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We investigate here spherically symmetric gravitational collapse in a space-time with an arbitrary
number of dimensions and with a general type I matter field, which is a broad class that includes most of
the physically reasonable matter forms. We show that given the initial data for matter in terms of the initial
density and pressure profiles at an initial surface t � ti from which the collapse evolves, there exist the
rest of the initial data functions and classes of solutions of Einstein equations which we construct here,
such that the space-time evolution goes to a final state which is either a black hole or a naked singularity,
depending on the nature of initial data and evolutions chosen, and subject to validity of the weak energy
condition. The results are discussed and analyzed in the light of the cosmic censorship hypothesis in black
hole physics. The formalism here combines the earlier results on gravitational collapse in four dimensions
in a unified treatment. Also the earlier work is generalized to higher-dimensional space-times to allow a
study of the effect of the number of dimensions on the possible final outcome of the collapse in terms of
either a black hole or naked singularity. No restriction is adopted on the number of dimensions, and other
limiting assumptions such as self-similarity of space-time are avoided, in order to keep the treatment
general. Our methodology allows us to consider to an extent the genericity and stability aspects related to
the occurrence of naked singularities in gravitational collapse.
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I. INTRODUCTION

A considerable amount of work has continued in recent
years on the validity or otherwise of the cosmic censorship
conjecture (CCC) in black hole physics. The reason for this
interest is that CCC is fundamental to many aspects of the
basic theory and applications of black holes, and the as-
trophysical implications resulting from the phenomena of
continual gravitational collapse of a massive star which has
exhausted its nuclear fuel. As of today, no theoretical
proof, or even any satisfactory mathematical formulation
of CCC is available, whereas an intriguing finding that has
emerged from recent investigations on gravitational col-
lapse scenarios in general relativity is that the final end
state of such a collapse could be either a black hole (BH),
or a naked singularity (NS). The theoretical and observa-
tional properties of these objects could be quite different
from each other and so it is of much interest to get an
insight into how each of these phases come about as end
states of a dynamically developing collapse governed by
gravitational dynamics.

When a sufficiently massive star starts collapsing grav-
itationally on exhausting its nuclear fuel, it would not settle
to a stable configuration such as a neutron star. What
happens in such a case is that an endless gravitational
collapse ensues, where the sole governing force is gravity.
According to general relativity, the outcome of such a
process would be necessarily a space-time singularity. If
an event horizon of gravity forms well in advance before
the singularity forms that gives rise to a black hole as the

final state of collapse. In the case otherwise, when the
horizon formation is delayed during the collapse, these
extreme density and curvature regions may fail to be
covered by the horizon, and a visible naked singularity
may develop (see, e.g., [1–7] for some recent reviews). The
possible physical consequences of the later scenario have
drawn some attention recently [1]. Most of the gravita-
tional collapse models studied so far are spherical, and the
matter cloud collapses under reasonable physical condi-
tions such as an energy condition, and regularity conditions
on the initial data from which the collapse develops.

A noteworthy suggestion that has emerged towards a
possible theoretical formulation of CCC is that any naked
singularities resulting from matter models which may also
develop singularities in special relativity, should not be
regarded as physical [8–12]. Clearly, it will require a
serious effort to cast this into a mathematical statement
and a possible proof for CCC. Also, it may not be easy to
discard completely all the matter fields such as dust, per-
fect fluids, and matter with various other reasonable equa-
tions of state, which have been studied and used
extensively in relativistic astrophysics for a long time
from the perspective of understanding gravitational col-
lapse processes and final states.

Another possibility that indeed appears worth exploring
is that we may actually be living in a higher-dimensional
(HD) space-time. The recent developments in string theory
and other related field theories strongly indicate that grav-
ity is possibly a higher-dimensional interaction, which
reduces to the general relativistic description at lower
energies. Hence, there is a possibility that while CCC
may possibly fail in the four-dimensional manifold of
general relativity, it may well be restored in higher dimen-
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sions due to the extra physical effects arising from our
transition itself to a higher-dimensional space-time contin-
uum. Such considerations would inspire a study of gravi-
tational collapse in higher-dimensional space-times. From
such a perspective, many works have reported results in
recent years on spherically symmetric collapse in HD. The
recent revival of interest in this problem is partly motivated
by the Randall-Sundrum brane-world scenario [13] and
different ‘‘sectors’’ of the general problem have been
studied by restricting to certain subcases such as those in
self-similar space-times, or space-times with a specific
number of dimensions [14–22].

It follows that a general investigation of gravitational
collapse in a space-time with an arbitrary number of higher
dimensions will be of considerable interest. From the
perspective of CCC, the effects the number of dimensions
may have on the final outcome of gravitational collapse in
terms of BH/NS phases will be of much interest.

From such a perspective, we investigate here the issue of
BH/NS end-state formations in a higher-dimensional
gravitational collapse in some detail, in order to bring out
in a transparent manner the effect of dimensions on the
final fate of evolution of a matter cloud which collapses
from a given regular matter initial data. A spherically
symmetric collapse is considered here in N � 3 dimen-
sions and the matter content is chosen to be of type I, which
obeys the weak energy condition. The collapsing matter
field we consider here is a general and broad class, which
includes most of the physically reasonable matter fields
such as dust, perfect fluids, massless scalar fields and such
others and restrictions of any special form are not imposed
on the form of matter.

We consider spherically symmetric space-times here,
however, when compared to some of the earlier studies
of collapse in higher dimensions mentioned above, we deal
here with the general case. That is, there is no further
restriction imposed on the number of dimensions, the
space-time is not assumed to obey various special condi-
tions such as self-similarity or assuming the existence of
various Killing fields, which are somewhat restrictive as-
sumptions for collapse models. The results here also gen-
eralize earlier results [23–27], related to gravitational
collapse final states, and provide a unified treatment.

In order to investigate collapse final states, given the
initial data for matter in terms of the initial density and
pressure profiles at an initial surface t � ti from which the
collapse develops, we construct classes of solutions to
Einstein equations, such that the space-time evolution
goes to a final state which is either a black hole or naked
singularity, depending on the nature of the rest of the free
initial data functions and possible evolutions, subject to
validity of the weak energy condition. The methodology
used here allows us to consider in some detail the generic-
ity and stability aspects related to the occurrence of naked
singularities in gravitational collapse.

In Sec. II, we describe the basic equations and also the
various regularity conditions for gravitational collapse.
Section III then considers spherical collapsing clouds and
their basic dynamics. The apparent horizon and structure of
trapped surface formation is discussed in Sec. IV, which
has a direct bearing on the nature of singularity in terms of
being either visible or covered. The issues related to equa-
tion of state and that of validity of energy conditions in our
consideration are discussed in Sec. V, and we also discuss
briefly collapse in lower space-time dimensions in Sec. IV.
The exterior space-time and matching conditions are given
in Sec. VII and the final section summarizes some con-
cluding remarks.

II. EINSTEIN EQUATIONS, REGULARITY, AND
ENERGY CONDITIONS

Let us consider a general N-dimensional spherically
symmetric metric of the form

 ds2 � �gab�x0; x1�dxadxb � R2�x0; x1�d�2
N�2; (1)

where a, b run from 0 to 1, and

 d�2
N�2 �

XN�2

i�1

�Yi�1

j�1

sin2��j�
�
�d�i�2 (2)

is the metric on (N � 2) sphere with �i being the spherical
coordinates. From this metric, we get the elements of
Einstein tensor as [18,19],

 

NGab �
N � 2

2R2 �gabf2R�R� �N � 3�Qg � 2RR;ab�;

(3)

 

NG22 � �
1
2�R

2<� �N � 3�f2R�R� �N � 4�Qg�; (4)

 

NGii�i > 2� �
�Yi�2

k�1

sin2��k�
�
NG22; (5)

where we have

 Q � 1� R;aR;a; �R � gabR;ab (6)

and

 < � gab<ab: (7)

Here <ab is the Ricci tensor evaluated by the two-metric
gab, and < is the scalar curvature evaluated by the same.
Also, throughout this paper we use the usual convention,
that is, a comma (,) in subscript denotes partial differen-
tiation while a semicolon (;) denotes covariant
differentiation.

Let us now describe the space-time geometry within the
spherically symmetric collapsing cloud by the comoving
coordinates �t; r; �i�, which are specified as below. We take
the matter field to be of type I, which is a broad class
including most of the physically reasonable matter forms,
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including dust, perfect fluids, massless scalar fields, and
such others. This is specified by the requirement that the
energy-momentum tensor for the matter admits one time-
like and (N � 1) spacelike eigenvectors [28]. We now
choose our coordinates �t; r; �i� to be along these eigen-
vectors, which makes the coordinate system to be comov-
ing, that is, the coordinate system moves with the matter.
We can use the freedom of coordinate transformations of
the form t0 � f�t; r� and r0 � g�t; r� to make the gtr term in
metric (1) and the radial velocity of the matter to vanish. In
that case the general metric in the comoving coordinates
�t; r; �i� must have three arbitrary functions of t and r and
this can be written in the form [29],

 ds2 � �e2��t;r�dt2 � e2 �t;r�dr2 � R2�t; r�d�2
N�2 (8)

In this comoving frame the energy-momentum tensor for
any matter field which is type I is given in a diagonal form,

 Ttt � ���t; r�; Trr � pr�t; r�; T�
i

�i � p��t; r�:

(9)

The quantities �, pr, and p� are, respectively, the energy
density, and radial and tangential pressures, ascribed to the
matter field. The matter cloud has a compact support with
0< r< rb, where rb denotes the boundary of the cloud,
outside which it is to be suitably matched through suitable
junction conditions with another space-time geometry.

We take the matter field to satisfy the weak energy
condition, that is, the energy density measured by any local
timelike observer is non-negative. This ensures the physi-
cal reasonability for the collapsing matter fields we are
considering. Another energy condition frequently used is
the dominant energy condition, which demands that for
any timelike observer the local energy flow is nonspace-
like. We note that these two are frequently regarded as the
main and important energy conditions which are physically
reasonable [3]. For these energy conditions to be satisfied,
we must have for any timelike vector Vi,

 TikViVk � 0 (10)

and TikVk nonspacelike. For the energy-momentum tensor
(9), these amount, respectively, to the conditions

 � � 0; �� pr � 0; �� p� � 0; (11)

 jprj 	 �; jp�j 	 �: (12)

Now with the above metric (8), the following quantities
can be evaluated:

 R;aR;a � � _R2e�2� � R02e�2 ; (13)

 �R��e�2�� �R� _R�� _�� _ ��� e�2 �R00 �R0��0 � 0��;

(14)

and

 R;ab �
�

�R� _� _R�
e2��0R0

e2 

�
�0
a�

0
b �

�
R00 �  0R0

�
e2 _ _R

e2�

�
�1
a�

1
b �Qab; (15)

where we have

 Q ab � � _R0 � �0 _R� _ R0���0
a�1

b � �
1
a�

0
b�: (16)

Using these quantities the Einstein equations Gik � Tik
take the form (in the units 8�G � c � 1),

 � �
�N � 2�F0

2RN�2R0
; pr � �

�N � 2� _F

2RN�2 _R
; (17)

 �0 �
�N � 2��p� � pr�

�� pr

R0

R
�

p0r
�� pr

; (18)

 � 2 _R0 � R0
_G
G
� _R

H0

H
� 0; (19)

 G�H � 1�
F

RN�3 ; (20)

where we have defined

 G�t; r� � e�2 �R0�2; H�t; r� � e�2�� _R�2: (21)

The function F � F�t; r� is known as the Misner Sharp
mass, which gives the total mass in a shell of comoving
radius r, at an epoch t. The energy condition � � 0 implies
F � 0 and F0 � 0. Since the area radius vanishes at the
center of the cloud, from Eq. (17) it is evident that in order
to preserve the regularity of density and pressures at any
nonsingular epoch t, we must have F�t; 0� � 0, that is the
mass function should vanish at the center of the cloud.

As seen from Eq. (17), there is a density singularity in
the space-time at R � 0, and at R0 � 0. However, the later
ones are due to shell crossings [30], which basically in-
dicates the breakdown of the coordinate system we have
used. These are not generally regarded as genuine singu-
larities, which can be possibly removed from the space-
time to extend the manifold through the same [31]. Hence
we shall consider here only the shell-focusing singularity
at R � 0, which is a genuine physical singularity where all
matter shells collapse to a zero physical radius. We shall
discuss this in some more detail in the next section.

We note that, in general, for a general matter field with
nonvanishing pressures as we consider here, there are a
variety of dynamical time evolutions possible from the
given matter density and pressure profiles as prescribed
on an initial surface (which we call here matter initial
data), from which the collapse evolves. In particular,
even if the cloud commences gravitational collapse at the
initial surface t � ti, there can be classes of solutions of
Einstein equations where the evolution is such that a
bounce is possible at a later stage for the cloud. We con-
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sider here only a continually collapsing class of models,
because our interest is in the physical situation which
corresponds to the case when the mass of the star is so
high that on exhausting its nuclear fuel, it must undergo a
continual gravitational collapse, completing the same in a
finite time. Thus the continual collapse condition is in-
cluded as a part of our work here. In this case, trapped
surfaces develop and a space-time singularity necessarily
forms as collapse end state and we need to find the con-
ditions when the final singularity is necessarily covered
within an event horizon (as hypothesized by the cosmic
censorship), or when it will be naked with strong gravity
regions being visible to faraway observers. In the case of a
bounce or dispersal, no singularity of course needs to form
in the space-time, a situation with which we do not concern
ourselves here.

We can use the scaling freedom available for the radial
coordinate r to write R � r at the initial epoch t � ti. It is
interesting to note that, if we had wished to scale the radial
coordinate at the initial epoch as R�ti; r� � r�,� being any
constant, then the only possible allowed value for � is
unity. Because in the case otherwise, either R0 would blow
up at the center (which is not allowed as the Einstein’s
equations would require the metric functions to be at least
C2), or R0 would go to zero at the center causing a shell-
crossing singularity (which we would like to avoid, by
construction), which violates the regularity of the initial
data.

We now introduce a function v�t; r� as defined by

 v�t; r� 
 R=r: (22)

We then have R�t; r� � rv�t; r�, and

 v�ti; r� � 1; v�ts�r�; r� � 0; _v < 0: (23)

The time t � ts�r�, that is v � 0, corresponds to the shell-
focusing singularity at R � 0, which is a genuine space-
time singularity where all the matter shells collapse to a
vanishing physical radius. The condition _v < 0 here cor-
responds to a continual collapse of the cloud. The descrip-
tion of shell-focusing singularity at R � 0 in terms of the
function v�t; r� has several advantages. The physical radius
goes to the zero value at the shell-focusing singularity, but
we also have R � 0 at the regular center of the cloud at
r � 0. This is to be distinguished from the genuine singu-
larity at the collapse end state by the fact, for example, that
the density and other physical quantities including the
curvature scalars all remain finite at the regular center r �
0, even though R � 0 holds there. This is achieved, as we
point out below, by a suitable behavior of the mass func-
tion, which should go to a vanishing value sufficiently fast
in the limit of approach to the regular center where (even
though R goes to zero) the density must remain finite. On
the other hand, when we use the function v�t; r�, we note
that at t � ti we have v � 1 on the entire initial surface,
and then as the collapse evolves, the function v continu-

ously decreases to become zero only at the singularity
ts�r�, that is, v � 0 uniquely corresponds to the genuine
space-time singularity at R � 0.

From the point of view of dynamic evolution of the
initial data prescribed at the initial epoch t � ti, there are
five arbitrary functions of the comoving shell-radius r [26],
as given by

 ��ti; r� � �0�r�;  �ti; r� � 0�r�; R�ti; r� � r;

��ti; r� � �0�r�; pr�ti; r� � pr0
�r�; p��ti; r� � p�0

�r�:

(24)

We note that not all the initial data above are mutually
independent, because from Eq. (18) we get,

 �0�r� �
Z r

0

�
�N � 2��p�0

� pr0
�

r��0 � pr0
�

�
p0r0

�0 � pr0

�
dr: (25)

Thus, apart from the matter initial data describing the
initial density and pressure profiles, the rest of the initial
data which is free is  0�r�, which essentially describes the
velocities of the collapsing matter shells as we shall discuss
later.

To ensure regularity of the initial data, the initial pres-
sures must be taken to have physically reasonable behavior
at the center. Considering that the total force at the center
of the collapsing cloud should be zero, we have the gra-
dients of initial pressures vanishing at the center. Also,
regularity of the initial data requires that we must have,
pr0
�0� � p�0

�0� � 0, that is, at the center the difference
between the radial and tangential pressure vanishes. The
metric functions have to beC2 differentiable everywhere as
per the requirements of the Einstein equations, and as seen
from the equation for �0, the above condition is implied by
the requirement that �0 does not blow at the regular center.
This means that the matter should behave like a perfect
fluid at the center of the cloud with the net force vanishing
there. We note that these regularity conditions do not
exclude the purely tangential pressure (pr � 0) or purely
radial pressure collapse models (p� � 0) which we shall
refer to later, because in those cases the above implies that
p� ! 0 or pr ! 0, respectively, close to the center, where
the matter then closely approximates dust. We note that
these regularity conditions give us a sufficient condition for
the regularity of the metric function �0�r� at any nonsin-
gular initial epoch. It follows from Eq. (25) that at the
center of the cloud both �0 and �00 go to zero. Hence �0�r�
has the form

 �0�r� � r2g�r�; (26)

where, g�r� is an arbitrary function which is at least C1 for
r � 0, and it is at least a C2 function for r > 0, as Einstein
equations demand the metric functions to be at least C2

everywhere. Another regularity condition frequently used
in collapse considerations is that there are no trapped
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surfaces at the initial surface from which the collapse
begins.

We thus see that there are five total field equations with
seven unknowns, �, pr, p�,  , �, R, and F, giving us the
freedom of choice of two free functions. Selection of these
free functions, subject to the weak energy condition and the
given regular initial data for collapse at the initial surface,
determines the matter distribution and metric of the space-
time, and thus leads to a particular time evolution of the
initial matter and velocity distributions. As we shall show,
it turns out that given the matter initial profiles in terms of
�0, pr0

, and p�0
, there exist the rest of the initial data at

t � ti, and classes of solutions, which we find by means of
explicit construction, which give either a black hole or a
naked singularity as the end state of collapse. The outcome
depends on the nature of rest of the initial functions, and
the classes of dynamical evolutions as allowed by the
Einstein equations.

An important point to be noted here is that in the
description above we have made no mention so far of the
equation of state that the matter must obey. Typically, these
are of the form pr � pr��� and p� � p����. If these are
specified, then there is no freedom left, and we have seven
equations for seven variables. If we are to incorporate this
right away, the only way to proceed to find the collapse end
state would be to assume a specific equation of state that
the matter must satisfy, and then to examine the collapse
problem and the nature of the final singularity as resulting
from the dynamical evolution as governed by the Einstein
equations. There have been many collapse studies in the
past using such an approach, e.g. for dust equation of state,
perfect fluids, etc. The limitation of such an approach,
however, has been that there is very little existing knowl-
edge on what a realistic equation of state should be that the
matter has to satisfy at the extreme high densities that a
continual collapse realizes in its advanced stages. For
example, even for neutron star densities which are rela-
tively low as compared to those of continual collapse, there
is a great deal of uncertainty on the equation of state for
such neutron matter. As a result, the neutron star mass
limits are uncertain to that extent. Thus, specific or special
assumptions used on the equation of state may turn out to
be physically unrealistic or restrictive and untenable in the
final stages of collapse. In fact, diametrically opposite
views exist on the possible equation of state in very late
stages of collapse. For example, while there are many
arguments suggesting that pressures must play an impor-
tant role in the later stages of collapse, the opposite view is
that in such late stages the matter must necessarily be
dustlike (see e.g. [32,33]).

Under the situation, the path we take here is that we do
not assume any specific or particular equation of state
presently, and carry out our further considerations in a
general way in terms of the allowed initial matter profiles,
and the allowed dynamical evolutions of the Einstein

equations, to determine the black hole and naked singular-
ity end states for collapse. We then discuss subsequently, in
Sec. V, the role that the equation of state will play towards
further fine tuning the BH/NS outcomes as collapse end
states. The advantage such an approach has is, first we
write all the collapse equations in generality, and then only
different subcases can be examined depending on the
corresponding equation of state under consideration. As
we shall show, various important subcases such as dust,
perfect fluids, and others can be included as special cases
of the treatment given here.

In this paper our basic strategy is as described below. We
actually do not choose any explicit form of F�t; r�; it is
allowed to be a completely general class, subject to regu-
larity conditions. Until Sec. V, we do not make any special
choices of the two free functions, that we refer to, but deal
with and construct certain general classes, as determined
by the differentiability conditions on the concerned func-
tions [e.g. as specified by the Eq. (45) onwards] so that
basically the singularity curve (which is defined as the time
taken for a shell labeled ‘‘r’’ to reach the singularuty) is
expandable up to at least first order, i.e. the singularity
curve is regular enough so as to have a well-defined
tangent, for these classes of evolutions. Then we show
that these classes contain both BH and NS final states, as
decided by the sign of the tangent of singularity curve.

In other words, given the matter initial data, we con-
struct the rest of the functions so that in the continual
collapse ( _R< 0), the final singularity curve is regular
(expandable) as above with a well-defined tangent. With
that we then show, when the final singularity is visible, or
covered in a black hole. The key point is, once we have the
matter initial data, we show the existence of classes of the
rest of the initial data and evolutions which are solutions to
the Einstein equations, by explicit construction as specified
here, so that the final state is either a BH or NS depending
on the choice made of the rest of the initial data and
evolutions. This is subject to energy conditions and other
regularity conditions. We are of course not dealing with all
possible classes of evolutions from the given matter initial
data, which is not our purpose, but we just show the
existence of the classes that lead the collapse to above final
states.

For a given matter initial data, once we have chosen the
rest of the initial data, and the evolutions as solutions to the
Einstein equations, that clearly fixes the equation of state
for the matter. That can be quite ‘‘exotic’’ at times, depend-
ing on the choices made. However, as shown explicitly in
Sec. V, the construction given here does include well-
known equations of state, such as dust, perfect fluids, etc.

III. GRAVITATIONAL COLLAPSE OF MATTER
CLOUDS

The method we follow is outlined as below. In the case
of a black hole developing as collapse end state, the space-
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time singularity is necessarily hidden behind the event
horizon of gravity, whereas in the case of a naked singu-
larity developing there are families of future-directed non-
spacelike trajectories which terminate in the past at the
singularity, which can in principle communicate informa-
tion to faraway observers in the space-time. The existence
of such families confirms the NS formation, as opposed to
a BH collapse end state. We study the singularity curve
produced by the collapsing matter, and it is shown that the
tangent to the same at the central singularity at r � 0 is
related to the radially outgoing null geodesics from the
singularity, if there are any. By determining the nature of
the singularity curve and its relation to the initial data and
the classes of collapse evolutions, we are able to deduce
whether the trapped surface formation in collapse takes
place before or after the singularity. It is this causal struc-
ture of the trapped region forming during collapse that
determines the possible emergence or otherwise of non-
spacelike curves from the singularity. This settles the final
outcome of collapse in terms of either a BH or NS.

Given the matter initial profiles in terms of the functions
�0�r�, pro�r�, p�0�r� at the initial epoch t � ti from which
the collapse commences, our purpose now is to construct
and examine possible evolutions (classes of solutions to
Einstein equations) of such a matter cloud to investigate its
final states.

While constructing the classes of solutions which give
the collapse evolutions, given the matter initial data at t �
ti, we preserve as much generality as possible. Hence we
allow the mass function F�t; r� for the collapsing cloud to
have a general form as given by

 F�t; r� � rN�1M�r; v�; (27)

where M> 0 is at least a C1 function of ‘‘r’’ for r � 0,
and at least a C2 function for r > 0.

It is to be noted that F must have this general form that
follows from the regularity and finiteness of the density
profile at the initial epoch t � ti, and at all other later
regular epochs before the cloud collapses to the final
singularity at R � 0. This requires, from the Einstein
equation (17), that F must behave as r�N�1� close to the
regular center. Hence we note that since M is a general (at
least C2) function, the Eq. (27) is not really any ansatz or a
special choice, but quite a generic class of the mass profiles
for the collapsing cloud, consistent with and allowed by the
regularity conditions. We thus make no special choice of F
but allow it to be a general function as given by the above
equation. Then Eq. (17) gives

 ��r; v� �
N � 2

2

�
�N � 1�M� r�M;r �M;vv0�

vN�2�v� rv0�

�
(28)

and

 pr�r; v� � �
�N � 2�

2

�
M;v

vN�2

�
: (29)

The regular density distribution at the initial epoch is given
by

 �0�r� �
N � 2

2
��N � 1�M�r; 1� � rM�r; 1�;r�: (30)

It is evident that, in general, as v! 0, �! 1, and pr !
1. That is, both the density and radial pressure blow up at
the shell-focusing singularity.

It is seen that given any regular initial density and
pressure profiles for the matter cloud from which the
collapse develops, there always exist energy profiles or
velocity functions for the collapsing matter shells, and
classes of dynamical evolutions as determined by the
Einstein equations, so that the collapse end state would
be either a naked singularity or a black hole, depending on
nature of the allowed choice. Thus, given the matter initial
data at the initial surface t � ti, these evolutions take the
collapse to end either as a BH or NS depending on the
choice of the class, subject to regularity and energy
conditions.

To see this, we need to construct classes of solutions to
Einstein equations to this effect. Let us define a suitably
differentiable function A�r; v� as follows:

 �0�r; v� � A�r; v�;vR0: (31)

That is, A�r; v�;v 
 �0=R0, and since at t � ti we have R �
r which gives �A�r; v�;v�v�1 � �00�r�. Our main interest
here is in studying the shell-focusing singularity at R � 0
which is the physical singularity where all the matter shells
collapse to zero radius. Therefore we assume that there are
no shell-crossing singularities in the space-time where
R0 � 0, and that the function A�r; v� is well defined.
From Eq. (26), we generalize and choose the form of
��t; r� as the class given by

 ��t; r� � r2g1�r; v�; (32)

where g1�r; v� is a suitably differentiable function and
g1�r; 1� � g�r�. It then follows that A�r; v� has the form

 A�r; v� � rg2�r; v�: (33)

From the regularity conditions and that the total force at
the center of the collapsing cloud should be zero at any
nonsingular epoch, it is evident that both g1�r; v� and
g2�r; v� should be well defined at r � 0 and v � 0. In
fact in some of the models discussed in Sec. V, these
functions are well behaved even at the singularity. In
general, it is possible that these functions may in fact
blow up at the singularity in some cases. But, as we prove
later, even if these functions do blow up, the singularity
curve can still be well defined and expandable.

Some comments are in order on our assumption that
R0 > 0, that is, we have considered here the situation with
no shell-crossing singularities. This is because, it is gen-
erally believed (see e.g. [30,31]) that such singularities can
be possibly removed from the space-time as they are
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typically gravitationally weak, and because space-time
extensions have been constructed through the same in
certain cases [34]. In contrast, in several physically rea-
sonable collapse models including dust and perfect fluids
R � 0 turns out to be a gravitationally strong curvature
singularity. Under the situation, we are interested only in
examining the nature of the shell-focusing singularities at
R � 0, which are genuine curvature singularities arising at
the termination of collapse, where the physical radii for all
collapsing shells vanish, and the space-time necessarily
terminates without extension.

Specifically, R0 > 0 implies that we must have v�
rv0 > 0. Since v is necessarily positive throughout the
collapse, it follows that this will be satisfied always when-
ever v0 is greater than or equal to zero. Even when it is
negative, the condition that the magnitude of rv0 should be
less than that of v is sufficient to ensure that there will be
no shell crosses. Later in this section we derive an expres-
sion for the quantity v0, in terms of the initial data and the
other free evolutions as allowed by the Einstein equations.
Hence it follows that we can specifically state the condition
for avoidance of shell crossings in terms of the behavior of
these functions.

Coming to the dynamical collapse evolutions, using
Eq. (31) in Eq. (19) we get, as a class of solutions of
Einstein’s equations,

 G�r; v� � b�r�e2rA�r;v�: (34)

Here b�r� is another arbitrary function of the shell radius r.
By the regularity condition on the function _v at the center
of the cloud we get the form of b�r� as

 b�r� � 1� r2b0�r�; (35)

where b0�r� is the energy distribution function for the
shells. Using Eq. (31) in Eq. (18), we get,

 �N � 2�p� � RA;v��� pr� � �N � 2�pr �
Rp0r
R0

: (36)

In general, both the density and radial pressure blow up at
the singularity, so the above equation implies that the
tangential pressure would also typically blow up at the
singularity. Now using Eqs. (27), (31), and (34) in
Eq. (20), we get

 R�N�3�=2 _R � �e��r;v�
�����������������������������������������������������������������������������������������������
�1� r2b0�R

�N�3�e2rA�r;v� � R�N�3� � r�N�1�M
q

: (37)

The negative sign in the right-hand side of the above
equation corresponds to a collapse scenario where we
have _R< 0. Defining a function h�r; v� as

 h�r; v� �
e2rA�r;v� � 1

r2 � 2g2�r; v� �O�r2�; (38)

Eq. (20) becomes

 v�N�3�=2 _v � �
���������������������������������������������������������������������������
e�rA���v�N�3�b0 � e

2��v�N�3�h�M
q

�:

(39)

Integrating the above equation with respect to v, we get

 t�v; r� �
Z 1

v

v�N�3�=2 dv���������������������������������������������������������������������������
e�rA���v�N�3�b0 � e2��v�N�3�h�M

q
�

:

(40)

Note that the variable r is treated as a constant in the above
equation. The above equation gives the time taken for a
shell labeled r to reach a particular epoch v from the initial
epoch v � 1. Expanding t�v; r� around the center of the
cloud, we get

 t�v; r� � t�v; 0� � rX�v� �O�r2�; (41)

where the function X�v� is given as

 

X�v� � �
1

2

Z 1

v
dv

�
v�N�3�=2�v�N�3�b1� h1v

�N�3� �M1�v��

�v�N�3�b00� v�N�3�h0�M0�v��3=2
; (42)

wherein we have defined

 b00 � b0�0�; M0�v� �M�0; v�; h0 � h�0; v�

b1 � b
0
0�0�; M1�v� �M;r�0; v�; h1 � h;r�0; v�:

(43)

Hence we see that the time taken for a shell labeled r to
reach the space-time singularity at R � 0 (which is the
singularity curve) is given as

 ts�r� �
Z 1

0

v�N�3�=2 dv�����������������������������������������������������������������������������
e�rA���v�N�3�b0 � e2��v�N�3�h�M�

q :

(44)

As we want to consider here continual collapse, we
focus only on those classes of solutions where ts�r� is finite
and sufficiently regular. This means that the cloud collap-
ses in a finite amount of time. In the physical situation of a
continual collapse of a massive matter cloud in a finite
amount of time the function ts�r� has to be of course finite.
As for regularity, to check the existence conditions for a
well-defined, continuous, and C2 singularity curve, let us
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define a function Q�r; v� as

 Q�r; v� �
v�N�3�=2�����������������������������������������������������������������������������

e�rA���v�N�3�b0 � e
2��v�N�3�h�M�

q : (45)

Also we consider the following functions:

 �1�r� �
Z 1

0
Q�r; v�;r dv; �2�r� �

Z 1

0
Q�r; v�;rr dv:

(46)

Let A be the rectangular area in the �r; v� plane defined by
the lines

 r � 0; r � �; v � 0; v � 1: (47)

Now if the following conditions are satisfied [35],
(1) Q�r; v� is a continuous function of r and v in A.
(2) Q�r; v�;r andQ�r; v�;rr are continuous functions of r

and v in A.
(3) The integrals �1�r� and �2�r� converge uniformly

in A. Then we can write

 �1�r� �
d
dr
�ts�r��; �2�r� �

d2

dr2 �ts�r��; (48)

and this implies that the singularity curve ts�r�
would be a well-defined C2 function near the center.

We would like to emphasize here that regularity of
different functions that makes Q�r; v�, namely �, A, and
M, is a sufficient but by no means necessary condition for
the existence of a C2 singularity curve. As we can easily
see, even if these functions blow up at r � 0, v � 0, the
function Q may still be well defined. For example, if we
suppose these functions tend to infinity at the singularity
the function Q would tend to zero. For any regular col-
lapse, the function ts�r� has to be finite and well defined.

Several well-studied collapse models such as dust col-
lapse and others satisfy these or stronger conditions, and so
the singularity curve is well defined and expandable. Some
examples of such singularity curves are as follows. In the
case of an N-dimensional dust collapse, the expression of
the singularity curve would be [36],

 ts�r�dust �
Z 1

0

v�N�3�=2 dv������������������������������������������
M�r� � v�N�3�b0�r�

q ; (49)

where M�r� and b0�r� are well-defined C2 functions of the
comoving coordinate r and well defined at r � 0. It can
then be easily seen that the singularity curve is differen-
tiable at the center, with

 

dts�r�
dr

� �
1

2

Z 1

0

v�N�3�=2�M1 � v�N�3�b1� dv

�M0 � v
�N�3�b00�

3=2
; (50)

where we have defined

 b00 � b0�0�; M0 �M�0�;

b1 � b0�0�; M1 �M0�0�:
(51)

Another such example is an N-dimensional Einstein
cluster, which describes a nonsteady spherically symmet-
rical system of noncolliding particles moving in such a way
that relative to a suitably moving frame of coordinates,
their motion is purely transversal. In this case, the singu-
larity curve is given by [37]

 ts�r�Ec�
Z 1

0

v�N�3�=2
�������������������
v2�L�r�2

r2

q
dv

e�
����������������������������������������������������������������������������������
b0v

N�1��L�r�
2

r4 �vN�3�M�r��v2�L�r�2

r2 �
q :

(52)

Here L�r� is a function of the radial coordinate r only. In
the Newtonian limit, this function corresponds to the an-
gular momentum per unit mass of the system. Therefore
the function L�r� is called as the specific angular momen-
tum, and has the form

 L�r� 
 r2l�r�: (53)

Again, since M�r� and b0�r� and L�r� are well defined C2

functions of the coordinate r, we see that the above singu-
larity curve is well defined and differentiable at r � 0.

To generalize this and to give another explicit example,
it can be shown that given any initial data of the form (24),
there always exist classes of dynamical evolutions, which
give rise to a well-defined and differentiable singularity
curve. Let us, by the freedom of choice of free functions,
choose the evolution functions M�r; v� and A�r; v� in the
following way:

 M �r; v� � m�r� � pr�r�v
N�1;

A�r; v�;v � �0�x�;x; x � rv:
(54)

From Einstein equations it is clear that for the above class
of evolutions the radial pressure remains static. However,
the tangential pressure blows up along with the density at
the singularity v � 0 and is given by

 2p��r; v� � pr � p
0
r�R=R

0� � �0�rv�;R���r; v� � pr�:

(55)

One can now easily check that the above class of evolutions
admits a well-defined and differentiable singularity curve
because both the functions M�r; v� and A�r; v� are well
defined and C2 at r � 0 and v � 0.

Once we have a singularity curve which is at least C2, we
can Taylor expand the function near the center as

 ts�r� � ts0
� rX�0� �O�r2�; (56)

where ts0
is the time when the central singularity at R � 0,

r � 0, develops, and is given as
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 ts0
�
Z 1

0

v�N�3�=2 dv������������������������������������������������������������������
v�N�3�b00 � v�N�3�h0 �M0�v�

q : (57)

From the above equation it is clear that for ts0
to be defined,

 v�N�3�b00 � v
�N�3�h0 �M0�v�> 0: (58)

In other words, a continual collapse in finite time ensures
that the above condition holds. Also, from Eqs. (39) and
(41) we get for small values of r, along constant v surfaces,
 

v�N�3�=2v0 �
���������������������������������������������������������������������
�v�N�3�b00 � v

�N�3�h0 �M0�v��
q

X�v�

�O�r� (59)

It is now clear that the value of X�0� depends on the
functions b0, M, and h, which in turn depend on the initial
data at t � ti, the dynamical variable v, and the evolution
function A�r; v�. Thus, a given set of initial matter distri-
butions and the dynamical profiles including the energy
distribution of shells completely determine the tangent at
the center to the singularity curve.

IV. APPARENT HORIZON AND THE NATURE OF
THE SINGULARITY

It is now possible to examine, given the matter initial
data at the initial surface t � ti, how the final fate of
collapse is determined in terms of either a black hole or a
naked singularity. If there are families of future-directed
nonspacelike trajectories reaching faraway observers in
space-time, which terminate in the past at the singularity,
then we have a naked singularity forming as the collapse
final state and in the case otherwise when no such families
exist and event horizon forms sufficiently earlier than the
singularity to cover it, we have a black hole. This is
decided by the causal behavior of the trapped surfaces
developing in the space-time during the collapse evolution,
and the apparent horizon, which is the boundary of trapped
surface region in the space-time.

In general, the equation of apparent horizon in a spheri-
cally symmetric space-time is given as

 gikR;iR;k � 0: (60)

Thus we see that at the boundary of the trapped region the
vector R;i is null. Substituting (8) into (60) we get,

 R02e�2 � _R2e�2� � 0: (61)

Using Eq. (20) we can now write the equation of apparent
horizon as

 

F

RN�3
� 1; (62)

which gives the boundary of the trapped surface region of
the space-time. If the neighborhood of the center gets
trapped prior to the epoch of singularity, then it is covered

and a black hole results, otherwise it could be naked when
nonspacelike future-directed trajectories escape from it.

Thus the important point is to determine if there are any
future-directed nonspacelike paths emerging from the sin-
gularity. To investigate this, and to examine the nature of
the central singularity at R � 0, r � 0, let us consider the
equation for outgoing radial null geodesics which is given
by

 

dt
dr
� e ��: (63)

We want to examine if there would be any families of
future-directed null geodesics coming out of the singular-
ity, thus causing a naked singularity phase as collapse end
state. The singularity occurs at v�ts�r�; r� � 0, i.e.
R�ts�r�; r� � 0. Therefore, if there are any future-directed
null geodesics terminating in the past at the singularity, we
must have R! 0 as t! ts along these curves. Now writ-
ing Eq. (63) in terms of variables (u � r	, R), we have

 

dR
du
�

1

	
r��	�1�R0

�
1�

_R
R0
e ��

�
: (64)

In order to get the expression of the tangent to null geo-
desics emerging in the �R; u� plane, we choose a particular
value of 	 such that the geodesic equation is expressed
only in terms of known limits. For example, if X�0� � 0,
and the functions M and h are well defined for 0 	 r 	 rb
and 0 	 v 	 1 we choose 	 � N�1

N�1 . Using Eq. (20) and
considering _R< 0, we then get the null geodesic equation
in the form

 

dR
du
�
N � 1

N � 1

�
R
u
�
v0v�N�3�=2

�Ru�
�N�3�=2

�� 1� F
RN�3����

G
p
�
����
G
p
�

�����
H
p
�

�
: (65)

If the null geodesics do terminate at the singularity in the
past with a definite tangent, then at the singularity the
tangent to the geodesics have dR

du > 0 in the �u; R� plane,
and must have a finite value. In the case of a massive
singularity in dimensions greater than or equal to four
[i.e. F�ts�r�; r�> 0 for r � 0], all singularities for r > 0
are covered since F

RN�3 ! 1 and hence dR
du ! �1. This is

when both the pressures pr and p� are positive with the
energy condition being satisfied. Therefore in such a case
only the central singularity at R � 0, r � 0 could be
naked.

Hence we need to examine the central singularity at r �
0, R � 0 to determine if it is visible or not and to determine
if there are any solutions existing to the outgoing null
geodesics equation, which terminate in the past at the
singularity, going to faraway observers in future. The con-
ditions are to be determined under which this can happen.
We also note that, since the singularity curve and the
evolution functions are regular, we can calculate the limit
of the functions H, G, and F=R at r! 0, t! ts0

. From
Eq. (34), as A�r; v� is a well-defined function, we can see
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that G�ts0
; 0� � 1. Also from Eq. (39) we see that at this

point H � r2=vN�3. Calculating this limit on the t � ts0

plane from Eq. (59), at the point �ts0
; 0�, we have H � 0.

Hence we see from Eq. (20) that F=RN�3 � 0 in this limit.
Let now x0 be the tangent to the outgoing null geodesics

in the �R; u� plane, at the central singularity, then it is given
by

 x0 � lim
t!ts

lim
r!0

R
u
�
dR
du

��������t!ts;r!0
: (66)

To find out whether the null geodesic equation admits any
solution of x0 which is positive and finite at the central
singularity, we can use the values of H, G, and F=R at
�ts0
; 0� in Eq. (65). Also we use Eq. (59) to get the value of

v0v�N�3�=2, on v � 0 surface at r � 0 [that is, on the point
�ts0
; 0�]. Thus solving Eq. (65), we get

 x�N�1�=2
0 �

N � 1

2

���������������
M0�0�

q
X�0� (67)

and the equation of radial null geodesic emerging from the
singularity is given by R � x0u in the �R; u� plane, or in
�t; r� coordinates it is given by

 t� ts�0� � x0r�N�1�=�N�1�: (68)

It follows now that if X�0�> 0, then x0 > 0, and we get
radially outgoing null geodesics coming out from the
singularity, giving rise to a naked central singularity.
However, if X�0�< 0 we have a black hole solution, as
there will be no such trajectories coming out. If X�0� � 0
then we will have to take into account the next higher order
nonzero term in the singularity curve equation, and a
similar analysis has to be carried out by choosing a differ-
ent value of 	.

To show that the above is a necessary as well as suffi-
cient condition for an outgoing radial null geodesic emerg-
ing form the singularity to exist, let us assume that such
geodesics do exist and in the �R; u� plane, its equation is
R � x0u and x0 > 0. Then at the central singularity (R �
0, u � 0), the tangent to such geodesic must be x0. Also
this tangent must be the root of the equation,

 

dR
du
�
N � 1

N � 1

�
R
u
�
v0v�N�3�=2

�Ru�
�N�3�=2

�� 1� F
RN�3����

G
p
�
����
G
p
�

�����
H
p
�

�
� 0

(69)

at the point (R � 0, u � 0). This is possible if and only if

 x0 �

�
N � 1

2

���������������
M0�0�

q
X�0�

�
�N�1�=2

(70)

and for the slope to be defined and positive we must have
X�0� � 0.

Now to see that X�0�> 0 is a sufficient condition for the
existence of an outgoing radial null geodesic emerging
from the singularity, let us consider the case that the
singularity curve has a positive tangent at the central

singularity. Consider now the curve

 t� ts�0� �
�
N � 1

2

���������������
M0�0�

q
X�0�

�
�N�1�=2

r�N�1�=�N�1�:

(71)

Along this curve t! ts0
as r! 0. And as we have X�0�>

0, this curve is outgoing in the sense that t increases as we
increase r along the curve. Let us now calculate the quan-
tity (� gttdt2 � grrdr2) along this curve in the vicinity of
the central singularity. Using (34), (39), and (59), we have
for this curve at the point �ts0

; 0�,
 

�e2�dt2�e�2rAR02dr2�
N�1

N�1

�
N�1

2

���������������
M0�0�

q
X�0�

�
N�1

�r2=�N�1���dr2�dr2��0:

(72)

That is, in the vicinity of the central singularity the curve
(71) is null. Thus we see that given any positive value of the
tangent to the singularity curve at the central singularity,
we can always find a null and outgoing curve terminating
in the past at the central singularity, making the singularity
naked.

We make below some remarks on the nature of the
apparent horizon and its relation with the visibility or
otherwise of the singularity. To find the equation of appar-
ent horizon near the central singularity, let the time corre-
sponding to a shell labeled by r entering the apparent
horizon, in term of the variable v, be vah�r�. Then from
Eq. (62), we can easily see that vah�r� is the root of the
equation,

 r2M�r; v� � v�N�3� � 0: (73)

Now using Eq. (40), we get the equation for apparent
horizon in the �t; r� plane as

 tah�r� � ts�r�

�
Z vah�r�

0

v�N�3�=2 dv����������������������������������������������������������������������������
e�rA���v�N�3�b0� e

2��v�N�3�h�M�
q :

(74)

It is obvious that the necessary condition for the existence
of a locally naked singularity is that the apparent horizon
curve must be an increasing function at the central singu-
larity, in the lowest power of r.

We note that in the above the functions h and M are
expanded with respect to r around r � 0 and the first-order
terms are considered. At times, however, these are assumed
to be expandable with respect to r2, and it is argued that
such smooth functions would be physically more relevant.
Such an assumption comes from the analyticity with re-
spect to the local Minkowskian coordinates (see e.g. [38]),
and it is really the freedom of definition mathematically.
We may remark that the formalism as discussed above
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would work for such smooth functions also, which is a
special case of the above discussion.

We thus see how the initial data in terms of the free
functions available determine the BH/NS phases as col-
lapse end states, because X�0� is determined by these
initial and dynamical profiles as given by Eq. (42). It is
clear, therefore, that given any regular initial density and
pressure profiles for the matter cloud from which the
collapse develops, we can always choose velocity profiles
so that the end state of the collapse would be either a naked
singularity or a black hole, and vice versa.

We believe numerical work on collapse models may
provide further insights into these interesting dynamical
phenomena, and especially when collapse is nonspherical,
which remains a major open problem to be considered
[39–51]. Numerical and some analytical works have
been done in recent years on spherical scalar field collapse
[52–60] and also on some perfect fluid models [61–69].
While we have worked out explicitly here the emergence of
null geodesics from the singularity, thus showing it to be
naked (or otherwise) in an analytic manner, the numerical
simulations generally discuss the formation or otherwise of
trapped surfaces and apparent horizon, and such consider-
ations may possibly break down closer to the epoch of
actual singularity formation. In that case, this may not
allow for actual detection of BH/NS end states, whereas
important insights on critical phenomena and dispersal
have already been gained through numerical methods.
Probably, a detailed numerical investigation of the struc-
ture of null geodesics in collapse models may provide
further insights here.

V. EQUATION OF STATE AND ENERGY
CONDITIONS

As stated above, we work here with type I matter fields,
which is a rather general form of matter. However, it is
important to note that suitable care must be taken in
interpreting these results. While we have shown that the
initial data and dynamical evolutions chosen do determine
the BH/NS end states for collapse, the point is, actually, all
these dynamical variables are not explicitly determined by
the initial data given at the initial epoch (note that v plays
the role of a time coordinate here). Hence these functions
are fully determined only as a result of time development
of the system from the initial data provided we have the
relation between the density and pressures, that is a given
‘‘equation of state.’’

In principle, it is possible to choose these functions
freely [e.g. the matter and velocity profiles at the initial
epoch and the dynamical evolutions such as F�v; r� and
��v; r�], only subject to an energy condition and regularity,
which then fully determines the collapse evolution. One
can then calculate the energy density, and the radial and
tangential pressures for the matter. However, in that case,
the resultant ‘‘equation of state’’ could be quite strange in

general. If any equation of state of the form pr � f��� and/
or p� � g��� is given, then it is clear from Eqs. (17) and
(18) that there would be a constraint on the otherwise
arbitrary function M and A, specifying the required class,
if the solution of the constraint equation exists. It is cer-
tainly true that presently we have practically very little idea
on what kind of an equation of state the matter should
follow, especially at very high densities and closer to the
collapse end states, where we are already dealing with
ultrahigh energies and pressures. Hence if we allow for
the possibility that we could freely choose the property of
the matter fields as above, or the equation of state, then our
analysis is certainly valid and gives several useful conclu-
sions on possible collapse end states. In such a case, it is
also possible that the chosen equation of state will be in
general such that the pressures may explicitly depend not
only on the energy density, but also on the time coordinate.

All the same, it is important to point out that the analysis
as given above in fact does include several well-known
equations of state and useful classes of collapse models,
also satisfying the energy conditions throughout the col-
lapse, as we demonstrate below.

A. Dust collapse

The idealized class of dust collapse models where the
pressures are taken to be vanishing has been studied ex-
tensively so far and has yielded many important insights on
collapse evolutions. In this special case, the Einstein equa-
tions can be solved completely to get the N-dimensional
generalization of the usual Tolman-Bondi-Lemaitre (TBL)
dust collapse metric [70–72] and it is given as

 ds2 � dt2 �
R02

1� r2b0�r�
dr2 � R2�t; r�d�2

N�2: (75)

The equations of motion are given by

 

�N � 2�F0

2R�N�3�R0
� � (76)

and

 

_R 2 �
F�r�

R�N�3�
� f�r�: (77)

In the case of dust, the mass function must be F � F�r�,
and hence the regularity condition implies that

 F�r� � r�N�1�M�r�: (78)

The energy condition here gives 0< r< rb, and so we
must have M�r� � 0 and 3M� rMr � 0. In this case, as
we have already seen in Sec. III, the function X�v� is given
as

 X �v� � �
1

2

Z 1

v

v�N�3�=2�M1 � v�N�3�b1� dv

�M0 � v
�N�3�b00�

3=2
; (79)

and the time taken for the central shell to reach the singu-
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larity is given by

 ts0
�
Z 1

0

v�N�3�=2 dv�����������������������������������
M0 � v

�N�3�b00

q : (80)

It is now seen clearly that any given sets of density and
velocity profiles at the initial epoch completely determine
the tangent to the singularity curve at the central singular-
ity. Also Eq. (67) becomes

 x�N�1�=2
0 �

N � 1

2

���������
M0

p
X�0�: (81)

It therefore follows that, given any specific density
profile of the collapsing dust cloud, we can always choose
a velocity profile so that the end state of the collapse would
be either a naked singularity or a black hole depending on
the choice made, such that energy conditions are satisfied
throughout the collapse. The converse also holds, namely,
one can choose a given velocity profile for the cloud at the
initial epoch, and then there are density profiles which will
lead the collapse to either of the BH/NS final states, and
these conclusions hold irrespective of the number of di-
mensions of the space-time. Hence we see that our results
unify and generalize the earlier results of dust collapse
[73–79]. Basically the point that follows here is that, given
an initial density profile for the collapsing cloud, the space
of velocity profile functions is divided into the regions that
lead the collapse either to a black hole or naked singularity
evolution, depending on the choice made, and the converse
holds similarly.

B. Collapse with static radial pressure

While the dust equation of state discussed above is fairly
standard and extensively used, it is widely believed that
pressures could play an important role in gravitational
collapse considerations. We discuss below a class of col-
lapse models with nonzero pressures, which is however
idealized in the sense that while the tangential pressure can
be arbitrary, the radial pressure is taken to be static.

As we already pointed out in Sec. III, if we consider the
classes of collapse in which the radial pressure remains
static, the constraint equation for M has the following
solution:

 M �r; v� � m�r� � pr�r�v
N�1: (82)

In addition to this if there is an equation of state of the form
p� � f���, then that gives the constraint equation for the
function A�r; v� in the following way:

 2f��� � pr � p
0
r�R=R

0� � A�r; v�;v���r; v� � pr�: (83)

For this class of models the energy conditions are given by
 

�N � 1��m� prv
N�1� � r�m;r � pr;rv

N�1

� �N � 1�prvN�2v0� � 0; (84)

 

�N � 1��m� prv
N�1� � r�m;r � pr;rv

N�1

� �N � 1�prvN�2v0� � prR2R0 � 0; (85)

 

�
2
�

1

2

�
��� pr��A;v � 1� � p0r

R
R0

�
� 0: (86)

As shown in [80] there exist classes of functionsm, pr, and
A such that naked singularity is the end state for the
collapse and also the above three energy conditions are
satisfied. It follows that, given initial matter profiles, there
exist classes of collapse evolutions satisfying the energy
conditions as we see above, such that either of the BH/NS
end states can result subject to above equation of state.

C. Isentropic perfect fluid with a linear equation of state

Perfect fluids have been widely used in astrophysical
considerations and a linear equation of state is well studied.
We discuss below how the formalism outlined here applies
to this case to find the BH/NS configurations as a perfect
fluid collapse end states.

For an isentropic perfect fluid, whose pressure is a linear
function of the density only, the equation of state of the
collapsing matter is given by

 pr�t; r� � p��t; r� � k��t; r�; (87)

where k 2 ��1; 1� is a constant. The case k � 0 gives the
dust case we discussed above and k � 1 is the stiff fluid
case. Let us at present consider only the case of positive
pressures. In that case k > 0 and the energy conditions give

 M;v < 0: (88)

From the above equation of state and the Einstein equa-
tions we can immediately see that the function M is now
the solution of the equation

 �N � 1�kM� krM;r �Q�r; v�M;v � 0; (89)

where

 Q�r; v� � �k� 1�rv0 � v: (90)

Now the above equation (89) has a general solution of the
form [81],

 F �X; Y� � 0; (91)

where X�r; v;M� and Y�r; v;M� are the solutions of the
system of equations,

 �
dM

�N � 1�kM
�
dr
kr
�
dv
Q
: (92)

Thus we can easily see that Eq. (89) admits classes of
solutions when v0 > 0. Also solving the equation for the
central shell r � 0, with boundary conditions �!1 as
v! 0, we get

 M �0; v� �
m0

v�N�1�k
: (93)

RITUPARNO GOSWAMI AND PANKAJ S. JOSHI PHYSICAL REVIEW D 76, 084026 (2007)

084026-12



By choosing m0 > 0, we can make the central shell to
satisfy the energy condition ��t; 0�> 0 for all epochs.
Then by the continuity of the density function, we can
say that there exists an � ball around the central shell for
which v0�t; r�> 0 and also ��t; r�> 0. But as is known
from (59), at the central singularity

���
v
p
v0 � X�0�, hence

this implies that we can have classes of solutions which
satisfy the energy conditions and also admit a naked sin-
gularity as the collapse end state.

For further discussion on perfect fluid collapse, and the
details of black hole and naked singularity formation, we
refer to [61–69], and references therein.

It is seen from the above that several well-known classes
of collapse models form subcases of the consideration
given here. Along with these well-known models, the
above analysis would work for any other models with other
equations of state, if that permits solutions to the constraint
equations on M and A. Hence it follows that the consid-
erations above provide an interesting framework for the
study of dynamical collapse, which is one of the most
important open problems in gravity physics today.

VI. THE CASE OF 2� 1 DIMENSIONAL
COLLAPSE

Several studies on gravitational collapse scenarios in
(2� 1) dimensional space-times, have been carried out
by various authors [82–85]. These provide interesting
toy models which may provide quite important insights
from the perspective of quantum gravity. This is because in
(2� 1) dimensional space-times there is no gravity outside
matter. Also the space-time metric is always conformally
flat as the Weyl tensor vanishes identically everywhere.
The situation in (3� 1) and higher dimensions is far more
complicated as compared to this.

To investigate the final outcome in (2� 1) dimensional
collapse, let us consider the geometry of the trapped sur-
faces in this case in some detail. From Eq. (62) we see that
the equation of apparent horizon in this case is given by

 F�t; r� � 1: (94)

It is interesting to note that the geometry of trapped sur-
faces here is completely determined by the mass function
of the cloud, and is independent of the area radius of the
collapsing shells. If the mass function of the collapsing
configuration is bounded from above, say, for example,
with F�t; r�< 1 for t 2 ��1; ts�r��, and r 2 �0; rb� (where
rb is the boundary of the collapsing cloud), we then see that
the trapping does not occur and the complete singularity
that forms as collapse end state is necessarily visible to an
outside observer. This is strikingly different from four or
higher-dimensional cases where a massive singularity is
always trapped.

An interesting subcase of this situation is that of (2� 1)
dimensional dust collapse, when F�t; r� � F�r� with the
mass function having no time dependence. Here we see

that the initial mass of the collapsing cloud completely
determines the final outcome in terms of BH or NS. Clouds
with small enough mass always form a visible singularity,
whereas for larger masses a trapped region is present at all
epochs. However, as demanded by the regularity condi-
tions, we must avoid trapped surfaces on the initial surface
t � ti where the collapse commences. In that case, for the
dust collapse case, there are no trapped surfaces develop-
ing at all at any other later epochs until the singularity
formation, and as a result the (2� 1) dust collapse always
necessarily produces a visible naked singularity, as op-
posed to BH/NS phases obtained in usual four-dimensional
dust collapse which we discussed earlier.

VII. EXTERIOR SPACE-TIME AND MATCHING
CONDITIONS

To complete a collapse model, we need to match the
interior space-time to a suitable exterior space-time. As we
are interested here in modeling collapse of astrophysical
objects (such as massive stars), we have assumed the
matter to have compact support at the initial surface,
with the boundary of the cloud being at some r � rb. If
one assumes the pressures at the boundary of the cloud to
be vanishing, then it is always possible to match the
interior space-time with an empty Schwarzschild exterior.
However, in all cases it may not be possible to make the
pressures at the boundary of the cloud to vanish. Hence we
outline here the procedure to match the interior with a
general class of exterior metrics, which are the generalized
Vaidya space-times [86,87], at the boundary hypersurface
� given by r � rb. For the required matching we use the
Israel-Darmois conditions [88,89], where we match the
first and second fundamental forms (the metric coefficients
and the extrinsic curvature, respectively) at the boundary of
the cloud.

Whereas the procedures used below are standard, we
shall describe the particular case treated here in some detail
so as to give the exact picture of the overall collapse
scenario emerging. We note a useful fact that since we
are matching the second fundamental form Kij, there is no
surface stress energy or surface tension at the boundary
(see e.g. [90]). The metric just inside � is

 ds2
� � �e2��t;r�dt2 � e2 �t;r�dr2 � R2�t; r�d�2; (95)

which describes the geometry of the collapsing cloud. The
metric in the exterior of � is given by

 ds2
� � �

�
1�

2M�rv; V�
rv

�
dV2 � 2dVdrv � r

2
vd�2;

(96)

where V is the retarded (exploding) null coordinate and rv
is the Vaidya radius. Matching the area radius at the
boundary we get

 R�rb; t� � rv�V�: (97)
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Then on the hypersurface �, the interior and exterior
metrics are given by

 ds2
�� � �e

2��t;rb�dt2 � R2�t; rb�
2d�2 (98)

and

 ds2
�� � �

�
1�

2M�rv; V�
rv

� 2
drv
dV

�
dV2 � r2

vd�2: (99)

Matching the first fundamental form gives

 

�
dV
dt

�
�
�

e��t;rb����������������������������������������
1� 2M�rv;V�

rv
� 2 drv

dV

q ; �rv�� � R�t; rb�:

(100)

Next, to match the second fundamental forms (extrinsic
curvatures) for the interior and exterior metrics, we note
that the normal to the hypersurface �, as calculated from
the interior metric, is given as

 ni� � �0; e� �rb;t�; 0; 0� (101)

and the nonvanishing components of the normal as derived
from the generalized Vaidya space-time are

 nV� � �
1���������������������������������������

1� 2M�rv;V�
rv

� 2 drv
dV

q ; (102)

 nrv� �
1� 2M�rv;V�

rv
� drv

dV���������������������������������������
1� 2M�rv;V�

rv
� 2 drv

dV

q : (103)

Here the extrinsic curvature is defined as

 Kab �
1
2Lngab: (104)

That is, the second fundamental form is the Lie derivative
of the metric with respect to the normal vector n. The
above equation is equivalent to

 Kab �
1
2�gab;cn

c � gcbnc;a � gacnc;b�: (105)

Now setting �K��� � K
�
���� � 0 on the hypersurface � we

get

 RR0e� � rv
1� 2M�rv;V�

rv
� drv

dV���������������������������������������
1� 2M�rv;V�

rv
� 2 drv

dV

q : (106)

Simplifying the above equation using Eq. (100) and the
Einstein equations, we get

 F�t; rb� � 2M�rv; V�: (107)

Using the above equation and (100) we now get,

 

�
dV
dt

�
�
�
e��R0e� � _Re���

1� F�t;rb�
R�t;rb�

: (108)

Finally, setting �K�

 � K�

�� � 0, where 
 is the proper
time on �, we get

 M�rv; V�;rv �
F
2R
�
Re������
G
p

�����
H
p

;t � Re2��0e� : (109)

Any generalized Vaidya mass function M�v; rv�, which
satisfies Eq. (109) will then give a unique exterior space-
time with required equations of motion given by other
matching conditions (97), (107), and (108).

To see that the set of all such functions M�v; rv� is
nonempty, we have the examples of a charged Vaidya
space-time M � M�V� �Q�V�=rv, and the anisotropic
de Sitter space-time M � M�rv� as two different solutions
of the Eq. (109) (see for example [87,91]). This gives two
unique exterior space-times, both of which are subclasses
of the generalized Vaidya metric.

VIII. CONCLUDING REMARKS

We make here some remarks towards a conclusion and
note some unresolved and open issues.

(1) Towards investigating end states of a continual
gravitational collapse, given a general type I matter
field and given the matter initial profiles at the initial
surface from which the collapse develops, we con-
structed here classes of solutions to the Einstein
equations such that the collapse evolution goes to
the formation of either of a black hole or naked
singularity end state, depending on the choice of
the evolution made and choice of rest of the initial
data functions such as velocities of the collapsing
shells. This is subject to satisfying the energy con-
dition, and several reasonable and important equa-
tions of state are included in the framework here. It
also becomes clear that in higher dimensions both
black holes and naked singularities can occur as
collapse end states.

(2) We like to note that what we have deduced here is
the occurrence of a locally naked singularity only, as
opposed to that of a globally naked singularity. That
is, we show when the null geodesics escape from the
space-time singularity, going out in the future, but
we do not address the question of when they go out
of the boundary of the matter cloud. It is possible, in
principle, that the singularity is only locally naked
and trajectories do come out but they all fall back
into the singularity again, without going out of the
boundary of the star, thus not being globally visible.
This issue is still not studied for the general class of
models such as the classes we considered here and
may be of interest. However, for the case of dust
models this has been studied in some detail and it is
shown that whenever the singularity is locally
naked, one can always choose the classes of the
mass and energy functions suitably, as one moves
away from the center, in such a manner that the
singularity becomes globally visible. The point is,
while the local visibility of the central singularity is
basically decided by the conditions near the center,
the global visibility really depends on the overall
behavior of these functions within the matter cloud,
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away from the center. This we are still free to
choose. In other words, for the dust collapse models
once the singularity is locally visible, there are al-
ways classes of functions which we can choose so as
to make it globally visible.
Another important related point here is, as such
there is no scale in the problem, and the size of
the collapsing cloud could be quite large. In such a
case, even if the singularity is only locally visible,
still it can be seen for a long enough time by the
observers. Thus, in principle, a locally naked singu-
larity is also as serious a violation of the cosmic
censorship as a globally visible singularity, and
there may not be a qualitative difference in the
two cases in many situations of physical interest.

(3) Another important and interesting issue frequently
mentioned regarding the occurrence of naked singu-
larities in gravitational collapse is their genericity
and stability. It is argued that if these are not generic
or stable, these need not be taken seriously. This is
interesting because in general relativity there is no
well-defined notion or criteria available for stability
or genericity, which one can then apply and test for a
given model to ascertain these. On the other hand, a
consideration of this issue is important all the same
in that, depending on the collapse situation under
discussion, one would like to formulate these no-
tions in some way to examine if the naked singular-
ities developing as collapse end states are ‘‘generic’’
or ‘‘stable’’ in some suitable sense. This would
typically involve taking into account the topology
and metric of the concerned function spaces which
define the given collapse scenario. Without discus-
sing this here in further detail, we note that since we
have formulated here the collapse in a general man-
ner, for general physically reasonable matter fields,
the classes constructed here may provide a good
arena to explore and test these important issues for
the cosmic censorship hypothesis.

(4) A related issue of course is that of nonspherical
collapse. Our considerations here are restricted to
spherical collapse, and the question remains open
regarding the final end state of a nonspherical col-
lapse. So one can ask if the conclusions available in
spherically symmetric collapse remain the same and
stable under possible nonspherical perturbations.
Even though some nonspherical collapse models
have been discussed and investigated so far such
as the Szekeres quasispherical collapse or some
cylindrical collapse models [39–51], these are

somewhat restricted in nature. A strong theorem
about the formation of trapped surfaces in cylindri-
cally symmetric space-times is given in [50].
Recently, a numerical construction of naked singu-
lar solutions with the cylindrical symmetry was
done in [51]. It is not clear as yet if this issue can
be approached really in an analytic manner, and
possibly detailed numerical simulations of the col-
lapsing stars could be the answer.

(5) A question that is frequently asked in connection
with the occurrence of naked singularities as col-
lapse end states is how to understand this phe-
nomena physically. A naked singularity signifies
the escape of light and particle trajectories from
the ultradense space-time regions. However, the
gravity must become so strong in these regions. In
such a case, how can anything escape at all from
such a region is the question. Thus, while a black
hole which is a region from which not even light
would escape, may appear to be the only physically
reasonable outcome in such situations, formation of
a naked singularity in collapse may appear to be
counterintuitive.
The point that comes out from considerations such
as ours is that the naked singularities are more an
artifact of general relativity, rather than that of a
purely Newtonian physics. Even though the matter
density grows higher and higher without bound and
blows up closer to a space-time singularity, which
would denote the growth of attractive forces of
gravity, there are other important factors which are
purely general relativistic effects which can delay
the formation of trapped surfaces governing the
trapping of light.
An interesting effect that does this is the space-time
shear. It is intriguing to find that the physical agen-
cies such as the space-time shear, and related inho-
mogeneities in matter density distribution within a
dynamically collapsing cloud, could naturally delay
the formation of trapped surfaces during gravita-
tional collapse [92,93]. In other words, such physi-
cal factors do naturally give rise to naked singularity
phases in the collapse where the formation of ap-
parent horizon and the trapped surfaces is delayed.
Even though the matter densities are arbitrarily large
and growing, the shear could distort the trapped
surface geometry in such a manner as to avoid the
trapping of light and facilitates the escape of null
rays from such ultradense regions.
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