free scalars. We choose representative values of
� � 0:35 for the 2-3 potential and � � 0:4 for the 2-4 one.
The potentials are shown for these values in Fig. 1. As
usual, one may get the main properties of the Q-balls from
the ‘‘effective potential’’ ueff��� � u��� � �!2sin2���=8.
The parameter �! will take values between �!� ����������������������

1� 8�=p
p

and �!� � 1 and the corresponding central
fields are ���0� � �=2 and ��0� ! 0.

Because of the ‘‘north-south’’ symmetry which is left in
the potential functions there exists of course another family
of ‘‘mirror’’ solutions with the boundary condition
��1� � � instead of the usual ��1� � 0 that we are
using. The second boundary condition will satisfy accord-
ingly ��0�>�=2. Obviously, our choice does not lead to

any loss of generality of the results that will be presented
here, but it should be kept in mind that they apply to two
different families of solutions.

III. PROPERTIES OF THE SOLUTIONS

We study solutions with both potentials for the three
values � � 0, 0.02, 0.2.

We solve numerically the three field equations and get
the mass and charge of the solutions as a function of the
central scalar field ��0� which parametrizes the various
solutions. The solutions are determined by the U�1� angu-
lar frequency parameter,! only in flat space. In the case of
self-gravitating systems the dependence on ! of the mass
and charge becomes ‘‘spiral’’ so it ceases to be useful for
characterizing the solutions. Actually, the parametrization
by the central scalar field is not completely unique either
and there are regions where there correspond more than
one solution to a given value of the central field [17]. In
these regions, and near the limiting value ���0� � �=2
(see below) we use A�0�= �! instead. Note that this is the
combination that always appears in Eqs. (2.16), (2.17), and
(2.18).

The results were obtained by the MATHEMATICA
package using an iterative procedure for solving the three
coupled field equations. A first solution was found by the
‘‘shooting’’ method using ��0� as a shooting parameter.
Having obtained one solution, the rest can be generated by
moving around in sufficiently small steps of ��0�, or of
A�0�= �! according to the circumstances.

As can be guessed from inspection of the ‘‘effective
potential,’’ the ‘‘thin wall’’ and ‘‘thick wall’’ solutions exist
for both potentials in a way similar to the linear case.

It is obvious that there are no flat space solutions with
� � 0, that is a mass term only. Gravity changes the
situation and allows solutions which are the sigma model
analogues of the boson star solutions, so we may call them
‘‘sigma stars.’’ One difference with respect to boson stars is
that these sigma stars do not enjoy a scaling symmetry and

FIG. 1. Plots of the 2-3 potential for � � 0:35 and 2-4 poten-
tial for � � 0:4.
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do not fall on a one-parameter curve in parameter space.
Therefore the � � 0:2 family of pure self-gravitating
sigma model solutions which we present is not universal.

The main results are shown in Figs. 2–6. The first, Fig. 2
shows the charge as a function of the central field ��0� in
all cases. It covers the region of maximal charge for � �
0:02, although the maximum is so narrow that its width
cannot be seen it the plots.

It may be expected that curves of the mass as a function
of ��0� are superposed in these plots, but they are not
easily identified in this resolution. However, the plots for
the binding energy per particle, Figs. 3 and 4 give enough
information about the masses being larger or smaller than
mQ for a given ��0�. More insight into the situation is
added by the plots of the binding energy per particle vs
charge, Figs. 5 and 6.

A new characteristic with respect to the linear solutions
is the limiting value of the central scalar field ��0�which is
the same for both potentials: ���0� � �=2. Moreover, now
the same limiting ��0� appears also for the self-gravitating
solutions and not forQ-balls only. The reason for this is the
special form of the potential functions that we chose,
which yields the minimum of the effective potential to be
at ��0� � �=2 for all values of!. We stress also that � �
�=2 is the equator of S2 and does not correspond to
j�j ! 1—see Eq. (2.15). Therefore, it is possible that a
different choice of potential function will allow larger
values of ���0�.

Another new characteristic is the existence of mirror
solutions with different boundary conditions. The possibil-
ity of coexistence of solutions of both type and their
interaction deserves further study.

FIG. 3. Plots of binding energy per particle �mQ�M�=mQ vs ��0� for 2-3 sigma model Q-stars with � � 0 (sigma model
Q-balls—dashed line), � � 0:02 and � � 0:2. (a) B:E:=Q up to 0.30; (b) magnification of the large field region with larger B:E:=Q.
The dotted lines correspond to sigma stars with � � 0:2.

FIG. 2. Plots of log�Q� vs ��0� for � � 0 (sigma model Q-balls—dashed line), � � 0:02 and � � 0:2. (a) 2-3 sigma model Q-stars;
(b) 2-4 sigma model Q-stars. The � � 0 line cannot be resolved from the � � 0:02 one in the 2-3 potential. The dotted lines
correspond to sigma stars with � � 0:2.
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Generally, we find a close parallelism between the main
properties of the sigma Q-balls/Q-stars and the analogous
‘‘ordinary’’Q-balls/Q-stars. The ‘‘damped oscillations’’ of
Q beyond its maximum which exist in the linear model
[17] exist also here but they are only partially visible in
Fig. 2 due to the ��0� � �=2 limit. As before the solutions
are stable against decay into free bosons only in a limited
region of ��0� values which corresponds to positive bind-
ing energy, or M=m<Q. Note however that charge de-
generacy (two masses or more for the same Q) exists, so
even in this region a higher mass state may decay into a
lower state plus additional free bosons while conservingQ.
The other solutions with negative binding energies may
either decay completely into free bosons, or will have a
smaller stable boson star among their decay products.

The sigma Q-balls with the 2-3 potential are always
stable with ever growing charge. Gravity imposes maximal
charge values: for � � 0:2 the maximum is at Q � 382:97
and ��0� � 1:569 21 or 2��0�=� � 0:998 99, while for

FIG. 4. Plots of binding energy per particle �mQ�M�=mQ vs ��0� for 2-4 sigma model Q-stars with � � 0 (sigma model
Q-balls—dashed line), � � 0:02 and � � 0:2. (a) B:E:=Q up to 0.15; (b) magnification of the large field region with larger B:E:=Q.
The dotted lines correspond to sigma stars with � � 0:2.

FIG. 5. Plots of binding energy per particle �mQ�M�=mQ vs
log�Q� for � � 0 (sigma model Q-balls—dashed line), � �
0:02 and � � 0:2 and for boson stars with � � 0:2 (dotted
line). The insert is a magnification of the upper right corner
which contains the � � 0:02 curve.

FIG. 6. Plots of binding energy per particle �mQ�M�=mQ vs log�Q� for 2-4 sigma model Q-stars with � � 0 (sigma model
Q-balls—dashed line), � � 0:02 and � � 0:2 and for boson stars with � � 0:2 (dotted line). (a) general view; (b) magnification of the
small B:E:=Q region.
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� � 0:02 the maximum is at Q � 32 155:3. The corre-
sponding central scalar field is so close to �=2 that we
give it as1 1� 2��0�=� � 1:5543
 10�15.

The sigma star solutions with � � 0:2 that appear in
Fig. 2 have a maximum atQ � 95:07 and ��0� � 1:543 55
or 2��0�=� � 0:982 65. These values define the region of
stable solutions. As Figs. 3 and 5 show, all the others are
either unbound (with negative binding energy), or may
decay into the stable solutions while conserving particle
number.

The 2-3 Q-star curve with � � 0:02 in Fig. 2 is very
similar to the � � 0 Q-balls (below the maximum of Q �
32 155:3) and it is impossible to distinguish between them.
The difference shows up in the binding energy which is
shown in Figs. 3(a) and 5.

The solutions with the 2-4 potential exhibit a more
involved structure which may be described again according
to the central field value. The small ��0� sigmaQ-balls (no
gravity: � � 0) are large and unstable. The stability region
starts at ��0� � 1:115 15 for which Q � M=m � 23:43
and extends all the way to ��0� � �=2 with monotonically
increasing charge and mass. For � � 0:02 the small ��0�
behavior changes completely. The small ��0� solutions
have positive binding energies for ��0� � 0:144 76 (for
which Q � 43:37), passing through a local maximum of
charge at ��0� � 0:064 00 and Q � 50:17. An instability
region follows for ��0� � 1:084 17. The second range of
bound solutions starts at ��0� � 1:084 17 for which Q �
M=m � 21:99 and goes toward ��0� ! �=2. There is
however a global charge maximum of Q � 12 586:03
very close to ��0� � �=2. i.e. such that 1� 2��0�=� �
1:7686
 10�13. We may therefore conclude that for this 2-
4 potential there are stable sigma Q-stars for any charge up
to a maximal value of Q � 12 586:03 for the parameters
we chose. Some charge intervals exhibit charge degener-
acy, so the higher mass solutions will decay.

The solutions for � � 0:2 have similar behavior with
two main quantitative differences: the maximal charge is
now much smaller and has a value of Q � 200:18 and all
solutions have in this case positive binding energy due to
the stronger gravitational self-attraction.

As far as the flat space limit is concerned, the 2-3
solutions may be divided into two types in accordance
with two regions of the central field interval 0<��0�<
�=2. The sigma Q-stars in most of this interval are similar
to the flat space ones and the limit �! 0 (keeping ��0�

fixed) gives well-behaved sigma Q-balls whose existence
does not depend upon gravity (although their detailed
properties do). The exception is the small region near
(and below) ��0� � �=2 where there are only self-
gravitating solutions without a flat space limit. The 2-4
solutions may be divided into three types: in the region of
small ��0� and near ��0� � �=2 gravity gives rise to
solutions with no flat space limit, while in the medium
��0� values the solutions may be viewed again as self-
gravitating generalizations of the sigma Q-balls.

IV. SUMMARY AND OUTLOOK

We found new Q-ball and Q-star solutions in the sigma
model system. We presented the main properties of the
solutions in flat spacetime and for two values of the gravi-
tational strength � � 0:02 and � � 0:2. The correspond-
ing characteristics are quite different for the different
values of � as is evident from the plots of charge vs central
field described above, together with the analysis of the
��0� and Q dependence of the binding energy.

We found that the sigma model Q-ball and Q-star prop-
erties depend strongly on the form of the potential term and
that the Q-star solutions split into two main types: one is a
self-gravitating version of the flat space Q-balls, while the
other contains solutions which do not have a flat space
limit.

There is a close parallelism with the ordinaryQ-ball and
Q-star solutions [17]: the correspondence is between the
sigma model with the 2-3 potential and the linear system
with 2-3-4 potential, and sigma model with the 2-4 poten-
tial and the linear system with 2-4-6 potential. However,
there are some important differences. The most interesting
is the existence of two mirror families of solutions differ-
ing by their boundary conditions. The possibility of coex-
istence of solutions of both types and their interaction was
not discussed here but deserves further investigation.

Another issue which calls for a further study is that of
spinning Q-balls and Q-stars. Although interesting results
[15,16] already exist for the linear system, an analogous
study for the new sigma model solutions does not exist. A
further more systematic analysis is needed in order to
clarify questions like the relation between charge, mass,
and angular momentum of spinning Q-stars.

Also needed are a better understanding of the dynamics
of instability and decay processes of Q-stars and a study of
their possible gravitational collapse.

1In this region A�0�= �! is used to parametrize the solutions.
The central field values are output rather than input.
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