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We present explicit expressions for the conformal Killing-Yano tensors for the Plebański-Demiański
family of type D solutions in four dimensions. Some physically important special cases are discussed in
more detail. In particular, it is demonstrated how the conformal Killing-Yano tensor becomes the Killing-
Yano tensor for the solutions without acceleration. A possible generalization into higher dimensions is
studied. Whereas the transition from the nonaccelerating to accelerating solutions in four dimensions is
achieved by the conformal rescaling of the metric, we show that such a procedure is not sufficiently
general in higher dimensions—only the maximally symmetric spacetimes in ‘‘accelerated’’ coordinates
are obtained.
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I. INTRODUCTION

The complete family of type D spacetimes in four
dimensions, including the black hole spacetimes like the
Kerr metric, the metrics describing the accelerating
sources as the C-metric, or the nonexpanding Kundt’s class
type D solutions, can be represented by the general seven-
parameter metric discovered by Plebański and Demiański
[1] (cf. also [2]). Recently, Griffiths and Podolský [3–7]
put this metric into a new form which enabled a better
physical interpretation of parameters and simplified a pro-
cedure how to derive all special cases. Among subclasses
of this solution let us mention the six-parameter family of
metrics without acceleration derived and studied already
by Carter [8] and later by Plebański [9].

It turns out that the elegant form of the Plebański-
Demiański metric not only yields the new solutions in
4D (see, e.g. [10,11]), but also inspires for its general-
izations into higher dimensions which became popular in
connection with string theories and the brane world models
with large extra dimensions. Recently, Chen, Lü, and Pope
[12] were able to cast the Carter’s subclass of nonacceler-
ating solutions into higher dimensions—thus constructing
the general Kerr-NUT-(A)dS metrics in all dimensions.

One of the most remarkable properties of the Carter’s
subclass of nonaccelerating solutions, which is also inher-
ited by its higher-dimensional generalizations [13,14], is
the existence of hidden symmetries associated with the
Killing-Yano tensor [15,16]. Indeed, it is this tensor which
is responsible for the ‘‘miraculous’’ properties of the Kerr
metric, including the integrability of geodesic motion or
the separability of Hamilton-Jacobi and Klein-Gordon
equations [8,17]. Similar results were obtained recently
in higher dimensions [18–20].

In four dimensions the integrability conditions for the
existence of nondegenerate Killing-Yano tensor restricts

the Petrov type of spacetime to type D (see, e.g., [21]).
However, Demiański and Francaviglia [22] demonstrated
that from the known type D solutions only spacetimes
without acceleration of sources actually admit this tensor.

The purpose of the present paper is to show that the
general Plebański-Demiański metric admits the conformal
generalization of the Killing-Yano tensor. We also explic-
itly demonstrate how in the absence of acceleration this
tensor becomes the known Killing-Yano tensor of the
Carter’s metric. The particular forms of this tensor for
the physically important cases are presented.

We also study a generalization of the Plebański-
Demiański class into higher dimensions. Namely, we try
to ‘‘accelerate’’ the higher-dimensional Kerr-NUT-(A)dS
metric in the same way as it can be achieved in four
dimensions—by a conformal rescaling of the metric ac-
companied with a modification of the metric functions. We
demonstrate that this ansatz does not work in odd dimen-
sions and in even dimension it leads only to the trivial case
of maximally symmetric spacetimes. However, it allows us
to identify the conformal Killing-Yano tensor in higher-
dimensional flat and (A)dS spacetimes related to the ‘‘ac-
celerated’’ coordinates.

II. CONFORMAL KILLING-YANO TENSORS

In this section we shall briefly describe the conformal
Killing-Yano (CKY) tensors and their basic properties. The
CKY tensors were first proposed by Kashiwada and
Tachibana [23,24] as a generalization of the Killing-Yano
(KY) tensors [25]. Since then both of these tensors found
wide applications in physics related to hidden (super)sym-
metries, conserved quantities, symmetry operators, or
separation of variables (see, e.g., [26–39]).

The conformal Killing-Yano (CKY) tensor k of rank-p
in D dimensions is a p-form, the covariant derivative of
which has vanishing harmonic part, i.e., it can be split into
the antisymmetric and divergence parts:
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 r�k�1...�p � r��k�1...�p� �
p

D� p� 1
g���1

rj�jk
�
�2...�p�

:

(1)

This defining equation is invariant under the Hodge dual-
ity; the antisymmetric part transforms into the divergence
part and vice versa. This implies that the dual �k is the
CKY tensor whenever k is the CKY tensor.

Two special subclasses of CKY tensors are of particular
interest: (a) Killing-Yano tensors [25] with zero divergence
part in (1) and (b) closed conformal Killing-Yano tensors
with vanishing antisymmetric part in (1). These subclasses
transform into each other under the Hodge duality.

In what follows, we shall deal mainly with the rank-2
CKY tensors, which are the only nontrivial in four dimen-
sions, and which obey the equations

 r�k�� � r��k��� � 2g������; (2)

where we have denoted � the divergence of k:

 �� �
1

D� 1
r�k

�
�: (3)

Equivalently, we could use the alternative definition (see,
e.g., [33,38])

 r��k��� � g���� � ���g���: (4)

It was demonstrated by Jezierski and Łukasik [34] that
in an Einstein space of arbitrary dimension the vector �,
given by (3), either vanishes, which means that the CKY
tensor k is in fact a KY tensor, or it is a Killing vector. (We
shall see below on a particular example of the Plebański-
Demiański metric that this may hold more generally, in the
presence of the electromagnetic field.) It may be also
possible to construct other isometries using the (confor-
mal) KY tensor. For example, for the general (higher-
dimensional) Kerr-NUT-(A)dS spacetimes it was demon-
strated that all the isometries follow from the existence of
the principal KY tensor [40].

Whereas the opposite is not generally true (see, e.g., [41]
for a discussion concerning the nonconformal case), the
(conformal) KY tensor implies the existence of the (con-
formal) Killing tensor given by1:

 Q�� � k��k�
�: (5)

This tensor satisfies

 r��Q��� � g���Q��; (6)

where

 Q� �
1

D� 2
�2r�Q�

� �r�Q�
�� (7)

for the conformal Killing tensor whereas it vanishes for the
Killing tensor.

III. PLEBAŃSKI-DEMIAŃSKI METRIC

The original form of the Plebański-Demiański metric [1]
is given by

 g � �2

�
�
Q�d�� p2d��2

r2 � p2 �
P�d�� r2d��2

r2 � p2

�
r2 � p2

P
dp2 �

r2 � p2

Q
dr2

�
: (8)

This metric obeys the Einstein-Maxwell equations with the
electric and magnetic charges e and g and the cosmological
constant � when functions P � P�p� and Q � Q�r� take
the particular form

 Q � k� e2 � g2 � 2mr� 	r2 � 2nr3 � �k��=3�r4;

P � k� 2np� 	p2 � 2mp3 � �k� e2 � g2 ��=3�p4;

(9)

the conformal factor is

 ��1 � 1� pr; (10)

and the vector potential reads

 A � �
1

r2 � p2 �er�d�� p
2d�� � gp�d�� r2d���:

(11)

Our claim is that the general Plebański-Demiański met-
ric (8) admits the conformal Killing-Yano tensor:

 k � �3�pdr ^ �d�� p2d�� � rdp ^ �d�� r2d���:

(12)

Using the GRTensor, one can easily check that the Eqs. (2),
or (4), are satisfied. An independent proof is given in the
Sec. V.

The dual h � �k is also a conformal Killing-Yano tensor
and it reads

 h � �3�rdr ^ �p2d�� d�� � pdp ^ �r2d�� d���;

(13)

which is equivalent to

 h � �3db; (14)

where

 2b � �p2 � r2�d�� p2r2d�: (15)

It is interesting to mention that k and h are the CKY
tensors for the metric (8) with an arbitrary conformal factor
� and arbitrary functions P�p�, Q�r�, i.e., irrespectively of

1The (conformal) Killing tensor implies the conserved quan-
tity for the (null) geodesic motion which is of second order in
momenta (see, e.g., [42]). Since (with an arbitrary prefactor) the
metric is a (conformal) Killing tensor, any (conformal) Killing
tensor is defined up to a term proportional (with an arbitrary
prefactor) to the metric.
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the fact if the metric (8) solves the Einstein equations or
not. We shall return to this remark in Sec. V where we shall
also see that in the absence of acceleration of sources k
becomes the KY tensor, whereas h becomes the closed
CKY tensor.

Although we deal with a more general space than re-
quired by the theorem in [34], for � given by (10) and for
arbitrary functions P�p� and Q�r� both isometries of the
spacetime still follow from h and k by Eq. (3):

 � �h� � @�; ��k� � @�: (16)

The conformal Killing tensor given by (5) which corre-
sponds to k reads
 

Q�k� � �4

�
Qp2�d�� p2d��2

r2 � p2 �
Pr2�d�� r2d��2

r2 � p2

�
r2�r2 � p2�

P
dp2 �

p2�r2 � p2�

Q
dr2

�
: (17)

It inherits the ‘‘universality’’ of k, i.e., it is a conformal
Killing tensor of the metric (8) with an arbitrary �, and
arbitraryQ�r� and P�p�. In the absence of acceleration Q�k�
becomes a Killing tensor which generates the Carter’s
constant for a geodesic motion [17]. The conformal
Killing tensor associated with h is
 

Q�h� � �4

�
Qr2�d�� p2d��2

r2 � p2 �
Pp2�d�� r2d��2

r2 � p2

�
p2�r2 � p2�

P
dp2 �

r2�r2 � p2�

Q
dr2

�
: (18)

Both tensors are related as

 Q �h� � Q�k� ��2�p2 � r2�g: (19)

Following [3] one can easily perform the transforma-
tions of coordinates and parameters to obtain the complete
family of type D spacetimes and the corresponding forms
of CKY tensors. In the next two sections we shall consider
two special cases. First we deal with the generalized black
holes and then we demonstrate what happens when the
acceleration of sources is removed.

IV. GENERALIZED BLACK HOLES

Following [3] let us introduce two new continuous pa-
rameters � (the acceleration) and ! (the ‘‘twist’’) by the
rescaling

 p!
��������
�!
p

p; r!
����
�
!

r
r; �!

������
!

�3

r
�; �!

����
!
�

r
�;

(20)

and relabel the other parameters as

 m!
�
�
!

�
3=2
m; n!

�
�
!

�
3=2
n; e!

�
!
e;

g!
�
!
g; 	!

�
!
	; k! �2k:

(21)

Then the metric and the vector potential take the form

 g � �2

�
�
Q�d��!p2d��2

r2 �!2p2 �
P�!d�� r2d��2

r2 �!2p2

�
r2 �!2p2

P
dp2 �

r2 �!2p2

Q
dr2

�
; (22)

 

A � �
1

r2 �!2p2 �er�d��!p
2d��

� gp�!d�� r2d���; (23)

with

 ��1 � 1� �pr; (24)

and
 

Q � !2k� e2 � g2 � 2mr� 	r2 �
2�n
!

r3

�

�
�2k�

�

3

�
r4;

P � k�
2n
!
p� 	p2 � 2�mp3

�

�
�2�!2k� e2 � g2� �!2 �

3

�
p4: (25)

The CKY tensors are (up to trivial constant factors)

 ��3k�!pdr^ �d��!p2d�� � rdp^ �!d�� r2d��;

(26)

and, h � �3db, with � given in (24) and

 2b � �!2p2 � r2�d��!p2r2d�: (27)

Let us consider two special cases. First, we relabel
! � a, perform an additional coordinate transformation

 p! cos
; �! �� a�; �! ��; (28)

and set

 k � 1; n � ��am;

	 � 1� �2�a2 � e2 � g2� �
�

3
a2:

(29)

(One parameter—NUT charge—was set to zero and the
scaling freedom was used to eliminate the other two.) We
obtained a six-parameter solution which describes the
accelerating rotating charged black hole with the cosmo-
logical constant:
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g � �2

�
�
Q
�
�d�� asin2
d��2 �

�

Q
dr2

�
P
�
�ad�� �r2 � a2�d��2 �

�

P
sin2
d
2

�
; (30)

where

 

��1 � 1� �r cos
;

� � r2 � a2cos2
;

Q � �a2 � e2 � g2 � 2mr� r2��1� �2r2�

�
�

3
�a2 � r2�r2;

P

sin2

� 1� 2�m cos


�

�
�2�a2 � e2 � g2� �

�a2

3

�
cos2
:

(31)

In the brackets in (30) we can easily recognize the familiar
form of the Kerr solution. The conformal factor and the
modification of metric functions correspond to the accel-
eration and the cosmological constant. The CKY tensor k
takes the form

 

��3k � a cos
dr ^ �d�� asin2
d��

� r sin
d
 ^ �ad�� �r2 � a2�d��; (32)

where � is given in (31). Except the conformal factor we
recovered the Killing-Yano tensor for the Kerr metric
derived by Penrose and Floyd [15].

The second interesting example is obtained if instead of
(28) and (29) we perform

 p!
l� a cos


!
; �! ��

�l� a�2

a
�;

�! �
!
a
�;

(33)

set the acceleration � � 0, and adjust

 

	 � 1��a2=3� 2l2��; n � l��l�a2 � 4l2�=3;

!2k � �1� l2���a2 � l2�: (34)

Then we have a nonaccelerated rotating charged black hole
with the NUT parameter and cosmological constant:

 

g � �
Q
�

�
d��

�
asin2
� 4lsin2 


2

�
d�

�
2
�

�

Q
dr2

�
P
�
�ad�� �r2 � �a� l�2�d��2 �

�

P
sin2
d
2; (35)

where

 

� � r2 � �l� a cos
�2;

P

sin2

� 1�

4�

3
al cos
�

�

3
a2cos2
;

Q � a2 � l2 � e2 � g2 � 2mr� r2

�
�

3
�3�a2 � l2�l2 � �a2 � 6l2�r2 � r4�:

(36)

The CKY tensor k becomes the KY tensor (see also the
next section) and takes the form
 

k � �l� a cos
�dr ^ fd�� d��2l�cos
� 1� � asin2
�g

� r sin
d
 ^ fad�� d���l� a�2 � r2�g: (37)

The dual CKY tensor becomes closed, h � db, with
 

2b � ��l� a cos
�2 � r2��ad�� �l� a�2d��

� r2�l� a cos
�2d�: (38)

In particular, in vacuum (e � g � � � 0) we recover
the KY tensor for the Kerr metric (l � 0), respectively, for
the NUT solution (a � 0) studied recently in [34], respec-
tively [35].

V. CARTER’S METRIC

Let us take the Plebański-Demiański metric in the form
(22) and set the acceleration � � 0, and ! � 1. Then the
conformal factor becomes � � 1 and we recover the
Carter’s family of nonaccelerating solutions [8] in the
form used in [9]:
 

g � �
Q�d�� p2d��2

r2 � p2 �
P�d�� r2d��2

r2 � p2

�
r2 � p2

P
dp2 �

r2 � p2

Q
dr2; (39)

where

 Q � k� e2 � g2 � 2mr� 	r2 �
�

3
r4;

P � k� 2np� 	p2 �
�

3
p4;

(40)

and the vector potential is given again by (11).
We also get

 k � pdr ^ �d�� p2d�� � rdp ^ �d�� r2d��; (41)

which is the Killing-Yano tensor given by Carter in [16]. Its
dual,

 h � �k � db; (42)

with b given by (15), becomes the closed CKY tensor.
Again, these properties are independent of the particular
form of P�p� and Q�r�. The conformal Killing tensor (17)
becomes the Killing tensor
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 K �
Qp2�d�� p2d��2

r2 � p2 �
Pr2�d�� r2d��2

r2 � p2

�
r2�r2 � p2�

P
dp2 �

p2�r2 � p2�

Q
dr2: (43)

Both isometries of spacetime may be derived from the
existence of k, but in a different manner than before. We
have ��h� � @� whereas ��k� � 0 since k is now a KY
tensor. Nevertheless, the second isometry is given by

 @�� � K�
��

�
�h�: (44)

Let us observe that the full Plebański-Demiański metric
with acceleration is related to the Carter’s metric only by a
conformal rescaling and a modification of the metric func-
tions P�p� and Q�r�. It allows us to use the theorem—
proved recently by Jezierski and Łukasik [34] which says
that whenever k is the CKY tensor for the metric g then
�3k is the CKY tensor for the conformally rescaled metric
�2g. This would justify the transition from the known KY
tensor (41) to the CKY tensor (12), up to the fact, that in the
transition from (8) to (39) we also need to change functions
P�p� and Q�r�. Fortunately, as mentioned above, the ‘‘uni-
versality’’ of k, i.e., the property that (41) remains KY
tensor for the metric (39) with arbitrary function P�p� and
Q�r�, can be demonstrated. Indeed, the only nontrivial
components of the covariant derivative rk, namely

 rpk�r � rrkp� � r�krp � r2 � p2; (45)

are completely independent of the form of Q�r� and P�p�.
(Using these derivatives we easily find that k is the Killing-
Yano tensor satisfying r��k��� � 0.) Therefore one can
start with the metric g (39), with the KY tensor k (41), and
with arbitrary functions P�p� and Q�r� so that, after per-
forming the conformal scaling g! �2g we obtain the
metric (8). The theorem ensures that �3k is the universal
CKY tensor of the new metric, and, in particular, of the
Plebański-Demiański solution where � is given by (10)
and functions P�p� and Q�r� by (9).

VI. SOME REMARKS ON HIGHER DIMENSIONS

As we mentioned in the introduction, the Carter’s metric
(39) (with charges set to zero) has a form of the Chen-Lü-
Pope metric [12] describing the higher-dimensional gen-
erally rotating NUT–(A)dS black hole. Indeed, in an even
dimension2 D � 2n the metric reads

 g �
Xn
��1

�U�

X�
dx2

� �
X�
U�

�Xn�1

k�0

A�k�� d k

�
2
�

(46)

with quantities U� and A�k�� given by

 U� �
Yn
��1
���

�x2
� � x2

��; A�k�� �
Xn

�1 ;...;�k�1
�1<...<�k;�i��

x2
�1

. . . x2
�k

(47)

and with the metric functions

 X� � b�x� �
Xn
k�0

ckx
2k
� : (48)

Here, x�, � � 1; . . . ; n, correspond to radial3 and latitudi-
nal directions, while  j, j � 0; . . . ; n� 1, to temporal and
longitudinal directions. The metric can be rewritten in the
diagonal form using a properly chosen orthonormal frame
ea, a � 1; . . . ; D [40]. The curvature tensors have been
computed explicitly in [43] and it turns out that the Ricci
tensor Ric is diagonal in the frame ea as well.

It has been found in [14] and discussed in [40] that the
metric (46) possesses the Killing-Yano tensor k and dual
closed conformal Killing-Yano tensor h

 k � �h; h �
1

2

Xn
��1

�
dx2

� ^
Xn�1

j�0

A�j�� d j

�
(49)

independently of the specific form of the metric functions
X��x��.

For D � 4 we recover the Carter’s metric without elec-
tromagnetic field,4 e � g � 0, by the identification
 

 0 � t;  1 � ��;

x1 � ir; X1 � Q; b1 � 2im;

x2 � p; X2 � P; b2 � 2n;

c0 � k; c1 � �	; c2 � ��=3: (50)

It is natural to ask if it is possible to generalize the four-
dimensional accelerated Plebański-Demiański metric into
higher dimensions. An obvious procedure to follow would
be to start with the metric (46), rescale it (in analogy with
the four-dimensional case) by a conformal factor �2,

 

~g � �2g; (51)

and adjust the metric functions X��x�� in such a way that
the scaled metric would satisfy the Einstein equations.
Because of the same argument which we used in four
dimensions such a metric would possess a conformal
Killing-Yano tensor ~h � �3h.

2In the odd dimensional case there is an additional coordinate
 n and additional (nondiagonal) terms in the metric [12]. Since
our procedure of a generalization of Carter’s class to higher
dimensions does not work in odd dimensions, we do not discuss
this case in more detail.

3The radial coordinate (and some related quantities) are re-
scaled by the imaginary unit i in order to put the metric to a more
symmetric form (cf., e.g., [12]).

4For a discussion of ‘‘charging’’ the higher-dimensional black
hole in a way analogous to the four-dimensional Carter’s metric,
see [44].
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The Ricci tensor gRic of the rescaled metric ~g is related
to the Ricci tensor of the unscaled metric g by a well-
known expression (see, e.g., the appendix in [45]), which
can be written as
 gRic � Ric� �D� 2��rr��1

� g��r2��1 � �D� 1��2�r��1�2�: (52)

Here the ‘‘square’’ of 1-forms is defined using the inverse

unscaled metric g�1. We require gRic � �
~g with 
 pro-
portional to the cosmological constant. The Ricci tensorgRic thus must be diagonal in the frame ea. The conditions
on off-diagonal terms give the equations for the conformal
factor �.

In a generic odd dimension these conditions are too
strong—they admit only a constant conformal factor �.
In even dimensions the conditions on off-diagonal terms
lead to equations

 ��1
;�� �

x���1
;�

x2
� � x

2
�
�
x���1

;�

x2
� � x

2
�
;

0 �
x���1

;�

x2
� � x2

�
�
x���1

;�

x2
� � x2

�
:

(53)

It gives the conformal factor depending on two constants c
and a,

 ��1 � c� ax1 . . . xn; (54)

which is obviously a generalization of the four-
dimensional factor (24) (with c � 1 and a � i�).

Unfortunately, the conditions for diagonal terms of the
Ricci tensor are in even dimensions D> 4 rather restric-
tive. Analyzing first the condition for the scalar curvature
and then checking all diagonal terms one finds that either5

 ��1 � x1 . . . x2; X� � �b�x2n�1
� �

Xn
k�0

ckx2k
� ; (55)

with 
 � �D� 1�c0, or

 ��1 � 1� ax1 . . . x2; X� �
Xn
k�0

ckx
2k
� ; (56)

with 
 � �D� 1����1�n�1cn � a2c0�. The first case is not
a new solution: the substitution

 x� � 1= �x�;  j � � n�1�j; X� � �x�n�1
�

�X�
(57)

transforms the rescaled metric ~g back to the form (46) in
‘‘barred’’ coordinates. In the second case the metric func-

tions X� depend on a smaller number of parameters and
one has to expect that the metric describes only a subclass
of the ‘‘accelerated black hole solutions.’’ It is actually the
trivial subclass—it was shown in [43] that the metric (46)
with X� given by (56) represents the maximally symmetric
spacetime; therefore the scaled metric ~g, being the Einstein
space conformally related to the maximally symmetric
spacetime, must describe also the maximally symmetric
spacetime. In analogy with the four-dimensional case we
expect that the metric (51) with metric functions (56)
describes the Minkowski or (anti-)de Sitter space in some
kind of ‘‘accelerated’’ coordinates. However, such an in-
terpretation needs further detailed study.

We conclude that we did not find a reasonable nontrivial
generalization of the accelerated Plebański-Demiański
metric to higher dimensions. However, the physically triv-
ial case (56) allows us to write down the conformal Killing-
Yano tensor for the maximally symmetric spacetimes re-
lated to the ‘‘accelerating’’ ‘‘rotating’’ coordinates x�,  j.

VII. SUMMARY

We have explicitly demonstrated that the complete fam-
ily of type D spacetimes which can be derived from the
Plebański-Demiański metric possesses the conformal gen-
eralization of the Killing-Yano tensor. In the absence of the
acceleration of sources, i.e., for a special subclass of solu-
tions described by Carter and Plebański, this tensor be-
comes the known Killing-Yano tensor. Several examples
were discussed in more detail and specific forms of these
tensors were given.

The Plebański-Demiański metric also motivates for a
generalization into higher dimensions. Its nonaccelerated
subclass, the Carter’s metric, has been already generalized
into higher dimensions by Chen, Lü, and Pope [12].
However, it seems that further generalizations, although
almost obvious at first sight, cannot be easily obtained. For
example, the attempts to ‘‘naturally’’ charge these solu-
tions failed so far (see, e.g., [44,46]). In the present paper
we have demonstrated that also the generalization to ac-
celerated solutions is not straightforward. In particular, we
have shown that the direct analogue of the Plebański-
Demiański complete family (with acceleration) in higher
dimensions cannot be obtained in a manner similar to the
four-dimensional case, that is, by a conformal scaling of
the Chen-Lü-Pope metric, possibly with the ‘‘natural’’
change of the metric functions. The question about the
existence of the C-metric in higher dimensions therefore
still remains open.

ACKNOWLEDGMENTS

D. K. is grateful for support by the University of Alberta.
P. K. is supported by Grant No. GAČR 202/06/0041 and the
Czech Ministry of Education under Project
No. MSM0021610860.

5The trivial global scaling was eliminated by setting a � 1 in
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1191 (2003).
[42] M. Walker and R. Penrose, Commun. Math. Phys. 18, 265

(1970).
[43] N. Hamamoto, T. Houri, T. Oota, and Y. Yasui, J. Phys. A

40, F177 (2007).
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