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In this paper, we explore the implications of a two-point discretization of an extra dimension in a five-
dimensional quantum setup. We adopt a pragmatic attitude by considering the dynamics of spin-half
particles through the simplest possible extension of the existing Dirac and Pauli equations. It is shown that
the benefit of this approach is to predict new physical phenomena while maintaining the number of
constitutive hypotheses at minimum. As the most striking feature of the model, we demonstrate the
possibility of fermionic matter oscillations between the two four-dimensional sections and hyperfast
displacements in case of asymmetric warping (without conflicting special relativity). This result, similar to
previous reported ones in braneworld theories, is completely original as it is derived by using quantum
mechanics only without recourse to general relativity and bulk geodesics calculation. The model allows
causal contact between normally disconnected regions. If it proves to be physically founded, its practical
aspects could have deep implications for the search of extra dimensions.
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I. INTRODUCTION

The idea that our observable universe could be a part of a
more extended N-dimensional spacetime (N > 4) has a
long tradition. It traces back to the seminal work of
Kaluza in 1921, who extended general relativity in five
dimensions in order to treat electromagnetism and gravi-
tation on an equal footing [1]. Unfortunately, the model
and its subsequent extensions reveal unsuccessful in their
aim of describing the physical reality such that the multi-
dimensional approach was abandoned for a while.

Since that time, much work has been carried out and
modern theoretical physics has led us to consider as more
probable the existence of a multidimensional universe.
Recently, the idea was reintroduced in the context of super-
strings and braneworld theories. This renewed interest can
be explained by the fact that multidimensional universes
may adequately describe known forces and particles and
also explain the hierarchy between the gravitational and
electroweak scales [2,3]. These scenarios have been ex-
tended much in recent years and there is now some ap-
proaches suggesting that many connected parallel branes
could exist in an extended bulk (thus creating a so-called
‘‘manyfold’’). As summarized in Ref. [4], the existence of
such a multisheeted spacetime could shed some light on a
number of puzzling cosmological problems including the
nature of dark matter structures (which would be identical
to normal matter but located in a distinct sheet), as well as
their invisibility (the gauge fields and most notably elec-
tromagnetism would be confined within the branes such
that the structures belonging to distinct branes would be
mutually invisible).

Following this line of thought, other recent develop-
ments have tried to improve the original Kaluza’s idea of
unification by considering discrete extra dimensions in-
stead of continuous ones. In these models, each discrete
point in the fifth dimension is endowed with its own metric
field such that the resulting universe appears like a multi-
sheeted spacetime composed by a collection of parallel 4D
sheets in interaction. Although such latticized models are
recognized to suffer from drawbacks (potentially curable),
they exhibit promising phenomenological properties, in
particular, in cosmology [5,6].

Discrete extra dimensions have also been studied in the
spirit of noncommutative geometry. One of the most prom-
ising approaches is that of Connes and Lott [7], and Viet
and Wali [8]. Their formulation considers a product mani-
fold comprising a continuous four-dimensional part times a
discrete one, typically M4 � Z2. The nontrivial feature of
their theory is the coupling of the two spacetime sheets
which results in the Higgs field. In several aspects, this
construction appears as a reminiscence of the five-
dimensional Kaluza-Klein model with the fifth dimension
restricted to only two points.

In recent papers, present authors have developed a phe-
nomenological model of a five-dimensional two-sheeted
spacetime and studied the quantum behavior of massive
particles in such a universe. Different mathematical ap-
proaches were used involving either a noncommutative
product manifold [9] or a two-point discretization of the
fifth dimension [10]. In the latter approach, the compact
extra dimension was treated through a naive discretization
scheme involving a finite difference analysis. The proce-
dure was inspired from ‘‘multigravity’’ theories where
massive gravitons result as a consequence of a latticized
extra dimension [5]. Extending such a procedure to the
case of the five-dimensional Dirac equation was demon-
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strated to provide several original results like fermionic
matter oscillations between the two four-dimensional
sections [9–12]. Therefore, despite all roughness of the
approach, the prediction of possible new quantum phe-
nomena made the theory interesting to study.

In the present paper, we propose to extend further the
discussion of Refs. [9–12] by considering an asymmetri-
cally warped background instead of a flat one. Since each
four-dimensional section is now endowed with its own
warp factor, different physical length scales can be defined
on the sheets. We show that, under some circumstances, a
massive particle can oscillate between the two four-
dimensional sections and exhibit hyperfast velocities
from the perspective of a four-dimensional observer thanks
to the different length scales in the two sheets. This result is
similar to that obtained by Chung and Freese in Ref. [13]
except that it is here derived by using quantum mechanics
exclusively without recourse to geodesic calculation.

The paper is structured as follows. In Sec. II, we derive
the two-sheeted Dirac equation for the chosen asymmetri-
cally warped background. The solutions of the Dirac equa-
tion are given and compared with the usual ones which are
recovered at the decoupling limit (infinite distance between
the sheets). Then, in the third part, we demonstrate the
oscillatory behavior in the case of a positive energy particle
and the possibility of hyperfast motions. In the fourth
section, the nonrelativistic limit of the Dirac equation is
derived and the quantum dynamics is studied at low en-
ergies. It is demonstrated that the oscillatory behavior and
the hyperfast velocities still survive in the nonrelativistic
limit, thus enabling a possible experimental confirmation
of the model.

II. TWO-SHEETED DIRAC EQUATION IN A
WARPED BACKGROUND

A. Mathematical framework

In this part, we shall derive the two-sheeted Dirac equa-
tion. We start by considering the usual 5D covariant Dirac
equation:

 �iD6 �m� � i�A�x; ��D6 A �m � 0 (1)

with A 2 f0; 1; 2; 3; 4g and where �A�x; �� are the curvature
dependent Dirac matrices. D6 A is the covariant derivative
given by

 D6 A � @A � �A�x; �� (2)

with �A�x; �� the spin connections and @A � @=@xA. In
Eq. (1) and (2), x refers to the four-dimensional coordi-
nates and � to the transverse extra dimension (a subscript
or an exponent equals to 4 corresponds to �). Note that,
throughout this paper, we will work in units where c � 1,
h6 � 1. Now, we assume that the five-dimensional metric
takes the following specific form:

 ds2 � gABdx
AdxB

� dt2 � R2����dx2 � dy2 � dz2� � d�2; (3)

where R��� is the warp factor. Note that we consider that
the warping only involves the space interval of the line
element and not the temporal part. This is similar to the
choice made by Chung and Freese in Ref. [13] and differs
from the classical braneworld approach where the metric
takes a canonical form. Our choice of metric corresponds
to an asymmetric warping as defined in Ref. [13]. Since the
results of this paper are not affected by the exact form of
R���, we are keeping this general form throughout this
paper. Note that a signature ��;�;�;�;�� is chosen
instead of the usual ��;�;�;�;�� one. It is straightfor-
ward to show that a timelike extra dimension is necessary
to ensure energy conservation in the present model [a
spacelike extra dimension leads to a non-Hermitian
Hamiltonian as it is obvious from Eqs. (101) and (102)
hereafter].

The five-dimensional Dirac matrices in curved space
take the form

 �A�x; �� � eAa �x; ���
a; (4)

where eAa define the vielbein according to

 gAB � eAa �x�e
B
b �x��

ab (5)

with gAB the 5D metric and �ab the five-dimensional
metric tensor of the Minkowski spacetime. The vielbein
is given by

 eAa �x� � diag
�
1;

1

R
;
1

R
;
1

R
; 1
�
; (6)

which leads to

 �0�x; �� � �0; �i�x; �� �
1

R
�i; �4�x; �� � �5;

(7)

where �5 � i�0�1�2�3 anticommutes with the usual
Dirac matrices �� in flat space, such that one verifies
f�a; �bg � 2�ab. The spin connection must satisfy the
expression [14]:

 �A�x; �� �
1
4�B�@A�

B�x; �� � �BCA�
C�x; ���; (8)

where �BCA are the Christoffel symbols for the metric field
defined above. From (8), the following covariant derivative
terms can be found:

 D6 0 � @0; D6 4 � @4; D6 i � @i �
1
2

_R�i�5; (9)

where a dot implies a derivation along the fifth dimension
and the gamma matrices in Eq. (9) are those of flat space.
The five-dimensional Dirac equation for the metric field
(3) finally becomes
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�
i�0@0 �

i
R
�i@i � i�

5@4 � i
3

2

_R
R
�5 �m

�
 � 0: (10)

Let us now discretize the fifth dimension. The way to
proceed is inspired by those described in Refs. [5,6].
However, instead of considering a one-dimensional lattice,
we focus on a more restricted compact extra dimension
containing two points located at coordinates � 2
f��=2;��=2g (see Ref. [10] where such an approach
had been developed). At each site, there is thus a four-
dimensional submanifold X	 where the particle wave
function takes the local form  �x; � � 	�=2� �  	�x�.
In the proposed geometrical framework the derivative @4

along the discrete dimension simply reduces to a finite
difference [10] (see Appendix A):

 @4 j	 ! g� 	 �  
� and _R	 � g�R	 � R
�; (11)

where g is the inverse of the distance � between the four-
dimensional sections and R� � R�� � ��=2�, R� �
R�� � ��=2� are the ‘‘projected’’ warp factors on the
two sheets.

Using those expressions, the five-dimensional Dirac
equation breaks down into a set of two coupled four-
dimensional-like Dirac equations:
 

i�0@0 � �
i
R�

�i@i � � i�
5g� � �  ��

� i�5 3

2R�
g�R� � R�� � �m � � 0 (12)

 

i�0@0 � �
i
R�

�i@i � � i�5g� � �  ��

� i�5 3

2R�
g�R� � R�� � �m � � 0: (13)

This equation can be rewritten in a compact matrix form
such that

 �iD6 �m� � 0 (14)

with

 D6 � �0@0 �
1

R
��@� � g�5 � g� (15)

provided that

  �
�
 �
 �

�
; �0 �

�0 0
0 �0

� �
;

1

R
�

1=R� 0
0 1=R�

� �
; �� �

�� 0
0 ��

� �
;

(16)

 

�5 �
�5 ��5

��5 �5

 !
;

� �
3

2

�5�R� � R��=R� 0

0 �5�R� � R��=R�

 !
:

(17)

Equation (14) is the two-sheeted Dirac equation for the
metric field (3) which will be studied in this paper. Note
that it takes a form which reminds the usual Dirac equation
except for the last two terms ig�5 and ig� which generate
the coupling between the sheets. It can be noted that no
interaction occurs anymore at the limit where the sheets are
infinitely separated, i.e. g! 0.

B. Asymmetrical two-sheeted Klein-Gordon equation

To solve Eq. (14), it is mandatory to introduce the
auxiliary field � given by

  � �iD6 �m��

�

�
i�0@0 � i

1

R
�i@i �m� ig�5 � ig�

�
�: (18)

Then, it can be shown that � is a solution of
 

�iD6 �m��iD6 �m��

�

�
�@2

0 �
1

R2 @
2
i �m

2 � gHi@i � g
2�
�
� � 0 (19)

with
 

Hi �
0 ��i�5�1=R� � 1=R��

��i�5�1=R� � 1=R�� 0

 !
;

��
�� ��

�� ��

 !
; (20)

where we have set
 

�� �
29R2

� � 30R�R� � 9R2
�

4R2
�

;

�� �
29R2

� � 30R�R� � 9R2
�

4R2
�

;

� � 2�
3

2

�R� � R��2

R�R�
:

(21)

Following the usual procedure, we can solve this two-
sheeted Klein-Gordon equation by using an ansatz of the
form � � �0e�i�Ept�p�x�. Introducing this ansatz into
Eq. (19) leads to the system

 

E2
p �

p2

R2
�

�m2 � g2�� g2�� ig�1=R� � 1=R���5�ipi

g2�� ig�1=R� � 1=R���
5�ipi E2

p �
p2

R2
�
�m2 � g2��

0
@

1
A�0 � 0: (22)
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C. Free-field solutions of the two-sheeted Klein-Gordon
and Dirac equations

Let us determine the solutions of the two-sheeted Klein-
Gordon and Dirac equations. To simplify notations in the
forthcoming results, it is convenient to write

 � �
R2
� � R

2
�

R2
�R

2
�

and � � �2p4 � 	p2 � � (23)

with
 

� �
R2
� � R

2
�

R2
�R

2
�

;

	 � 2g2

�
1

R�
�

1

R�

�

�

�
2
�

1

R�
�

1

R�

�
�

�
1

R�
�

1

R�

�
��� � ���

�
;

(24)

 � � g4�4�2 � ��� � ���
2�; (25)

 
 � g2�; � � ig
�

1

R�
�

1

R�

�
: (26)

From Eq. (22), the energy eigenvalues E and eigenvec-
tors �0 are easily found:
 

E � Ep �
�
m2 � p2 �

2
� g2 ��� � ���

2
�

�����
�
p

2

�
1=2

with �0 �
���

#���

 !
(27)

and
 

E��Ep��
�
m2�p2�

2
�g2 �������

2
�

�����
�
p

2

�
1=2

with�0�
�’�
#��’�

 !
(28)

with � � 1
2 ��p

2 � g2��� ���� �
�����
�
p
� and

 

E � ~Ep �
�
m2 � p2 �

2
� g2 ��� ����

2
�

�����
�
p

2

�
1=2

with �0 �
~���

#���

 !
(29)

and

 

E�� ~Ep��
�
m2�p2�

2
�g2 �������

2
�

�����
�
p

2

�
1=2

with�0�
~�’�
#��’�

 !
(30)

with ~� � 1
2 ��p

2 � g2��� � ��� �
�����
�
p
�. � � 	 1

2 and re-
fers throughout the paper to the helicity states of the
particle. We also have

 #� � 
� 2��p with �� �
��
0

� �
(31)

and

 #�� � 
� 2��p with ’� �
0
��

� �
; (32)

where �� is the spinor such that, if one considers the
impulsion p, it verifies the usual equation:

 �ipi�� � 2�p��: (33)

One notes that f#�;��g and f#��; ’�g are the eigensolutions
of the operator T given by

 T � 
� ��5�ipi �

� ��ipi 0

0 
� ��ipi

� �
; (34)

and which constitutes the nondiagonal terms of the matrix
in Eq. (22).

Using Eq. (18), it can be shown that

  �

E�m � �ipi
R�
� ig�� 0 �ig

�ipi
R�
� ig�� �E�m �ig 0

0 �ig E�m � �ipi
R�
� ig��

�ig 0 �ipi
R�
� ig�� �E�m

0
BBBBBB@

1
CCCCCCA�0 (35)

with

 �	 � 1�
3

2

R	 � R

R	

: (36)

For the positive energies, Eqs. (27) and (29) suggest to look for solutions of the form:
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�0 � �

��
0

0

0

2666664

3777775� #�
0

0

��
0

2666664

3777775 or �0 � ~�

��
0

0

0

2666664

3777775� #�
0

0

��
0

2666664

3777775: (37)

Similarly for negative energies, Eqs. (28) and (30) suggest to look for solutions of the form
 

�0 � �

0

��
0

0

2
666664

3
777775� #��

0

0

0

��

2
666664

3
777775 or �0 � ~�

0

��
0

0

2
666664

3
777775� #�

0

0

0

��

2
666664

3
777775: (38)

Inserting the ansatz (37) and (38) into Eq. (35) leads (after normalization) to the following solutions for the Dirac equation:
For E � 	Ep

 

u��p� �
1����
C
p

8>>>>>>><>>>>>>>:

��Ep �m���

���2�pR� � ig��� � ig#����

#��Ep �m���

�#��
2�p
R�
� ig��� � ig����

9>>>>>>>=>>>>>>>;
; v��p� �

1����
C
p

8>>>>>>><>>>>>>>:

���2�pR� � ig��� � ig#
�
����

��Ep �m���

�#���
2�p
R�
� ig��� � ig����

#���Ep �m���

9>>>>>>>=>>>>>>>;
; (39)

where u��p� and v��p� refer, respectively, to the positive and negative energy solutions.
For E � 	 ~Ep

 

~u��p� �
1����
~C
p

8>>>>>>><
>>>>>>>:

~�� ~Ep �m���

�~��2�pR� � ig��� � ig#����

#�� ~Ep �m���

�#��
2�p
R�
� ig��� � ig~����

9>>>>>>>=
>>>>>>>;
; ~v��p� �

1����
~C
p

8>>>>>>><
>>>>>>>:

�~��2�pR� � ig��� � ig#
�
����

~�� ~Ep �m���

�#���
2�p
R�
� ig��� � ig~����

#��� ~Ep �m���

9>>>>>>>=
>>>>>>>;
; (40)

where, as previously, ~u��p� and ~v��p� refer, respectively,
to the positive and negative energy solutions. In this model
the status of the negative energy is the same as that in the
classical Dirac equation. The normalization constants C
and ~C are easily calculated:
 

C � �2

�
�Ep �m�2 �

p2

R2
�

� g2�1��2
��

�

� j
�j2
�
�Ep �m�2 �

p2

R2
�

� g2�1��2
��

�
� 2�j
�j2

(41)

and
 

~C � ~�2

�
� ~Ep �m�

2 �
p2

R2
�

� g2�1��2
��

�

� j
�j
2

�
� ~Ep �m�

2 �
p2

R2
�

� g2�1��2
��

�
� 2 ~�j
�j

2;

(42)

where j#�j2 � 
2 � �2p2 with � � g� 1
R�
� 1

R�
�.

It can be easily checked that at the limit where R	 ! 1,
i.e. when both sheets have identical warp factors, the above
solutions conform to that of the paper [10].

Reciprocally, at the decoupling limit (i.e. when g! 0),
the solutions (39) and (40) become ‘‘2 times’’ the classical
Dirac ones expressed using the coordinates x. A careful
calculation shows that the spinors of positive energy be-
come
 

u� �
1����������������������������

2Ep�Ep �m�
q

�Ep �m���
2�p
R�
��

0

0

2666664

3777775

and ~u� �
1����������������������������

2 ~Ep� ~Ep �m�
q

0

0

� ~Ep �m���
2�p
R�

26666664

37777775;
(43)

while the energies become
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 Ep �

�������������������������
m2 � p2 1

R2
�

s
and ~Ep �

�������������������������
m2 � p2 1

R2
�

s
: (44)

These solutions describe two four-dimensional spinors
living in distinct sheets provided that the physical momenta
p� and p� are p� � p=R� and p� � p=R� on the (� )
and (� ) sheet, respectively.

This choice implies that the physical length coordinates
are x� � R�x and x� � R�x on the (� ) and (� ) sheet,
respectively. Note that, under such a coordinate rescaling,
both action and phase are conserved since

 p � x � p� � �R�x� � p� � �R�x� � p� � x�

� p� � x�: (45)

More clarifications on the coordinate rescaling will be
given later in Sec. IV. Throughout this paper, x and p will
refer to ‘‘global’’ coordinates and momenta while x	 and
p	 will refer to ‘‘physical’’ or ‘‘ordinary’’ coordinates and
momenta.

III. FERMIONIC OSCILLATIONS BETWEEN THE
SHEETS AND HYPERFAST DISPLACEMENTS

A. Particle motion between the two four-dimensional
sections

The predictions of the model can be illustrated by study-
ing the following state corresponding to an unpolarized
particle of positive energy:

 

 �
1

2
����
V
p �u1=2e

ip�xe�iEpt � ~u1=2e
ip�xe�i ~Ept�

�
1

2
����
V
p �u�1=2eip�xe�iEpt � ~u�1=2eip�xe�i

~Ept�: (46)

By virtue of the two-sheeted structure of spacetime,  is an
8-component spinor whose first fourth components are
located on the (� ) sheet and the last fourth on the (� )
sheet.

The probability P� (respectively P�) to find the particle
in the (� ) sheet [respectively (� ) sheet] is simply given
by the integration of j �j2 (respectively j �j2), the square
norm of the first (respectively last) fourth components of ,
over the space coordinates on the volume V. We get

 P� � A� 2B cos�Ep � ~Ep�t (47)

and

 P� � 1� P� (48)

with

 

A �
1

2C

�
�2

�
�Ep �m�

2 �
p2

R2
�

� g2�2
�

�
� g2j#j2

� 2g�
�
�
p2

R�
� g
��

��

�
1

2 ~C

�
~�2

�
� ~Ep �m�

2 �
p2

R2
�

� g2�2
�

�
� g2j#j2

� 2g~�
�
�
p2

R�
� g
��

��
(49)

and
 

B �
1

2
�������
C ~C
p

�
�~�

�
�Ep �m�� ~Ep �m� �

p2

R2
�

� g2�2
�

�

� g2j#j2 � 2g��� ~��
�
�
p2

R�
� g
��

��
: (50)

The presence of the cosine term in Eq. (47) shows that the
particle oscillates between the two sheets with a frequency
� proportional to the difference of the two energy eigen-
values, i.e.,

 2�� � �E � jEp � ~Epj: (51)

If one assumes that the mass term prevails over the other
contributions, then the frequency is given by (at first order)

 2�� 


�����
�
p

2m
(52)

and it can be easily checked that the oscillation frequency
increases with the coupling strength between the two
sheets and it is enhanced for low mass particles. At the
limit of very low impulsion and for identical warp factors
(R� � R�), we get � � g2=��m�which is the result found
in Ref. [10] in a flat background.

Equation (47) tells us that, when the particle oscillates, it
can disappear periodically from the perspective of any
four-dimensional observer. This result is just the discrete
counterpart of motions through the bulk predicted in some
braneworld theories. A common feature of all those models
(be they involving continuous or discrete extra dimension
[9–12,15,16]) is the apparent violation of the energy con-
servation from a four-dimensional point of view. It is
obvious that such a violation is only an artifact of low
dimensionality.

B. Asymmetrical warp factors and velocities

In order to illustrate the incidence of the different physi-
cal length scales on the two sheets (x� � x� in the more
general case for a same value of x), it is convenient to
rewrite the Eq. (14) by multiplying it by �0. Then, the two-
sheeted Dirac equation can be recast as

 i
@
@t
 � H ; (53)

where H is the two-sheeted Hamiltonian. In this form, the
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global velocity operator V can be trivially calculated:

 �V�i �
�
@H
@p

�
i
�

1
R�
�0�i 0

0 1
R�
�0�i

 !
(54)

with p the global momentum operator. The global velocity
can then be expressed:

 v � h jVj i

�
1

R�
h �j�0�ieij �i �

1

R�
h �j�0�ieij �i: (55)

It is instructive to consider the particle velocity mea-
sured by physical observers of the two sheets. For an
observer of the (� ) sheet, any particle confined to this
sheet moves according to the velocity operator V� (notice
the disappearance of the warp factor terms):

 �V��i �
�
@H
@p�

�
i
�

�0�i 0
0 0

� �
: (56)

Similarly any particle located in the (� ) sheet will be
observed by local observers as moving according to the
velocity operator:

 �V��i �
�
@H
@p�

�
i
�

0 0
0 �0�i

� �
: (57)

Therefore, the global velocity operator of a particle unre-
stricted in its motion can be written

 �V�i �
1

R�
�V��i �

1

R�
�V��i (58)

such that in the most general case, the global velocity reads

 v � v�=R� � v�=R� (59)

with

 v� � h jV�j i � h �j�0�ieij �i (60)

and similarly for v�.
We see that the particle velocity can be expressed as a

combination of the physical velocities of the particle, had it
remained confined in the (� ) or the (� ) sheet. As the
particle oscillates from one sheet to the other one with a
time period T, the effective distance x that the particle is
able to travel during one period is given by (assuming a
rectilinear motion)

 x �
Z T

0
vdt: (61)

Let us define a starting point x� � 0 (or x� � 0) at t � 0
in the (� ) sheet [or respectively (� ) sheet]. Therefore,
an oscillating particle detected at time t � T in the (� )
sheet [or respectively (� ) sheet] is observed at a physical
distance x� (or respectively x�) from its starting point:

 

x� � R�x �
Z T

0

�
v� �

R�
R�

v�

�
dt and=or

x� � R�x �
Z T

0

�
v� �

R�
R�

v�

�
dt:

(62)

As a consequence of the oscillatory motion, the particle is
observed at time t � T and at a distance x� (or respec-
tively x�) as if it had traveled at a fictitious mean velocity
�v� (or �v�) from the perspective of an observer of the (� )
sheet [or respectively (� ) sheet]:

 �v� �
1

T
x� � R�

1

T

Z T

0
vdt (63)

and/or

 �v� �
1

T
x� � R�

1

T

Z T

0
vdt (64)

with obviously �v� � v� and �v� � v�.
Therefore, in the most general case, the fictitious veloc-

ity ( �v	) of an oscillating particle differs from what it would
have, had it remained confined in only one sheet (i.e. v	).
To clarify this issue, let us consider the case of an unpo-
larized particle initially mainly localized in the (� ) sheet
and described by the wave function
 

 �
1

2
����
V
p �u1=2e

ip�xe�iEpt � ~u1=2e
ip�xe�i ~Ept�

�
1

2
����
V
p �u�1=2e

ip�xe�iEpt � ~u�1=2e
ip�xe�i ~Ept�: (65)

Considering that the momentum p is along theOz axis, and
according to the convention used for the spinor determi-
nation, the particle velocity becomes

 v � ve3 � h jV3j i �
Z
 yV3 d3x: (66)

We thus have

 v � 1
4fa� 2b cos�Ep � ~Ep � ’�tg (67)

with

 a � uy1=2V3u1=2 � u
y
�1=2V3u�1=2 � ~uy1=2V3 ~u1=2

� ~uy
�1=2V3 ~u�1=2 (68)

 

bei’ � uy1=2V3 ~u1=2 � u
y
�1=2V3 ~u�1=2 and

be�i’ � ~uy1=2V3u1=2 � ~uy
�1=2V3u�1=2:

(69)

As a consequence, the mean fictitious velocity as seen by
an observer of the (� ) sheet becomes

 �v� � R�
1

T

Z T

0
vdt �

1

4
R�a: (70)

After tedious calculations, the fictitious particle velocity
from the perspective of an observer located in the (� )
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sheet reads
 

�v� � R�
p
C
�Ep �m�

�
�2

R2
�

�
j#1=2j

2

R2
�

� ��2

�

� R�
p
~C
� ~Ep �m�

�
~�2

R2
�

�
j#1=2j

2

R2
�

� ~��2

�
: (71)

For illustrative purposes, it is convenient to simplify this
expression by considering its nonrelativistic limit. Then
assuming that g� m;p and p� m, one gets the more
compact form

 v� 

�
�

2m
R� �O�g�2

�
p�O�p�2 �

1

2

�
1�

R2
�

R2
�

�
p�
m

(72)

with � given by Eq. (23).
On the other hand, at the decoupling limit g! 0 and

assuming completely localized particles in the (� ) sheet
the velocity can be calculated to be [from Eq. (44)]

 v� �
1

Ep

p
R�
�
p�
Ep

: (73)

At low impulsion, this expression conforms with the usual
one as expected, i.e. v� � p�=m. As a consequence, the
expression (72) can be conveniently rewritten as

 �v� �
1

2

�
1�

R2
�

R2
�

�
v�: (74)

We see confirmed that an oscillating particle can travel
between two locations with a fictitious (but effective)
speed �v� which differs (in the general case where R� �

R�) from what it would have, had it remained in only one
sheet [i.e. v� in the (� ) sheet]. If R� � R�, the apparent
particle velocity �v� can become huge even if the particle
velocity v� in the (� ) sheet remains moderated.

A numerical example can be given for illustrative pur-
poses. Let us assume a warp factor ratio R�=R� � 250 and
a particle initially located in the (� ) sheet with a non-
relativistic velocity v� � 20 km � s�1. Note that since we
have v�=v� � R�=R� in the nonrelativistic limit [from
Eq. (73)], we see immediately that if a particle initially in
the (� ) sheet reaches the (� ) sheet and stays there, its
physical velocity as measured by an observed of the (� )
sheet will not be 20 km � s�1 but 5000 km � s�1. Although
this is an important velocity increase, this value is still a
nonrelativistic one. At this stage, it is important to stress
that the equations of the physical velocities v� [see
Eq. (73)] and v� imply that v	 < 1 whatever R�, R�, p,
m. Therefore, even if the particle moves faster in the (� )
sheet, it can never exceed the light velocity. The laws of
special relativity are safe in the present approach. In addi-
tion, from Eq. (45) we note that x�=x� � R�=R�. In the
present example, this means that the distances are 250
times shorter in the (� ) sheet than in the (� ) sheet.
Let us consider a particle initially localized in the (� )

sheet and transferred into the (� ) sheet. The particle
covers a distance x� during a time t and goes back in the
(� ) sheet. For an observer of the (� ) sheet, the detected
particle has apparently moved a distance x� during a time
t, such that its apparent (but fictitious) velocity v� � x�=t
or v� � v��R�=R��2. The latter expression is the conse-
quence of the shortened distance and increased proper
velocity in (� ) sheet. The reason why this expression
differs from Eq. (74) is the result of the oscillating behavior
of the particle. Indeed, on the average, the oscillating
particle spends as much time in sheet (� ) as in sheet (�
). The fictitious velocity �v� in Eq. (74) is then an average
velocity between the real velocity in (� ) sheet and the
fictitious velocity, had it remained in the (� ) sheet only.

For a proper velocity v� of 20 km � s�1 in the (� )
sheet, Eq. (74) shows that the fictitious velocity �v� [calcu-
lated by an observer located in the (� ) sheet] is about 2
times the light velocity. Although the proper velocity of the
particle remains nonrelativistic in both sheets, its apparent
velocity from the perspective of an observer of the (� )
sheet exceeds now the light speed.

In Ref. [13], it was suggested that the homogeneity of
the universe by the time of nucleosynthesis might be ex-
plained by particle motions in an asymmetric two-branes
system (one of which being a ‘‘hidden’’ brane). According
to the authors, an impulse originating on one brane of the
system can take a shortcut through the other brane and
affect our brane at a point outside the conventional causal
horizon. The present paper tries to go further on those
aspects by using a very simple although realistic quantum
mechanical model. Although our approach is radically
different from that of Ref. [13], our results share obvious
similarities (e.g. the particles confined in the other sheet
are invisible to us, the oscillating particles can reach distant
point outside their ‘‘naive’’ horizon . . .). Hence, it is be-
lieved that there may generically exist a noninflationary
solution to the horizon problem in theories with extra
dimensions (be they continuous or discontinuous).

IV. TWO-SHEETED ELECTROMAGNETIC FIELD
AND PAULI EQUATION

A. Introduction of the electromagnetic field

To account for the discrete structure of the bulk, the
usual U�1� gauge field must be substituted by an extended
U�1� �U�1� gauge field such that

 G �
14�4 exp��iq��� 0

0 14�4 exp��iq���

� �
: (75)

We look for an appropriate gauge such that D6 A ! D6 � A6
with the following rule of transformation:

 A6 0 � GA6 Gy �G�D6 ; Gy�: (76)

A convenient choice is (see Refs. [9–12,17])
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 A �
iq 1

R�
��A�� �5�

�5�y iq 1
R�
��A��

" #
; (77)

where �� and �5 are the usual Dirac matrices. Choosing
� � 0 whatever the gauge choice can be done only if
�� � �� � �.

In addition, the above definitions impose the following
gauge transformations:

 A	� � A	� � @��; (78)

On the two sheets live the distinct A� and A� fields. Each
spacetime sheet possesses its own current and charge den-
sity distribution as sources of the local electromagnetic
fields. The off-diagonal term has been set equal to zero.
This free choice allows a further simplification of the
model. If this term is different from zero, it leads to a
coupling between the two photon fields such that each
charged particle becomes sensitive to the electromagnetic
fields of both sheets irrespective of its localization in the
bulk. With the present choice, the electromagnetic field of
a sheet couples only with the particles belonging to the
same sheet.

B. Derivation of the Pauli equation

Let us derive the nonrelativistic limit of the two-sheeted
Dirac equation for the metric field (3). We first introduce
the gauge contributions A6 of both sheets into the two-
sheeted Dirac equation following the standard procedure,

 �iD6 A �m�	 � 0; (79)

such that

 D6 A � �0�@0 � iqÂ0� �
1

R
���@� � iqÂ�� � g�5 � g�:

(80)

One can also write

 i@0	 � �i�0 1

R
���@� � iqÂ��	� ig�0�5	

� ig�0�	�m�0	� qÂ0	; (81)

where

 Â � �
A�� 0
0 A��

� �
: (82)

When m is large compared with the kinetic energy, the
most rapid time dependence is in the factor exp�	imt�. For
a free positive energy particle, and for small kinetic and
electromagnetic energies, we may therefore seek a solution
of the form 	 �  e�imt with

  �

��

�
��

�

26664
37775; (83)

where ��, 
�, ��, 
� are two-component spinors. One
can then write
 

i@0�� � qA�0 �� � i�1=R�����@� � iqA
�
� �
�

� ig�
� � 
�� � ig�3=2�f�R� � R��=R�g
�

(84)

 

i@0�� � qA�0 �� � i�1=R�����@� � iqA
�
� �
�

� ig�
� � 
�� � ig�3=2�f�R� � R��=R�g
�

(85)

 

i@0
� � �i�1=R�����@� � iqA�� ��� � qA�0 
�

� ig��� � ��� � 2m
� � ig�3=2�

� f�R� � R��=R�g�� (86)

 

i@0
� � �i�1=R�����@� � iqA�� ��� � qA�0 
�

� ig��� � ��� � 2m
� � ig�3=2�

� f�R� � R��=R�g��: (87)

In addition, when p is much smaller than m, 
� and 
�
become tiny in comparison with �� and ��. For small
electromagnetic and kinetic energies, one then get the
following expressions:
 


� ��i�1=R��
1

2m
���@�� iqA�� ���

� i
g

2m
��� ����� i

g
2m
�3=2�f�R� �R��=R�g��

(88)

 


� ��i�1=R��
1

2m
���@�� iqA

�
� ���

� i
g

2m
��� ����� i

g
2m
�3=2�f�R� �R��=R�g��:

(89)

In order to give these equations a more conventional
form, vectors must be used instead of covariant or contra-
variant terms. The procedure, which is similar to that used
in cosmology [18], can be summarized as follows. For a
metric field given by gij � R2�ij �i; j � 1; 2; 3�, we can
define an orthonormal basis,

 e i �
gi
R
� Rgi; (90)

such that gij � gi � gj � gji. What are usually called the
components of a vector a in elementary treatments are
neither the covariant components ai nor the contravariant
components ai, but the ordinary components:

 a i � a � ei � Rai � R�1ai: (91)

Moreover, to be consistent, vectors and operators relative
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to a specific sheet have to be expressed using the metric of the corresponding sheet, i.e. following Ref. [18]:

 r	 �
X
i

ei
1

R	

@
@xi
�

i
R	

X
i

pi � i
X
i

p	;i where pi � �iei
@
@xi

and p	;i � �iei
@
@xi	

�
1

R	
pi (92)

and similarly, magnetic vector potentials and magnetic
fields are given by

 

�A	;i � R	A
i
	 � R�1

	 A	;i and similarly for �B	;j: (93)

Note that we have introduced the global vector p exactly as
we did for the Dirac equation [Eq. (45)].

By setting 
	 and A	 for the usual electric and mag-
netic potential, it can be easily shown that the Pauli equa-
tion reads

 H’ � i@0’ with ’ �
��
��

� �
; (94)

where we have used the fact that

 �����r	 � iqA	���r	 � iqA	��

� �r	 � iqA	�2 � q� � B	: (95)

The resulting Hamiltonian can be written as the following
sum:

 H � �Hk �Hm �Hp� � �Hc �Hcm �Hcp�; (96)

where

 Hk � �
1

2m
�r� � iqA��2 0

0 �r� � iqA��2

� �
(97)

 Hm � �
q

2m
� � B� 0

0 � � B�

� �
(98)

 Hp �
q
� 0

0 q
�

� �
(99)

 Hc �
g2

m

1� �3=2��R��R�R�
� � �9=8��R��R�R�

�2 �1� �3=4� �R��R��
2

R�R�

�1� �3=4� �R��R��
2

R�R�
1� �3=2��R��R�R�

� � �9=8��R��R�R�
�2

2
4

3
5 (100)

 Hcm � i
gq
2m

0 � � fA� �A�g
�� � fA� �A�g 0

� �
(101)

 Hcp �
g

2m
0 � � fr� � r�g

�� � fr� � r�g 0

� �
: (102)

This two-sheeted Pauli equation is very similar to that
derived in Refs [9,10] except for the gradient operator
which is distinct in the two sheets as a consequence of
the two metric fields. It is worth being noticed that, at the
limit of decoupling, we get 2 times the usual Pauli equation
as expected. Therefore, at the limit of small g, the differ-
ence between the two-sheeted Pauli equation and the usual
one are not expected to be significant.

The first three terms of the Hamiltonian correspond to
the classical contributions of the ‘‘one-sheeted’’ Pauli’s
equation. Hk is the kinetic term whereas Hm and Hp relate
to the magnetic and Coulomb terms, respectively. The last
three terms correspond to new predictions of the model.
The term Hc behaves as a constant coupling between the
two sheets. This term is responsible for the spontaneous
particle oscillations studied previously in the relativistic
limit. Hcp and Hcm introduce the geometrical coupling
between the sheets through kinetic and magnetic terms. It
is worth stressing that the coupling which involves the
kinetic mixing disappears if the two sheets have the same
warp factors whereas Hcm does not.

C. Hyperfast velocities in the nonrelativistic limit

As previously, three different velocity operators can be
defined: V� (V�) which corresponds to the velocity of a
confined particle in the (� ) [respectively (� )] sheet and
the global velocity operator V. These operators read

 V � �
@H
@p�

�
1
m �p� � qA��

ig
2m�

� ig
2m� 0

" #
(103)

and

 V � �
@H
@p�

�
0 � ig

2m�
ig
2m�

1
m �p� � qA��

" #
(104)

and
 

V �
@H
@p
�

1
R�

1
m �

1
R�

p� qA��
ig
2m� � f

1
R�
� 1

R�
g

� ig
2m� � f

1
R�
� 1

R�
g 1

R�
1
m �

1
R�

p� qA��

2
4

3
5

�
1

R�

@H
@p�

�
1

R�

@H
@p�

�
1

R�
V� �

1

R�
V�: (105)
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We point out the existence of a nondiagonal components of
the velocity operator. However, since this term is propor-
tional to g we can ignore it for the moment and in the
forthcoming calculations to concentrate only on the effect
of the diagonal terms in V.

D. Illustrative case

In the following, we neglect the terms g2 of the
Hamiltonian in front of the g terms. In this way we under-
line the contribution of Hcm and Hcp. To illustrate the
survivance of hyperfast displacement in the nonrelativistic
limit, it is convenient to consider the case of a particle
initially located in the first sheet and embedded in a region
of constant curlless magnetic vector potential. For simplic-
ity reasons, let us consider a neutronlike particle, i.e. a
chargeless particle with a magnetic moment. We do not
consider the complications arising from the anomalous
magnetic moment of this particle. Instead, we assume
that it is identical to that of an electron. In the absence of
any magnetic field or scalar potential and by neglecting the
g2 terms in front of the g terms, the Hamiltonian reads

 H �
K� �i�� � P

i�� � P K�

� �
(106)

with � � g=�2m� and

 K	 �
1

R2
	

p2

2m
(107)

and

 P � eA�
�

1

R�
�

1

R�

�
p: (108)

In the following, one considers that A and p are collinear.
The eigenvectors of the above Hamiltonian are

 u	;� �
1�������
N	
p

�E	 � K����
i�� � P��

� �
(109)

with the corresponding eigenvalues

 E	 �
1
2�K� � K� 	

����������������������������������������������
�K� � K��2 � 4�2P2

q
�: (110)

�� is a spinor where � � 	1=2 and stands for both spin
states and N	 � �E	 � K���2E	 � K� � K��.

It is not difficult to convince oneself that the particle
ability of reaching the second spacetime sheet still survives
in the nonrelativistic limit. The wave function assuming
that the particle is initially (t � 0) located in the (� ) sheet
with some polarization state �n2

1=2 � n
2
�1=2�=�n

2
1=2 �

n2
�1=2� is

  �
1����
V
p fn1=2�au�;1=2e

�iE�t � bu�;1=2e
�iE�t�

� n�1=2�au�;�1=2e
�iE�t � bu�;�1=2e

�iE�t�geip�x

(111)

with n2
1=2 � n

2
�1=2 � 1 and

 a �

���������������������
N�

N� � N�

s
and b �

���������������������
N�

N� � N�

s
: (112)

The probability P to find the particle in the second sheet
can be trivially calculated,

 P �
1

1� 
2 sin2f�1=2��E� � E��tg; (113)

with

 
 �
K� � K�

2�P
: (114)

Without going further, it can already be noticed that if A �
0,

 
 �
p�
2g

�
1�

R�
R�

�
; (115)

and

 E� � E� �
p2
�

2m

��������1�
R�
R�

��������
��������������������������������������

1�
R�
R�

�
2
�

4g2

p2
�

s
(116)

with p� � p=R�. In the absence of confining effect, the
particle oscillates between the two four-dimensional sec-
tions provided that p� � 0. However, if p� becomes
larger than g, P quickly drops to zero and the spontaneous
oscillations are strongly suppressed.

Returning back to the general case where A � 0 and
p� � 0, it is interesting to calculate the particle velocity.
Assuming p and A are oriented along the Oz axis, the
global particle velocity v is given by
 

v � vz �
Z
 yVz dV

�
1

R2
�

p
m

cos2f�1=2��E� � E��tg

�
1

R2
�

p
m

�R2
�

R2
�

�K� � K��2 � 4�2P2

�K� � K��2 � 4�2P2

�
� sin2f�1=2��E� � E��tg: (117)

Since the particle oscillates between the two sheets, the
velocity exhibits also an oscillatory behavior. The fictitious
velocity v� from the point of view of an observer in the
sheet (� ), after a period T � 2�

�E��E��
is

 v �
R�
T

Z T

0
vdt (118)

and therefore

 v� �
1

R�

p
m

1

2

�
1�
�K� � K��2 � 4�2P2 R

2
�

R2
�

�K� � K��
2 � 4�2P2

�
: (119)

From Eqs. (107) and (108) and for a large enough A, the
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previous expression simplifies further:

 v� �
v�
2

�
1�

R2
�

R2
�

�
(120)

with v� � p�=m the usual particle velocity had it re-
mained confined in the (� ) sheet. We recover the relation
already derived from the relativistic approach at the limit
of low velocities.

Again, we see that, if R� � R�, the particle moves with
an apparent velocity that can exceed the velocity v� this
particle would have, had it remained in the (� ) sheet. The
novelty in comparison with the result (74) is that the
particle oscillates through the application of a magnetic
potential and therefore this result suggests that the model
could perhaps be experimentally investigated (this possi-
bility and the properties ofHcm have been explored more in
Refs. [11,12]).

We stress that the results of this paper have been
obtained for a free particle, e.g. by assuming that the
magnetic field, the scalar potential, and any other environ-
mental contribution can be neglected (excepted for a con-
stant curlless magnetic vector potential as discussed
previously). This condition is obviously a very restrictive
one and, in most cases, the suppression of these terms
could be hardly achieved. In Ref. [12], it was demonstrated
that any diagonal term in the Hamiltonian strongly sup-
presses the particle oscillations. In fact, it is not difficult to
demonstrate that the more energetic the particle is, the
more the oscillations are suppressed. Even the gravitational
potential, whose contribution modifies the particle energy,
will affect the oscillations and restricts the particle motion
between the sheets. As demonstrated in Ref. [12], our
model suggests that any massive particle could be sponta-
neously confined within the sheets (through environmental
interactions) without requiring any complementary scalar
field or repulsive gravity [12]. Since no particle disappear-
ance has been noted to date, it is very likely that the degree
of confinement is very strong, and/or that the coupling
constant g is very small. Therefore, it is expected that the
phenomena described in this paper will be hardly observed,
especially if one takes into account the fact that no current
experimental setup is suitably designed for searching for
these phenomena. Any experiment aiming at demonstrated
the behavior predicted in the present paper will require
very particular conditions although they might not be
completely out of reach of our present technology [11,12].

V. CONCLUSIONS

In this paper, we have studied the quantum dynamics of
spin half particles in an asymmetrically two-sheeted space-
time. It was shown that any free particle oscillates between
the two sheets as a consequence of the geometrical cou-
pling along the discrete extra dimension. By oscillating,
any massive particle is able to travel between distant points
which are normally outside its four-dimensional horizon.

The reason arises from the differential warping which leads
to reduced length scales and increased velocities in one of
the sheet.

APPENDIX A

The discrete derivative used in present and previous
papers [10–12] is defined as follows.

A compact oriented discretized dimension Zn � fsiji 2
f0; . . . ; n� 1gg is considered, with si being each of the n
sites of Zn (see Fig. 1). Zn is invariant under the cyclic
group Z=nZ. Zn is oriented positively with increasing
values of site index i. For each site si of Zn, it is possible
to define a coordinate ��si� � �i � �i� q. Note that both
� and q have the dimension of a length. q is an arbitrary
constant (the presence of this term will be clarified shortly
afterwards) whereas � is the distance between nearest-
neighbor sites.

One then defines a positive restricted algebraic distance
da�si; sj� on Zn. That means that one goes from site si to
site sj by imposing a positive direction, i.e.,

 da�si; sj� �
�
�j � �i if j � i
�j � �i � �n if j < i:

(A1)

This imposes

 da�si�1; si� � � for i 2 f1; . . . ; n� 1g (A2)

and

 da�sn�1; s0� � � (A3)

with respect to the cyclic properties.
If one considers an arbitrary function ����si�� �

���i� � �i, the derivative @����i� at each site si is natu-
rally given by

 @����i� �
���i� ����i�1�

da�si�1; si�
for i 2 f1; . . . ; n� 1g

(A4)

with of course

s+≡ s1

s-≡ s0

s0
s1

s2

si

sn-2

sn-1

si-1

n → 2

δ
δ

δ
δ

δ

δ δ

FIG. 1. General polygonal representation of the compact dis-
cretized Zn dimension (left) and of its Z2 limit (right).
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 @����0� �
���0� ����n�1�

da�sn�1; s0�
: (A5)

These expressions can be written in the usual form:

 @��i � �1=����i ��i�1� for i 2 f1; . . . ; n� 1g (A6)

and

 @��0 � �1=����0 ��n�1�: (A7)

By construction, the derivative is invariant through
cyclic permutation and corresponds to the so-called
‘‘Zn-derivative.’’

The ‘‘Z2-derivative’’ is simply obtained by setting n �
2 in previous expressions. The result reads
 

@��1 � �1=����1��0� and @��0 � �1=����0��1�:

(A8)

Considering the following substitution ��0; �1� !
���; ��� the derivative can be expressed into the form

 @��	 � 	�1=����� ����: (A9)

In addition, by setting q � ��=2, we get �	 � 	�=2 for
the coordinate of each site.
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