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Production of a sterile species is studied within an effective model of active-sterile neutrino mixing in a
medium in thermal equilibrium. The quantum kinetic equations for the distribution functions and
coherences are obtained from two independent methods: the effective action and the quantum master
equation. The decoherence time scale for active-sterile oscillations is �dec � 2=�aa, but the evolution of
the distribution functions is determined by the two different time scales associated with the damping rates
of the quasiparticle modes in the medium: �1 � �aacos2�m; �2 � �aasin2�m where �aa is the interaction
rate of the active species in the absence of mixing and �m the mixing angle in the medium. These two time
scales are widely different away from Mikheyev-Smirnov-Wolfenstein resonances and preclude the
kinetic description of active-sterile production in terms of a simple rate equation. We give the complete
set of quantum kinetic equations for the active and sterile populations and coherences and discuss in detail
the various approximations. A generalization of the active-sterile transition probability in a medium is
provided via the quantum master equation. We derive explicitly the usual quantum kinetic equations in
terms of the ‘‘polarization vector’’ and show their equivalence to those obtained from the quantum master
equation and effective action.
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I. INTRODUCTION

Sterile neutrinos, namely, weak interaction singlets, are
acquiring renewed attention as potential candidates for
cold or warm dark matter [1–14], and may also be relevant
in stellar collapse [15,16], primordial nucleosynthesis
[17,18], and as potential explanation of the anomalous
velocity distributions of pulsars [19–21]. Although sterile
neutrinos are ubiquitous in extensions of the standard
model [22–25], the MiniBooNE collaboration [26] has
recently reported results in contradiction with those from
LSND [27,28] that suggested a sterile neutrino with
�m2 � 1 eV2 scale. Although the MiniBooNE results
hint at an excess of events below 475 MeV the analysis
distinctly excludes two neutrino appearance—only from
�� ! �e oscillations with a mass scale �m2 � 1 eV2,
perhaps ruling out a light sterile neutrino. However, a
recent analysis [29] suggests that while (3� 1) schemes
are strongly disfavored, (3� 2) neutrino schemes provide
a good fit to both the LSND and MiniBooNE data, includ-
ing the low energy events, because of the possibility of CP
violation in these schemes, although significant tension
remains.

However, sterile neutrinos as dark matter candidates
would require masses in the keV range [1–7,9,11,12],
hence the MiniBooNE result does not constrain a heavier
variety of sterile neutrinos. The radiative decay of keV
neutrinos would contribute to the x-ray background [5,30].
Analysis from the x-ray background in clusters provide
constraints on the masses and mixing angles of sterile

neutrinos [9,31–33], and recently it has been suggested
that precision laboratory experiments on� decay in tritium
may be sensitive to �keV neutrinos [34]. Being weak
interaction singlets, sterile neutrinos can only be produced
via their mixing with an active species, hence any assess-
ment of the possibility of sterile neutrinos as dark matter
candidates or their role in supernovae must begin with
understanding their production mechanism. Pioneering
work on the description of neutrino oscillations and deco-
herence in a medium was cast in terms of kinetic equations
for a flavor ‘‘matrix of densities’’ [35] or in terms of 2� 2
Bloch-type equations for flavor quantum mechanical states
[36,37]. A general field theoretical approach to neutrino
mixing and kinetics was presented in [38,39] (see also
[25]), however, while such an approach in principle yields
the time evolution of the distribution functions, sterile
neutrino production in the early Universe is mostly studied
in terms of simple phenomenological rate equations
[1,4,40–43]. An early approach [40] relied on a Wigner-
Weisskopf effective Hamiltonian for the quantum me-
chanical states in the medium, while numerical studies of
sterile neutrinos as possible dark matter candidates [4,43]
rely on an approximate approach which inputs an effective
production rate in terms of a time averaged transition
probability [41,42]. More recently the sterile production
rate near a Mikheyev-Smirnov-Wolfenstein (MSW) reso-
nance including hadronic contributions has been studied
in Ref. [44].

The rich and complex dynamics of oscillations, deco-
herence, and damping is of fundamental and phenomeno-
logical importance not only in neutrino cosmology but also
in the dynamics of meson mixing andCP violation [45,46].
In Ref. [47] it was argued that the spinor nature of neu-
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trinos is not relevant to describe the dynamics of mixing
and oscillations at high energy which can then be studied
within a (simpler) quantum field theory of meson degrees
of freedom.

Recently we reported on a study [48] of mixing, deco-
herence, and relaxation in a theory of mesons which pro-
vides an accurate description of similar phenomena for
mixed neutrinos. This effective theory incorporates inter-
actions that model the medium effects associated with
charge and neutral currents for neutrinos and yield a robust
picture of the nonequilibrium dynamics of mixing, deco-
herence, and equilibration which is remarkably general.
The fermion nature of the distributions and Pauli blocking
effects can be simply accounted for in the final result [48].
This study implemented quantum field theory methods to
obtain the nonequilibrium effective action for the ‘‘neu-
trino’’ degrees of freedom. The main ingredient in the time
evolution is the full propagator for the neutrino degrees of
freedom in the medium. The complex poles of the propa-
gator yield the dispersion relation and damping rates of
quasiparticle modes in the medium. The dispersion rela-
tions are found to be the usual ones for neutrinos in a
medium with the index of refraction correction from for-
ward scattering. For the case of two flavors, there are two
damping rates which are widely different away from MSW
resonances. The results of this study motivated [49] a
deeper scrutiny of the rate equation which is often used
to study sterile neutrino production in the early Universe
[4,42,43].

One of the observations in [49] is that the emergence of
two widely different damping time scales precludes a reli-
able kinetic description in terms of a time averaged tran-
sition probability suggesting that a simple rate equation to
describe sterile neutrino production in the early Universe
far away from MSW resonances may not be reliable.

Motivation and goals: The broad potential relevance of
sterile neutrinos as warm dark matter candidates in cos-
mology and their impact in the late stages of stellar col-
lapse warrant a deeper scrutiny of the quantum kinetics of
production of the sterile species. Our goal is to provide a
quantum field theory study of the nonequilibrium dynam-
ics of mixing, decoherence, and damping and to obtain the
quantum kinetic equations that determine the production of
a sterile species. We make progress towards this goal
within a meson model with one active and one sterile
degree of freedom coupled to a bath of mesons in equilib-
rium discussed in Ref. [48]. As demonstrated by the results
of Ref. [48] this (simpler) theory provides a remarkable
effective description of propagation, mixing, decoherence,
and damping of neutrinos in a medium. While Ref. [48]
studied the approach to equilibrium focusing on the one
body density matrix and single quasiparticle dynamics, in
this article we obtain the nonequilibrium effective action,
the quantum master equation, and the complete set of
quantum kinetic equations for the distribution functions

and coherences. We also establish a generalization of the
active-sterile transition probability based on the quantum
master equation. In distinction with a recent quantum field
theory treatment [44] we seek to understand the quantum
kinetics of production not only near MSW resonances, at
which both time scales coincide [48,49] but far away from
the resonance region where the damping time scales are
widely separated [48,49].

Similarities and differences: The scalar field model that
we study has many similarities with the neutrino case but
also important differences. Similarities: as demonstrated in
our previous study [48] (a) the scalar model describes
‘‘flavor mixing’’ in a similar manner as in the case of
neutrinos, where mixing arises from off-diagonal mass
matrix elements, (b) a medium induced ‘‘matter potential’’
which arises from the forward-scattering contribution to
the (self) energy, (c) the dispersion relation for the prop-
agating modes is identical to those of neutrinos in a me-
dium [49,50], (d) the effective mixing angles in the
medium have a functional form identical to those for
neutrinos in a medium [25,50], (e) the form of the tran-
sition probability for ensemble averages in the medium is
identical to that for the active-sterile neutrino transition
probability [49], (f) the relationship between the damping
rates of the propagating modes and the active collision rate
is identical to the neutrino case [49], and (g) as shown in
detail in Sec. VI the kinetic equations obtained are identi-
cal to those in terms of the polarization vector often quoted
in the neutrino literature (see Sec. VI). Differences: There
are obvious differences with the neutrino case that should
not be overlooked: (a) spinor and chirality structure:
although this is a clear difference, it is important to high-
light that neither the quantum mechanical description of
neutrino mixing nor the phenomenological description of
neutrino kinetics account for either spinorial structure or
chirality, (b) fermionic vs bosonic degrees of freedom, the
most obvious difference is in the distribution functions,
however the results obtained in Secs. III, IV, V, and VI for
the kinetic description allow a straightforward replacement
of the distribution functions for the Fermi-Dirac expres-
sions thus automatically including Pauli blocking, and
(c) an important difference is the matter potential, in the
scalar model this is given by the one-loop Hartree self-
energy, which is manifestly positive, whereas in the case of
neutrinos the matter potential features a CP-odd and a
CP-even contribution [50] and it can feature either sign.
The existence of a MSW resonance hinges on the sign of
the self-energy, in particular, on the CP-odd component.
However, this important difference notwithstanding, our
study does not rely on or require a specific form of the
matter potential, only the fact that the matter potential is
diagonal in the flavor basis and in the case under consid-
eration only the active-active matrix element is nonvanish-
ing. Whether or not there is a MSW resonance depends on
the specific form of the matter potential and in the case of
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neutrinos, on the CP-odd (lepton and baryon asymmetry)
component of the background. Our study addresses all
possible cases quite generally without the need to specify
the sign (or any other quantitative aspect) of the matter
potential.

Summary of results:
(i) We obtain the quantum kinetic equations for produc-

tion by two different but complementary methods:
(a) the nonequilibrium effective action obtained

by integrating out the ‘‘bath degrees of free-
dom.’’ This method provides a nonperturba-
tive Dyson-like resummation of the self-
energy radiative corrections and leads to the
full propagators in the medium. This method
makes explicit that the neutrino propagator in
the medium along with the generalized
fluctuation-dissipation relation of the bath in
equilibrium are the essential ingredients for
the kinetic equations and allows to identify the
various approximations. It unambiguously re-
veals the emergence of two relaxation time
scales associated with the damping rates of
the propagating modes in the medium �1 �
�aacos2�m; �2 � �aasin2�m where �aa is the
interaction rate of the active species and �m
the mixing angle in the medium, confirming
the results of Refs. [48,49]. These time scales
determine the kinetic evolution of the distri-
bution functions and coherences.

(b) the quantum master equation for the reduced
density matrix, which is obtained by including
the lowest order medium corrections to the
dispersion relations (index of refraction) and
mixing angles into the unperturbed
Hamiltonian. This method automatically
builds in the correct propagation frequencies
and mixing angles in the medium.

From the quantum master equation we obtain the kinetic
equations for the distribution functions and coherences.
These are identical to those obtained with the nonequilib-
rium effective action to leading order in perturbative quan-
tities. After discussing the various approximations and
their regime of validity we provide the full set of quantum
kinetic equations for the active and sterile production as
well as coherences. These are given by Eqs. (4.41), (4.42),
(4.43), (4.44), (4.45), and (4.46) in a form amenable to
numerical implementation. We show that if the initial
density matrix is off diagonal in the basis of the propagat-
ing modes in the medium, the off-diagonal coherences are
damped out in a decoherence time scale �dec � 2=�aa. The
damping of these off-diagonal coherences leads to an
equilibrium reduced density matrix diagonal in the basis
of propagating modes in the medium.

(ii) We elucidate the nature of the various approxima-
tions that lead to the final set of quantum kinetic

equations and discuss the interplay between oscil-
lations, decoherence, and damping within the realm
of validity of the perturbative expansion.

(iii) We introduce a generalization of the active-sterile
transition probability in the medium directly based
on the quantum density matrix approach. The tran-
sition probability depends on both time scales
1=�1, 1=�2 and the oscillatory term arising from
the interference of the 1, 2 modes in the medium is
damped out on the decoherence time scale �dec but
this is not the relevant time scale for the build up of
the populations or the transition probability far
away from a MSW resonance.

(iv) We derive the quantum kinetic equation for the
‘‘polarization vector’’ often used in the literature
directly from the kinetic equations obtained from
the quantum master equation under a clearly stated
approximation. We argue that the kinetic equations
obtained from the quantum master equation exhibit
more clearly the time scales for production and
decoherence and reduce to a simple set within the
regime of reliability of perturbation theory. We
discuss the shortcomings of the phenomenological
rate equation often used in the literature for numeri-
cal studies of sterile neutrino production.

In Sec. II we introduce the model, obtain the effective
action, and the full propagator from which we extract the
dispersion relations and damping rates. In Sec. III we
define the active and sterile distribution functions and
obtain their quantum kinetic nonequilibrium evolution
from the effective action, discussing the various approx-
imations. In Sec. IV we obtain the quantum master equa-
tion for the reduced density matrix, also discussing the
various approximations. In this section we obtain the full
set of quantum kinetic equations for the populations and
coherences and show their equivalence to the results from
the effective action. In Sec. V we study the kinetic evolu-
tion of the off-diagonal coherences and introduce a gen-
eralization of the active-sterile transition probability in a
medium directly from the quantum master equation. In
Sec. VI we establish the equivalence between the kinetic
equations obtained from the quantum master equation and
those most often used in the literature in terms of a ‘‘po-
larization vector,’’ along the way identifying the compo-
nents of this ‘‘polarization vector’’ in terms of the
populations of the propagating states in the medium 1, 2
and the coherences. While this formulation is equivalent to
the quantum kinetic equations obtained from the master
equation and effective action, we argue that the latter
formulations yield more information, making explicit
that the fundamental damping scales are the widths of the
quasiparticle modes in the medium and allow to define the
generalization of the transition probability in the medium.
We also discuss the shortcomings of the phenomenological
rate equations often invoked for numerical studies of sterile
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neutrino production. Section VII summarizes our conclu-
sions. Two appendices elaborate on technical aspects.

II. THE MODEL, EFFECTIVE ACTION, AND
DISTRIBUTION FUNCTIONS

We consider a model of mesons with two flavors a, s in
interaction with a ‘‘ vector boson’’ and a ‘‘flavor lepton’’
here denoted asW, �a, respectively, modeling charged and
neutral current interactions in the standard model. This
model has been proposed as an effective description of
neutrino mixing, decoherence, and damping in a medium
in Ref. [48] to which we refer the reader for details. As it
will become clear below, the detailed nature of the bath
fields W, �a is only relevant through their equilibrium
correlation functions which can be written in dispersive
form.

In terms of the field doublet

 � �
�a

�s

� �
(2.1)

the Lagrangian density is
 

L � 1
2f@��T@����TM2�g �L0�W;�� �GW�a�a

�G�2
a�

2
a; (2.2)

where the mass matrix is given by

 M 2 �
M2
aa M2

as
M2
as M2

ss

� �
(2.3)

and L0�W;�� is the free-field Lagrangian density for W, �
which need not be specified.

The mesons �a;s play the role of the active and sterile
flavor neutrinos, �a the role of the charged lepton associ-
ated with the active flavor and W a charged current, for
example, the proton-neutron current �p���1� gA�5	n or a
similar quark current. The coupling G plays the role of
GF. The interaction between the neutrino doublet and
the W, �a fields is of the same form as that studied in
Refs. [25,38,39] for neutral and charged current
interactions.

The last term in the Lagrangian density (2.2) allows to
model the matter effective potential from forward scatter-
ing in the medium by replacing �2

a by its expectation value
in the statistical ensemble, h�2

ai. The resulting term
G�2

ah�2
ai effectively models a matter potential from for-

ward scattering in the medium [25]. While in the bosonic
case h�2

ai is manifestly positive, in the fermionic case the
effective potential from forward scattering in the medium
features two distinct contributions [50]: a CP-odd contri-
bution which is proportional to the lepton and baryon
asymmetries, and a CP-even contribution that only de-
pends on the temperature. However, as it will become clear
below, we do not need to specify the precise form of the
matter potential or of the bath degrees of freedom, only the
fact that the matter potential is diagonal in the flavor basis

with only entry in the a-a component, and the spectral
properties of the correlation function of bath degrees of
freedom are necessary.

The flavor �a;s and the mass basis fields ’1;2 are related
by an orthogonal transformation � � U��	’

 

�a

�s

� �
� U��	

’1

’2

� �
; U��	 �

cos� sin�
� sin� cos�

� �
;

(2.4)

where the orthogonal matrix U��	 diagonalizes the mass
matrix M2, namely

 U�1��	M2U��	 �
M2

1 0
0 M2

2

� �
: (2.5)

In the flavor basis the mass matrix M can be written in
terms of the vacuum mixing angle � and the eigenvalues of
the mass matrix as

 M 2 � �M21�
	M2

2

� cos2� sin2�
sin2� cos2�

� �
; (2.6)

where we introduced

 

�M 2 � 1
2�M

2
1 �M

2
2	; 	M2 � M2

2 �M
2
1: (2.7)

For the situation under consideration with keV sterile
neutrinos with small vacuum mixing angle �
 1

 Maa �M1; Mss �M2 (2.8)

and in the vacuum

 �a ��1; �s ��2: (2.9)

We focus on the description of the dynamics of the ‘‘sys-
tem fields’’ �
, 
 � a; s. The strategy is to consider the
time evolved full density matrix and trace over the bath
degrees of freedom �, W. It is convenient to write the
Lagrangian density (2.2) as

 L ��
; �
;W� � L0��� �L0�W;�� �G�aOa

�G�2
a�

2
a; (2.10)

where

 O a � �aW (2.11)

and L0�� � �� are the free Lagrangian densities for the fields
�
, �a, W, respectively. The fields �
 are considered as
the ‘‘system’’ and the fields �a, W are treated as a bath in
thermal equilibrium at a temperature T � 1=�. We con-
sider a factorized initial density matrix at a time t0 � 0 of
the form

 �̂�0	 � ���0	 
 �B�0	; �B�0	 � e��H0��;W�; (2.12)

where H0��;W� is Hamiltonian for the fields �a, W in
absence of interactions with the neutrino field �a.
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Although this factorized form of the initial density ma-
trix leads to initial transient dynamics, we are interested in
the long time dynamics, in particular, in the long time limit.

The bath fields �
, W will be ‘‘integrated out’’ yielding
a reduced density matrix for the fields �
 in terms of an
effective real-time functional, known as the influence func-
tional [51] in the theory of quantum Brownian motion. The
reduced density matrix can be represented by a path inte-
gral in terms of the nonequilibrium effective action that
includes the influence functional. This method has been
used extensively to study quantum Brownian motion
[51,52], and quantum kinetics [53,54] and more recently
in the study of the nonequilibrium dynamics of thermal-
ization in a similar model [48]. The time evolution of the
initial density matrix is given by

 �̂�t	 � e�iH�t�t0	�̂�t0	eiH�t�t0	; (2.13)

where the total Hamiltonian H is

 H � H0��� �H0��;W� �HI��;�;W�: (2.14)

Denoting all the fields collectively as X to simplify nota-
tion, the density matrix elements in the field basis are given
by
 

hXj�̂�t	jX0i �
Z
DXiDX0ihXje

�iH�t�t0	jXiihXij�̂�t0	jX0ii

� hX0ije
iH�t�t0	jX0i: (2.15)

The density matrix elements in the field basis can be
expressed as a path integral by using the representations

 hXje�iH�t�t0	jXii �
Z

DX�e
i
R
t

t0
dt
R
d3xL�X��

;

X��t0	 � Xi; X��t	 � X:
(2.16)

Similarly

 hX0ije
iH�t�t0	jX0i �

Z
DX�e

�i
R
t

t0
dt
R
d3xL�X��

;

X��t0	 � X0i; X��t	 � X0:
(2.17)

Therefore the full time evolution of the density matrix can
be systematically studied via the path integral

 Z �
Z

DX�DX�e
i
R
t

t0
dt
R
d3xfL�X���L�X��g

; (2.18)

with the boundary conditions discussed above. This repre-
sentation allows to obtain expectation values or correlation
functions C�X;Xi; X0i; X

0; t; t0	 which depend on the values
of the fields Xi; X0i through the initial conditions. In order to
obtain expectation values or correlation functions in the
full time evolved density matrix, the results from the path
integral must be averaged in the initial density matrix
�̂�t0	, namely
 

hC�X;X0; t; t0	i �
Z
DXiDX0ihXij�̂�t0	jX

0
ii

� C�X;Xi; X
0
i; X

0; t; t0	: (2.19)

We will only study correlation functions of the system
fields �
, therefore we carry out the trace over the �a and
W degrees of freedom in the path integral (2.18) system-
atically in a perturbative expansion in G. The resulting
series is reexponentiated to yield the nonequilibrium effec-
tive action and the generating functional of connected
correlation functions of the fields �
. This procedure has
been explained in detail in Refs. [53,54] and more recently
in [48] within a model similar to the one under considera-
tion. Following the procedure detailed in these references
we obtain the nonequilibrium effective action up to order
G2 and quadratic in the fields �
 neglecting higher order
nonlinearities,

 

iLeff��
�; ��� �

X
~k

�
i
2

Z
dt� _��


; ~k
�t	 _��


;� ~k
�t	 ���


; ~k
�t	�k21�M2 � V	��

�;� ~k
�t	 � _��


; ~k
�t	 _��


;� ~k
�t	

���

; ~k
�t	�k21�M2 � V	��

� ~k
�t	� �

G2

2

Z
dt
Z
dt0���

a; ~k
�t	G���k; t; t0	��

a;� ~k
�t0	

���
a; ~k
�t	G���k; t; t0	��

a;� ~k
�t0	 ���

a; ~k
�t	G���k; t; t0	��

a;� ~k
�t0	 ���

a; ~k
�t	G���k; t; t0	��

a;� ~k
�t0	�

�
; (2.20)

where the matter potential is

 V �
Vaa 0
0 0

� �
; Vaa � Gh�2

ai; (2.21)

with the average in the initial bath density matrix. In the
bosonic model, the corresponding one-loop diagram at
order G that yields the matter potential and effectively
models forward scattering in the medium is depicted in
Fig. 1.

In the fermionic theory, the matter potential in a medium
at finite temperature and density has two distinct contribu-
tions [50]: a CP-odd term proportional to the lepton and
baryon asymmetries and a CP-even term that only depends
on the temperature. The sign of these contributions may be
either positive or negative depending on which term domi-
nates [50]. The presence of a MSW resonance in the
medium depends crucially on the CP-odd contribution.
In the case of sterile neutrinos with masses in the keV
range, only for nonvanishing lepton asymmetry is there a
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MSW resonance. However, the only important point for the
analysis that follows is that the matter potential is diagonal
in the flavor basis, with only entry Vaa, namely, the form of
the matrix given by Eq. (2.21), but of course the matrix
element Vaa itself will be different for fermions.

The correlation functions G�t; t0	 � hOa�t	Oa�t0	i �
hW�t	W�t0	ih�a�t	�a�t

0	i are also determined by averages
in the initial equilibrium bath density matrix and their
explicit form is given in Ref. [48] (see also Appendix B).

Performing the trace over the bath degrees of freedom
the resulting nonequilibrium effective action acquires a
simpler form in terms of the Wigner center of mass and
relative variables [48,53,54]
 

�
� ~x; t	 �
1
2��

�

 � ~x; t	 ���
 � ~x; t		;

R
� ~x; t	 � ���
 � ~x; t	 ���
 � ~x; t		; 
 � a; s
(2.22)

and a corresponding Wigner transform of the initial density
matrix for the � fields. See Ref. [48] for details. The
resulting form allows to cast the dynamics of the Wigner
center of mass variable as a stochastic Langevin functional
equation, where the effects of the bath enter through a
dissipative kernel and a stochastic noise term, whose cor-
relations obey a generalized fluctuation-dissipation rela-
tion [48,53,54]. In terms of spatial Fourier transforms the
time evolution of the center of mass Wigner field � is
given by the following Langevin (stochastic) equation (see
derivations and details in Refs. [48,51–54])
 

��
; ~k�t	 � �k
2	
� �M2


� � V
�	��; ~k�t	

�
Z t

0
dt0�
��k; t� t0	��; ~k�t

0	 � �
; ~k�t	;

�
; ~k�t � 0	 � �0

; ~k

; _�
; ~k�t � 0	 � �0

; ~k
;

(2.23)

where �0

; ~k

, �0

; ~k

are the initial values of the field and its

canonical momentum. The matter potential V in the equa-
tion of motion (2.23) effectively models the general form of
the matter potential in the fermionic case. The specific

value and sign of Vaa is not relevant for the general argu-
ments presented below.

The stochastic noise �
; ~k�t	 is described by a Gaussian
distribution function [48,53,54] with
 

h�
; ~k�t	i � 0;

h�
; ~k�t	��;� ~k�t
0	i �K
;��k; t� t0	

�
Z 1
�1

d!
2


ei!�t�t
0	 ~K
��k;!	 (2.24)

and the angular brackets denote the averages with the
Gaussian probability distribution function, determined by
the averages over the bath degrees of freedom. The re-
tarded self-energy kernel has the following spectral repre-
sentation [48]

 �
��k; t� t0	 �
i



Z 1
�1

ei!�t�t
0	Im~�
��k;!	d!; (2.25)

where the imaginary part in the flavor basis is

 Im ~��k;!	 � Im~�aa�k;!	
1 0
0 0

� �
; (2.26)

and Im~�aa�k;!	 is obtained from the cut discontinuity in
the one-loop diagram in Fig. 2. In this figure the W propa-
gator should be identified with the full charged vector
boson propagator in the standard model, including a radia-
tive self-energy correction from a quark, lepton, or hadron
loop.

Because the bath fields are in thermal equilibrium, the
noise correlation kernel ~K
��k;!	 in Eq. (2.24) and the

absorptive part of the retarded self-energy Im~�
��k;!	
obey the generalized fluctuation-dissipation relation
[48,53,54]

 

~K 
��k;!	 � Im~�
��k;!	 coth
�
�!
2

�
: (2.27)

The solution of the Langevin equation (2.23) is
[48,53,54]

FIG. 2. One-loop self-energy for the active species to order G2.
The cut discontinuity across the W � � lines yields the imagi-
nary part Im~�aa�k;!	.

FIG. 1. One-loop self-energy for the active species at order G,
corresponding to the matter potential Vaa � Gh�2i.
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 �
; ~k�t	 �
_G
��k; t	�0

�; ~k
�G
��k; t	�0

�; ~k

�
Z t

0
G
��k; t0	��; ~k�t� t

0	dt0; (2.28)

from which is clear that the propagatorG
� contains all the
relevant information for the nonequilibrium dynamics.

In the Breit-Wigner (narrow width) approximation, the
matrix propagator G�k; t	 in the flavor basis is given by
[48]
 

G�k; t	 � Z�1	k e
�

�1�k	
2 t
�

sin�	1�k	t	
	1�k	

R�1	��m	

�
~��k	

2

cos�	1�k	t	
	1�k	

R�3	��m	
�

� Z�2	k e
�

�2�k	
2 t
�

sin�	2�k	t	
	2�k	

R�2	��m	

�
~��k	

2

cos�	2�k	t	
	2�k	

R�3	��m	
�
; (2.29)

where Z�i	k are the residues at the quasiparticle poles and we
have introduced the matrices

 R �1	��	 �
cos2� � cos� sin�

� cos� sin� sin2�

� �

� U��	
1 0
0 0

� �
U�1��	; (2.30)

 R �2	��	 �
sin2� cos� sin�

cos� sin� cos2�

� �

� U��	
0 0
0 1

� �
U�1��	; (2.31)

 R �3	��	 � sin2�
sin2� cos2�
cos2� � sin2�

� �

� sin2�U��	
0 1
1 0

� �
U�1��	: (2.32)

From the results of Ref. [48] to leading order in G, the
mixing angle in the medium is determined from the rela-
tions

 cos2�m �
cos2�� Vaa

	M2

%
; sin2�m �

sin2�
%

; (2.33)

where

 % �
�
�cos2��

Vaa
	M2	

2 � �sin2�	2
�

1=2
: (2.34)

The expressions (2.33) for the mixing angles in the
medium in terms of the mixing angle in the vacuum and
the matter potential is exactly of the same form as in the
case of (fermionic) neutrinos in a medium [22–25]. A
MSW resonance occurs whenever [22–25]

 Vaa � 	M2 cos2�: (2.35)

The propagating frequencies and widths are given by
[48]
 

	1�k	 � !1�k	 ��!1�k	;

�1�k	 �
Im~�aa�k;!1�k		

!1�k	
cos2�m;

(2.36)

 

	2�k	 � !2�k	 ��!2�k	;

�2�k	 �
Im~�aa�k;!2�k		

!2�k	
sin2�m;

(2.37)

where

 !2
1�k	 � k2 � �M2 �

Vaa
2
�
	M2%

2
; (2.38)

 !2
2�k	 � k2 � �M2 �

Vaa
2
�
	M2%

2
(2.39)

are the propagating frequencies (squared) in the medium
including the matter potential at orderG, namely, the index
of refraction arising from forward scattering, with �M2;
	M2 defined in Eq. (2.7). The second order frequency
shifts are

 �!1�k	 � �
cos2�m

2
!1�k	

Z
d!P

�
Im~�aa�k;!	
!�!1�k	

�
; (2.40)

 �!2�k	 � �
sin2�m

2
!2�k	

Z
d!P

�
Im~�aa�k;!	
!�!2�k	

�
; (2.41)

and [48]

 ~��k	 �
Im~�aa�k; �!�k		

!2
2�k	 �!

2
1�k	

; �!�k	 �
������������������
k2 � �M2

p
:

(2.42)

The relationship between the damping rates �1;2 and the
imaginary part of the self-energy is the same as that
obtained in the study of neutrinos with standard model
interactions in a medium in [49].

To leading order in perturbation theory the denominator
in Eq. (2.42) is 	M2�. When the matter potential domi-
nates (at high temperature in the standard model), Vaa �
	M2 and 	M2�� Vaa / G� Im~�aa / G2, thus in this
regime ~� / G
 1. For example with active neutrinos
with standard model interactions at high temperature, it
was argued in Ref. [49] that Vaa / GFkT5=M2

W whereas
Im~�aa �G

2
FkT

5 therefore at high temperature ~��
Im~�aa=Vaa � gw 
 1 with gw the standard model weak
coupling.

In the opposite limit, for 	M2 � Vaa / G the vacuum
mass difference dominates �� 1 and ~�
 1 since 	M2 �
G� G2. This analysis is similar to that in Ref. [49] and
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precludes the possibility of ‘‘quantum Zeno suppression’’
[4,36] at high temperature.

The only region in which ~� may not be perturbatively
small is near a resonance at which � � j sin2�j and only
for a very small vacuum mixing angle so that
	M2j sin2�j / G2. This situation requires a careful reex-
amination of the perturbative expansion, and in this case
the propagator cannot be described as two separate Breit-
Wigner resonances because the width of the resonances is
of the same order of or larger than the separation between
them. Such a possibility would require a complete reas-
sessment of the dynamics of the propagating modes in the
medium as a consequence of the breakdown of the Breit-
Wigner (or narrow width) approximation. However, for a
very small vacuum mixing angle, indeed a distinct possi-
bility for keV sterile neutrinos [4], the MSW resonance is
very narrow and in most of the parameter range ~�
 1 and
can be safely neglected. This is certainly the case at very
high or very low temperature regimes in which Vaa �
	M2 or Vaa 
 	M2, respectively.

In summary, it follows from this discussion that ~��k	 

1, with the possible exception near a MSW resonance for
an extremely small vacuum mixing angle [48], and such a
case must be studied in detail nonperturbatively.

Hence, neglecting perturbatively small corrections, the
Green’s function in the flavor basis can be written as

 G�k; t	 � U��m�k		Gm�k; t	U�1��m�k		 (2.43)

with

 Gm�k; t	 �
e����1�k	=2	�t sin�	1�k	t	

	1�k	
0

0 e����2�k	=2	�t sin�	2�k	t	
	2�k	

0@ 1A:
(2.44)

This Green’s function and the expression for the damp-
ing rates �1;2 in Eqs. (2.36) and (2.37) lead to the following
physical interpretation. The fields that diagonalize the
Green’s function on the mass shell, namely �1;2, are asso-
ciated with the quasiparticle modes in the medium and
describe the propagating excitations in the medium. From
Eq. (2.43) these are related to the flavor fields �a;s by the
unitary transformation
 

�a � cos�m�1 � sin�m�2;

�s � cos�m�2 � sin�m�1:
(2.45)

When the matter potential Vaa � 	M2, namely, when
�m � 
=2, it follows that �a ��2 and the damping rate
of the active species is �2 � �aa while �s ��1 and the
damping rate of the ‘‘sterile’’ species is �1 �
�aacos2�m 
 �aa, where

 �aa ’
Im~�aa�k; k	

k
(2.46)

is the ultrarelativistic limit of the damping rate of the active

species in the absence of mixing. In the opposite limit,
when the medium mixing angle is small �m � 0, corre-
sponding to the near-vacuum case, �a ��1 and the active
species has a damping rate �1 � �aa while �s ��2 with
�2 � �aasin2�m 
 �aa. In both limits the sterile species is
weakly coupled to the plasma, active and sterile species
become equally coupled near a MSW resonance for
�m � 
=4.

We emphasize that the relation (2.45) is not a relation
between wave functions, but between the fields associated
with the flavor eigenstates (active-sterile) and those asso-
ciated with the propagating (quasiparticle) excitations in
the medium (see Sec. V).

III. QUANTUM KINETICS

The distribution functions for the active �a	 and sterile
�s	 species are defined in terms of the diagonal entries of
the mass matrix in the flavor representation, namely
 

N
�k; t	 �
1

2W
�k	
�h _�
� ~k; t	 _�
�� ~k; t	i

�W2

�k	h�
� ~k; t	�
�� ~k; t	i� �

1

2
;


 � a; s;

(3.1)

where

 W2

�k	 � k2 �M2



: (3.2)

The equal time expectation values of Heisenberg field
operators are in the initial density matrix, and as shown
in Refs. [48,53,54] they are the same as the equal time
expectation value of the center of mass Wigner variables
�, where the expectation value is now in terms of the
initial density matrix for the system and the distribution
function of the noise which is determined by the thermal
bath [48,53,54]. Therefore the distribution functions for the
active and sterile species are given by
 

N
�k; t	 �
1

2W
�k	
�h _�
� ~k; t	 _�
�� ~k; t	i

�W2

�k	h�
� ~k; t	�
�� ~k; t	i� �

1

2
;


 � a; s

(3.3)

and the averages are taken over the initial density matrix of
the system and the noise probability distribution. This
expression combined with Eq. (2.28) makes manifest that
the full time evolution of the distribution function is com-
pletely determined by the propagator G
��k; t	 obtained
from the solution of the effective equations of motion in the
medium [48].

It proves convenient to introduce a matrix of distribution
functions in terms of a parameter 	 as follows:

D. BOYANOVSKY AND C. M. HO PHYSICAL REVIEW D 76, 085011 (2007)

085011-8



 N 
��k; t; 		 �
1

2	
�h _�
� ~k; t	 _���� ~k; t	i

�	2h�
� ~k; t	���� ~k; t	i� �
1

2
	
�

(3.4)

from which we extract the active and sterile distribution
functions from the diagonal elements, namely
 

Na�k; t	 � Na;a�k; t;Wa�k		;

Ns�k; t	 � Na;a�k; t;Ws�k		
(3.5)

and the off-diagonal elements determine off-diagonal cor-
relation functions of the fields and their canonical mo-
menta in the flavor basis.

We consider first the initial density matrix for the system
�̂��0	 to be diagonal in the flavor basis with free-field
correlations

 Tr �̂��0	�
0

; ~k

�0
�;� ~k

�
1

2W
�k	
�1� 2N
�k; 0	�	
�;

(3.6)

 Tr �̂��0	�
0

; ~k

�0
�;� ~k

�
W
�k	

2
�1� 2N
�k; 0	�	
�; (3.7)

 Tr �̂��0	�
0

; ~k

�0
�;� ~k

� 0 (3.8)

with N
�k; 0	 being the initial distribution functions for the
active and sterile species. Different initial conditions will
be studied below.

Following the steps described in Appendix A it is con-
venient to write N�k; t; 		 � N�I	�k; t; 		 � N��	�k; t; 		,
where N�I	 depends on the initial conditions but not on the
noise � and N��	 depends on the noise � but not on the
initial conditions. We find

 

N�I	�k; t; 		 � R�1	��m	e
��1t

�
cos2��m	

�
W2
a �	2

1

2Wa	

��
1

2
� Na�0	

�
� sin2��m	

�
W2
s �	2

1

2	Ws

��
1

2
� Ns�0	

���
	2 �	2

1

2	2
1

�

� R�2	��m	e
��2t

�
sin2��m	

�
W2
a �	2

2

2Wa	

��
1

2
� Na�0	

�
� cos2��m	

�
W2
s �	2

2

2	Ws

��
1

2
� Ns�0	

���
	2 �	2

2

2	2
2

�

� R�3	��m	e��1=2	��1��2	t cos��	1 �	2	t�
�

	2 �	2	1

4	1	2

�

�

�
�Wa �Ws	

4	

�
	1	2

WaWs
� 1

�
� Na�0	

�
	1	2 �W2

a

2	Wa

�
� Ns�0	

�
	1	2 �W2

s

2	Ws

��
�

1

2
: (3.9)

We have suppressed the dependence on k to simplify the notation. The contribution from the noise term can be written as

 N ��	�k; t; 		 �
1

2	

Z d!
2


U��m	
�
hm�!; t	Km�!	h�m�!; t	 �	2fm�!; t	Km�!	f�m�!; t	

�
U�1��m	; (3.10)

where

 hm�!; t	 �
Z t

0
e�i!t

0
Gm�k; t0	;

fm�!; t	 �
Z t

0
e�i!t

0 _Gm�k; t0	;
(3.11)

and

 K m�!	 � Im~�aa�k;!	�1� 2n�!	�

�
cos2��m	 cos��m	 sin��m	

cos��m	 sin��m	 sin2��m	

� �
:

(3.12)

After lengthy but straightforward algebra we find

 

N��	�k; t; 		 �
�

	2�	2
1

2	1	

��
1

2
�n�	1�k		

�

��1� e��1�k	t	R�1	��m�k		�
�

	2�	2
2

2	2	

�

�

�
1

2
� n�	2�k		

�
�1� e��2�k	t	R�2	��m�k		;

(3.13)

where we have neglected terms proportional to ~�.
Approximations: In arriving at the expressions (3.9) and

(3.13), we have made the following approximations:
(i) We have taken Z�i	k � 1 thus neglecting terms which

are perturbatively small, of O�G2	.
(ii) We have assumed �i=	i 
 1, which is warranted

in perturbation theory and neglected terms propor-
tional to this ratio.

(iii) As discussed above, consistently with perturbation
theory we have assumed ~��k	 
 1 and neglected
terms proportional to it. This corresponds to the
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interaction rate much smaller than the oscillation
frequencies and relies on the consistency of the
perturbative expansion.

(iv) In oscillatory terms we have taken a time average
over the rapid time scales 1=	1;2 replacing
sin2�	1;2t	 � cos2�	1;2t	 ! 1=2; sin�	1;2t	 �
cos�	1;2t	 ! 0.

Ultrarelativistic limit: The above expressions simplify
considerably in the ultrarelativistic limit in which

 	�Wa�k	 �Ws�k	 �	1�k	 �	2�k	 � k; (3.14)

and in this limit it follows that

 �1 � �aacos2�m; �2 � �aasin2�m (3.15)

and �aa is the ultrarelativistic limit of the width of the
active species in the absence of mixing given by Eq. (2.46).
In this limit we obtain the following simple expression for
the time evolution of the occupation number matrix in the
flavor basis (suppressing the k dependence for simplicity)

 

N�t	 � R�1	��m	�n�	1	 � �Na�0	cos2��m	 � Ns�0	sin2��m	 � n�	1		e��1t�

� R�2	��m	�n�	2	 � �Na�0	sin2��m	 � Ns�0	cos2��m	 � n�	2		e
��2t� � 1

2R
�2	��m	e

��1=2	��1��2	t

� cos��	1 �	2	t��Na�0	 � Ns�0		: (3.16)

It is straightforward to verify that

 N �0	 �
Na�0	 0

0 Ns�0	

� �
: (3.17)

The active and sterile populations are given by the diagonal elements of (3.16), namely

 

Na�t	 � cos2��m	�n�	1	 � �Na�0	cos2��m	 � Ns�0	sin2��m	 � n�	1		e
��1t�

� sin2��m	�n�	2	 � �Na�0	sin2��m	 � Ns�0	cos2��m	 � n�	2		e
��2t� � 1

2sin2�2�m	e
��1=2	��1��2	t

� cos��	1 �	2	t��Na�0	 � Ns�0		: (3.18)
 

Ns�t	 � sin2��m	�n�	1	 � �Na�0	cos2��m	 � Ns�0	sin2��m	 � n�	1		e
��1t�

� cos2��m	�n�	2	 � �Na�0	sin2��m	 � Ns�0	cos2��m	 � n�	2		e��2t� � 1
2sin2�2�m	e��1=2	��1��2	t

� cos��	1 �	2	t��Na�0	 � Ns�0		: (3.19)

The oscillatory term which results from the interference
of the propagating modes 1, 2 damps out with a damping
factor

 

1

2
��1 � �2	 �

�aa
2

(3.20)

which determines the decoherence time scale �dec �
2=�aa. These expressions are one of the main results of
this article.

Initial density matrix diagonal in the 1-2 basis: The
above results were obtained assuming that the initial den-
sity matrix is diagonal in the flavor basis, if instead, it is
diagonal in the basis of the propagating modes in the
medium, namely, the 1-2 basis, it is straightforward to
find the result
 

N�t	 � U��m	

8<: 1 0

0 0

 !
�n�	1	 � �N1�0	 � n�	1		e��1t�

�
0 0

0 1

 !
�n�	2	 � �N2�0	 � n�	2		e��2t�

9=
;

�U�1��m	: (3.21)

In particular, the active and sterile distribution functions
become

 Na�t	 � cos2�m�n�	1	 � �N1�0	 � n�	1		e��1t�

� sin2�m�n�	2	 � �N2�0	 � n�	2		e
��2t�;

(3.22)

 Ns�t	 � cos2�m�n�	2	 � �N2�0	 � n�	2		e��2t�

� sin2�m�n�	1	 � �N1�0	 � n�	1		e
��1t�:

(3.23)

The results summarized by Eqs. (3.18), (3.19), (3.20),
(3.21), (3.22), and (3.23) show that the distribution func-
tions for the propagating modes in the medium, namely, the
1, 2 quasiparticles, reach equilibrium with the damping
factor �1;2 which is twice the damping rate of the quasi-
particle modes (see Eq. (2.44)). The interference term is
present only when the initial density matrix is off diagonal
in the (1, 2) basis of propagating modes in the medium.

If the initial density matrix is off diagonal in the (1, 2)
basis, these off-diagonal components damp out within the
decoherence time scale �dec, while the diagonal elements
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attain the values of the equilibrium distributions on the
time scales 1=�1, 1=�2.

IV. THE QUANTUM MASTER EQUATION

The quantum master equation is the equation of motion
of the reduced density matrix of the system fields in the
interaction picture after integrating out the bath degrees of
freedom. The first step is to define the interaction picture,
for which a precise separation between the free and inter-
action parts in the Hamiltonian is needed [55]. In order to
carry out the perturbative expansion in terms of the eigen-
states in the medium, we include the lowest order forward-
scattering correction, namely, the index of refraction into
the unperturbed Hamiltonian. This is achieved by writing
the term

 �2
a�2 � �2

ah�2i ��2
a	�2; (4.1)

where

 	�2 � �2 � h�2i; h	�2i � 0 (4.2)

and the average is performed in the bath density matrix
�B�0	 � e��H0��;W�. In this manner the quadratic part of
the Lagrangian density for the active and sterile fields is

 L 0��� �
1
2f@��T@����T�M2 � V	�g; (4.3)

where V is the matter potential given by Eq. (2.21). The
unperturbed Hamiltonian for the system fields in the me-
dium is diagonalized by the unitary transformation (2.4)
but with the unitary matrix U��m	 with �m being the
mixing angle in the medium given by Eqs. (2.33) and
(2.34) and ’1, ’2 are now the fields associated with the
eigenstates of the Hamiltonian in the medium including the
index of refraction correction from the matter potential to
O�G	 (O�GF	 in the case of neutrinos with standard model
interactions). Introducing creation and annihilation opera-
tors for the fields ’1;2 with usual canonical commutation
relations, the unperturbed Hamiltonian for the propagating
modes in the medium including the index of refraction is

 HS�’1;2� �
X
~k

X
i�1;2

�ayi � ~k	ai� ~k	!i�k	�; (4.4)

where!i�k	 are the propagating frequencies in the medium
given in Eqs. (2.38) and (2.39). The interaction Hamil-
tonian is

 HI � G
Z
d3x��2

a	�
2 ��aOa�; (4.5)

where

 �a � cos��m	’1 � sin��m	’2: (4.6)

This formulation represents a rearrangement of the pertur-
bative expansion in terms of the fields that create and
annihilate the propagating modes in the medium. The
remaining steps are available in the quantum optics litera-

ture [55]. Denoting the Hamiltonian for the bath degrees of
freedom H0��;W� � HB the total Hamiltonian is H �
HS �HB �HI � H0 �HI. The density matrix in the in-
teraction picture is

 �̂ i�t	 � ei �H0t�̂�t	e�i �H0t; (4.7)

where �̂�t	 is given by Eq. (2.13) and it obeys the equation
of motion

 

d�̂i�t	
dt

� �i�HI�t	; �̂i�t	� (4.8)

with HI�t	 � ei �H0tHIe
�i �H0t the interaction Hamiltonian in

the interaction picture of �H0. Iteration of this equation up
to second order in the interaction yields [55]
 

d�̂i�t	
dt

� �i�HI�t	; �̂i�0	� �
Z t

0
dt0�HI�t	; �HI�t0	; �̂i�t

0	��

� � � � (4.9)

The reduced density matrix for the system is obtained
from the total density matrix by tracing over the bath
degrees of freedom which are assumed to remain in equi-
librium [55]. At this stage, several standard approximations
are invoked [55]:

(i) factorization: the total density matrix is assumed to
factorize

 �̂ i�t	 � �S;i�t	 
 �B�0	; (4.10)

where it is assumed that the bath remains in equilib-
rium, this approximation is consistent with obtaining
the effective action by tracing over the bath degrees
of freedom with an equilibrium thermal density ma-
trix. The correlation functions of the bath degrees of
freedom are not modified by the coupling to the
system.

(ii) Markovian approximation: the memory of the evo-
lution is neglected and in the double commutator in
(4.9) �̂i�t

0	 is replaced by �̂i�t	 and taken out of the
integral.
Taking the trace over the bath degrees of freedom
yields the quantum master equation for the reduced
density matrix,
 

d�S;i�t	
dt

� �
Z t

0
dt0 TrBf�HI�t	; �HI�t0	; �̂i�t	��g

� � � � ; (4.11)

where the first term has vanished by dint of the fact
that the matter potential was absorbed into the un-
perturbed Hamiltonian, namely TrB�B�0		�

2 � 0.
This is an important aspect of the interaction picture
in the basis of the propagating states in the medium.
Up to second order we will only consider the inter-
action term
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 HI�t	 �
X
~k

�cos�m’1; ~k�t	 � sin�m’2; ~k�t	�O� ~k�t	;

(4.12)

where we have written the interaction Hamiltonian
in terms of spatial Fourier transforms and the fields
are in the interaction picture of �H0. We neglect
nonlinearities from the second order contributions
of the term �2

a	�2, the nonlinearities associated
with the neutrino background are included in the
forward-scattering corrections accounted for in the
matter potential. The quartic nonlinearities are as-
sociated with active ‘‘neutrino-neutrino’’ elastic
scattering and are not relevant for the production
of the sterile species.
The next steps are: (i) writing out explicitly the
nested commutator in (4.11) yielding four different
terms, (ii) taking the trace over the bath degrees of
freedom yielding the correlation functions of the
bath operators TrBO�t	O�t

0	 (and t$ t0), and
(iii) carrying out the integrals in the variable t0.
While straightforward these steps are lengthy and
technical and are relegated to Appendix B. Two
further approximations are invoked [55],

(iii) the ‘‘rotating wave approximation’’: terms that fea-
ture rapidly varying phases of the form e�2i!1;2t;
e�i�!1�!2	t are averaged out in time leading to their
cancellation. This approximation also has a coun-
terpart in the effective action approach in the aver-

aging of rapidly varying terms, see the discussion
after Eq. (3.13).

(iv) the Wigner-Weisskopf approximation: time inte-
grals of the form

 

Z t

0
e�i�!�		�d� � �iP

�
1

!�	

�
� 
	�!�		;

(4.13)

where P stands for the principal part. The
Markovian approximation (ii) when combined
with the Wigner-Weisskopf approximation is
equivalent to approximating the propagators by
their narrow width Breit-Wigner form in the effec-
tive action.

All of these approximations (i)–(iv) detailed above are
standard in the derivation of quantum master equations in
the literature [55].

The quantum master equation is obtained in
Appendix B, it features diagonal and off-diagonal terms
in the 1-2 basis and is of the Lindblad form [55] which
ensures that the trace of the reduced density matrix is a
constant of motion as it must be, because it is consistently
derived from the full Liouville evolution (2.13). We now
focus on the ultrarelativistic case !1�k	 �!2�k	 � k
which leads to substantial simplifications and is the rele-
vant case for sterile neutrinos in the early Universe, we also
neglect the second order corrections to the propagation
frequencies. With these simplifications we obtain

 

d�S;i
dt
�

� X
j�1;2

X
~k

�
�j�k	

2
��1� n�!j�k		���S;ia

y
j �
~k	aj� ~k	 � a

y
j �
~k	aj� ~k	�S;i � 2aj� ~k	�S;ia

y
j �
~k		 � n�!j�k		��S;iaj� ~k	a

y
j �
~k	

� aj� ~k	a
y
j �
~k	�S;i � 2ayj � ~k	�S;iaj� ~k		� �

X
~k

~��k	
2
f��1� n�!1�k			�a

y
2 �k; t	a1�k; t	�S;i � �S;ia

y
1 �k; t	a2�k; t	

� a2�k; t	�S;ia
y
1 �k; t	 � a1�k; t	�S;ia

y
2 �k; t		 � n�!1�k		�a2�k; t	ay1 �k; t	�S;i

� �S;ia1�k; t	ay2 �k; t	 � ay2 �k; t	�S;ia1�k; t	 � ay1 �k; t	�S;ia2�k; t		� � ��1� n�!2�k			�a
y
1 �k; t	a2�k; t	�S;i

� �S;ia
y
2 �k; t	a1�k; t	 � a1�k; t	�S;ia

y
2 �k; t	 � a2�k; t	�S;ia

y
1 �k; t		 � n�!2�k		�a1�k; t	ay2 �k; t	�S;i

� �S;ia2�k; t	ay1 �k; t	 � ay1 �k; t	�S;ia2�k; t	 � ay2 �k; t	�S;ia1�k; t		�g; (4.14)

where

 �1�k	 � �aa�k	cos2�m; �2�k	 � �aa�k	sin2�m;

~��k	 �
1

2
sin2�m�aa�k	; �aa�k	 �

Im�aa�k; k	
k

(4.15)

and the interaction picture operators are given in Eq. (B8).
The expectation value of any system’s operator A is given
by

 hAi�t	 � Tr�i;S�t	A�t	; (4.16)

where A�t	 is the operator in the interaction picture of �H0,
thus the time derivative of this expectation value contains
two contributions

 

d
dt
hAi�t	 � Tr _�i;S�t	A�t	 � Tr�i;S�t	 _A�t	: (4.17)

The distribution functions for active and sterile species is
defined as in Eq. (3.3) with the averages defined as in
(4.16), namely
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 N
�k; t	 � Tr�i;S�t	
� _�
� ~k; t	 _�
�� ~k; t	

2W
�k	

�
W
�k	

2
�
� ~k; t	�
�� ~k; t	

�
�

1

2
; (4.18)

where the fields are in the interaction picture of �H0. The
active and sterile fields are related to the fields that create
and annihilate the propagating modes in the medium as

 �a� ~k	 � cos�m’1� ~k	 � sin�m’2� ~k	;

�s� ~k	 � cos�m’2� ~k	 � sin�m’1� ~k	:
(4.19)

In the interaction picture of �H0

 ’j� ~k; t	 �
1��������������

2!j�k	
q �aj� ~k	e�i!j�k	t � ayj �� ~k	e

i!j�k	t�;

(4.20)

where !j�k	 are the propagation frequencies in the me-
dium up to leading order in G, given by Eqs. (2.38) and
(2.39). Introducing this expansion into the expression
(4.18) we encounter the ratio of the propagating frequen-
cies in the medium !j and the bare frequencies W
. Just as
we did in the previous section, we focus on the relevant
case of ultrarelativistic species and approximate as in
Eq. (3.14) !j�k	 �W
�k	 � k, in which case we find the
relation between the creation-annihilation operators for the
flavor fields and those of the 1, 2 fields to be [48]

 aa� ~k; t	 � cos�ma1� ~k; t	 � sin�ma2� ~k; t	;

as� ~k; t	 � cos�ma2� ~k; t	 � sin�ma1� ~k; t	
(4.21)

leading to the simpler expressions for the active and sterile
distributions,

 Na�k; t	 � Tr�i;S�t	�cos2�ma
y
1 �
~k; t	a1� ~k; t	

� sin2�ma
y
2 �
~k; t	a2� ~k; t	

� 1
2 sin2�m�a

y
1 �
~k; t	a2� ~k; t	 � a

y
2 �
~k; t	a1� ~k; t		�;

(4.22)

 Ns�k; t	 � Tr�i;S�t	�cos2�ma
y
2 �
~k; t	a2� ~k; t	

� sin2�ma
y
1 �
~k; t	a1� ~k; t	

� 1
2 sin2�m�a

y
1 �
~k; t	a2� ~k; t	 � a

y
2 �
~k; t	a1� ~k; t		�:

(4.23)

In the interaction picture of �H0 the products ayj � ~k; t	aj� ~k; t	

are time independent and ay1 � ~k; t	a2� ~k; t	 �
ay1 � ~k; 0	a2� ~k; 0	ei�!1�k	�!2�k		t. It is convenient to introduce
the distribution functions and off-diagonal correlators

 n11�k; t	 � Tr�i;S�t	a
y
1 �k; t	a1�k; t	;

n22�k; t	 � Tr�i;S�t	a
y
2 �k; t	a2�k; t	;

(4.24)

 n12�k; t	 � Tr�i;S�t	a
y
1 �k; t	a2�k; t	;

n21�k; t	 � Tr�i;S�t	a
y
2 �k; t	a1�k; t	 � n�12�k; t	:

(4.25)

In terms of these, the distribution functions for the active
and sterile species in the ultrarelativistic limit becomes

 Na�k; t	 � cos2�mn11�k; t	 � sin2�mn22�k; t	

� 1
2 sin2�m�n12�k; t	 � n21�k; t		; (4.26)

 Ns�k; t	 � sin2�mn11�k; t	 � cos2�mn22�k; t	

� 1
2 sin2�m�n12�k; t	 � n21�k; t		: (4.27)

From Eq. (4.17) we obtain the following kinetic equations
for nij�k; t	

 

_n 11 � ��1�n11 � neq;1� �
~�

2
�n12 � n21�; (4.28)

 _n 22 � ��2�n22 � neq;2� �
~�

2
�n12 � n21�; (4.29)

 

_n12 �

�
�i�!�

�aa
2

�
n12

�
~�

2
��n11 � neq;1	 � �n22 � neq;2	�; (4.30)

 

_n21 �

�
�i�!�

�aa
2

�
n21

�
~�

2
��n11 � neq;1	 � �n22 � neq;2	�; (4.31)

where neq;j � n�!j�k		 are the equilibrium distribution
functions for the corresponding propagating modes, and
�! � �!2�k	 �!1�k		. As we have argued above, in per-
turbation theory �aa�k	=�!�k	 
 1, which is the same
statement as the approximation ~�
 1 as discussed for
the effective action, and in this case the off-diagonal con-
tributions to the kinetic equations yield perturbative cor-
rections to the distribution functions and correlators. To
leading order in this ratio we find the distribution functions
 

n11�t	 � neq;1 � �n11�0	 � neq;1	e
��1t

�
~�e��1t

2�!
�in12�0	�e

�i�!te��1��2	�t=2	 � 1� � c:c:�;

(4.32)

PRODUCTION OF A STERILE SPECIES: QUANTUM KINETICS PHYSICAL REVIEW D 76, 085011 (2007)

085011-13



 

n22�t	 � neq;2 � �n22�0	 � neq;2	e
��2t

�
~�e��2t

2�!
�in12�0	�e�i�!te��2��1	�t=2	 � 1� � c:c:�

(4.33)

and off-diagonal correlators
 

n12�t	 � e�i�!te���aa=2	t
�
n12�0	 � i

~�

2�!

� ��n11�0	 � neq;1	�ei�!te1=2��2��1	t � 1�

� �n22�0	 � neq;2	�e
i�!te1=2��1��2	t � 1��g; (4.34)

where

 

~�

2�!
�

1

2
sin2�m

Im�aa�k; k	
2k�!2�k	 �!1�k	

�
1

2
sin2�m ~�

(4.35)

with ~� defined in Eq. (2.42) and we have suppressed the
momenta index for notational convenience.

A. Comparing the effective action and quantum master
equation

We can now establish the equivalence between the time
evolution of the distribution functions obtained from the
effective action and the quantum master equation, however
in order to compare the results we must first determine the
initial conditions in Eqs. (4.32), (4.33), and (4.34). The
initial values nij�0	 must be determined from the initial
condition and depend on the initial density matrix. Two
important cases stand out: (i) an initial density matrix
diagonal in the flavor basis or (ii) diagonal in the 1-2 basis
of propagating eigenstates in the medium.

Initial density matrix diagonal in the flavor basis: the
initial expectation values are obtained by inverting the
relation between ’1;2 and �a;s. We obtain

 n11�0	 � ha
y
1 �
~k	a1� ~k	i�0	 � cos2�mNa�0	 � sin2�mNs�0	;

(4.36)

 n22�0	 � ha
y
2 �
~k	a2� ~k	i�0	 � cos2�mNs�0	 � sin2�mNa�0	;

(4.37)

 n12�0	 � ha
y
1 �
~k	a2� ~k	i�0	 �

1
2 sin2�m�Na�0	 � Ns�0		:

(4.38)

It is straightforward to establish the equivalence between
the results obtained from the effective action and those
obtained above from the quantum master equation as fol-
lows: (i) neglect the second order frequency shifts (	1;2 �
!1;2) and the perturbatively small corrections of order ~�,
(ii) insert the initial conditions (4.36), (4.37), and (4.38) in
the solutions (4.32), (4.33), and (4.34), finally using the

relations (4.26) and (4.27) for the active and sterile distri-
bution functions we find precisely the results given by
Eqs. (3.18) and (3.19), obtained via the nonequilibrium
effective action.

Initial density matrix diagonal in the 1-2 basis: in this
case

 

hay1 � ~k	a1� ~k	i�0	 � N1�0	;

hay2 � ~k	a2� ~k	i�0	 � N2�0	;

hay1 � ~k	a2� ~k	i�0	 � 0

(4.39)

with these initial conditions it is straightforward to obtain
the result (3.22) and (2.33).

The fundamental advantage in the method of the effec-
tive action is that it highlights that the main ingredient is
the full propagator in the medium and the emerging time
scales for the time evolution of distribution functions and
coherences are completely determined by the quasiparticle
dispersion relations and damping rates.

B. Quantum kinetic equations: summary

Having confirmed the validity of the kinetic equations
via two independent but complementary methods, we now
summarize the quantum kinetic equations in a form ame-
nable to numerical study. For this purpose it is convenient
to define the Hermitian combinations

 nR�t	 � n12�t	 � n21�t	; nI�t	 � i�n12�t	 � n21�t		

(4.40)

in terms of which the quantum kinetic equations for the
distribution functions and coherences become (suppressing
the momentum label)

 

_n 11 � ��aacos2�m�n11 � neq;1� �
�aa
4

sin2�mnR;

(4.41)

 _n 22 � ��aasin2�m�n22 � neq;2� �
�aa
4

sin2�mnR;

(4.42)

 

_nR � ��!2 �!1	nI �
�aa
2
nR

�
�aa
2

sin2�m��n11 � neq;1	 � �n22 � neq;2	�; (4.43)

 _n I � �!2 �!1	nR �
�aa
2
nI; (4.44)

with the active and sterile distribution functions related to
the quantities above as follows

D. BOYANOVSKY AND C. M. HO PHYSICAL REVIEW D 76, 085011 (2007)

085011-14



 Na�k; t	 � cos2�mn11�k; t	 � sin2�mn22�k; t	

� 1
2 sin2�mnR�k; t	; (4.45)

 Ns�k; t	 � sin2�mn11�k; t	 � cos2�mn22�k; t	

� 1
2 sin2�mnR�k; t	: (4.46)

In the perturbative limit when �aa sin2�m=�!
 1
which as argued above is the correct limit in all but for a
possible small region near an MSW resonance [49], the set
of kinetic equations simplify to

 

_n 11 � ��aacos2�m�n11 � neq;1�; (4.47)

 _n 22 � ��aasin2�m�n22 � neq;2�; (4.48)

 _n R � ��!2 �!1	nI �
�aa
2
nR; (4.49)

 _n I � �!2 �!1	nR �
�aa
2
nI: (4.50)

In this case the active and sterile populations are given by

(suppressing the momentum variable)

 Na�t	 � cos2��m	�neq�!1	 � �n11�0	 � neq�!1		e
��1t�

� sin2��m	�neq�!2	 � �n22�0	 � neq�!2		e��2t�

� sin�2�m	e���aa=2	t cos��!1 �!2	t�n12�0	;

(4.51)

 Ns�t	 � sin2��m	�neq�!1	 � �n11�0	 � neq�!1		e
��1t�

� cos2��m	�neq�!2	 � �n22�0	 � neq�!2		e��2t�

� sin�2�m	e
���aa=2	t cos��!1 �!2	t�n12�0	;

(4.52)

where

 �1�k	 � �aa�k	cos2�m; �2�k	 � �aa�k	sin2�m
(4.53)

and assumed that n12�0	 is real as is the case when the
initial density matrix is diagonal both in the flavor or 1, 2
basis,

 n12�0	 �
� 1

2 sin2�m�Na�0	 � Ns�0		 diagonal in flavor basis
0 diagonal in 1; 2 basis

: (4.54)

It is clear that the evolution of the active and sterile
distribution functions cannot, in general, be written as
simple rate equations.

From the expressions given above for the quantum
kinetic equations it is straightforward to generalize to
account for the fermionic nature of neutrinos: the equilib-
rium distribution functions are replaced by the Fermi-Dirac
distributions, and Pauli blocking effects enter in the ex-
plicit calculation of the damping rates.

V. TRANSITION PROBABILITIES AND
COHERENCES

A. A ‘‘transition probability’’ in a medium

The concept of a transition probability as typically used
in neutrino oscillations is not suitable in a medium when
the description is not in terms of wave functions but density
matrices. However, an equivalent concept can be provided
as follows. Consider expanding the active and sterile fields
in terms of creation and annihilation operators. In the
ultrarelativistic limit the positive frequency components
are obtained from the relation (4.21) and their ensemble
averages in the reduced density matrix are given by

 ’a;s� ~k; t	 � haa;s� ~k; t	i: (5.1)

The kinetic equations for ha1;2� ~k	i�t	 are found to be

 

d
dt
ha1� ~k	i�t	 � ��i!1�k	 �

�1�k	
2
	ha1� ~k	i�t	 �

~�

2
ha2� ~k	i�t	;

(5.2)

 

d
dt
ha2� ~k	i�t	 � ��i!2�k	 �

�2�k	
2
	ha2� ~k; t	i �

~�

2
ha1� ~k	i�t	;

(5.3)

where ~� has been defined in Eq. (4.15). To leading order in
~�=�! the solutions of these kinetic equations are

 

ha1� ~k	i�t	 � ha1� ~k	i�0	e�i!1te���1=2	t �
i~�

2�!
ha2� ~k	i

� �0	�e�i!2te���2=2	t � e�i!1te���1=2	t�; (5.4)

 

ha2� ~k	i�t	 � ha2� ~k	i�0	e
�i!2te���2=2	t �

i~�
2�!

ha1� ~k	i

� �0	�e�i!1te���1=2	t � e�i!2te���2=2	t�: (5.5)

The initial values ha1;2� ~k	i�0	 determine the initial values
’a;s� ~k; 0	, or alternatively, giving the initial values
’a;s� ~k; 0	 determines ha1;2� ~k	i�0	. Consider the case in
which the initial density matrix is such that
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 haa� ~k; 0	i � ’a� ~k	 � 0; has� ~k; 0	i � ’s� ~k; 0	 � 0

(5.6)

the initial values of ha1;2� ~k	i�0	 are obtained by inverting
the relation (4.6) from which we find
 

’s� ~k; t	 � �
1
2 sin2�m�1� i~�	

� �e�i!1te���1=2	t � e�i!2te���2=2	t�’a� ~k; 0	;

(5.7)

this result coincides with that found in Ref. [48]. We can
interpret the ‘‘transition probability’’ as
 

Pa!s� ~k; t	 �
�������� ’s� ~k; t

’a� ~k; 0	

��������2

�
1

4
sin22�m�e

��1t � e��2t

� 2 cos��!2 �!1	t	e��1=2	��1��2	t�; (5.8)

where we have neglected perturbative corrections of O�~�	.
This result coincides with that obtained in Ref. [48] from
the effective action, and confirms a similar result for neu-
trinos with standard model interactions [49]. We empha-
size that this ‘‘transition probability’’ is not obtained from
the time evolution of single particle wave functions, but
from ensemble averages in the reduced density matrix: the
initial density matrix features a nonvanishing expectation
value of the active field but a vanishing expectation value
of the sterile field, however, upon time evolution the den-
sity matrix develops an expectation value of the sterile
field. The relation between the transition probability (5.8)
and the time evolution of the distribution functions and
coherences is now explicit, the first two terms in (5.8)
precisely reflect the time evolution of the distribution
functions n11, �22 with time scales 1=�1;2, respectively,
while the last, oscillatory term is the interference between
the active and sterile components and is damped out on the
decoherence time scale �dec. This analysis thus confirms
the results in Ref. [49].

B. Coherences

The time evolution of the off-diagonal coherence
hay1 � ~k	a2� ~k	i�t	 is determined by the kinetic Eq. (4.30),
neglecting perturbatively small corrections of O�~�	

 hay1 � ~k	a2� ~k	i�t	 � ha
y
1 �
~k	a2� ~k	i�0	e

i�!te���aa=2	t; (5.9)

where we have used the relations (4.15) in the ultrarelativ-
istic limit. Therefore, in perturbation theory, if the initial
density matrix is off diagonal in the 1-2 basis (propagating
modes in the medium) the off-diagonal correlations are
exponentially damped out on the coherence time scale
�dec � 2=�aa�k	. This coherence term and its Hermitian
conjugate are precisely the ones responsible for the oscil-
latory term in the transition probability (5.8). An important

consequence of the damping of the off-diagonal coher-
ences is that in perturbation theory the equilibrium density
matrix is diagonal in the basis of the propagating modes in
the medium. This result confirms the arguments in
Ref. [56]. As can be seen from the expression of the
transition probability (5.8) this is precisely the time scale
for suppression of the oscillatory interference term.
However, the transition probability is not suppressed on
this coherence time scale, the first two terms in (5.8) reflect
the fact that the occupation numbers build up on time
scales 1=�1;1=�2, respectively, and the interference term
is exponentially suppressed on the decoherence time scale
�dec � 2=��1 � �2	. For small mixing angle in the medium
�m all of these time scales can be widely different.

It is noteworthy to compare the transition probability
(5.7) with the distribution functions (4.51) and (4.52). The
first two, nonoscillatory terms in (5.7) describe the same
time evolution as the distribution functions n11, n22 of the
propagating modes in the medium, while the last, oscilla-
tory term describes the interference between these. This
confirms the results and arguments provided in Ref. [49].

VI. FROM THE QUANTUM MASTER EQUATION
TO THE QKE FOR THE ‘‘POLARIZATION’’

VECTOR

The results of the previous section allow us to establish a
correspondence between the quantum master equa-
tion (4.14), the quantum kinetic equations (4.41), (4.42),
(4.43), and (4.44), and the quantum kinetic equation for a
polarization vector often used in the literature [57,58].
Following Ref. [59], let us define the ‘‘polarization vector’’
with the following components:

 P0� ~k; t	 � ha
y
a � ~k; t	aa� ~k; t	 � a

y
s � ~k; t	as� ~k; t	i

� Na�k; t	 � Ns�k; t	; (6.1)

 Px� ~k; t	 � ha
y
a � ~k; t	as� ~k; t	 � a

y
s � ~k; t	aa� ~k; t	i; (6.2)

 Py� ~k; t	 � �iha
y
a � ~k; t	as� ~k; t	 � a

y
s � ~k; t	aa� ~k; t	i; (6.3)

 Pz� ~k; t	 � ha
y
a � ~k; t	aa� ~k; t	 � a

y
s � ~k; t	as� ~k; t	i

� Na�k; t	 � Ns�k; t	; (6.4)

where the creation and annihilation operators for the active
and sterile fields are related to those that create and anni-
hilate the propagating modes in the medium 1, 2 by
Eq. (4.21), and the angular brackets denote expectation
values in the reduced density matrix �S;i which obeys the
quantum master equation (4.14). In terms of the population
and coherences nij the elements of the polarization vector
are given by

 P0 � n11 � n22; (6.5)
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 Px � � sin2�m�n11 � n22	 � cos2�mnR; (6.6)

 Py � �nI; (6.7)

 Pz � cos2�m�n11 � n22	 � sin2�mnR; (6.8)

where nR;I are defined by Eq. (4.40). Using the quantum
kinetic equations (4.41), (4.42), (4.43), and (4.44) we find
 

dP0

dt
� �

�aa
2
Pz �

�aa
2
��n11 � neq;1	 � �n22 � neq;2	�

�
�aa
2

cos2�m�neq;1 � neq;2	; (6.9)

 

dPx
dt
� ��!2 �!1	 cos2�mnI �

�aa
2
Px �

�aa
2

� sin2�m�neq;1 � neq;2	; (6.10)

 

dPy
dt
� ��!2 �!1	nR �

�aa
2
Py; (6.11)

 

dPz
dt
� ��!2 �!1	 sin2�mnI �

�aa
2
Pz

�
�aa
2
��n11 � neq;1	 � �n22 � neq;2	�: (6.12)

We now approximate

 �neq;1 � neq;2	 �
�!2 �!1	

T
n0eq�x	 � 0; (6.13)

thus neglecting the last terms in Eqs. (6.9) and (6.10),
introducing the vector ~V with components

 

~V � �!2 �!1	�sin2�m; 0;� cos2�m	 (6.14)

we find the following equations of motion for the polar-
ization vector

 

d ~P
dt
� ~V � ~P�

�aa
2
�Pxx̂� Pyŷ	 �

dP0

dt
ẑ: (6.15)

This equation is exactly of the form

 

d ~P
dt
� ~V � ~P�D ~PT �

dP0

dt
ẑ (6.16)

used in the literature [36,42,43,57,58], whereD and ~PT can
be identified from Eq. (6.15).

Therefore the quantum kinetic equation for the polar-
ization vector (6.15) is equivalent to the full set of quantum
kinetic equations (4.41), (4.42), (4.43), and (4.44) or equiv-
alently to Eqs. (4.28), (4.29), (4.30), and (4.31) under the
approximation (6.13). Furthermore since the quantum ki-
netic equations (4.41), (4.42), (4.43), and (4.44) have been
proven to be equivalent to the time evolution obtained from
the effective action, we conclude that the kinetic equation
for the polarization vector (6.16) is completely equivalent
to the effective action and the quantum master equation

under the approximations discussed above. This equiva-
lence between the effective action, the kinetic equations
obtained from the quantum master equation, and the ki-
netic equations for the polarization vector makes explicit
that the fundamental scales for decoherence and damping
are determined by �1;2, which are twice the damping rates
of the quasiparticle modes. These are completely deter-
mined by the complex poles of the propagator in the
medium. Furthermore the formulation in terms of the
effective action, or equivalently the quantum master equa-
tion (4.14) provides more information; for example, from
both we can extract the transition probability Pa!s in the
medium from expectation values of the field operators (or
creation/annihilation operators) in the reduced density ma-
trix, leading unequivocally to the expression (5.8) which
indeed features the two relevant time scales. Furthermore it
directly yields information on the off-diagonal coherences
(5.9) which fall off on the decoherence time scale �dec �
2=�aa, thus elucidating that the reduced density matrix in
equilibrium (the asymptotic long time limit) is diagonal in
the 1-2 basis. While this information could be extracted
from linear combinations of Px, Py it is hidden in the
solution of the kinetic equation for the polarization,
whereas it is exhibited clearly in the quantum kinetic
equations (4.28), (4.29), (4.30), and (4.31) in the
regime in which perturbation theory is applicable
j�aa sin2�m=�!2 �!1	j 
 1 . In this regime, which as
argued above is the most relevant, the set of quantum
kinetic equations (4.47), (4.48), (4.49), and (4.50) com-
bined with the relations (4.26) and (4.27) yield a much
simpler and numerically amenable description of the time
evolution of the populations and coherences: the active and
sterile distribution functions are given by Eqs. (4.51) and
(4.52), and the off-diagonal coherence by Eq. (5.9).
Therefore, while the kinetic equation for the polarization
and the quantum kinetic equations (4.47), (4.48), (4.49),
and (4.50) are equivalent and both are fundamentally
consequences of the effective action or equivalently the
quantum master equation, the study of sterile neutrino
production in the early Universe does not implement any
of these equivalent quantum kinetic formulations but in-
stead assume a phenomenological approximate description
in terms of a simple rate equation [4,42,43], which implies
only one damping scale. Such a simple rate equation
cannot describe accurately the time evolution of distribu-
tion functions and coherences which involve two different
time scales (away from MSW resonances). In our view,
part of the problem in this formulation is the time averaged
transition probability introduced in Ref. [42] which inputs
the usual quantum mechanical vacuum transition probabil-
ity but damped by a simple exponential on the decoherence
time scale, clearly in contradiction with the result (5.8)
obtained from the reduced quantum density matrix. Within
the kinetic formulation for the time evolution of the polar-
ization vector P0, ~P, Eq. (6.15) it is not possible to extract
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the notion of a transition probability because the compo-
nents of the polarization vector are expectation values of
bilinear operators in the reduced density matrix. Instead,
the concept of active-sterile transition probability can be
established in a medium via expectation values of the field
operators (or their creation/annihilation operators) in the
reduced density matrix discussed in Sec. VA.

VII. CONCLUSIONS

Our goal is to study the nonequilibrium quantum ki-
netics of production of active and sterile neutrinos in a
medium. We make progress towards that goal by studying
a model of an active and sterile mesons coupled to a bath in
thermal equilibrium via couplings that model charged and
current interactions of neutrinos. The dynamical aspects of
mixing, oscillations, decoherence, and damping are fairly
robust and the results of the study can be simply modified
to account for Pauli blocking effects of fermions and the
detailed form of the matter potential. As already discussed
in Ref. [48] with simple modifications, such as the detailed
form of Vaa including the CP-odd and even terms [50], and
the Fermi-Dirac distributions for the equilibrium ones, this
model provides a remarkably faithful description of the
nonequilibrium dynamics of neutrinos.

We obtained the quantum kinetic equations for the active
and sterile species via two independent but complementary
methods. The first method obtains the nonequilibrium
effective action for the active and sterile species after
integrating out the bath degrees of freedom. This descrip-
tion provides a nonperturbative Dyson-like resummation
of the self-energy radiative corrections, and the dynamics
of the distribution functions is completely determined by
the solutions of a Langevin equation with a noise term that
obeys a generalized fluctuation-dissipation relation. The
important ingredient in this description is the full propa-
gator. The poles of the propagator correspond to two
quasiparticle modes whose frequencies obey the usual
dispersion relations of neutrinos in a medium with the
corrections from the index of refraction (forward scatter-
ing), with damping rates (widths)

 �1 � �aacos2�m; �2 � �aasin2�m; (7.1)

where �aa is the interaction rate of the active species in
absence of mixing (in the ultrarelativistic limit) and �m is
the mixing angle in the medium. These two damping scales,
along with the quasiparticle frequencies completely deter-
mine the evolution of the distribution functions. This is one
of the important aspects of the kinetic description in terms
of the nonequilibrium effective action: the dispersion rela-
tions and damping rates of the quasiparticle modes corre-
sponding to the poles of the full propagator completely
determine the nonequilibrium evolution of the distribution
functions and coherences.

We also obtained the quantum master equation for the
reduced density matrix for the ‘‘neutrino degrees of free-

dom’’ by integrating (tracing) over the bath degrees of
freedom taken to be in thermal equilibrium. An important
aspect of the derivation consists in including the matter
potential, or index of refraction from forward scattering to
lowest order in the interactions in the unperturbed
Hamiltonian. This method provides a rearrangement of
the perturbative expansion that includes self-consistently
the index of refraction corrections and builds in the correct
propagation frequencies in the medium. In this manner the
reduced density matrix (in the interaction picture) evolves
in time only through second order processes. From the
reduced density matrix we obtain the quantum kinetic
equations for the distribution functions and coherences.
These are exactly the same as those obtained from the
nonequilibrium effective action. We also obtain the kinetic
equation for coherences and introduce a generalization of
the active-sterile transition probability by obtaining the
time evolution of expectation values of the active and
sterile fields in the reduced quantum density matrix.
Within the realm of validity of the perturbative expansion
the set of kinetic equations for the distribution functions
and coherences are given by
 

_n11 � ��aacos2�m�n11 � neq;1�;

_n22 � ��aasin2�m�n22 � neq;2�;

_n12 �

�
�i�!2�k	 �!1�k		 �

�aa
2

�
n12;

n21 � n�12;

(7.2)

where neq;j � n�!j�k		 are the equilibrium distribution
functions for the corresponding propagating modes,
!1;2�k	 are the dispersion relations in the medium includ-
ing the index of refraction, and the active and sterile
distribution functions are given by

 Na�k; t	 � cos2�mn11�k; t	 � sin2�mn22�k; t	

� 1
2 sin2�m�n12�k; t	 � n21�k; t		; (7.3)

 Ns�k; t	 � sin2�mn11�k; t	 � cos2�mn22�k; t	

� 1
2 sin2�m�n12�k; t	 � n21�k; t		: (7.4)

The set of Eqs. (7.2) provide a simple system of un-
coupled rate equations amenable to numerical study,
whose solution yields the active and sterile distribution
functions via the relations (7.3) and (7.4), with straightfor-
ward modifications for fermions.

From the kinetic equations above, it is found that the
coherences

 n12 � ha
y
1a2i (7.5)

which are off diagonal (in the 1-2 basis of propagating
modes in the medium) expectation values in the reduced
quantum density matrix are exponentially suppressed on a
decoherence time scale �dec � 2=�aa indicating that the
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equilibrium reduced density matrix is diagonal in the 1-2
basis, confirming the arguments in Ref. [56].

The generalization of the active-sterile transition proba-
bility in the medium via the expectation value of the active
and sterile fields in the reduced quantum density matrix
yields
 

Pa!s �
1
4sin22�m�e��1t � e��2t

� 2 cos��!2 �!1	t	e
���aa=2	t�: (7.6)

This result shows that the active-sterile transition proba-
bility depends on the two damping time scales of the
quasiparticle modes in the medium which are also the
time scales of kinetic evolution of the distribution func-
tions, and confirms the results of Refs. [49].

Finally, from the full set of quantum kinetic equa-
tions (4.47), (4.48), (4.49), and (4.50) and the approxima-
tion (6.13) we have obtained the set of quantum kinetic
equations for the polarization vector, most often used in the
literature,

 

d ~P
dt
� ~V � ~P�

�aa
2
�Pxx̂� Pyŷ	 �

dP0

dt
ẑ; (7.7)

where the relation between the components of the polar-
ization vector P0, ~P and the distribution functions and
coherences is explicitly given by Eqs. (6.1), (6.2), (6.3),
and (6.4) (or equivalently (6.5), (6.6), (6.7), and (6.8)), and
~V is given by Eq. (6.14). Thus we have unambiguously

established the direct relations between the effective ac-
tion, quantum master equation, the full set of kinetic
equations for population and coherences, and the quantum
kinetic equations in terms of the ‘‘polarization vector’’
most often used in the literature. These are all equivalent,
but the effective action approach distinctly shows that the
two independent fundamental damping scales are those
associated with �1;2, namely, the damping rates of the
quasiparticles in the medium, which are determined by
the complex poles of the propagator. Furthermore in the
regime of validity of perturbation theory, the set of kinetic
equations (7.2) obtained from the quantum master equation
yield a simple and clear understanding of the different time
scales for the active and sterile distribution functions and a
remarkably concise description of active and sterile pro-
duction when combined with the relations (7.3) and (7.4).
These simpler sets of rate equations are hidden in the
kinetic equations (7.7).

We have also argued that the simple phenomenological
rate equation used in numerical studies of sterile neutrino
production in the early Universe is not an accurate descrip-
tion of the nonequilibrium evolution, and trace its short-
comings to the time integral of an overly simplified
description of the transition probability in the medium.

Our study focused on a scalar model that features many
similarities to but also distinct differences with the theory
of mixed neutrinos. The dispersion relations, medium de-

pendence of the mixing angles, transition probabilities for
ensemble averages, and dependence of the damping rates
of the propagating modes on the active collision rate are
robust features in common with the case of neutrinos.
These similarities are strengthened by the fact that the
kinetic equations obtained in this article are identical to
those available in the literature in terms of the polarization
vector, with the bonus that we provide a different inter-
pretation that highlights the role of the nonequilibrium
evolution in terms of the physical propagating modes. All
of these similarities and the combination of results ob-
tained in this study and those reported in [48,49] lend
support to the expectation that the results obtained in this
study are relevant for the description of the kinetics of
neutrinos.

There are, however, differences with the neutrino case
that must eventually be addressed for a more complete
treatment and understanding: spinorial and chiral struc-
tures, although these are not directly accounted for either
in the quantum mechanical description of neutrino oscil-
lations nor in the phenomenological description of the
kinetics, fermionic nature of the neutrino field, which
enters in the distribution function, however, the simplicity
of the kinetic equations found in this article allow a simple
replacement of the distribution functions by the Fermi-
Dirac one, automatically including Pauli blocking; further-
more, the matter potential in the case of neutrinos features
both a CP-odd term arising from the lepton and baryon
asymmetry, and a CP-even term that depends solely on
temperature, the overall sign of the matter potential is
determined by these two contributions. For the case of
sterile neutrinos with keV masses, a MSW resonance is
only available when theCP-odd term dominates. Our study
in this article is general, without specifying a particular
form of the matter potential and addressed all possibilities
with or without MSW resonances. The only specific aspect
is that the matter potential is flavor diagonal and only
features an entry in the active-active matrix element.

While the model studied here is clearly a simplification
of the case of neutrinos, the body of results and similarities
established with the neutrino case suggest a reliable de-
scription of the quantum kinetics. A more detailed study of
the impact of the differences on the nonequilibrium dy-
namics will be the subject of forthcoming work.
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APPENDIX A: SIMPLER CASE

Consider for simplicity the case of one scalar field. The
solution of the Langevin equation is given by
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 � ~k�t	 � _g�k; t	�0
~k
� g�k; t	�0

~k
�
Z t

0
g�k; t0	� ~k�t� t

0	dt0;

(A1)

where the dot stands for derivative with respect to time. In
the Breit-Wigner approximation and setting Zk � 1

 g�k; t	 �
sin�	�k	t�

	�k	
e����k	=2	t; (A2)

where 	�k	 is the position of the quasiparticle pole (dis-
persion relation) and its width is given by

 ��k	 �
�I�	�k		

	�k	
: (A3)

The particle number is given by

 N�k; t	 �
1

2W�k	
�h _�� ~k; t	 _��� ~k; t	i �W2�k	

� h�� ~k; t	��� ~k; t	i� �
1

2
; (A4)

whereW�k	 is the bare frequency. Taking the initial density
matrix of the field � to be that corresponding to a free field
with arbitrary nonequilibrium initial distribution function
N�k; 0	 and carrying out both averages, over the initial
density matrix for the field and of the quantum noise and
using that the average of the latter vanishes, we find

 N�k; t	 � N1�k; t	 � N2�k; t	 � 1
2 (A5)

with
 

N1�k; t	 �
1� 2N�k; 0	

4W2�k	
�� �g�k; t		2 � 2W2�k	� _g�k; t		2

�W4�k	g2�k; t	�; (A6)

 N2�k; t	 �
1

2W2�k	

Z d!
2


�I�k;!	�1� 2n�!	�

� �W2�k	jh�!; t	j2 � jf�!; t	j2�; (A7)

where

 h�!; t	 �
Z t

0
e�i!t

0
g�k; t0	dt0; (A8)

 f�!; t	 �
Z t

0
e�i!t

0
_g�k; t0	dt0: (A9)

The terms N1�k; t	;N2�k; t	 have very different origins: the
term N1�k; t	 depends on the initial condition and origi-
nates in the first two terms in (2.28) namely those inde-
pendent of the noise, which survive upon taking the
average over the noise. The term N2�k; t	 is independent
of the initial conditions and is solely determined by the
correlation function of the noise term and is a consequence
of the fluctuation-dissipation relation. Using the expression
(A2) we find

 N1�k; t	 �
�

1

2
� N�k; 0	

�
e���k	t

�
1� sin2�	�k	t	

�

�
	2�k	 �W2�k	

2W�k		�k	

�
2
�O

�
�2�k	

	2�k	

��
; (A10)

where the neglected terms of order �2�k	=	2�k	 
 1 are
perturbatively small. The oscillatory term in (A10) aver-
ages out on a short time scale 1=	�k	 
 1=��k	 and we
can replace (A10) by its average over this short time scale
yielding
 

N1�k; t	 �
�

1

2
� N�k; 0	

�
e���k	t

�
1�

1

2

�
	2�k	 �W2�k	

2W�k		�k	

�
2

�O

�
�2�k	

	2�k	

��
: (A11)

In perturbation theory 	2�k	 �W2�k	=2W�k		�k	 
 1
can be neglected to leading order in perturbative quantities,
thus we obtain

 N1�k; t	 � �12� N�k; 0	�e���k	t: (A12)

Using the fact that �I�!	 � ��I��!	we can perform the
integrals in N2�k; t	 in the narrow width (Breit-Wigner)
approximation by using Eq. (A3), with the result
 

N2�k; t	 ’ Z2
k

�
W2�k	 �	2�k	

2W�k		�k	

��
1

2
� n�	�k		

�

� �1� e���k	t	 �O

�
�2�k	

	2�k	

�
: (A13)

Replacing in perturbation theory

 Zk � 1;
W2�k	 �	2�k	

2W�k		�k	
� 1 (A14)

we find

 N�k; t	 � n�	�k		 � �N�k; 0	 � n�	�k			e���k	t; (A15)

which is the solution of the usual kinetic equation

 

dN�k; t	
dt

� ���k	�N�k; t	 � Neq�k		; (A16)

where

 Neq�k	 � n�	�k		: (A17)

It is important to highlight the series of approximations
that led to this result: (i) the narrow width (Breit-Wigner)
approximation, (ii) Zk � 1, (iii) 	2�k	 �W2�k	,
(iv) ��k	=	�k	 
 1, these approximations are all war-
ranted in perturbation theory. Clearly including perturba-
tive corrections leads to perturbative departures of the
usual kinetic equation and of the equilibrium distribution
function.
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APPENDIX B: QUANTUM MASTER EQUATION

Taking the trace over the bath variables with the factor-
ized density matrix (4.10), the double commutator in
Eq. (4.11) becomes

 �
X
~k

Z t

0
dt0f�a�t	�a�t

0	�S;i�t	TrB�B�0	O�t	O�t
0	

� �S;i�t	�a�t
0	�a�t	TrB�B�0	O�t

0	O�t	

��a�t	�S;i�t	�a�t0	TrB�B�0	O�t0	O�t	

��a�t0	�S;i�t	�a�t	TrB�B�0	O�t	O�t0	g: (B1)

We suppressed the momentum index to simplify the nota-
tion but used the fact that translational invariance of the
bath implies that the correlation functions are diagonal in
momentum. The bath correlation functions were given in
Ref. [48] (see Sec. 3-B in this reference) and we just
summarize these results:

 

TrB�B�0	O�t	O�t
0	 �

1




Z 1
�1

d! Im~�aa�k;!	

� �1� n�!	�e�i!�t�t
0	; (B2)

 

TrB�B�0	O�t
0	O�t	 �

1




Z 1
�1

d! Im~�aa�k;!	n�!	

� e�i!�t�t
0	; (B3)

where we used the property Im~�aa�k;!	 �
�Im~�aa�k;�!	 [48]. The self-energy ~� is obtained
from the discontinuity across the W � � lines in the dia-
gram in Fig. 2 and is the same quantity that enters in the
nonequilibrium effective action, and n�!	 is the equilib-
rium distribution function. The active field �a is related to
the fields that create and annihilate the propagating modes
in the medium ’1;2 as in Eq. (4.19), hence terms of the

form

 �a�t	�a�t
0	 � cos2�m’1�t	’1�t

0	 � sin2�m’2�t	’2�t
0	

� 1
2 sin2�m�’1�t	’2�t0	 � ’2�t	’1�t0		;

(B4)

and all other terms in (B1) are written accordingly. The
next step requires writing these fields in terms of creation
and annihilation operators in the interaction picture of �H0,
their expansion is shown in Eq. (4.20). The resulting prod-
ucts of creation and annihilation operators all feature
phases which are rearranged to depend separately on the
variable t and t� t0, for example

 ajaje2i!jte�i!j�t�t0	; ayj aje
i!j�t�t0	;

ayi aje
i�!i�!j	tei!j�t�t0	; etc:

(B5)

The exponentials that depend on t� t0, such as e�i!j�t�t0	,
are combined with the exponentials in (B2) and (B3) and
the integral in t0 in (B1) is written as an integral in � �
t� t0. The Wigner-Weisskopf approximation for the re-
sulting integral yields Eq. (4.13). After performing the time
integral the terms of the form ayj aj do not feature any
phase, whereas terms of the form aiaj (and their
Hermitian conjugate) feature terms of the form
e�i�!i�!j	t, all of these rapidly oscillating terms average
out and are neglected in the ‘‘rotating wave approxima-
tion’’ [55], which is tantamount to time-averaging these
rapidly varying terms. The remaining terms can be gath-
ered together into two different types of contributions,
diagonal and off diagonal in the 1-2 indices. The diagonal
contributions do not feature explicit time dependence
while the off-diagonal one features an explicit time depen-
dence of the form e�i�!1�!2	t.

Diagonal: The diagonal contributions are

 

d�S;i
dt
�

X
j�1;2

X
~k

�
�i�!j�k	�a

y
j �
~k	aj� ~k	; �S;i�t	� �

�j�k	

2
��1� n�!j�k			��S;ia

y
j �
~k	aj� ~k	 � a

y
j �
~k	aj� ~k	�S;i

� 2aj� ~k	�S;ia
y
j �
~k		 � n�!j�k		��S;iaj� ~k	a

y
j �
~k	 � aj� ~k	a

y
j �
~k	�S;i � 2ayj � ~k	�S;iaj� ~k		�

�
; (B6)

where the second order frequency shifts �!j�k	 and the widths �j�k	 are given in Eqs. (2.36), (2.37), (2.38), (2.39), (2.40),
and (2.41).

Off diagonal: The full expression for the off-diagonal contributions is lengthy and cumbersome and we just quote the
result for the real part of the quantum master equation, neglecting the imaginary part which describes a second order shift
to the oscillation frequencies of the off-diagonal coherences.
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d�S;i
dt
�
X
~k

�
�

~�1�k	
2
��1� n�!1�k			�a

y
2 �k; t	a1�k; t	�S;i � �S;ia

y
1 �k; t	a2�k; t	 � a2�k; t	�S;ia

y
1 �k; t	

� a1�k; t	�S;ia
y
2 �k; t		 � n�!1�k		�a2�k; t	ay1 �k; t	�S;i � �S;ia1�k; t	ay2 �k; t	 � ay2 �k; t	�S;ia1�k; t	

� ay1 �k; t	�S;ia2�k; t		� �
~�2�k	

2
��1� n�!2�k			�a

y
1 �k; t	a2�k; t	�S;i � �S;ia

y
2 �k; t	a1�k; t	

� a1�k; t	�S;ia
y
2 �k; t	 � a2�k; t	�S;ia

y
1 �k; t		 � n�!2�k		�a1�k; t	ay2 �k; t	�S;i � �S;ia2�k; t	ay1 �k; t	

� ay1 �k; t	�S;ia2�k; t	 � ay2 �k; t	�S;ia1�k; t		�
�
; (B7)

where the interaction picture operators

 aj�k; t	 � aj�k; 0	e�i!jt (B8)

and

 

~� j�k	 �
1

2
sin2�m

Im~�aa�k;!j�k		������������������������
!1�k	!2�k	

p ; j � 1; 2: (B9)
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