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Objects that are on the verge of being extremal black holes but actually are distinct in many ways are
called quasi-black holes. Quasi-black holes are defined here and treated in a unified way by displaying
their properties. Their main properties are as follows: (i) there are infinite redshift whole regions, (ii) the
spacetimes exhibit degenerate, almost singular, features but their curvature invariants remain perfectly
regular everywhere, (iii) in the limit under discussion, outer and inner regions become mutually
impenetrable and disjoint, although, in contrast to the usual black holes, this separation is of a dynamical
nature, rather than purely causal, and (iv) for external faraway observers the spacetime is virtually
indistinguishable from that of extremal black holes. In addition, we show that quasi-black holes must be
extremal. Connections with black hole and wormhole physics are also drawn.

DOI: 10.1103/PhysRevD.76.084030 PACS numbers: 04.70.Bw, 04.20.Gz

I. INTRODUCTION

A quasi-black hole (QBH) is neither a usual regular
spacetime (such as, for instance, a star) nor a black hole
(BH). So what is it? Roughly speaking, one can say that a
QBH is an object on the verge of becoming an extremal BH
but actually is distinct from it in many ways. In the present
paper we show that, among other properties, perhaps the
most striking ones that characterize a QBH are the follow-
ing: there is an infinite redshift region, the spacetime
exhibits degenerate features with the curvature invariants
remaining perfectly regular everywhere, outer and inner
regions become mutually impenetrable and disjoint, and
for an external observer at infinity the spacetime is indis-
tinguishable from that of an extremal black hole. Another
interesting feature is that a QBH has to be extremal.

To try to understand how a QBH can arise, we note that,
remarkably, contrary to the common case where instabil-
ities set in much before a matter system reaches its own
gravitational radius, there are some systems for which the
gravitational radius can be approached in a sequence of
static configurations. These were first noticed within the
context of Majumdar-Papapetrou systems [1,2] by Bonnor
in [3–5] and are systems composed of extremal charged
dust, where the energy density is equal to the charge
density, with no pressure term, and joined to an asymptoti-
cally flat extremal Reissner-Nordström region. These sys-
tems are called Bonnor stars. In recent years, the interest in
such objects was renewed due to further investigations on
their properties, where it was found that they have very
interesting properties such as the formation of a QBH state
[6,7]. The same set of properties had also been found in

extended Bonnor stars [8], extremal systems with a more
sophisticated density distribution. One can then say that
QBHs can be thought of as the end state of a sequence, of
gradually more compact, quasistatic appropriate
Majumdar-Papapetrou configurations, such as Bonnor
stars and extended Bonnor stars. The most surprising fea-
ture of all these systems is the fact that the limiting case, at
the threshold of the formation of an event horizon, is very
peculiar. Although to external observers the system looks
like an extremal black hole, its internal properties, so to
speak, are very different from what one could expect in the
case of a usual BH. In the limit under discussion, instead of
an extremal BH one has a QBH, and instead of an event
horizon one has a quasihorizon. This then expands the
existing taxonomy of relativistic objects, adding to it some-
thing that is neither a usual regular spacetime (a star) nor a
BH; it is a QBH. There are other systems that display
QBHs. In self-gravitating Higgs magnetic monopole sys-
tems, a seemingly different system, it was also found, in a
totally independent way, that in a certain well-defined limit
a QBH appears as a natural state, and it was indeed within
these studies that the term QBH was coined [9,10]. The
similarity of the properties of the Bonnor stars and gravi-
tational magnetic monopoles was clearly recognized in [7].
Both kinds of systems look quite physical. For example,
the Bonnor star system can be realized when a sphere of
neutral hydrogen has lost a fraction 10�18 of its electrons,
while magnetic monopoles should be formed if standard
grand unified theories prove to be correct. In addition, and
surprisingly, similar objects with QBH properties were
found for composite spacetimes even in the case of a
pure electrovacuum [11] (see also [12]). These vacuum
systems are composed of an exterior Reissner-Nordström
part glued to an inner Bertotti-Robinson spacetime (see
[13–18]), or of an exterior Reissner-Nordström part glued
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to an inner Minkowski spacetime [19]. It is interesting to
note that in a certain sense some of these systems realize
the idea of charge without charge [20].

There are at least eight related subjects connected to
QBHs. Not all of them will be analyzed in detail, since that
would take us far afield. The first connection is with naked
BHs [21–24] (see also [25] for the issue of the behavior of
the quasilocal energy and momentum under boosts from a
static frame to a free-falling one). Naked BHs have diverg-
ing Riemann tensors in certain physically meaningful
frames, which in turn relates them to the singular or regular
character of a spacetime and the cosmic censorship hy-
pothesis [26]. As we will see, QBHs have this naked
property. The second connection is with the end state of
an extremal matter configuration. One can ask whether a
QBH can be attained physically. Can a QBH configuration
be reached through a finite number of steps from a regular
configuration? This is related to whether an analogue of the
third law of BH thermodynamics (see, e.g., [27]) is en-
forced or not for QBHs. The third connection is with the
instabilities that might set in before the gravitational radius
is reached. This is related to the Buchdahl limit [28], i.e.,
the minimum radius to mass ratio r0=m that a stable
configuration can have, where r0 and m are the radius
and mass of the configuration, respectively. For perfect
fluid spheres it is r0=m � 9=4, while for charged spheres
the ratio decreases; it goes to r0=m � 1 precisely in the
case of extremal charged dust [29,30]. The fourth connec-
tion is with the hoop conjecture [31], since it seems that
QBHs grossly violate it. The conjecture states that a BH
forms when matter of mass M is compacted within a given
definite hoop, in [31] taken to be�4�M (G � C � 1), and
shown later in [32] that the hoop should be reduced for
extremal charged matter to �2�M. But, as it will be
shown, for extremal matter a BH never arises; instead a
QBH forms in the limit under discussion. The fifth con-
nection is with the no hair theorems. It was conjectured by
Wheeler that BHs should have no hair, in particular, no
electromagnetic hair, a conjecture that has been verified
[33,34]. On the other hand, QBHs have the feature that they
may have some electromagnetic hair [8], adding to the list
of distinct properties between both objects. The sixth
connection is with Bardeen BHs [35,36], i.e., BHs that
have a kind of magnetic charged matter inside the horizon,
and have no singularities inside. Following a theorem by
Borde [37], this means the topology inside the horizon is
different from the usual one. Now, the configurations we
are studying are neither usual BHs nor Bardeen BHs; they
are QBHs. They have quasihorizons, and the Kretschmann
scalar is finite inside, although, as we will see, this does not
exclude other degenerate features. So, it appears that, in
order to avoid a true horizon without a singularity inside
with a consequent change of topology, the object opts to
form a QBH, instead of a Bardeen-type BH. The seventh
connection is with objects that mimic BHs. For instance,

wormholes (see, e.g., [38]) can be good mimics of BH
properties [39]. Although QBHs and BHs share many
properties from the viewpoint of an external observer, the
full study of this subject has not been done. The eighth
connection is with the entropy issue. For the usual BHs one
does not yet know for sure where the degrees of freedom
are and thus how their entropy arises (see, e.g., [40]). For
QBHs it seems that the entropy comes from the entangled
fields hidden beyond the quasihorizon [41]. There are
possible connections with other subjects, like gravitational
collapse (which has not been studied for the case of ex-
tremal matter) and vacuum polarization effects, to name
two.

In this work we obtain and analyze the geometric and
physical properties of a QBH. The paper is organized as
follows. In Sec. II a definition of a QBH is given. In Sec. III
the properties of QBHs are displayed in several instances.
Initially, we study Bonnor stars, both truncated and ex-
tended, then we analyze gravitational magnetic mono-
poles, and finally we study glued extremal vacua. All
these instances of QBHs show a number of similar prop-
erties. In Sec. IV we prove an important theorem that states
that QBHs have to be extremal. In Sec. V we discuss the
relationship between regular and singular features in QBH
spacetime and whether the QBH state can be physically
attained. Finally in Sec. VI we draw some interesting
conclusions.

II. DEFINITION OF QUASI-BLACK HOLES

The fact that such different kinds of physical systems,
like extremal dust, Yang-Mills–Higgs matter, and compos-
ite vacuum systems, may exhibit the same qualitative
features suggests that the unusual properties of QBHs
can be explained in a unified manner. So first we define
what a QBH is, and then we investigate in detail the
properties of such a system in the various instances.

A QBH can be defined as an object with the following
properties. Consider the static spherically symmetric met-
ric, often written as

 ds2 � �B�r�dt2 � A�r�dr2 � r2d�2; (1)

where r is the Schwarzschild radial coordinate, d�2 �
d�2 � sin2�d�2, and B�r� and A�r� are metric potentials.
It is useful to define a new metric potential V through

 V�r� �
1

A�r�
: (2)

Let an inner matter configuration, with an asymptotic flat
exterior region, exist with the following properties: (a) the
function V�r� attains a minimum at some r� � 0, such that
V�r�� � ", with "	 1, this minimum being achieved
either from both sides of r� or from r > r� alone; (b) for
such a small but nonzero " the configuration is regular
everywhere with a nonvanishing metric function B, at most
the metric contains only delta-function–like shells; and
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(c) in the limit "! 0 the metric coefficient B! 0 for all
r 
 r�. These three features define a QBH. Note that,
although the above definition of QBHs relies on the coor-
dinate system and metric coefficient V given in Eqs. (1)
and (2), actually, this definition can be done in a form
invariant under the choice of the radial coordinate.
Indeed, it is sufficient to replace V by �rr�2. In the
Schwarzschild coordinates of Eq. (1) one has �rr�2 � V.

In turn, these three features entail some nontrivial con-
sequences: (i) there are infinite redshift whole regions;
(ii) when "! 0, a free-falling observer finds, in his own
frame, infinitely large tidal forces in the whole inner re-
gion, showing some form of degeneracy, although the
spacetime curvature invariants remain perfectly regular
everywhere; (iii) in the limit under discussion, outer and
inner regions become mutually impenetrable and disjoint;
and one can also show that (iv) for external faraway
observers the spacetime is virtually indistinguishable
from that of extremal black holes. In addition, QBHs
must be extremal. The QBH is on the verge of forming
an event horizon, but it never forms one; instead, a quasi-
horizon appears. For a QBH the metric is well defined and
everywhere regular. However, properties such as when " �
0 QBH spacetimes become degenerate, almost singular,
have to be examined with care.

III. PROPERTIES OF QUASI-BLACK HOLES

Now, we study the three different examples of QBH
behavior separately (namely, extremal charged dust,
Yang-Mills–Higgs matter, and composite vacuum sys-
tems), to show how the same features reveal themselves
in these different circumstances.

A. Extremal charged dust and Bonnor stars

Within extremal charged dust there are two different
cases worth studying, namely, the ones studied by
Bonnor [3–7] and the ones studied by Lemos and
Weinberg [8]; both systems belong to the Majumdar-
Papapetrou class [1,2].

1. Bonnor stars: bounded distribution of extremal
dust matched to an electrovacuum at

r � r0 (with r0 >m) [3–7]

a. Generic properties.—The radius r0 is the boundary of
the star. Inside there is matter; outside there is vacuum. So,
in the region r > r0 the metric potential V has the usual
form of the extremal Reissner-Nordström BH,

 VRN �

�
1�

m
r

�
2
; (3)

where m is the total mass. For r 
 r0 it is described by a
Majumdar-Papapetrou–type solution which in
Schwarzschild-like coordinates can be written as

 V �
�

1�
��r�
r

�
2
; (4)

with the mass density � and the function � being con-
nected through

 4�� �
�0

r2

�
1�

�
r

�
: (5)

The function ��r� can be interpreted as the proper mass
enclosed within a sphere of radius r. Similarly, we define
e�r� as the proper charge enclosed within a sphere of radius
r. For Majumdar-Papapetrou systems ��r� � e�r�. We
want to smoothly glue both regions, so ��r0� � m, and
for r 
 r0,

 

���������
B�r�

p
�

�����������������
BRN�r0�

q
exp���; (6)

where

 � �
Z r

r0

dr
�

r2�1� �
r �
: (7)

This guarantees that, on the boundary,
��������������������
B�r0 � 0�

p
���������������������

B�r0 � 0�
p

.
b. Proper spatial distance.—The proper distance can be

written as

 l �
Z
dr

1����������
V�r�

p �
Z
dr

1

�1� �
r �
�
Z
dr

�0

4��r2 : (8)

If � remains finite and nonzero in the quasihorizon limit
r0 ! m, like in the special examples of [3–7], one can
obtain from (5) that � � m� �8���m�m31=2�r�m��1=2

near r � m and, thus, the integral (8) converges and the
proper distance from any interior point to the boundary,
from the inside, remains finite accordingly. In terms of the
potential V�r� we can see this by noting that when V�r� has
a single root the integral in (8) is finite, and when it has a
double root the integral behaves logarithmically and yields
an infinite result. So, from the inside, one has
limr!r0

r0!mV
0�r� � �8���r0�r0jr0�m < 0; the root is simple

and the proper distance is finite. On the other hand, from
the outside, V 0�r�jr0!m ! 0; one thus has a double root in
the limit under discussion, and the proper distance is
infinite, yielding a semi-infinite throat from the outside,
which is a well-known result for the extremal Reissner-
Nordström geometry.

c. Motion of massive and massless particles.—From the
inside to the outside, the existence of an impenetrable
barrier: Now, let us consider the motion of particles in
this spacetime. In doing so, an important question concerns
the transition from the inner region to the outer one. In the
interior, the suitable time variable measured by a static
observer can be obtained by rescaling the time t, such that
t � ~t������������

BRN�r0�
p . So

����
~B
p
�

���
B
p������������
BRN�r0�
p is finite. Now, if a timelike
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particle is emitted in the radial upward direction with the
finite energy ~E, one can easily find from the conservation

law that the proper time ~� is equal to ~� �
R
dl

���
~B
p����������
~E2� ~B
p ,

where, with respect to time ~t, we have put the proper
mass of a timelike particle equal to 1. Thus, the particle
reaches the border in a finite proper time ~�. The quantity����

~B
p

is finite everywhere inside and is equal to unity on the
border. However, outside one has that

����
~B
p
� �r�m�r0

�r0�m�r
grows

without bound when one takes the limit r0 ! m for any
r > m. When the denominator in the equation above van-
ishes, it gives a turning point at r1 �

mr0

r0� ~E�r0�m�
. In the limit

r0 ! m we also have r1 ! m for any finite ~E. Thus, the
boundary between the matter and vacuum regions acts like
an infinite barrier which prevents particles from penetrat-
ing into the outer region from inside. For zero rest mass
particles, like photons, moving radially, the affine parame-
ter � is given by � � ~!�1

R
dl

����
~B
p

, where ~! is the photon
frequency measured with respect to the time ~t. Then in the
outer region one has ��r� � ��r0� �

�r�m�r0

�r0�m�r
. This differ-

ence becomes infinite in the limit r0 ! m for any r > m.
As a result, again the boundary in the limit under discus-
sion acts as a impenetrable barrier. Thus it also acts as a
lightlike infinity.

From the outside to the inside, shrinking interval of
proper time, tidal forces and naked behavior:
(i) Shrinking interval of proper time—it follows from the
above formulas that in the limit BRN�r0� ! 0 the finite
interval in time ~t corresponds to infinitely delayed intervals
in time t. However, if one calculated the proper time for an
infalling particle moving with the energy E from the out-
side (which is defined with respect to the time at infinity,
without rescaling), it follows from � �

R
dl

���
B
p����������
E2�B
p that �!

0 between any two points inside since B! 0 there, while
the proper distance is finite for bounded Bonnor stars, as is
explained after Eq. (8). Manifestations of these general
properties for self-gravitating monopole spacetimes were
discussed in [10]. (ii) Tidal forces and naked behavior—to
understand the existence of naked behavior for these sys-
tems, we have to compute the Riemann tensor in a freely
falling frame. First we compute it in the static coordinate
frame. Consider then the behavior of the nonvanishing
Riemann tensor components. One has R0̂ r̂

0̂ r̂
� K �

�V
���
B
p

00���
B
p � V0

2

���
B
p

0���
B
p , R0̂ �̂

0̂ �̂
� �K�r� � � V

r

���
B
p

0���
B
p R�̂ �̂

�̂ �̂
� F�r� �

1
r2 �1� V�, R�̂ r̂�̂ r̂ �

�F�r� � � V0
2r . One can then obtain di-

rectly that all these components remain finite in the inner
region in the limit

�����������
B�r0�

p
! 0. Indeed, it follows from

(4)–(6) that the quantities defined above are given by K �
2�
r3 � 3 �2

r4 , �K�r� � � �
r3 , F � 1

r2 �2
�
f �

�2

r2 �, �F�r� �

�8�r�. So for finite � and �, the above quantities are
obviously finite everywhere in the inner region including
the boundary and origin. Correspondingly, the

Kretschmann scalar is finite and the geometry is regular
in spite of the fact that the metric function

����
B
p

, suited to the
time variable of an asymptotically flat observer, vanishes
everywhere in the inner region. Having computed the
Riemann tensor in the static coordinate frame, we can
now go on to a free-falling frame. Here, the situation
becomes more subtle. We now have enhancement of the
curvature components. To see this, we first write Z � � �F�
�K�. Then, ~Z � Z�2 E2

B � 1�, where E is the energy of the
freely falling particle, representing the freely falling parti-
cle frame. So, one sees that, in the limit

����
B
p
! 0, these

components of the curvature tensor and the corresponding
tidal forces grow without bound. Thus, we encounter be-
havior typical of naked BHs [21,22] (see also [23–25]),
although in the present case we have QBHs instead of BHs.
Note, in passing, that naked behavior is consistent with the
regularity of the geometry in the static frame since in the
free-falling frame different terms enter the expression in
the Kretschmann scalar with different signs and may mu-
tually cancel.

d. Redshift.—Bonnor stars, in the limit of QBH forma-
tion, display infinite redshift phenomenon as shown in [3–
7], where it is assumed that the frequency is measured with
respect to time t at infinity. However, we have seen that two
scales of time, t and ~t, are relevant for the systems under
discussion.

In terms of the time t, the outer time, the product
!

���������
B�r�

p
� !c remains constant on each ray during the

propagation of light in a static gravitational field, where
here !c is some constant frequency. Note that !c is a
frequency measured with respect to time t, and ! is the
frequency measured with respect to the proper time at a
given point r. Since at infinity B � 1, one obtains that!c is
!�r! 1� � !1, so that one can write !

���������
B�r�

p
� !1. A

distant observer would register an infinite redshift (!c !
0) if an emitted particle had a finite ! inside the matter
since B! 0 there in the QBH limit. Only high-frequency
photons with infinite ! inside the quasihorizon but finite
!1 can escape to infinity. This occurs for any Bonnor star
whose boundary gets arbitrarily close to the horizon
[BRN�r0� ! 0], this property being model independent.

In terms of the time ~t, the inner time, an observer uses
rather the equality !

����
~B
p
� ~!c, where

����
~B
p
� B������������

BRN�r0�
p , as

above, and ~!c �
!1������������
BRN�r0�
p . The observer does not encounter

an infinitely large redshift since in the inner region ~!c and
~B remain finite and nonzero, even in the QBH limit when
BRN�r0� ! 0. However, we have seen before that the latter
property causes an infinite barrier for particles moving
outward.

Thus, both properties (infinite redshift for an inner sig-
nal, emitted inside and registered by an observer at infinity,
and an impenetrable barrier for particles moving from the
inner to the outer region) are different consequences of the
same property BRN�r0� ! 0.
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e. Other considerations: the end state.—The QBH can
be considered as the end state of a sequence of ever more
compact Bonnor stars. There is no way in which one can
get a more compact object from it, or somehow turn it into
an extremal BH. Whether this end state can be achieved by
a physical process is a thorny issue that will be discussed
towards the end of this article.

f. Example.—We demonstrate now, using an explicit
example of a Bonnor star given in [5], what happens to
the metric in the quasihorizon limit. The metric of any
spherically symmetrical Majumdar-Papapetrou system can
be written in isotropic coordinates as (see [1,2])

 ds2 � �Bdt2 � B�1�dR2 � R2d�2� (9)

where the radial coordinate R is related to the
Schwarzschild coordinate r of Eq. (1) by

 R � r
����
B
p

: (10)

From [5], defining a new potential U�R� as U � 1=
����
B
p

,
good choices for the internal and external U, UI and UE,
respectively, are

 UI � 1�
m
R0
�
m�Rn0 � R

n�

nRn�1
0

; 0 
 R 
 R0; (11)

 UE � 1�
m
R
; R � R0 > 0; (12)

where m is the mass of the configuration, R0 is the bound-
ary of the star, and n is a free exponent, with n � 2, n � 2
being a typical case. The extremal charged dust occupies
the region 0 
 R 
 R0. For R> R0 the metric represents
an external extremal Reissner-Nordström metric. In this
outer region the relation between r and R is simple—r �
R�m. Then the boundary areal radius r0 is given by r0 �
m� R0. When R0 ! 0 the areal radius r0 of the boundary
approaches that of the quasihorizon as closely as one likes,
with the dust density remaining finite everywhere inside,
including the boundary. Let us take the next step to obtain
the limiting metric explicitly. It is convenient to make the
following substitutions for the interior metric,

 R � R0x; 0 
 x 
 1; (13)

 t �
mT
R0

; (14)

where x and T are new coordinates. Then, the limit R0 ! 0
can be taken safely, and we obtain the metric of the interior,
 

ds2 � �

�
1�

1

n
�
xn

n

�
�1
dT2

�m2

�
1�

1

n
�
xn

n

�
2
�dx2 � x2d�2�: (15)

It is regular everywhere inside but incomplete for x 
 1. It
can be extended at least up to a singular x, given by xs �

�n� 1�1=n > 1, but this singularity has nothing to do with
our original system. Now, it is seen from (14) that, indeed,
an infinite redshift occurs in the limit R0 ! 0 since finite
intervals of T correspond to infinitely growing intervals of
t. This mismatch in time scales gives a clear example of
why particles from the inside cannot penetrate to the
outside.

We can observe one more important feature here. It is
essential that at x � 1 (defining the boundary between dust
and vacuum) the metric (15) has no horizon. Meanwhile,
the outer metric represents an extremal Reissner-
Nordström BH with the metric

 ds2 � �

�
1�

m
r

�
2
dt2 �

�
1�

m
r

�
�2
dr2 � r2d�2; (16)

and has a horizon at the boundary in this limit. Therefore,
we cannot smoothly match the two geometries: the surface
r � m (also given by x � 1) is timelike when seen from
inside and is lightlike when seen from outside. One may try
to reconcile these two features by adopting the original
time coordinate t inside as well. Then, in the limit R0 ! 0
the interval along r � m does indeed become null from
inside. However, this is achieved at the expense of the
metric becoming degenerate inside, since the term in dt2

vanishes everywhere in the inner region. Thus, in any case,
spacetime as a whole exhibits singular, degenerate
features.

2. Bonnor stars extended: continuous distribution of
extremal charged dust that asymptotes to the extremal

Reissner-Nordström geometry [8]

a. Generic properties.—In [8] Bonnor stars were modi-
fied, so that instead of having a boundary where the
charged extremal dust and the extremal Reissner-
Nordström vacuum match, one now has a continuous,
extended distribution of extremal charged dust which
asymptotes to the extremal Reissner-Nordström geometry.
This type of distribution is especially interesting, since it
allows for cases where there is a kind of hair when the
QBH is forming, although these cases are not going to be
discussed here. Now, it is useful to rewrite the metric (1),
given in the Schwarzschild coordinate r, into an isotropic
form (9), given in the coordinate R.

In [8], in these coordinates, the trial distribution is given
by the following form of the potential,

 

����
B
p
�

z
z� q

; (17)

where

 z �
�����������������
R2 � c2

p
; (18)

c is a constant that can be chosen arbitrarily, and q can be
thought of as the total charge, as we will see below. One
can also find that the potential V defined in (2) is given by
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����
V
p
�
z3 � qc2

z2�q� z�
: (19)

Then, the metric can be rewritten as

 ds2 � �

�
z

z� q

�
2
dt2 �

�q� z�2

z2 � c2 dz
2

�
�z2 � c2��z� q�2

z2 d�2; (20)

valid for z � c. The density is then given by

 � �
3qc2

4�z2�q� z�3
: (21)

Then, one obtains that a quasihorizon forms at r�, such that
for c	 q one has R � R� ’ q�2c

2

q2 �
1=3. The explicit asymp-

totic behavior near the quasihorizon reads

 

����
B
p
� 21=3

�
c
q

�
2=3
�

2

3

�r� r��
q

�
22=3

9c2=3q4=3
�r� r��

2 . . . ;

(22)

 V � "�
2�r� r��2

q2 � . . . ; (23)

where

 " �
9

24=3

�
c
q

�
4=3
; (24)

and in this limit, r� � q.
So, near the formation of the QBH, for c! 0, one finds

that there are three characteristic regions. They are as
follows.

(I) The inner core region r & c: Here it is convenient to
make the substitution z � cy and take the limit c!
0 afterward. Then, rescaling time as

 t �
q
c

~t; (25)

and making one more substitution,

 coshu � y �
z
c
; (26)

one obtains

 ds2 � q2��cosh2ud~t2 � du2 � tanh2ud�2�: (27)

Thus the metric is everywhere regular. If one allows
u! 1, it becomes geodesically complete and
asymptotically approaches the Bertotti-Robinson
metric [13,14].

(II) The vicinity of the quasihorizon r � r� � q: Then,
it is convenient to make the rescaling to the coor-
dinates T and 	,

 T � z�
t
q

(28)

and

 	 �
z
z�
; (29)

where z� � z�r�� and	 
 1 corresponds to the inner
region. Then one can find by direct substitution that
in the limit c! 0 the metric takes the form ds2 �

�	2dT2 � q2�d	
2

	2 � d�2�, and defining a new ra-

dial coordinate l by 	 � exp� lq� with l < 0, one has

 ds2 � � exp
�
2l
q

�
dT2 � dl2 � q2d�2: (30)

This metric is nothing but the extremal version of the
Bertotti-Robinson metric [13,14]. The region with
r � r� is simply removed from the manifold. The
coordinate l can now be extended into its full range,
i.e., �1< l <1. As is known, the Bertotti-
Robinson spacetime is geodesically complete and,
through yet another coordinate transformation, can
be cast into a form where the horizon is absent (see,
e.g., [15]). It is instructive to note that the Bertotti-
Robinson metric can be obtained also as an extremal
limit of a nonextremal Reissner-Nordström space-
time. However, in that case the resulting metric takes
the form of the nonextremal version of the Bertotti-
Robinson metric [17,18].
Note that, actually, regions I and II represent two
different subregions of the inner region inside the
quasihorizon. If one makes the substitution y �
	 z�

c , it becomes clear that (27) transforms to (30),
provided 	� c

z� � c
1=3.

(III) The region r > r�: Here one can take the limit in
(20) directly and obtain the extremal Reissner-
Nordström metric. As is known, the region r > r�

represents only part of the extremal Reissner-
Nordström geometry (16).

We see that, from a formal viewpoint, the three different
spacetimes that arise from a single one, when the QBH
forms, illustrate the fact that the result of taking the appro-
priate limit depends strongly on how the coordinates are
involved in it [16]. Indeed, for very small but nonzero cwe
have three distinct regions in the whole spacetime, a space-
time that possesses no horizon. Each of those regions
approaches the corresponding form in its domain of valid-
ity: region (I) represents the inner core region, region (II)
gives the vicinity of the quasihorizon, and region (III)
corresponds to the outer solution. The spatial geometry
for r close to r� represents an extended throat on both sides
of the quasihorizon. The energy density ��r�� � c2=3 ! 0
[8]. In the limit c � 0, each of the three regions looks
incomplete in the original range of coordinates but can be
made complete after extension and proper continuation of
coordinates into the whole region. Similarly to the example
(9)–(12), one can observe from (30) that the surface r � r�
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looks timelike from inside but lightlike outside, so a
smooth matching is impossible.

We also note that the Bertotti-Robinson spacetime can
appear as a result of two different limiting procedures, by
taking a special portion of the extremal Reissner-
Nordström metric and taking an appropriate limit, or by
taking a special limit of the QBH case under discussion.
For further details see Appendix A.

b. The total mass.—It is instructive to compare the
contribution of the inner and outer regions to the total
mass. Using the usual formulas for the energy density
and the relationship between r and R, one can obtain that
the proper mass mp � 3qI, where I is given by I �R
1
0

dyy2

�1�y2�5=2 �
1
3 . So, mp � q. Generically, for Majumdar-

Papapetrou systems the proper mass is equal to the electric
charge. So q has the meaning of total charge and does not
depend on c. From the calculation, one also finds that the
major contribution comes from the inner region, 0 
 y 

y�, where y� � R�

c � 21=3�qc�
1=3 � 1. The contribution

from the outer region is of the order 1
2y� and becomes

negligible in the limit c! 0. The same is true for the
Arnowitt-Deser-Misner (ADM) mass m. Thus, the compe-
tition from the two factors, infinite proper volume (due to
the extended throat) and vanishing energy density, results
in finite proper and ADM masses, mp and m, respectively.
The mass is concentrated under the quasihorizon. Indeed, it
is seen from (21) that in the limit c! 0 the density �! 0
everywhere except in the region of small z� c near the
origin.

c. The curvature tensor and impenetrability.—From
region I to II and vice versa: As the inner region I is
geodesically complete in the QBH limit and is at infinite
proper distance from the quasihorizon, there is really no
question about penetrability from I to II (which is adjacent
to the quasihorizon) or III and vice versa. Indeed, geodesics
from region I can never reach regions II and III.

From the inner region II to III (i.e., from the vicinity of
the quasihorizon to the outside) and vice versa: Near the
quasihorizon z � z�, the components of the curvature ten-
sor, following the previously adopted nomenclature, are
K�r�� � � 1

q2 , �K�r�� � O�c2=3� ! 0, F�r�� � 1
q2 , �F�r�� �

0. Thus, in this sense the geometry is perfectly regular.
However, in the free-falling frame, the quantity ~Z is of the
order c�2=3 and diverges. So, a particle cannot penetrate
from the outside to inside because infinite tidal forces
appear, exactly in the manner it was explained above while
discussing the pure Bonnor stars. In addition, the argu-
ments presented previously for the pure Bonnor stars show
that a particle with a finite energy measured with respect to
rescaled time T of region II cannot penetrate from the inner
region to the outer one. As a result, regions II and III are
mutually impenetrable.

d. Other considerations.—Generalizing the approach of
[8], we can see that, for a continuous distribution of matter,

QBHs should always exist provided

 ��r�� � pr�r�� 
 O�
���
"
p
�; (31)

where pr is the radial pressure,
�����������
B�r��

p
! 0, and V � "�

a�r� r��2 � . . . , with a a constant and "! 0. These
properties indeed hold for the extremal dust solutions
considered above [8]. It follows from Einstein equations
that the metric function

����
B
p

obeys
����
B
p
�

����
V
p

exp� �,
where  � 4�

R
dr r���pr�V . Then an elementary evaluation

shows that, on the quasihorizon,  remains finite in this
limit due to the property (31). This entails that

�����������
B�r��

p
����

"
p
! 0. Since for QBHs, and, in particular, for Majumdar-

Papapetrou dust, one has d
���
B
p

dr > 0 (see Appendix B), this
also means that

����
B
p
! 0 for all r < r�, and we return to the

situation discussed above. However, without knowing the
details of the system, one cannot state in advance whether
or not the entire inner region will be regular.

B. Yang-Mills–Higgs matter and gravitational
magnetic monopoles [9,10]

The ’t Hooft-Polyakov magnetic monopole, with a
global magnetic charge, is a solution of the Yang-Mills–
Higgs system with no gravity. When one couples gravita-
tion, new important features arise. This Eintein–Yang-
Mills–Higgs system possesses regular self-gravitating so-
lutions for a range of parameters. In addition, for a suffi-
ciently massive monopole the system turns into an
extremal configuration. It was noted in [9,10] that such
an extremal configuration is a QBH; indeed, in those works
the word QBH was coined for the first time, to distinguish
such an object clearly from an extremal BH. Such a mag-
netic QBH then develops an extremal quasihorizon, with
all the nontrivial matter fields inside it. For our purposes
here we note that the metric used for the gravitational
magnetic monopoles is of the type given in Eq. (1), and
that the numerical calculations carried out in [9,10] show
that

����
B
p
� "q, where q ranges between 0.7 and unity, and

that ~Z� "�2q, where ~Z, defined in the previous section, is
a quantity related to the tidal forces in a free-falling frame.
In turn, this implies that in a static frame the quantity Z is
regular, but in a free-falling frame ~Z diverges. Thus, we
have again the combination of a perfectly regular geometry
with a naked-type behavior inside the entire inner region,
as was observed in [9,10]. The other properties of QBHs
discussed in the previous subsection follow through a
comparison between the properties of the Yang-Mills–
Higgs system with its gravitational magnetic monopoles
and the corresponding QBHs and the much simpler
Majumdar-Papapetrou system with its Bonnor stars, along
the lines of [7].
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C. Vacuum with a surface layer: gluing between the
extremal Reissner-Nordström and other metrics

1. Gluing between the extremal Reissner-Nordström and
Bertotti-Robinson metrics [11,12]

a. Generic properties.—In [11,12] gluing between the
extremal Reissner-Nordström and Bertotti-Robinson met-
rics [13–18] was considered as a classical model of an
elementary particle that looks like a BH to an external
observer but is regular inside. Let m be the ADM mass of
such a BH, r0 being the radius of gluing. For r � r0 we
have the extremal Reissner-Nordström metric (16), with
B � �1� m

r �
2, and for r 
 r0 the metric has the form (30)

with q � r0. Then, as is shown in [11], the only non-
vanishing component of the boundary surface stresses is

equal to S0
0 �

��������
B�r0�
p

4�r0
� "

4�r2
0
, where " � r0 �m. For small

but nonzero " we have the configuration typical of a QBH:
a static metric with the radius of the inner region arbitrarily
close to that of the horizon. In the limit "! 0 the quantity
S0

0 ! 0. For an extremal Reissner-Nordström BH the elec-
tric charge and the mass obey QRN � m. On the other
hand, for the Bertotti-Robinson metric (30), one has
QBR � q, so that in our case QBR � r0. As a result, the
shell separating the two regions carries the charge QRN �
QBR � �", which also vanishes in the limit "! 0. Thus,
in the static coordinate frame, in the quasihorizon limit
" � 0, one obtains that the surface stresses and the surface
charge (that appear due to the gluing process between the
two different metrics) vanish [11], so that the configuration
becomes everywhere regular. For an outer observer, the
corresponding spacetime reveals itself as an extremal BH
but it is free of singularities inside (in contrast to the
Reissner-Nordström metric) since the inner Reissner-
Nordström core is replaced by the Bertotti-Robinson met-
ric. One obtains a self-sustained configuration having no
singular sources, which is balanced by its own forces
without support from an external agent. In this sense, it
can be considered as a classical electromagnetic model of
an elementary particle, realizing Wheeler’s idea of charge
without charge [20].

b. Tidal stresses and matter stresses.—Now, let us see
what happens in a freely falling frame. A free-falling frame
reveals some new nontrivial features of the composite
spacetime under discussion. Consider again the quantity
Z � �F� �K, with �K � R0̂ �̂

0̂ �̂
and �F � R�̂ r̂

�̂ r̂
, which we intro-

duced in Sec. III A while discussing some properties of
extremal charged dust. In the free-falling frame the quan-
tity ~Z is given by ~Z � Z�2 E2

B � 1�, where E is the energy of
the particle and ~Z is calculated in the free-falling frame
[21,22] (see also [23–25]). For the Bertotti-Robinson met-
ric one has Z � 0, so that one obtains ~Z � 0. Therefore,
one may wonder whether or not the naked behavior typical
of other examples of QBHs occurs in this case. As we will
show now, an analogue of naked behavior does indeed

occur. Since now Z � 0 there is no naked behavior in the
components of the Riemann tensor inside the boundary
surface (i.e. in the Bertotti-Robinson region), but there is
naked behavior in the components of the Ricci tensor (i.e.,
in the components of stresses) on the boundary surface
itself. Let us see this in more detail. If one defines Y �
S1

1 � S
0
0, then a local Lorentz boost leads to the expression

~Y � �2 E2

B � 1�Y since Y transforms like Z, with the �� �
components being insensitive to radial boosts. For the
system under consideration, the only nonvanishing com-
ponent in the static frame is S0

0 �
"

4�r2
0

(see above). As a

result, in a free-falling frame ~Y � 1
4�r2

0
�"� 2

E2r2
0

" � � "
�1,

which clearly diverges in the QBH limit, "! 0. Thus, we
have displayed a remarkable result: for " � 0 the boundary
stresses are finite and nonzero, both in the static and free-
falling frames. However, in the limit "! 0, they disappear
in the static frame, but go unbounded in the free-falling
one. In this sense, the situation in the electrovacuum case is
totally similar to that discussed above for the extremal dust
and non-Abelian gauge systems. The only difference is that
now the relevant quantities are not curvature components
but boundary stresses.

2. Gluing between the extremal Reissner-Nordström and
Minkowski metrics [19]

An even simpler example can be invoked, where gluing
between an inner flat metric and an external extremal
Reissner-Nordström metric is performed. Such a construc-
tion was discussed in [19] as an example of a classical
model of an elementary particle (see also [7,11]). Consider
an external spacetime given by Eq. (16) for r � r0, and an
inner spacetime given by the Minkowski metric,

 ds2 � �dT2 � dr2 � r2d�2 (32)

where 0< r 
 r0. On the border, the condition of match-
ing both parts of the spacetime leads to

 t �
Tr0

r0 �m
; (33)

so that the time part of the metric (32) can be written as
�dT2 � � �r0�m�2

r2
0

dt2. Then, if time t is used, the metric

coefficient g00 ! 0 in the limit r0 ! m. This is the reason
why this construction can be considered as an example of a
QBH. We again obtain an infinite redshift due to the
mismatch in time rescaling in Eq. (33). Also, we cannot
achieve the continuous matching if T is considered as a
legitimate coordinate inside, since the surface r � m is
timelike in the metric (32) but lightlike in the metric (16).
One may try to repair this by considering inside the same
time t as outside. However, the term � �r0�m�2

r2
0

dt2 disap-

pears in this limit and the spacetime becomes degenerate.
If one calculates the surface stresses on the boundary, it
turns out that 8�S0

0 � �
2
m � 0 (all other components van-
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ish) [11]. Then, the reasonings from Sec. III C 1 apply and
we obtain a naked behavior on the shell in the limit under
discussion for a radially infalling observer.

IV. A FURTHER PROPERTY: QUASI-BLACK
HOLES SHOULD BE EXTREMAL

In all examples considered above the horizon ap-
proached by the system is extremal. One may ask whether
or not QBHs with nonextremal horizons (NEH) are pos-
sible. In [29], with the help of numerical calculations, it
was shown that, for some particular charge density and
energy density distributions, the boundary of a body with
q < m (where q is the total charge andm is the ADM mass)
cannot approach its own horizon; the system collapses
before reaching it. This result corroborates the Buchdahl
limits, first worked out to the Schwarzschild interior solu-
tion, as well as for perfect fluid matter. In [30] an interest-
ing, although convoluted, analytical proof generalizing the
Buchdahl limits for charged perfect fluid was given. Here
we state an even more general theorem, without resorting
to the equation of state of the matter or other system’s
details at all.

The statement we want to prove is ‘‘a static regular
configuration cannot approach its own horizon arbitrarily
closely if the horizon is nonextremal.’’ The proof goes as
follows. By definition, a NEH implies that the surface
gravity 
 is nonzero. Since 
 � �d

���
B
p

dl �h, where the deriva-

tive is taken on the horizon h, this condition gives �d
���
B
p

dl �h �

0. We call this the NEH condition. Let conditions (a)–(c) of
Sec. II be fulfilled, so that we have a QBH. Consider
separately two cases: namely, (1)

���������
B�r�

p
has a continuous

derivative in relation to the proper length l, i.e., d
�������
B�r�
p

dl is

continuous; and (2)
���������
B�r�

p
is merely continuous, so that a

surface layer is allowed.
(1) When

���������
B�r�

p
has a continuous derivative in relation

to l, i.e., d
�������
B�r�
p

dl is continuous, then d
�������
B�r�
p

dr is also

continuous. Thus we are assuming that
���������
B�r�

p
is of

class C1. Now we will show that the NEH condition
and condition (c) are mutually inconsistent. Recall
that condition (c) states that in the limit "! 0 the
metric coefficient B! 0 for all r 
 r�. Let us ex-
ploit the following simple lemma, which we will
prove shortly. Assume

����
B
p

is any function such that
the condition (c) is satisfied, and further assume (d)����
B
p

> 0, for " � 0 and r 
 r�. Then in the limit

"! 0 one cannot get d
�������
B�r�
p

dl � 0, as one should for a
nonextremal BH. Now we prove this lemma. Let us
suppose, for a moment, that d

���
B
p

dr ! a0 � 0 at some
r1 where 0 
 r1 < r�. Using a Taylor expansion, we
can write

����
B
p
� a0�r� r1� � . . . in the vicinity of

r1 for sufficiently small ", with a0 a constant. For
a0 > 0 we have that

����
B
p

< 0 for r < r1 in contra-

diction with condition (d). Also, for a0 < 0 we have
that

����
B
p

< 0 for r > r1 in contradiction with
condition (d). So the only possibility is d

���
B
p

dr ! a0 �

0. As, by assumption, the derivative d
���
B
p

dr is continu-
ous, we can extend this line of reasoning to some
vicinity (r� � �, r� � �) of the boundary point r�,
take advantage of the Taylor series again, by the
same reasoning obtain that �d

���
B
p

dr �r�r� ! 0, and so,

�d
���
B
p

dl �h ! 0 as well.

(2) When
���������
B�r�

p
is merely continuous, one is relaxing

the condition of the continuity of the first derivative
and thus allowing the existence of a surface layer.
We will see now that it does no good. In this case we
would have a deltalike term in the stress-energy
tensor ~T�� and a nonzero Lanczos tensor S�� �R
dl ~T��, where the integral is to be performed across

the boundary. There is only one independent spatial
component of the tangential stresses, namely, S2

2.

This is given by 8�S2
2 �

�r�0���r�
0
�

r� �
�
���
B
p
�0���

���
B
p
�0����

B
p ,

where the� and� signs refer to the outer and inner
regions, respectively, and a prime denotes a deriva-
tive with respect to the proper distance l. The first
term is finite and is equal to zero, if we do not put a
finite mass on the surface r � r�. However, the
second term diverges since the numerator is finite
whereas the denominator tends to zero. Thus, the
boundary stresses become infinite and the configu-
ration becomes strongly singular.

Thus, we see that in case (1) the condition of nonextre-
mality cannot be fulfilled, and in case (2) the condition of
regularity fails. The proof of our statement is completed;
there are no nonextremal QBHs.

On the other hand, if the surface gravity 
 � 0, i.e., the
QBH is extremal, the above arguments do not work since
d
���
B
p

dl ! 0 from both sides of r�. As a result, in case (1) there
is no contradiction between conditions NEH and (c), and in
case (2) S2

2 can be finite. So QBHs can only be extremal.

V. REGULAR VERSUS SINGULAR BEHAVIOR AND
UNATTAINABILITY OF THE QUASI-BLACK HOLE

LIMIT

Upon careful inspection, one finds that in QBHs diver-
gencies on the Kretschmann scalar do not occur. However,
the finiteness of this quantity is not the only criterion for
regular or singular classification of a spacetime. One ex-
ample is the behavior of naked BHs. Indeed, in some
special frames the Riemann tensor diverges near the hori-
zon of these naked BHs and these divergences can be
related to nonscalar polynomial curvature singularities
discussed in [26].

In the present work we have encountered a rather un-
usual entanglement of regular and singular features in
QBHs. From the viewpoint of an external observer who
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uses time measured by clocks at infinity, an inner region
looks like a degenerate spacetime with the component of
the metric g00 ! 0 everywhere. Yet, this singular feature
has nothing to do with the behavior of the Riemann tensor.
Its components in an orthonormal static frame are finite
there, and the Kretschmann scalar is also well behaved.
The most obvious manifestation of this property is the
example discussed in Sec. III C 2 where the inner space-
time is flat; nonetheless it exhibits singular features. If one
tries to remove the degeneracy of the inner spacetime by
rescaling the time coordinate, another difficulty arises: the
spacetime ceases to be continuous since the surface is
lightlike from the viewpoint of an outer observer but is
timelike from the viewpoint of an inner one. To put it in
another way, one can easily achieve the validity of the
matching conditions on a timelike surface, but if this
surface tends to a null surface, at least from one side, the
procedure ceases to be well defined and this gives rise to a
number of unusual properties. Another singular feature
consists in the impossibility to penetrate from the inside
to the outside and vice versa. In this sense, geodesics
cannot be extended across the border between different
regions, in spite of the fact that each of them, taken by
itself, can be extended. For instance, the Minkowski space-
time in Sec. III C 2 is obviously extendable but this exten-
sion has nothing to do with the problem under discussion in
which the outer spacetime should be the extremal Reissner-
Nordström BH. The fact that observers in different regions
disagree about the border’s nature, whether it is timelike or
null, can be considered as one of the manifestations of the
mutual impenetrability. Actually, it shows that one deals
with two separate spacetimes. It turns out that there is some
kind of complementary relationship between the inner and
outer regions and between their regular and singular prop-
erties. If an observer is situated inside, he will say that the
geometry is perfectly regular there but becomes singular on
the border and beyond, so that he is unable to penetrate to
outside. The outer observer, on the contrary, will say that it
is his region which is regular (excepting the border) and
finds he cannot penetrate into the inner singular region. All
this forces us to conclude that the spacetime of a QBH as a
whole may be singular in spite of the fact that the
Kretschmann scalar diverges nowhere.

This discussion helps to elucidate an important addi-
tional question of whether or not the QBH limit (whose
properties we have discussed in detail) is attainable in
some real physical process. For comparison, in the
Reissner-Nordström geometry, taking formally the limit
q! m, one can obtain the extremal Reissner-Nordström
BH from the nonextremal one but, according to the third
law of BH thermodynamics [27], this cannot be accom-
plished in any real process for a finite number of steps.
Furthermore, if the cosmic censorship conjecture is valid,
one cannot convert the BH state with q 
 m into a naked
singularity by increasing the charge to q >m. What is said

above about singular features in the QBH properties leads
to the conclusion that the corresponding limiting state is
physically unattainable from any close regular configura-
tion. More precisely, the state which is obtained by the
mathematical procedure of taking the QBH limit can be
approached as closely as one likes. However, if we assume
that regular configurations cannot be turned into singular
ones, the QBH limit cannot be attained by gradually
changing an initial regular configuration to a singular
one. A usual horizon hides singularities beyond it, but its
analogue, the quasihorizon, in a sense, brings about certain
singular features into the system. If these singular features
cannot arise by physical processes, as we have argued, this
means that we are faced with a somewhat unusual counter-
part of the cosmic censorship. On the face of what has been
said, it seems that QBHs should extend the taxonomy, not
only of relativistic objects, but also of singularity types in
general relativity.

It is also worth remarking that in some cases the limiting
configuration may turn out to be geodesically complete and
regular like the manifold given by Eq. (27), obtained from
the inner core region (i.e., region I), in Sec. III A. In this
case, nothing prevents one from taking the limit c � 0 in
which Eq. (27) arises from Eq. (20). In addition, the proper
distance to the quasihorizon tends to infinity in this limit.
Thus, it seems that the limit can be attainable in some
regions and unattainable in others, which is one more
unusual feature of QBHs.

Summing up, configurations that approach, as close as
one likes, a QBH state can be easily achieved, and in this
sense, QBHs may have real physical significance. But
whether a QBH state can be attained in nature, through
such a process, or perhaps emerge via some quantum
process, is a thorny issue that certainly needs further
investigation.

VI. CONCLUSIONS

The present work unifies in the same QBH context
seemingly different systems like those considered in [3–
8] on Bonnor stars, in [9,10] on magnetic monopoles, and
in [11–20] on glued vacua. The properties of QBHs were
worked out in some detail. It is then clear that, for an
external static observer, a BH and a QBH look similar.
Nevertheless, their inner nature is different. First, not only
is the outer original region inaccessible for the inner ob-
server, like in the BH case, but also vice versa, which has
no analogue in the BH case. Second, while for BHs the
separation of different regions is of pure causal nature, in
the QBH it is dynamic rather than purely causal. The
reasons for no penetration from one region to another are
quite different, namely, rescaling of time, and infinite tidal
forces or infinite surface stresses, i.e., naked behavior. In
addition, as far as the naked behavior is concerned, it is
also worth noting for comparison that in all examples
considered in [21–25] the curvature components in the
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free-falling frame are enhanced with respect to the static
value but remain finite, whereas for QBHs those compo-
nents diverge. Thus, if a system is able to withstand gravity
forces up to a state which is arbitrarily close to an extremal
BH and not collapse, its inner properties, the QBH prop-
erties, are qualitatively distinct from those of a correspond-
ing extremal BH. However, for a distant observer to
distinguish between a QBH and an extremal BH might
be virtually impossible.

As a last remark, we note that, in the above consider-
ations, we tacitly implied that the areal radius increases
monotonically with the proper distance. Meanwhile, we
can try to glue two copies of the spacetime in the spirit of
cut and paste technique used in physics of wormholes [38]
with the increasing and decreasing branches of the function
r�l� and, afterward, take the QBH limit. For example, one
can use the extended Bonnor star distributions described
above. The corresponding limit possesses interesting prop-
erties that, however, need a separate discussion. In [39] a
special type of wormhole was considered. Interestingly
enough, this wormhole can be considered as a system
with properties somehow similar to those of a QBH, in
the sense that it is connected with the threshold of the
formation of a horizon, in this case nonextremal, from a
wormhole configuration. Detailed comparison of the two
approaches, based on near-extremal and nonextremal
wormhole configurations, and properties of the corre-
sponding spacetimes will be done elsewhere.
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APPENDIX A: OBTAINING THE BERTOTTI-
ROBINSON SPACETIME AS A LIMIT OF

DIFFERENT METRICS

It is instructive to note that the Bertotti-Robinson space-
time [13–18] can appear as a result of two different limit-
ing procedures.

(1) First, starting with the extremal Reissner-Nordström
metric, one obtains the Bertotti-Robinson metric by
means of a well known limiting procedure [16].
Indeed, in the extremal Reissner-Nordström case,
one can make the transformation from the usual
Schwarzschild coordinate r to the proper radial
coordinate l, given by r � q� � exp� lq�, and from

t again to T, given by t � qT
� , where � is a parame-

ter, and take the limit �! 0. Then the metric takes
the form (30). In the course of this limiting transi-
tion the metric coefficient gRN

00 of the original ex-
tremal Reissner-Nordström metric tends to zero due

to just taking the limit in the coordinate space: since
�! 0 we have r! q and gRN

00 �r� ! gRN
00 �q� � 0. In

the resulting Bertotti-Robinson manifold (30) the
coefficient gBR

00 � 0, due to the factor ��2 which
compensates �2 in gRN

00 . In doing so, the horizon of
the original Reissner-Nordström metric (r � q)
maps into the horizon of the Bertotti-Robinson met-
ric (l � �1).

(2) Second, in the QBH case discussed in Sec. III A 2,
the reason why g00 ! 0 comes from taking a special
limit in the space of parameters: we have gQBH

00 �

gQBH
00 �r; c� and gQBH

00 �r
�; c� � 0, for c � 0. But

limc!0g
QBH
00 �r

�; c� � 0 where r� corresponds to the
quasihorizon [8]. In doing so, the quasihorizon r �
r� corresponds to l � 0, i.e., 	 � 1 in (29). Then, it
is seen from (30) that gBR

00 � 0 at 	 � 1 and, thus,
this value of 	 does not correspond to the horizon of
the Bertotti-Robinson metric. The horizon of the
metric (30) lies at l � �1 where gBR

00 ! 0. In other
words, the quasihorizon of the original metric (20)
does not map onto the horizon of the Bertotti-
Robinson obtained from it through the limiting pro-
cedure. Instead, the transformation (29) in the limit
c! 0 maps the origin r � 0 of (20) onto the hori-
zon of the metric (30) (which does not possess an
origin at all) since in this limit r�

����
B
p
� c2=3 and 	�

c1=3 ! 0 (see [8]).
Thus, we see that, although in region II our metric takes

the Bertotti-Robinson form, it cannot be considered as a
trivial consequence of the known limiting procedure from
the extremal Reissner-Nordström metric. Cases (1) and (2)
are different and map the horizon, and the quasihorizon, of
the original manifold in different manners.

APPENDIX B: PROOF THAT d
���
B
p

dr � 0 FOR
QUASI-BLACK HOLES

One general property of QBHs is that the metric function����
B
p

, for the systems under discussion, obeys the condition

 

d
����
B
p

dr
� 0: (B1)

Indeed, assuming that the Einstein equations are satisfied,
one has

 

1����
B
p

d
����
B
p

dr
�
m� 4�prr3

r�r� 2m�
; (B2)

where m�r� is the total gravitational mass enclosed inside
the radius r, and pr is the total radial pressure, arising from
all the fields and matter that may be present. For a regular
matter configuration there is no horizon, so the denomina-
tor is positive. In addition, the numerator is positive for
systems with m�r� � 4�prr3 > 0. The known Majumdar-
Papapetrou exact solutions show that (B2) holds for these
systems [3–8]. For the self-gravitating monopole its valid-
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ity is clearly seen from numeric calculations [9,10]. For the
composite vacuum systems studied here [11,12], com-
posed of Reissner-Nordström and Bertotti-Robinson ge-

ometries, the situation is more tricky, as the coordinate r
becomes degenerate, but the positivity of (B2) is guaran-
teed upon a suitable redefinition of distance.
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