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Numerical simulations of the bosonic sector of the SU�2� �U�1� electroweak standard model in 3� 1
dimensions have demonstrated the existence of an oscillon—an extremely long-lived, localized, oscil-
latory solution to the equations of motion—when the Higgs mass is equal to twice the W� boson mass. It
contains total energy roughly 30 TeV localized in a region of radius 0.05 fm. A detailed description of
these numerical results is presented.
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I. INTRODUCTION

While static, localized soliton solutions to the equations
of motion of nonlinear field theories have been well
studied, and are of interest in many applications [1,2], no
known examples exist in the electroweak standard model
(although there do exist extended electroweak string solu-
tions [3,4]). However, much less is known about the ex-
istence of localized solutions that oscillate in time, known
as breathers or oscillons. (The latter term was originally
introduced to describe similar phenomena in plasma phys-
ics [5].) In some models, such as the sine-Gordon breather
[6] and Q ball [7], one can use conserved charges to prove
the existence of exact, periodic solutions. But oscillons
have also been found in many nonlinear field theories
that do not contain either static solitons or conserved
charges. These solutions either live indefinitely or for
extremely long times compared to the natural time scales
of the system.

For scalar theories in one space dimension, oscillons
have been found to remain periodic to all orders in a
perturbative expansion [6] and are never seen to decay in
numerical simulations [8], but can decay after extremely
long times via nonperturbative effects [9] or by coupling to
an expanding background [10]. In both �4 theory in two
dimensions [11,12] and the Abelian Higgs model in one
dimension [13] and in two dimensions [14], oscillons have
been found that are not observed to decay. In �4 theory in
three dimensions, however, one finds long-lived quasiperi-
odic solutions whose lifetime depends sensitively on the
initial conditions [15–19]. Similar behavior is present in
other scalar theories in three dimensions [20] and in higher
dimensions [21]. Phenomenologically, small Q balls were
considered as dark matter candidates in [22–25], axion
oscillons were considered in [26], and the effects of oscil-
lons and other aspects of nonequilibrium dynamics in and
after inflation were studied in [27–29]. Oscillons and
related solutions have also been studied in connection
with phase transitions [30], monopole systems [31], QCD
[32], and gravitational systems [33].

Recent work [34] demonstrated numerically the exis-
tence of an oscillon in the bosonic sector of the electro-
weak standard model, when the mass of the fundamental
Higgs is exactly twice that of the W� gauge bosons. (A
similar mass relation also arises in the study of embedded
defects [35].) This result was based on previous work [36],
which found oscillons in spontaneously broken pure SU�2�
Higgs-gauge theory with the same 2:1 mass ratio. In that
model, one can consider field configurations restricted to
the spherical ansatz [37], meaning they are assumed to be
invariant under combined rotations in space and isospin,
also known as grand spin rotations. Within this ansatz, the
system can be described by an effective theory of fields
depending only on r and t, which greatly simplifies the
numerical analysis. In [34] this numerical simulation was
extended to a fully three-dimensional spatial lattice with no
assumptions of rotational symmetry, making it possible to
also include the U�1� hypercharge field (which breaks the
grand spin invariance of the spherical ansatz). The result-
ing simulation comprises the full electroweak sector of the
standard model without fermions. Here we extend that
analysis and describe its results in more detail. We use
the same SU�2� gauge coupling g and Higgs self-coupling
� as in the pure SU�2� theory, meaning that the Higgs mass
is twice the mass of the W� bosons, and set the U�1�
coupling g0 so that the mass of the Z0 boson matches its
observed value.

Ongoing analytic work [38] has shed some light on the
2:1 mass ratio by using a small amplitude approximation
[6,10,32,39] to construct oscillons in a simplified version
of the spherical ansatz theory. In this analysis, one begins
by assuming that each field in the oscillon profile has large
width, so that at large distances it falls like exp���mr�,
where m is its mass. There, the amplitude is small and the
oscillations obey a linear dispersion relation, which im-
plies ! � m

��������������
1� �2
p

. The linear, dispersive gradient terms
in the equation of motion are then of order �2. They must
be balanced by nonlinear terms to obtain a stable solution.
Since the leading nonlinearity is typically given by a
quadratic term in the equations of motion, this requirement
implies that the field amplitudes must be proportional to �.
In a multiple-field model, one must also ensure that the*ngraham@middlebury.edu
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terms giving interactions between different fields are reso-
nant with the dispersive linear terms, so that their effects
are not washed out over many cycles. As shown in [38], the
2:1 mass ratio arises naturally in this analysis: Since the
fields’ oscillation frequencies are tied to their masses,
imposing a resonance condition on their frequencies is
equivalent to fixing a particular mass ratio. Although this
analysis has so far only been carried out in simplified
models, we will see below that the oscillon observed
numerically in the full electroweak theory is of small
amplitude and large width, so similar techniques are po-
tentially applicable in this case as well.

In all known oscillons, each field oscillates with a fre-
quency below its mass, so that it couples to dispersive
linear waves (which have ! �

�����������������
k2 �m2
p

>m) only
through nonlinear interactions. The fields then converge
to a configuration in which this decay channel is also
suppressed. Because the electroweak theory includes the
massless photon field, which can radiate in arbitrarily low
frequencies, one might expect the oscillon to decay rapidly
by emitting electromagnetic radiation, but it does not.
Instead, after initially shedding some energy in this way,
the system settles into a localized solution that no longer
radiates and remains stable for as long as we can follow it
in numerical simulations. In preliminary work that pro-
vided motivation for the current investigation, similar be-
havior was observed both when an additional massless
scalar field was coupled to oscillons in one-dimensional
�4 theory and when an additional spherically symmetric
massless scalar field was coupled to oscillons in the spheri-
cal ansatz model. In each case, after shedding some energy
into the massless field, the oscillon arranges itself in a
neutral configuration that no longer couples to the massless
field. This mechanism may be similar to the suppression of
nonlinear coupling to dispersive waves that is common to
all oscillons.

II. CONTINUUM THEORY

We begin from SU�2� �U�1� electroweak theory in the
continuum, ignoring fermions, and follow the conventions
of [40]. The Lagrangian density is

 L � �1
4F��F

�� � 1
4F�� � F

�� � �D���yD��

� ��j�j2 � v2�2; (1)

where the boldface vector notation refers to isovectors.
Here � is the Higgs field, a Lorentz scalar carrying U�1�
hypercharge 1=2 and transforming under the fundamental
representation of SU�2�. The metric signature is���� .
The SU�2� and U�1� field strengths are

 F �� � @�W� � @�W� � gW� �W�;

F�� � @�B� � @�B�;
(2)

and the covariant derivatives are given by

 D�� �
�
@� � i

g0

2
B� � i

g
2
� �W�

�
�;

D�F�� � @�F�� � gW� � F��;

(3)

where � represents the weak isospin Pauli matrices. We
obtain the equations of motion

 @�F
�� � J�; D�F

�� � J�;

D�D�� � 2��v2 � j�j2��;
(4)

where the gauge currents are

 J� � g0 Im�D���y�; J� � g Im�D���y��: (5)

We work in the gauge B0 � 0, W0 � 0. With this
choice, the covariant time derivatives become ordinary
derivatives and we can apply a Hamiltonian formalism.
The energy density is

 u �
1

2

X
j�x;y;z

�
_B2
j �

_Wj � _Wj �
X
k>j

�F2
kj � Fkj � Fkj�

�

� j _�j2 �
X

j�x;y;z

�Dj��
y�Dj�� � ��j�j2 � v2�2; (6)

where dot indicates time derivative. The integral over
space of this quantity is conserved by the time evolution.
From the equations forB0 andW0, we obtain the Gauss law
constraints,

 

X
j�x;y;z

@j _Bj � J0 � 0;
X

j�x;y;z

Dj
_Wj � J0 � 0; (7)

where the charge densities are

 J0 � g0 Im _�y�; J0 � g Im _�y��: (8)

These constraints remain true at all times, at all points in
space, assuming they are obeyed by the initial value data.

Although the numerical calculation will be done using
the underlying gauge fields W� and B�, because of spon-
taneous symmetry breaking the physical content of the
theory is better described by the fields of definite mass
and electric charge

 W�� �
1���
2
p 	�W� � x̂� � i�W� � ŷ�
;

Z0
� � �W� � ẑ� cos�W � B� sin�W;

A� � B� cos�W � �W� � ẑ� sin�W;

(9)

where x̂, ŷ, and ẑ denote unit vectors in isospin space and
�W � arctan�g0=g� is the weak mixing angle. The W��
fields have mass mW � gv=

���
2
p

and electric charge �e �
�g0 cos�W , the Z0

� field has mass mZ � mW= cos�W and
zero electric charge, and the photon field A� has zero mass
and zero electric charge. The only other physical degree of
freedom in the theory is the magnitude of the Higgs field,
with mass mH � 2v

����
�
p

and zero electric charge.
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III. LATTICE THEORY

To analyze the classical equations of motion numeri-
cally, we use the standard Wilsonian approach [41] for
lattice gauge fields (for a review see [42]), adapted to
Minkowski space evolution as in [43–45]. The U�1� and
SU�2� gauge fields live on the links of the lattice and the
Higgs field lives at the lattice sites. We use a regular lattice
with spacing �x and determine the values of the fields at
time t� � t��t based on their values at times t and t� �
t� �t. Throughout, we will use the same notation and
conventions as [34].

We associate the Wilson line

 Up
j � eig

0Bpj �x=2eigW
p
j ���x=2 (10)

with the link emanating from lattice site p in the positive
jth direction. We define the Wilson line for the link ema-
nating from lattice site p in the negative jth direction to be
the adjoint of the corresponding Wilson line emanating in
the positive direction from the neighboring site, Up

�j �

�Up�j
j �y, where the notation p� j indicates the adjacent

lattice site to p, displaced from p in direction �j. At the
edges of the lattice we use periodic boundary conditions.

The equation of motion for the Higgs field at site p is

 �p�t�� � 2�p�t� ��p�t�� ��t2 ��p�t�; (11)

where
 

��p�t� �
X

j��x;�y;�z

Up
j �t��

p�j�t� ��p�t�

�x2

� 2��v2 � j�p�t�j2��p�t�: (12)

For the gauge fields, we have
 

Up
j �t�� � exp

�
logUp

j �t�U
p
j �t��

y

�

�X
j0�j

logUp
��j;j0��t� � logUp

��j;�j0��t�

�x2

�
i�x

2
�g0Jpj � gJ

p
j � ��

�
�t2

�
Up
j �t�; (13)

where Up
��j;j0��t� � Up

j �t�U
p�j
j0 �t�U

p�j�j0

�j �t�Up�j0

�j0 �t� and

 Jpj � g0 Im
�p�t�yUp

j �t��
p�j�t�

�x
;

Jpj � g Im
�p�t�y�Up

j �t��
p�j�t�

�x

(14)

are the gauge currents. Here we have defined the logarithm
of a 2� 2 matrix in the form of Eq. (10) as

 logUp
j �

i�x
2
�g0Bpj � gW

p
j � ��; (15)

which gives the more familiar gauge fields in terms of the

link variables. We note that logXY � logX� logY when
the matrices do not commute.

The U�1� and SU�2� matrices in Eq. (10) are stored
separately in the numerical code. To represent the U�1�
matrix U1 � ei�, just the real quantity � � g0Bpj �x=2 is
actually stored. Any SU�2� matrix can be written as

 U2 �
x1 x2

�x�2 x�1

� �
; (16)

so only the two complex elements of the top row need to be
stored. (This representation is redundant, since jx1j

2 �
jx2j

2 � 1, but more efficient computationally than storing
three real quantities and reconstructing the fourth.) The
logarithms and exponentials needed to convert between the
group and the algebra can be computed efficiently using

 U2 � ei�n̂� ~� � cos�� in̂ � ~� sin�

�
cos�� in̂z sin� in̂x sin�� n̂y sin�
in̂x sin�� n̂y sin� cos�� in̂z sin�

� �
; (17)

where n̂ is a unit vector and the link matrices have n̂� �
Wp

j g�x=2.
We note that this discretization differs slightly from the

standard approach used in [43–45]. In our language, their
discretization is equivalent to replacing sin�! � and
cos�!

��������������
1� �2
p

when computing both the logarithm and
the corresponding exponential. While the approach we are
using corresponds a little more directly to the continuum
equations, any differences are of higher order in the lattice
spacing. Numerical experiments show that their approach
yields completely equivalent results, and is somewhat
more efficient computationally, since it avoids the need
to compute trigonometric functions in this conversion.

The energy density at p is then
 

up�t� �
1

2

X
j�x;y;z

�k exp�logUp
j �t�� � logUp

j �t���k
2

�2�t�2

�
X
j0>j

kUp
��j;j0��t�k

2

�x2

�
�
j�p�t�� ��p�t��j2

�2�t�2

�
X

j�x;y;z

jUp
j �t��

p�j�t� ��p�t�j2

�x2

� ��j�pj2 � v2�2; (18)

whose integral over the whole lattice is conserved. Here we
have defined
 

kUp
j k

2 �
jTr logUp

j j
2

g02�x2 �
�Tr� logUp

j �
y � �Tr� logUp

j �

g2�x2

� jBpj j
2 �Wp

j �W
p
j (19)

for any U�2� link matrix.
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At every lattice point, Gauss’s law,
 X

j�x;y;z

logUp
j �t��U

p
j �t�

y � logUp
�j�t��U

p
�j�t�

y

2i�x2�t

� �g0Jp0 � gJ
p
0 � �� � 0; (20)

is also maintained throughout the evolution, where the
charge densities are given by

 J0 � g0 Im
�
�p�t�� ��p�t�

�t

�
y

�p�t�;

J0 � g Im
�
�p�t�� ��p�t�

�t

�
y
��p�t�:

(21)

This requirement will provide a stringent check on the
correctness of the numerical simulation. Here we have
computed Gauss’s law at time t��t=2, which is obeyed
exactly by the discrete equations of motion for any time
step and lattice spacing. In [34], Gauss’s law at time t was
used; it is only obeyed to order �t2, but as a result it also
provides a rough estimate of whether the time step is small
enough.

IV. SPHERICAL ANSATZ

With theU�1� field included, the grand spin symmetry of
the spherical ansatz used in [36] is broken and field con-
figurations will not maintain this symmetry under time
evolution. The continuum theory does still preserve invari-
ance under grand spin rotations around the z axis, but the
Cartesian lattice provides a small breaking of all rotational
symmetries. As a result, field configurations that start
within the spherical ansatz are not constrained to lie in
any reduced ansatz at later times. (We will also demon-
strate the oscillon’s stability under explicitly nonspherical
deformations below.) Nonetheless, because we will use the
spherical ansatz as a starting point to obtain our initial
conditions, it will be helpful to analyze it in more detail.
We will see that the electroweak oscillon retains much of
the structure it inherits from these initial conditions.

For our choice of gauge, the spherical ansatz takes the
form [37]
 

� �Wj �
1

g

�
a1�r; t�� � r̂r̂j �

��r; t�
r
��j � � � r̂r̂j�

�
	�r; t�
r
�r̂� ��j

�
;

� �
1

g
	��r; t� � i��r; t�� � r̂


�
0

1

�
; (22)

where r is the position vector, r � jrj is the distance from
the origin, and r̂ � r=r is the unit radial vector.
Configurations in this ansatz are then described by reduced
fields a1, �, 	,�, and �, all of which depend only on r and
t. The field definitions have been chosen so that the re-
duced fields match those used in [36], even though the

conventions for the three-dimensional theory used here are
slightly different.

These configurations are in the grand spin zero channel,
meaning they are symmetric under simultaneous rotations
in space and isospin. The gauge fieldWj has isospin i � 1
and internal angular momentum s � 1. These two spins
can be coupled together to yield total generalized angular
momentum 0, 1, and 2. To obtain grand spin G � 0, these
combinations must then be coupled with equal orbital
angular momenta ‘ � 0, ‘ � 1, and ‘ � 2, respectively,
corresponding to monopole, dipole, and quadrupole spatial
distributions. These three possibilities are reflected in
Eq. (22) through the three terms ��r; t�, 	�r; t�, and a1�r; t�.

We have written the Higgs field as a matrix times a fixed
isospinor. This matrix transforms under both the gauged
SU�2�L and global SU�2�R isospin transformations. (We
are only considering global rotations in both cases, how-
ever.) Under both transformations it has isospin i � 1=2,
giving total isospin i � 0 or i � 1. Since the Higgs is a
Lorentz scalar, with zero internal angular momentum, to
obtain G � 0 these two possibilities must be coupled to
‘ � 0 and ‘ � 1, respectively, corresponding to monopole
and dipole spatial distributions. These possibilities appear
in Eq. (22) as the terms ��r; t� and ��r; t�.

Although the spherical ansatz does not contain the U�1�
field, to leading order in �W we can find the electric charge
density created by a spherical ansatz configuration for our
choice of gauge [46],

 J0 �
2ez

r3g2 �	 _�� � _	�: (23)

The charge shows a dipole structure centered on the z
axis—as we would expected since the electromagnetic
interactions break the grand spin symmetry by selecting
the z direction in isospin. We note that this electric charge
density is time independent (and thus does not radiate) if
the � and 	 fields vary sinusoidally in time with the same
frequency.

V. NUMERICAL SIMULATION

The initial conditions for the simulation are obtained
starting from an approximate functional fit to the solutions
that were found in SU�2�-Higgs theory using the spherical
ansatz [36]. These results, with slight modifications, pro-
vide the initial data for the Wj and � fields, and the initial
Bj field is chosen to vanish. In order to guarantee that the
initial configuration obeys Gauss’s law in the full SU�2� �
U�1� theory, we generate the spherical ansatz fit at a point
in the cycle where the time derivatives are smallest, and
then set all time derivatives to zero. We note that in pure
SU�2� Higgs-gauge theory, this restriction would not be
necessary, because even though an approximate fit with
nonvanishing time derivatives will not obey Gauss’s law,
we can restore Gauss’s law by adjusting ��t�� slightly via
an SU�2� transformation at each point,
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 �new�t�� �
���������old�t��

��t�

��������Up��t�; (24)

with

 U p� exp
� X
j�x;y;z

logUp
j �t��U

p
j �t�

y� logUp
�j�t��U

p
�j�t�

y

g2�x2j�old�t��jj��t�j=2

�
y

:

(25)

This procedure has been used successfully to reproduce
spherical ansatz solutions with nonvanishing time deriva-
tives at t � 0 in a fully three-dimensional simulation of
pure SU�2� Higgs-gauge theory, but it cannot be extended
to the SU�2� �U�1� theory because � carries both
charges, and thus cannot be adjusted to satisfy both con-
straints at once. Therefore we will consider only initial
conditions in which all fields have zero time derivatives, so
that Gauss’s law is trivially satisfied.

To construct the initial conditions, we begin from the
spherical ansatz form of Eq. (22). We work in units where
v � 1=

���
2
p

. Since we are dealing with purely classical
dynamics, we can rescale the fields to fix the SU�2� cou-
pling constant at g �

���
2
p

, so that the W� mass is then
mW � gv=

���
2
p
� 1=

���
2
p

. With this rescaling, we must also
introduce an overall factor of g2=g2

W multiplying the total
energy, where gW � 0:634 is the true weak coupling con-
stant. (This factor was incorrectly omitted in the original
version of [34].) We choose � � 1, so that the Higgs mass
is twice the W� mass, mH � 2v

����
�
p
�

���
2
p

. Finally, we fix
g0 � 0:773, so that the ratio g0=g matches its observed
value and the Z0 boson has the correct mass. With these
choices, one unit of energy is 114 GeV, one unit of time is
5:79� 10�27 sec , and one unit of length is 1:74�
10�18 m. In these units, we take the following initial
configuration for the radial fields,

 a1�r� � 
�0:117
� 0:016
r��sech2
r�1=8;

��r� � 1� 0:138
 sech

r

6:75
;

��r� � 0:017
r sech

r
5
;

��r� � 0:117
2r sech

r
8
;

	�r� � 0;

(26)

where the adjustable parameter 
 allows us to include a
combined rescaling of the fields’ amplitudes and r depen-
dence, as is commonly used in a small amplitude analysis
[6,32,39]. While 
 � 1 gives an approximation to the
spherical ansatz solution of [36], a slightly larger value
appears to be necessary for the configuration to settle into a
stable solution in the full SU�2� �U�1� model. Here we
will use 
 � 1:15. The first term in parentheses in the
definition of a1�r� is scaled with an additional 
 so that
it matches the coefficient of �, ensuring that �, a1 � �=r,

	=r, and � all vanish as r! 0, as required for regularity of
the fields at the origin. Within the spherical ansatz simu-
lation, these initial conditions converge to a long-lived
oscillon in the pure SU�2�-Higgs theory, which is never
observed to decay. As a check of the numerical calculation,
the full three-dimensional simulation agrees with the
spherical ansatz simulation when the U�1� interaction is
turned off.

Although initial conditions of this form do settle into
stable oscillon configurations in the SU�2� �U�1� theory,
it is helpful to make a minor modification to them that is
outside the spherical ansatz: setting the �z component of
Wj to zero brings the initial conditions significantly closer
to the localized solution that the fields ultimately converge
to. While we obtain an equivalent oscillon solution in both
cases, this modification reduces the energy shed as the
oscillon forms. Doing so provides a significant technical
benefit, because the radiation emitted as the configuration
settles into the oscillon solution can wrap around the
periodic boundary conditions, return to the region of the
oscillon, and potentially destabilize it. To avoid this prob-
lem, the energy density in this radiation, which spreads
throughout the volume of the simulation, must be small
compared to the oscillon’s energy density. As long as the
lattice volume is large enough compared to the oscillon
size, this radiation is sufficiently diffuse that it does not
affect the oscillon’s evolution. We use a lattice of size L �
144 on a side in natural units, which is more than enough to
satisfy this criterion. For L * 100, changing the lattice size
simply changes the pattern of noise caused by electromag-
netic radiation superimposed on the oscillon region, but
does not affect oscillon properties or stability. We can
therefore be certain that there is no coherent structure to
this unphysical radiation that could possibly be necessary
for the oscillon’s stability. Its only potential effect is to
destabilize the oscillon, and it only does so when artifi-
cially concentrated by a small lattice (e.g., of size L<
100). In numerical experiments, these destabilization ef-
fects are actually much weaker in the electroweak model
than in pure scalar or SU�2� Higgs-gauge models, because
in the electroweak model the radiated energy ends up
almost entirely in the electromagnetic field, while the
oscillon arranges itself to be electrically neutral. For this
reason, it is not necessary to use absorptive techniques such
as adiabatic damping [11] or an expanding background
[10], although both have been applied successfully to this
problem as well. However, clearly it is helpful to adjust the
initial conditions to be as close as possible to the true
oscillon configuration, to minimize the amount of un-
wanted energy emitted as the configuration settles into
the oscillon solution, and therefore limit the numerical
costs associated with a larger lattice.

Starting from the modified spherical ansatz initial con-
ditions, we let the system evolve for as long as is practical
numerically, and see no sign of oscillon decay. We use

NUMERICAL SIMULATION OF AN ELECTROWEAK OSCILLON PHYSICAL REVIEW D 76, 085017 (2007)

085017-5



lattice spacing �x�0:75, though �x�0:625 and �x�
0:25 were verified to give completely equivalent results in
correspondingly smaller tests. The time step is �t � 0:1.
Time steps of 0.05 and 0.025 also gave equivalent results,
although in this case one must take into account the fact
that this change also slightly alters the initial conditions: To
set the initial time derivatives to zero, the simulation sets
the first two time slices equal. Changing the time step thus
changes the time at which the field configuration matches
its value at t � 0, representing a slight perturbation of the
initial conditions. This change slightly alters the initial
transient behavior as the fields approach the oscillon, but
these differences quickly disappear and the simulations
approach equivalent oscillon configurations.

Total energy is conserved to a few parts in 103 for �t �
0:1, which improves with �t2 as expected for our second-
order algorithm. We check Gauss’s law by monitoring the
left-hand side of Eq. (20), which we verify vanishes to
machine precision throughout the simulation.1 It is neces-

sary, however, to use double precision to avoid gradual
degradation in this result. For the parameters as given
above, a run to time 10 000 takes roughly 40 h using
24 parallel processes, each running on a 2 GHz Opteron
processor core [47].

Figure 1 shows the energy in a spherical box of radius 28
as the fields are evolved from these initial conditions.
When the Higgs mass is twice the W� mass, a small
amount of energy is initially emitted from the central re-
gion, with the rest remaining localized for the length of the
simulation. If the masses are not in this ratio, however, the
initial configuration quickly disperses. Figure 2 shows the
growth in oscillon lifetime as � approaches this critical
value. We see a region of metastability when the Higgs
mass is just below the 2:1 ratio. For �<1, the fields first
collapse toward the origin before dispersing,while for �>1
they simply spread outward. This behavior is shown in
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FIG. 1 (color online). Energy in a spherical box of radius 28 as
a function of time in natural units. The initial conditions are
given by the modified spherical ansatz form given in the text, in
which the �z component of the gauge field is set to zero, with

 � 1:15. Two values of the Higgs self-coupling � are shown.
For � � 1, the masses of the Higgs and W fields are in the 2:1
ratio needed for oscillon formation and the solution remains
localized throughout the simulation. Here one unit of energy is
114 GeV, one unit of time is 5:79� 10�27 sec , and one unit of
length is 1:74� 10�18 m, giving a total energy of roughly
30 TeV within the box radius of roughly 0.05 fm. A transient
beat pattern is also visible. For � � 0:95, the mass ratio is
1:95:1. In that case, there is no stable object and the energy
quickly disperses.
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FIG. 2 (color online). Energy in the spherical box for a variety
of values of �. For � � 1, the Higgs mass is twice the W� mass
and no decay is observed. When the Higgs mass is just below this
value, we see a region of metastability. For � < 1, the fields
decay by first collapsing inward before dispersing, while for � >
1 the fields simply disperse outward.

1One can instead evaluate Gauss’s law at time t instead of t�
�t=2 as in [34]. In that case, we square the left-hand side of
Eq. (20), take its trace, and then take the square root of the result.
For a typical run with �t � 0:1, the integral of this quantity over
the lattice never exceeds 0.025 and shows no upward trend over
time. For smaller �t, we see the expected O��t2� improvement
in this result.
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Fig. 3. Other ‘‘special’’ ratios, such as mH � 2mZ, did not
form stable objects from these initial conditions.

The spherical box contains approximately 3% of the
total volume available to the simulation. Its radius has
been chosen to be just large enough to enclose nearly all
of energy density associated with the stable oscillon. As a
result of this choice, the � � 1 graph also shows a transient
beat pattern. It represents a ‘‘breathing’’ or ‘‘ringing’’
motion, in which the oscillon gradually expands and con-
tracts slightly over many periods, accompanied by a cor-
responding modulation of the field amplitudes. This
process causes a small amount of the oscillon’s energy to
move in and out of the box. As we would expect, when a
larger box size is used, the breathing is more completely
contained within the box and the graph of the energy in the
box flattens out, as shown in Fig. 4. Similar beats appear in

the SU�2� spherical ansatz oscillon [36], but in the elec-
troweak oscillon their amplitude decays much more
rapidly.

To illustrate the field configurations that make up the
oscillon, we graph the fields at time t � 50 000 for the two-
dimensional slice x � 0. Figure 5 shows the gauge field
components. It is most illustrative to consider a linear
superposition of the W�j fields, as shown in the figure.
Figure 6 shows the electric fields, which are given by the
time derivatives of the gauge fields for our choice of gauge.
Figure 7 shows the components of the Higgs field and its
first time derivative, and Fig. 8 shows the magnitude of the
Higgs field and the first time derivative of this quantity,
together with the total energy density. The oscillon is
constructed primarily out of the lower component of the
Higgs field, the imaginary part of the upper component of
the Higgs field, the x and y spatial components of the W�j
fields, and the z spatial component of the Z0

j field. We see
the multipole structures we anticipated from the spherical
ansatz analysis. The Higgs field contains monopole and
dipole fluctuations. The photon field Aj contains delocal-
ized background radiation that was emitted as the oscillon
formed from the initial conditions. As we would expect
from Eq. (23), it has a dipole structure. In the spherical
ansatz, theW�j and Z0

j fields can potentially contain mono-
pole, dipole, and quadrupole components. Here we see
significant monopole and quadrupole structures, but only
a very small dipole component, which appears in Z0

j . As a
result, the electric charge we estimate from Eq. (23) is very
small, as is the true value from the numerical simulation;
the oscillon is decoupled from the electromagnetic
background.2
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FIG. 3 (color online). Decay of the oscillon for � � 1. One of the gauge fields and the magnitude of the Higgs field at the origin are
shown as functions of time. In the left panel � � 0:993 75 and the oscillon decays by collapsing inwards, creating a large amplitude
fluctuation at the origin before dispersing. In the right panel, � � 1:006 25, and the oscillon decays by expanding outwards.
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FIG. 4 (color online). Energy in the spherical box for two
different box radii in the simulation of Fig. 1, with � � 1. The
transient beat pattern represents a breathing perturbation in
which the oscillon stretches and compresses slightly. For the
larger box size, less energy flows in and out of the box during
this process, and so the observed beat amplitude is smaller.

2While the multipole analysis is instructive as a description of
the field configuration, it is important to note that because the
oscillon has large spatial extent compared to its period of
oscillation, it is in exactly the domain where the standard multi-
pole expansion for the electromagnetic radiation emitted is
invalid.
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FIG. 6 (color online). A snapshot of the electric fields (time derivatives of the gauge potentials) in the x � 0 plane for the simulation
of Fig. 1 at time t � 50 000. Subscripts refer to spatial components.
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Each excited field oscillates at a frequency just below its
mass. In our units, these oscillations have typical amplitude
of order 0.1 and typical radius of order 10. By comparing
the total number of cycles to the total time, we find !H �
1:404 for the Higgs field components and !W � 0:702 for
the gauge field components. These properties are all very
similar to the spherical ansatz oscillon. They are also
consistent with a small-amplitude analysis, as described
in Sec. I, with � of order 0.1. In Fig. 9, oscillon fields at the
origin are shown as functions of time. The fundamental
oscillation of each field is modulated by the decaying beat
pattern.

The oscillon we have seen is not significantly altered by
small perturbations of the initial conditions. As an ex-
ample, in Fig. 10 we show the results of a run in which

the rotational symmetry has been explicitly broken. We
take initial conditions as before, except we introduce dif-
ferent rescalings of the x, y, and z coordinates in the
definition of r. As an additional numerical check, this run
also uses a smaller time step, �t � 0:05. Although the beat
pattern is slightly enhanced, likely indicating that we have
started further away from the true oscillon because of the
nonspherical deformation, we see that the system nonethe-
less converges to a very similar configuration to the case
without the rescaling. Equivalent behavior is seen when we
make these two changes individually and when we make
other perturbations, such as variations of 
.

Finally, we consider the topological properties of the
electroweak oscillon. Unfortunately, as shown in [48],
there is no unambiguous definition of the topological
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charge for solutions to the equations of motion.
(Topological properties are typically studied using
vacuum-to-vacuum paths [49], which are clearly not solu-
tions to the equations of motion since they do not conserve
energy.) However, for any localized spatial configuration in
which the Higgs field never vanishes, the Higgs winding
number is unambiguously defined as

 n�
1

24�2

Z
�ijkTr	Uy�@iU�Uy�@jU�Uy�@kU�
d3x; (27)

where U is the unique SU�2� matrix associated with a
nonvanishing Higgs field �, so that

 � � j�jU
0
1

� �
: (28)

The Higgs winding number is a topological invariant,
which can only change with time if the Higgs field passes
through zero at some point in space. The change in the
Higgs winding is physically meaningful and measures
whether the fields have crossed the sphaleron barrier.
Because the electroweak oscillon contains only small-
amplitude field fluctuations, its Higgs winding is always
zero and it does not approach the sphaleron barrier.
Correspondingly, its topological density

 q �
g2

64�2 �
����F�� � F�� (29)

is small as well. But the restriction to small amplitude does
not apply to its decays (induced, for example, by collision
with another oscillon), when the fields frequently exhibit
an implosion to small radii and large amplitudes before
ultimately dispersing. This behavior is seen in Fig. 3 for the
oscillon’s decay when � is slightly less than one. However,
both this particular decay and limited experiments with
oscillon collisions have not led to winding in the final
Higgs field. Current work continues to investigate this
possibility.

VI. CONCLUSIONS

We have seen in detail the results of a numerical simu-
lation describing a long-lived, localized, oscillatory solu-
tion to the equations of motion in the bosonic sector of the
electroweak standard model, for a Higgs mass that is twice
theW� mass. Compared to the natural scales of the system,
this solution has small field amplitudes, large spatial ex-
tent, and large total energy. In the quantized theory, it
would represent a coherent superposition of many elemen-
tary particles, and thus is well described by the classical
analysis undertaken here. Quantization of the small oscil-
lations around the classical solution would nonetheless be
of interest, as has been done for Q ball oscillons in [50]. It
would also be desirable to incorporate fermion couplings,
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FIG. 10 (color online). Energy in a box of radius 28 as in
Fig. 1, but with initial conditions that have been deformed to
break rotational symmetry. The spatial coordinate r �
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FIG. 9 (color online). Oscillon fields at the origin as functions of time. The left side shows one component of the SU�2� gauge field.
The upper graph shows the full extent of the simulation. On this scale, the individual oscillations are too small to be seen. Instead, we
see the decaying beat pattern from the transient breathing motion. The lower graph shows the oscillation of the field for a short time at
the end of the simulation (when the transient effects have decayed away). The right side shows the magnitude of � in the same way. It
oscillates with fundamental frequency twice that of the gauge field.

N. GRAHAM PHYSICAL REVIEW D 76, 085017 (2007)

085017-10



which have been ignored here. Such an analysis would
require introducing chiral fermions on the lattice, which is
well known to be a difficult problem, but one on which
significant progress has been made in recent years. While
one might expect the oscillon to be destabilized by decay to
light fermions, in the case of the photon coupling we have
seen that the analogous decay mechanism is highly
suppressed.

Because it would require bringing many Higgs and
gauge particles together at once, forming such an oscillon
would likely require large energies available only in the
early Universe. If extremely long lived, such an oscillon
could be a dark matter or ultrahigh energy cosmic ray
candidate. A slow fermion decay mode would be of interest
for baryogenesis, since it could provide a mechanism for
fermions to be produced out of equilibrium, as is necessary
to avoid washout of particle/antiparticle asymmetry. The
oscillon has small amplitude everywhere and thus remains
far from the sphaleron configuration, even though it has
energy above the height of the sphaleron barrier. However,
when induced to decay, for example, by a collision with
another oscillon, the fields typically collapse to a configu-
ration with small radius and large energy density and field
amplitudes before dispersing. Such decays could poten-
tially cross the sphaleron barrier and produce fermion
number violation. For baryogenesis applications, one
would also need to incorporate interactions containing C
and CP violation in the classical effective action.

The spherical ansatz provided a crucial tool for obtain-
ing the electroweak oscillon solution. However, any search
for oscillons using a particular ansatz cannot guarantee that
all solutions have been found. ‘‘Emergent’’ techniques, in
which oscillons form from generic initial conditions, offer
the opportunity for more comprehensive searches for os-
cillons, albeit at a higher computational cost. In simpler

models, oscillons have been shown to emerge from phase
transitions [30] and from thermal initial conditions in an
expanding universe [51]. Clearly, it would be desirable to
extend these techniques to the electroweak model.

The electroweak oscillon remains stable even when one
would expect it to decay, suggesting that there might exist
other stable, oscillatory solutions in the electroweak theory
or its extensions, either for generic or specific mass ratios.
While results for generic mass ratios are clearly of broader
applicability, a compelling result for a specific mass ratio
might suggest a preferred value of the Higgs mass.
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