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This paper concludes our efforts in describing SU�3�-Yang-Mills theories at different couplings/
temperatures in terms of effective Polyakov-loop models. The associated effective couplings are
determined through an inverse Monte Carlo procedure based on novel Schwinger-Dyson equations that
employ the symmetries of the Haar measure. Because of the first-order nature of the phase transition we
encounter a fine-tuning problem in reproducing the correct behavior of the Polyakov-loop from the
effective models. The problem remains under control as long as the number of effective couplings is
sufficiently small.
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I. INTRODUCTION

Since the pioneering papers of Polyakov [1] and
Susskind [2] the confinement-deconfinement phase transi-
tion in finite-temperature Yang-Mills theory has become a
thoroughly studied phenomenon. This is particularly true
for the ‘‘standard’’ groups SU�2� and SU�3�, but more
‘‘exotic’’ groups like G�2� have recently come into focus
as well, see e.g. [3,4]. Because of the nonperturbative
nature of the problem progress has mainly been achieved
via brute force lattice computations.

Nevertheless, it would be helpful to have a simpler and
more intuitive understanding of the physics involved. The
principal tool for this purpose is the construction and
subsequent analysis of effective models. Such attempts
also have quite some history going back to the works of
Svetitsky and Yaffe [5,6] as well as Polonyi and Szlachanyi
[7]. The basic idea (in the spirit of Landau and Ginzburg) is
to use the order parameter of the transition, the Polyakov
loop, as a collective degree of freedom and formulate
effective theories in terms of it. For gauge groups SU�N�
the rationale behind that is the Svetitsky-Yaffe conjecture
[5,6] which states that the Yang-Mills finite-temperature
transition in dimension d� 1 is described by an effective
spin model in d dimensions with short-range interactions.1

These ideas have initially been taken up in terms of strong-
coupling expansions [7,9,10] yielding Ising type spin mod-
els with an effective coupling ���� where � denotes the
Yang-Mills-Wilson coupling. A review of early work in
this context may be found in [11]. For an overview of more
recent developments we refer the reader to [12].

Early on, it has also been attempted to obtain these
effective models, that is their couplings (being the

‘‘weights’’ of the included operators) nonperturbatively
via lattice methods. In [13,14] Creutz’s microcanonical
demon method [15] has been employed for SU�2�. An
alternative method based on Schwinger-Dyson equations
(SDEs) and dubbed ‘‘inverse Monte Carlo’’ (IMC) was
developed soon after [16,17] and applied to both SU�2�
[18,19] and SU�3� [20,21]. Since then the IMC approach to
lattice gauge theories has largely been dormant with only a
few exceptions [22,23].

Inspired by the success of Polyakov-loop models [24–
26] we have recently reinvestigated the feasibility of IMC
for the confinement-deconfinement phase transition in a
series of papers. Our numerical approach has consistently
been complemented by analytical attempts such as strong-
coupling expansions and mean-field approximations. For
the second-order SU�2� transition our results may be found
in [27,28]. By including up to 14 operators and 3 different
group representations we were able to reproduce suitable
Yang-Mills observables to a reasonable accuracy. The
same is true for the analytically known asymptotic behav-
ior of the effective couplings as a function of �. In [29] we
have started to investigate effective models for SU�3�
which are generalizations of the 3-states Potts model.
The critical behavior of these is an interesting subject in
its own right. We have found a very rich phase structure
with first and second-order transitions between symmetric,
ferromagnetic, and antiferromagnetic phases. In addition
there seems to be a tricritical point rendering mean-field
theory approximately exact in its vicinity .

In relating the effective models to SU�3� Yang-Mills via
IMC one expects to encounter new difficulties. The first
technical problem to overcome is to find the SDEs which
are less straightforward than for SU�2� as the SU�3� group
manifold no longer is a sphere. This problem has been
solved in [31,32]. As the SU�3� phase transition is of
(weak) first order, hence not continuous, the determination
of the effective couplings might require fine-tuning raising

1The reasoning involved strongly relies on center symmetry.
The study of more exotic Lie groups (which may not even have a
nontrivial center) suggests that the size of the gauge group is also
important [8].
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the question of stability of the solutions. This will be one of
the main issues to be addressed in what follows.

The remainder of the paper is organized as follows. In
Sec. II we suggest different effective actions as candidates
for describing the Polyakov-loop dynamics of Yang-Mills
theory. In Sec. III we explain how to obtain the effective
couplings via two alternative sets of SDEs and subsequent
IMC. Our numerical results are presented in Sec. IV.
Section V concludes our discussion with a summary and
outlook. Some technicalities are deferred to Appendices A,
B, and C.

II. EFFECTIVE ACTIONS

We begin by recalling the lattice definition of the un-
traced Polyakov loop in the group representation R,

 R �Px� �
YNt

t�1

R�Utx�; (1)

where R�Utx� is the temporal link at time slice t and
position x in representation R. Any irreducible represen-
tation of SU�3� is labeled by two integers, R �Rpq,
which, in flavor language, count the number of quarks
and antiquarks needed to construct the multiplet associated
with Rpq. The basic building blocks of our effective
actions are the group characters �R associated with the
representation R, that is the traces of the Polyakov loop
(1),

 �R�P � � �pq�P � � trRpq�P�: (2)

Note that these only depend on the traced Polyakov loop in
the fundamental representation, P � tr P. The trivial char-
acter is of course �00 � 1 while the first nontrivial ones
correspond to the (anti-)fundamental representations and
yield just the standard traced Polyakov loop (and its com-
plex conjugate),

 �10�P � � P ; �01�P � � P �: (3)

Under a center transformation, the characters transform as

 �pq ! zp�q�pq; z 2 Z3: (4)

Center symmetry is then sufficient to determine the opera-
tor content of the effective action if we restrict to nearest-
neighbor (NN) interactions. In terms of group characters
one finds the general form

 Seff��	 �
X

hxyi;pq;p0q0

p�p0�q�q0 mod 3

�pq;p0q0�pq�P x��p0q0 �P y�; (5)

where the sum over representations is constrained by cen-
ter symmetry. Expressing the characters explicitly in terms
of the Polyakov loop P one easily recognizes (5) as the
action suggested by Dumitru et al. [24]. Their ‘‘potential
terms,’’ built from single center symmetric characters lo-
cated at single sites appear whenever the second adjacent

character is trivial, �00 � 1. In this case the typical hop-
ping terms connecting NN sites ‘‘degenerate’’ into ultra-
local terms, the one of lowest dimension being the ‘‘octet
loop’’ contribution, �11;00�11 as indeed 1� 0 �
1� 0 mod 3. One expects that the couplings �pq;p0q0 de-
crease with increasing representation labels, p, q, p0, and
q0, hence that representations of low dimension,

 dpq �
1
2�p� 1��q� 1��p� q� 2�; (6)

dominate the effective action. To simplify our notation we
will henceforth write the action (5) (and generalizations
thereof) as a series of the form

 Seff �
X
i

�iSi; (7)

where up to 16 different terms Si will be taken into
consideration, albeit not necessarily within one and the
same ansatz. A list of the operators Si may be found in
Appendix A where we allow for next-to-NN (NNN) cou-
plings in addition. It is easy to check that each of the terms
given satisfies the selection rules for the representation
labels necessary for center symmetry.

It turns out (in hindsight) that the ansätze (5) or (7)
contain more freedom of choice than actually required
which makes the inverse Monte Carlo routines less effi-
cient (see below). To further constrain this freedom we
generalize to SU�3� the strong-coupling approach intro-
duced by Billo et al. [33] which we already have success-
fully applied to SU�2� [28]. The basic building blocks are
then given by the center symmetric operators connecting
NN sites,

 SR;‘ � �R�P x��
�
R�P y� � c:c:; ‘ � hxyi: (8)

The strong-coupling expansion then replaces the ansatz (5)
by the following somewhat more complicated expression
[31],

 Seff �
X
r

X
R1...Rr

X
‘1...‘r

c‘1...‘r
R1...Rr

���
Yr
i�1

SRi;‘i ; (9)

where r counts the number of link operators (8) contribut-
ing at each order. The coefficients c‘1...‘r

R1...Rr
are the cou-

plings between the operators SRi;‘i from (8) sitting at NN
links ‘i � hxi; yii in representation Ri. The effective ac-
tion defined in (9) hence describes a network of link
operators of the type (8) that are collected into (possibly
disconnected) ‘‘polymers’’ contributing with ‘‘weight’’
c‘1...‘r
R1...Rr

. Again, one expects the ‘‘weights’’ or couplings
to decrease as the dimensions of the representations and the
interlink distances involved increase. In a strong-coupling
(small-�) expansion truncated at O��kNt� one has r 
 k
and the additional restriction jR1j � � � � � jRrj< k with
jRj � p� q for a given representation R.

To lowest order �Nt one finds the universal effective
action [7]
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Seff � c10

X
hxyi

S10;hxyi � �1

X
hxyi

��10�P x��01�P y� � c:c:�

� �1

X
hxyi

�P xP
�
y � P �xP y�; (10)

which is just a single hopping term connecting Polyakov
loops at NN sites. This is reminiscent of a generalized Ising
model or, more appropriately, a three-state Potts model
[34]. As mentioned before the study of these models is
interesting in its own right [29] but will not be the topic of
the present paper which focuses on the relation between the
effective actions and Yang-Mills theory.

Again, the most general representation (9) is not too
illuminating and we will therefore adopt the notation

 Seff �
X
a

�aIa: (11)

A list of the leading NN and NNN action terms Ia can be
found in Appendix B.

In principle, without any truncations, the effective ac-
tions (7) and (11) have to coincide although the operator
bases used are different. Accordingly, there is a linear
relationship between the couplings �i and �a. However,
as the ordering principles for the two ansätze are not the
same the relation between the couplings after truncation is
not one-to-one but rather of the form

 �i � Kia�a: (12)

Typically, for a given truncation of the �-action (7) the
range of the index i is larger than that of a, i.e. there are
more �’s than �’s. Accordingly, the matrices �Kia� are
rectangular with a < i and integer entries. For this reason
it is calculationally often more efficient to work with the
�-action (11) and reobtain the �i via (12). Our standard
choices for the numerical matrices �Kia� corresponding to
different truncations of the effective actions may be found
in Appendix C. As the operators Si appearing in (7) are
more intuitive and resemble generalized spin terms we
have decided, for the sake of brevity, to present results
only for the �’s in this paper.

III. SCHWINGER-DYSON EQUATIONS AND
INVERSE MONTE CARLO

In this section we shortly recapitulate the SU�3�
Schwinger-Dyson equations (SDEs) that have recently
been derived in [31,32]. They will be the main tool to
relate the effective actions (7) and (11) to Yang-Mills
theory. Our numerical approach benefits from the fact
that there are two independent versions of SDEs which in
the end, however, should yield equivalent results. The first
type of equations is based on an integral identity which is
more algebraic in nature than the second type which fol-
lows from geometrical considerations.

A. Algebraic SDEs

It is useful to parametrize the diagonalized, untraced
Polyakov loop by means of two angular variables, �1

and �2,

 P ��1; �2� �
ei�1 0 0

0 ei�2 0
0 0 e�i��1��2�

0
B@

1
CA; (13)

with values in a fundamental region given by the restric-
tions

 �1 
 �2 
 ���1 ��2�mod 2�; 0 
 �i < 2�:

(14)

As a result, the reduced Haar measure acquires the form

 d�red � J2d�1d�2 (15)

with a nontrivial Jacobian that may either be expressed in
terms of characters,

 J2 � 15� 6�11 � 3�30 � 3�03 � �22; (16)

or in terms of the trace P of (13),

 J2 � 27� 18PP � � 4P 3 � 4P �3 � P 2P �2: (17)

Using the latter variable leads to the remarkable algebraic
identity

 d�red��1; �2� � J2d�1d�2 � JdPdP �

� d�red�P ;P ��; (18)

such that one can trade J2 for its square root J. It is a fact of
life that any function f � f�P ;P �� vanishing on the
boundary @� of a region � satisfies the integral identity

 

Z
�
dPdP �@Pf � 0; (19)

which is reminiscent of integration by parts on the real line,R
dxf0�x� � 0 (for functions f vanishing at infinity). For

our purposes we make the particular choice

 f�P ;P �� � J3g�P ;P �� (20)

with arbitrary g and integrate over the domain of P given
implicitly via (14). This is consistent with the general
identity (19) as the reduced Haar measure vanishes at the
boundary @� of the fundamental region (14). Hence, (19)
specializes to

 0 �
Z
d�red�P z;P

�
z�

�
3

2

@J2
z

@P z

g� J2
z

@g
@P z

�
; (21)

where we have used the reduced Haar measure from (18)
and reinstated the dependence on the lattice site chosen to
be z. The derivative of J2 can actually be worked out with
the result
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@J2

@P
� 12P 2 � 2PP �2 � 18P �: (22)

To actually obtain genuine SDEs we have to introduce the
usual Boltzmann factor exp��Seff�. This is done by choos-
ing a special function g, namely

 gx �
@h
@P �x

exp��Seff�; (23)

with another function h�P ;P �� required to be Z3 invariant,

 h�P ;P �� � h�zP ; z�P ��; z 2 Z3: (24)

Plugging in the ansatz (7) for the �-action the P -derivative
of (23) needed for (21) becomes

 

@gx
@P z

�

�
h;P �x;P z

�
X
i

�ih;P �xSi;P z

�
e�Seff ; (25)

where the commas denote differentiation with respect to
the subsequent argument. Functional integration of (21)
with the measure D�red �

Q
zd�red�P z;P

�
z� finally

yields the desired SDEs,

 0 �
�

3

2

@J2
z

@P z

h;P �x � J
2
zh;P �x;P z

�
�
X
i

�ihJ
2
zh;P �xSi;P z

i;

(26)

which comprise a linear system for the effective couplings
�i, generalizing analogous results for SU�2� [27,28]. The
experience gained there prompts us to choose the function
h from the operators Si in the ansatz for the �-action (7).
Any index i then yields an independent equation. In addi-
tion, this choice automatically satisfies the criterion (24) of
Z3 invariance.

On top of that we will vary the sites x and z, in particu-
lar, the distance d � jx� zj between them. On a lattice
with spatial extent Ns this implies a range of distances d 2
f0; . . . ; bNs=2cg where bxc denotes the largest integer 
 x.
For N different operators Si we thus obtain N independent
equations for each distance d.

B. Geometrical SDEs

For any function f � f�U� on a Lie group we define its
left derivative in the direction of the generator Ta via

 Laf�U� �
d
dt
f�etT

a
U�jt�0: (27)

Left invariance of the Haar measure implies a symmetry
relation somewhat analogous to (19),

 

Z
d�Haar�U�Laf�U� � 0; (28)

which will serve as a master identity generating all SDEs.
As in the previous subsection we would like to integrate
over the reduced Haar measure d�red only. Thus, we want
the integrand Laf�U� to be a class function. If G is such a

class function it only depends on the fundamental group
characters, �F�U� � tr�RF�U��, where RF�U� denotes a
fundamental representation of the group element U, i.e. 3
or �3 for SU�3�. For the particular choice f � gLa�p, with
g an arbitrary class function and �p a fundamental char-
acter, the integrand in (28) indeed becomes a class function
so that we end up with the ‘‘reduced’’ integral

 

Z
d�redLa�gLa�p� � 0: (29)

For SU�3� we obviously choose the fundamental character
�p as the trace of the Polyakov loop in the fundamental
representation, �p � �10 � P and g � he�Seff , slightly
different from (23). The left derivatives are worked out
as follows [31,32],

 

La�La�P �� � �
16
3 P ; La�P �La�P � � 4P � � 4

3P
2;

La�P �La�P �� � 6� 2
3jP j

2; (30)

and only depend on the traced Polyakov loop as they
should. Finally, to obtain feasible equations we choose h
among the P -derivatives of the Si, h � Si;P x

implying the
following set of geometrical SDEs,

 

0 �
�
�

16

3
P zSi;P x

�

�
4P �z �

4

3
P 2
z

�
Si;P x;P z

�

�
6�

2

3
jP zj

2

�
Si;P x;P �z

�
�
X
j

�j

��
4P �z �

4

3
P 2
z

�

� Si;P x
Sj;P z

�

�
6�

2

3
jP zj

2

�
Si;P x

Sj;P �z

�
; (31)

where, again, the dependence on the lattice site z has been
made explicit.

C. Normalization

We have seen that, for every pair of lattice sites x and y,
we end up with a linear system of equations for the
couplings of the effective theory. Since on the lattice we
have both translational and (discrete) rotational symmetry
it is sufficient to consider different distances d � jx� yj
only. These serve as a label for our sets of equations which
in a condensed matrix notation may be written as

 Md� � bd: (32)

If we assume a total ofN unknown couplings collected into
the vector � we have, by construction of the SDEs, an N �
N matrix Md and an inhomogeneity bd, hence an indepen-
dent system of equations, for each distance d. The off-
diagonal entries of Md and the vector bd are typically
complex but the couplings � have to be real. We therefore
distinguish between real and imaginary parts of (32) for
different d and group them together into the equations
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ReM0

ImM0

ReM1

ImM1

..

.

ImMbNs=2c

0
BBBBBBBBB@

1
CCCCCCCCCA
� �

Re b0

Im b0

Re b1

Im b1

..

.

Im bbNs=2c

0
BBBBBBBBB@

1
CCCCCCCCCA
: (33)

This constitutes an overdetermined linear system of 2N �
�bNs=2c � 1� equations for the N unknown couplings �. In
principle, this can be solved by standard least-square
methods.

However, this procedure is hampered by a few technical
pitfalls. Since the order parameter for the confinement-
deconfinement transition is driven by the long-range be-
havior of the lattice system we have to take into account the
fact that equations associated with different distances d
enter (33) with different multiplicities. On a three-
dimensional lattice this entails that an equation for distance
d > 0 has multiplicity

 md � �2d� 1�3 � �2d� 1�3 (34)

while equations for d � 0 only appear once. To account for
this mismatch we reweight the coefficients of bd and Md
(for d > 0) with a factor

�������
md
p

.
Another problem are the large condition numbers of the

matrices. To cope with this we employ a simple form of
normalization based on the diagonal elements of the matrix
M0. For the algebraic SDEs the diagonal entriesM0;ii ofM0

dominate the linear system. For this reason we construct a
new diagonal matrix N0 from the M0;ii according to

 N0 � diag�Re�M0;11�
�1=2; . . . ;Re�M0;NN�

�1=2�: (35)

By means of a similarity transformation with N0 the real
parts of the M0;ii may be transformed to unity. As a result
(33) becomes

 �N0MdN0��N�1
0 �� � �N0MdN0�� � N0bd: (36)

Typically, this new system of equations is better condi-
tioned which increases the stability of the results.

In our numerical calculations we have both used the
improvement (36) in condition numbers and the reweight-
ing factors given by the square root of (34).

IV. NUMERICAL RESULTS

The IMC method basically amounts to solving the SDEs
(26) or (31), the crux being the evaluation of the expecta-
tion values h. . .i in the microscopic ensemble. In our case
this is given by a sufficient number of SU�3� Yang-Mills
configurations generated by standard heat bath MC rou-
tines [35–37].

At this point it seems worthwhile to emphasize that we
do not perform any decimation steps or renormalization
group transformations when we determine the effective
couplings. Our IMC procedure rather relates Yang-Mills

configurations—which may (equivalently) be regarded as
being distributed according to the full effective action—to
configurations generated with truncated effective actions.
Once the effective couplings are determined all effective
observables (i.e. monomials or correlators of traced
Polyakov loops) are computed from configurations that
are properly thermalized with respect to the truncated
effective actions. The error inherent in this method may
be related to the problem of finding improved actions for
the microscopic dynamics as discussed in [38]. As our
method is designed to only describe the dynamics of a
macroscopic variable, the Polyakov loop, we can and do
not expect that any of our truncated distributions will
exactly match the microscopic one. Had we forgotten a
dominant coupling in a truncated effective action it would
have led to large systematic deviations of our observables
from their microscopically determined counterparts. In
order to correctly match observables we checked explicitly
that all our measurements were free from thermalization
effects. For this purpose we monitored the lattice averaged
Polyakov loop in Monte Carlo time and omitted the initial
sweeps (up to 10% of the total number) for which the
Polyakov-loop distribution still differed from its equilib-
rium shape.

In what follows we will consider three ansätze, one with
five NN couplings and two more general ones which either
contain NN terms in higher representations or additional
NNN couplings. In a strong-coupling expansion (which is
rationale for the �-actions) both the five leading NN terms
as well as the NNN ones would be of order �2Nt while the
extended NN ones would be O��3Nt�.

A. NN couplings

Before one determines the effective couplings corre-
sponding to Yang-Mills it is prudent to check if the SDEs
(26) and (31) derived above are consistent within the
effective theories themselves. To test for that we have first
simulated an effective theory with five fixed input cou-
plings and tried to reproduce them via IMC. The associated
configurations were created with a standard Metropolis
algorithm since the nonlinear interaction terms of the
effective action render heat bath methods unfeasible. In
order to compensate for the well-known shortcomings of
this rather basic approach we had to use up to 106 sweeps
corresponding to 103 uncorrelated configurations.

In Table I we have listed the outcome of our testing
procedure. One notes that the couplings �i;IMC determined
via IMC coincide with the chosen input couplings �i;input to
an accuracy of about 2%, both for the algebraic and geo-
metrical SDEs, where the statistical errors were computed
via a standard jackknife procedure. This tells us two things,
first that our SDEs (26) and (31) are both correct and,
second, that IMC works extremely well for the effective
theories.
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Having thus gained confidence in the validity of our
IMC approach and its implementation we can move on to
apply it to our objective, namely, to determine effective
actions reproducing Yang-Mills thermodynamics, in par-
ticular, the deconfinement phase transition. The first ques-
tion we want to consider is whether the effective couplings
�i viewed as functions of the Wilson coupling � are
sensitive to the phase transition.

The answer turns out to be affirmative: Fig. 1 clearly
shows a rather drastic change in the behavior of the cou-
plings at a value of �� ’ 5:69 for all �i, i � 1; . . . ; 5.
Across the transition, i.e. in both phases the dominant
coupling is the ‘‘fundamental’’ one, �1, followed by the
octet couplings �3 and �5. The latter is actually a ‘‘poten-
tial’’ coupling in the sense of [24] as it multiplies the center
symmetric single-site octet character �11 (see
Appendix A). The couplings �2 and �4 are clearly
subdominant.

The natural observable to address is, of course, the
Polyakov loop which serves as the order parameter of the
first-order SU�3� phase transition. In Fig. 2 we compare the
effective and Yang-Mills Polyakov loops for a relatively
small lattice of size 83 � 3 where the would-be disconti-

nuities (in infinite volume) of the transition are still fairly
smooth. Somewhat surprisingly it is only the algebraic
SDEs which reproduce the behavior of the Yang-Mills
Polyakov loop reasonably well. The geometrical SDEs,
on the other hand, fail to do so, at least in the region just
above the transition point. This is a first hint that there is
some inherent instability in the IMC procedure—in par-
ticular if the geometrical SDEs are used.

If we move on to larger lattices where the jump of the
order parameter at the critical coupling becomes more
pronounced one finds the behavior displayed in Fig. 3.
Again, the algebraic SDEs work satisfactorily unlike the
geometric ones for which, in particular, the sudden rise of
the order parameter appears at a larger value of �, namely

FIG. 1 (color online). Behavior of the couplings �1; . . . ; �5

(appearing in the NN �-action) as a function of the Wilson
coupling �. (IMC based on algebraic SDEs with Nt � 4.)

FIG. 2 (color online). Comparison between Yang-Mills and
effective Polyakov loops for a lattice of size 83 � 3 and five
NN couplings �1; . . . ; �5.

FIG. 3 (color online). Comparison between Yang-Mills and
effective Polyakov loops for a lattice of size 163 � 4 and five
NN couplings �1; . . .�5.

TABLE I. IMC consistency check for the NN �-action includ-
ing five couplings �1; . . . ; �5.

Algebraic Geometrical
i �i;input �i;IMC �i;input �i;IMC

1 �0:0100 �0:0101�1� �0:0100 �0:0101�1�
2 0.0060 0.0059(1) 0.0060 0.0060(1)
3 �0:0050 �0:0051�1� �0:0050 �0:0051�1�
4 0.0080 0.0079(1) 0.0080 0.0080(1)
5 �0:0060 �0:0059�4� �0:0060 �0:0060�2�
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�geo ’ 6:5. This is substantially larger than the critical
coupling, �c ’ 5:7. Our explanation for this behavior is
the fact that, due to the first-order nature of the transition,
there are rather sharp phase boundaries in the space of
coupling constants, �i. Hence, a tiny change in the cou-
plings (presumably well within the IMC error bars) may
easily have a large effect: by straying into the ‘‘wrong’’
phase the Polyakov loop will suddenly explode or collapse.
This nonlinear effect is rather difficult to evade considering
the unavoidable (if small) instabilities of the IMC proce-
dure. As a result, as we inevitably increase these inaccur-
acies by adding more coupling we expect this fine-tuning
problem to become enhanced even further. The following
subsection will precisely address this topic.

B. NN and NNN couplings

There are (at least) two possibilities to generalize the NN
�-action of the previous subsection. One may either extend
the NN terms to higher group representations or include
interactions of larger range, say NNN.

The new NN terms we will add are of strong-coupling
order �3Nt , the additional NNN terms of order �2Nt . As we
are working at large � one cannot predict which ones are
going to be more important. Rather, this will be one of the
questions to be considered in what follows.

As before we have first tested the consistency of our
SDEs. Table II shows once again that even for a total of the
order of 10 couplings the method works well: IMC output
reproduces input for the effective theory. The empty input
entries in Table II correspond to vanishing couplings. For a
few sample couplings we have checked that vanishing
input correctly entails vanishing output as well.

To determine the behavior of the effective couplings �i,
i � 1; . . . ; 16, as a function of the Wilson coupling � we
have used a set of 4� 106 configurations per � on a 163 �
4-lattice. This amounts to 5� 104 (103) uncorrelated con-
figurations far away from (close to) the phase transition.
The IMC results are shown in Figs. 4 and 5 displaying the
effective couplings as functions of �. Again we note that
the fundamental and octet potential couplings (�1 and �5)
dominate in size. More important from a principal point of
view, however, is the observation that the behavior of
coupling constants is very sensitive to the choice of opera-
tors. Let us compare, for instance, the coupling �3 in the
two Figs. 4 and 5. For the extended NN ansatz (Fig. 4) it is

TABLE II. IMC consistency check for the extended NN and
NNN �-actions including up to 11 couplings �i. (IMC based on
algebraic SDEs.)

Extended NN NN� NNN
i �i;input �i;IMC �i;input �i;IMC

1 �0:0050 �0:0050�1� �0:0400 �0:0400�1�
2 0.0100 0.0100(1) 0.0100 0.0099(1)
3 �0:0150 �0:0151�2� �0:0200 �0:0201�1�
4 0.0070 0.0070(1) 0.0300 0.0300(1)
5 �0:0080 �0:0080�5� 0.0050 0.0052(3)
6 0.0090 0.0091(1)
7 0.0030 0.0030(1)
8 �0:0030 �0:0030�1�
9 0.0080 0.0081(1)
10 �0:0060 �0:0058�1�
11 0.0020 0.0020(2)
12 �0:0020 �0:0021�1�
13 0.0060 0.0060(1)
14 �0:0030 �0:0030�1�
15 0.0040 0.0039(1)
16 �0:0070 �0:0070�1�

FIG. 5 (color online). Behavior of the couplings �1; . . . ; �5,
�12; . . . ; �16 (appearing in the NN� NNN �-action) as a func-
tion of the Wilson coupling �. (IMC based on algebraic SDEs.)

FIG. 4 (color online). Behavior of the couplings �1; . . . ; �11

(appearing in the extended NN �-action) as a function of the
Wilson coupling �. (IMC based on algebraic SDEs.)
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comparable in magnitude with �1 and �5 and behaves
similarly as for the simple NN ansatz of Fig. 1. However,
as soon as we include NNN operators its magnitude drops
by 100% and its behavior changes drastically (Fig. 5). The
latter is also true quite significantly for the octet coupling
�5. This clearly signals an instability of the IMC methods,
at least as far as the determination of the couplings is
concerned.

Nevertheless, it might still be possible that largely differ-
ent sets of couplings lead to more or less identical behavior
of observables. Comparing the behavior of the Polyakov
loop in the effective and Yang-Mills theories rules out this
possibility. As Fig. 6 shows the Polyakov loop when calcu-
lated in the effective models is extremely sensitive to the
choice of operators and the value of � around �c. For both
choices of SDEs the effective order parameter significantly
overshoots the Yang-Mills one in a small �-range near �c

(see the spikes in Fig. 6). This means that in the space of
effective couplings the phase boundary to the deconfined
phase have slightly (and for a short range of� values) been
crossed albeit with drastic effect due to the discontinuous
behavior of the Polyakov loop. We conclude that the fine-
tuning problem encountered in the previous subsection
indeed becomes more severe if we include more operators
(and hence increase the instabilities of the IMC procedure).
For the given number of effective couplings (of order ten)
we have not been able to get this problem under control.

V. SUMMARY AND OUTLOOK

In this paper we have applied the IMC method to study
the finite-temperature phase transition of SU�3� Yang-
Mills theory. Crucial input were novel Schwinger-Dyson
equations based on algebraic and geometrical properties of

the SU�3�Haar measure. The resulting equations constitute
overdetermined linear systems for the effective couplings
�i which were solved numerically via least-square tech-
niques. The method works well if the number of couplings
is sufficiently small, say of the order of 5. However, already
in this case one notes a fine-tuning problem as the behavior
of the Polyakov loop depends in a very sensitive and non-
linear way on the effective couplings.

This fact must be rooted in the discontinuities associated
with the first-order character of the phase transition. There
are at least three reasons in favor of this. First, the huge
sensitivity is absent in SU�2� [28] where the transition is of
second order, hence continuous. As a result IMC works
extremely well even if we include a total of 14 operators
[27]. Second, the problem becomes more pronounced if we
go to larger volumes whereupon the transition becomes
increasingly sharper. Third, the sensitivity grows with the
number of effective couplings included and hence with the
error bars in the IMC procedure.

Indeed, if we increase the number of effective couplings
and thus, inevitably, the instabilities in their IMC determi-
nation, the fine-tuning problem again becomes more severe
as observed in Fig. 6. This holds to such an extent that we
could no longer gain numerical control and hence could no
longer reproduce the Yang-Mills behavior of the Polyakov
loop in the vicinity of the critical Wilson coupling, � �
�c. We believe that an improvement on this situation will
require nontrivial modifications of the IMC procedure like
e.g. smoothening of the loop in order to avoid the unphys-
ical spikes of Fig. 6. In addition, it would be interesting to
check whether Creutz’s microcanonical demon method
[15] mentioned in the introduction yields better results.

We conclude, nevertheless, with the positive statement
that the IMC method does work for the first-order SU�3�
transition as well if we allow for only a small number of
terms in the effective Polyakov-loop actions.
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APPENDIX A: OPERATORS FOR THE �-ACTIONS

In this paper we have used up to 16 different operators
appearing in the �-action (7):

 S1 �
X
hxyi

��10�P x��01�P y� � c:c:�; (A1)

 S2 �
X
hxyi

��20�P x��02�P y� � c:c:�; (A2)

FIG. 6 (color online). Comparison between Yang-Mills and
effective Polyakov loops for the extended NN action (couplings
�1; . . . ; �11) and the NN� NNN action (couplings �1; . . . ; �5,
�12; . . . ; �16) obtained from algebraic SDEs.
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 S3 �
X
hxyi

�11�P x��11�P y�; (A3)

 S4 �
X
hxyi

��10�P x��20�P y� � �20�P x��10�P y� � c:c:�;

(A4)

 S5 �
X
x

�11�P x�; (A5)

 S6 �
X
hxyi

��30�P x��03�P y� � c:c:�; (A6)

 S7 �
X
hxyi

��21�P x��12�P y� � c:c:�; (A7)

 S8 �
X
hxyi

��30�P x��11�P y� � �11�P x��30�P y� � c:c:�;

(A8)

 S9 �
X
hxyi

��21�P x��20�P y� � �20�P x��21�P y� � c:c:�;

(A9)

 S10 �
X
hxyi

��21�P x��01�P y� � �01�P x��21�P y� � c:c:�;

(A10)

 S11 �
X
x

��30�P x� � c:c:�; (A11)

 S12 �
X
�xz	

��10�P x��01�P z� � c:c:�; (A12)

 S13 �
X
hxyzi

��10�P x��01�P z� � c:c:��11�P y�; (A13)

 S14 �
X
hxyzi

��10�P x��02�P y��10�P z� � c:c:�; (A14)

 S15 �
X
hxyzi

��10�P x��10�P y��10�P z� � c:c:�; (A15)

 

S16 �
X
�xy;vw�

��10�P x��01�P y� � c:c:�

� ��10�P v��01�P w� � c:c:�: (A16)

The NN and NNN relationships are denoted in terms of
brackets the meaning of which is explained in Fig. 7.
Hence, the operators S1 to S11 obviously describe (ex-
tended) NN interactions, while S12 to S16 are NNN terms.
In a strong-coupling (small-�) expansion the terms
S1; . . . ; S5 and S12; . . . ; S16 would be of O��2Nt�, the terms
S6; . . . ; S11 of O��3Nt� [31].

APPENDIX B: OPERATORS FOR THE �-ACTIONS

If we extend the strong-coupling NN contributions to
O��3Nt� the effective action becomes a series of nine
terms,

 Seff �
X9

a�1

�aIa; (B1)

which is referred to as the extended NN-action (as is its
�-equivalent, see Appendix C below).

If we allow for NNN interactions (which, however, do
not extend beyond single plaquettes) up to order O��2Nt�
we end up with the effective action

 Seff �
X

a2f1;2;3;4;10;11g

�aIa: (B2)

This (and its �-equivalent, see Appendix C below) is
referred to as the NN� NNN action.

The resulting operators are given by

 I1 �
X
hxyi

��10�P x��01�P y� � c:c:�; (B3)

 I2 �
X
hxyi

��20�P x��02�P y� � c:c:�; (B4)

 I3 �
X
hxyi

�11�P x��11�P y�; (B5)

 I4 �
X
hxyi

��10�P x��01�P y� � c:c:�2; (B6)

 I5 �
X
hxyi

��30�P x��03�P y� � c:c:�; (B7)

FIG. 7. The neighboring relationships of the marked sites
correspond to the bracket notations �xv	, �yw	, hxyvi, hyvwi,
hvwxi, hwxyi, �xy;vw�, and �xw; yv�.
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 I6 �
X
hxyi

��21�P x��12�P y� � c:c:�; (B8)

 

I7 �
X
hxyi

��10�P x��01�P y� � c:c:�

� ��20�P x��02�P y� � c:c:�; (B9)

 I8 �
X
hxyi

��10�P x��01�P y� � c:c:� � �11�P x��11�P y�;

(B10)

 I9 �
X
hxyi

��10�P x��01�P y� � c:c:�3; (B11)

 

I10 �
X
hxyzi

��10�P x��01�P y� � c:c:�

� ��10�P y��01�P z� � c:c:�; (B12)

 

I11 �
X
�xy;vw�

��10�P x��01�P y� � c:c:�

� ��10�P v��01�Pw� � c:c:�: (B13)

APPENDIX C: LINEAR COUPLING RELATIONS

For the extended NN action (B1) the relation between
the �i and the �a is

 

�1

�2

�3

�4

�5

�6

�7

�8

�9

�10

�11

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

�

1 0 0 1 0 0 1 1 12
0 1 0 1 0 0 0 1 3
0 0 1 2 0 0 2 0 8
0 0 0 1 0 0 0 1 6
0 0 0 12 0 0 0 0 24
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 1 1 3
0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 1 3
0 0 0 0 0 0 1 1 6
0 0 0 0 0 0 0 0 6

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

�1

�2

�3

�4

�5

�6

�7

�8

�9

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

:

(C1)

The analogous relation for the NN� NNN action (B2)
is

 

�1

�2

�3

�4

�5

�12

�13

�14

�15

�16

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

�

1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 2 0 0
0 0 0 1 0 0
0 0 0 12 0 0
0 0 0 0 2 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

�1

�2

�3

�4

�10

�11

0
BBBBBBBB@

1
CCCCCCCCA
: (C2)
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