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We consider some scalar-coupled theories of gravity, including induced gravity, and study the Noether
symmetries of Bianchi I, Bianchi III, and Kantowski-Sachs cosmological models for this theory. For
various forms of coupling of the scalar field with gravity, some potentials are found in these cosmological
models under the assumption that the Lagrangian admits Noether symmetry. The solutions of the field
equations for the considered models are presented by using the results obtained from the Noether
symmetry. We also find the explicit form of the scalar field in terms of the conformal time for
Bianchi I, III, and Kantowski-Sachs models.

DOI: 10.1103/PhysRevD.76.084023 PACS numbers: 04.20.Fy, 04.50.+h, 11.10.Ef

I. INTRODUCTION

In standard cosmology, the evolution of the universe at a
macroscopic scale is given by Friedmann-Robertson-
Walker (FRW) metrics, which means that the universe is
homogeneous and isotropic on large scales. Inflationary
models were developed to explain this homogeneity and
isotropy. These models require a phase transition, which is
most simply achieved by the use of a scalar field [1]. For
this reason, scalar-tensor theories of gravity, which gener-
alize in different ways Einstein’s general relativity (GR)
theory, have captured new attention in recent decades [2].

Another motivation for scalar fields in cosmology comes
from an attempt to resolve the apparent contradiction
between quantum ideas and GR: The theory of induced
gravity seeks to understand the spacetime background as a
mean-field approximation of some underlying microscopic
degrees of freedom, and leads to an effective theory with a
particular coupling of a scalar field to gravity [1].

The general form of action involving gravity nonmini-
mally coupled with a scalar field is given by [3]

 A �
Z
Ldt

�
Z
d4x

�������
�g
p

�
F���R�

�
2
gab�a�b �U���

�
(1)

where R is the Ricci scalar, F��� is a generic function
describing the coupling,U��� is the potential for the scalar
field �, L is the Lagrangian density, �a � �;a stand for
the components of the gradient of � and the signature of
metric is given by the parameter � � �1;�1 for signa-
tures (����) and (����), respectively, and
Planck units are used. For F��� � �1=2, the action re-
duces to the form of Einstein-Hilbert action minimally
coupled with a scalar field. For F��� � c�2; �c � �=12�,
it takes the form of the induced theory of gravity. For
F��� � 1� ��2, it is of the form of standard nonmini-

mally coupled scalar field theory. For F��� � �2=6, the
conformally coupled theory is obtained.

The variation of (1) with respect to gab provides the field
equations

 F���Gab � �
�
2
Tab � gab�F��� � F���;ab (2)

where � is the d’Alembert operator,

 Gab � Rab �
1
2Rgab (3)

is the Einstein tensor, and

 Tab � �a�b �
1
2gab�c�

c � �gabU��� (4)

is the energy-momentum tensor relative to the scalar field
� � ��xa� which is a real function on the manifold. The
variation with respect to � gives rise to the Klein-Gordon
equation governing the dynamics of the scalar field

 ���� RF0��� �U0��� � 0; (5)

where the prime indicates the derivative with respect to �.
It is interesting to note that the last equation is equivalent to
the contracted Bianchi identity [3].

The choice of the potential U��� in the above equations
is somewhat arbitrary, and this has given rise to objections
of fine tuning, the very problem inflationary theories have
set out to solve. Therefore it is desirable to have a way to
derive the potential, or at least criteria for acceptable
potentials.

One such approach is based on Noether symmetry and
was recently introduced by Capozziello et al. [3–8],
de Ritis et al. [9–11], and others [12–14]. The Noether
theorem states that, if there exists a vector field X, for
which the Lie derivative of a given Lagrangian L vanishes,
i.e.

 LXL � 0; (6)

then X is a symmetry for the dynamics (that is, the
Lagrangian admits a Noether symmetry) and thus gener-
ates a conserved current. The Noether symmetry approach*ucamci@comu.edu.tr
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allows one to choose the potential dynamically, restricting
the arbitrariness in a suitable way. In these works [3–6,8–
11] some exact solutions in the scalar-tensor theories have
been presented, including dynamical conserved quantity
and solutions of the field equations. In a recent work
Sanyal [15] discussed the Noether and dynamical symme-
tries of the Kantowski-Sachs spacetime. He proved that
one can find dynamical symmetries working directly with
the field equations and obtain the previous results plus
more dynamical symmetries. Hence, for proving Sanyal’s
original assertion, one has to obtain the continuity equation
directly from the field equations to check the existence of
the Noether symmetry. In this study we have generalized
Sanyal’s results additionally including Bianchi I and III
spacetimes.

This paper is organized as follows. In the Sec. II, we
present the Euler-Lagrange equations of motion and the
field equations for Bianchi I, III and Kantowski-Sachs
spacetimes, investigate their Noether symmetries and try
to find the potential for some particular cases of the cou-
pling function. In Sec. III, we give the solutions of the
equations of motion and the fields equations in nonmini-
mally coupling and induced gravity theories. Finally, in
Sec. IV, we conclude with a brief summary and discussion
of the obtained results.

II. NOETHER SYMMETRIES FOR BIANCHI I, III,
AND KANTOWSKI-SACHS MODELS

For the Kantowski-Sachs metrics of the signature ��2�,
the forms of coupling of the scalar field and the potential
with gravity has been found by Sanyal [15] under the
assumption that the Lagrangian admits Noether symmetry.
Here we shall generalize this work to include Bianchi I and
III for both signatures.

The line element of Bianchi I (BI), Bianchi III (BIII) and
Kantowski-Sachs (KS) spacetimes has the form

 ds2 � ��dt2 � A2dr2� � �B2�d�2 ��2�q; ��d�2�; (7)

where A and B are depend on t only, and ��q; �� �
�; sinh�; sin� for q � 0;�1;�1, respectively, covers all
the relevant cases. Here q � 0 corresponds to the BI, q �
�1 to BIII and q � 1 to KS cosmological models, and the
parameter � is assigned as �1 for the signature ��2� and
�1 for the signature ��2�.

The Ricci scalar for this metric is

 R � �2�
� �A
A
� 2

�B
B
�

_B2

B2 � 2
_A _B
AB
�
q

B2

�
; (8)

where the dot indicates the derivation with respect to time.
The Lagrangian density coming from (1) becomes a func-
tion only of �A;B;�; _A; _B; _��:

 

L � 2�FA _B2 � 4�FB _A _B�2�F0B2 _A _��4�F0AB _B _�

� 2�qFA� AB2

� _�2

2
�U���

�
: (9)

The field Eqs. (2) and Klein-Gordon Eq. (5) for the metric
(7) are found as follows
 

_B2

B2�2
_A _B
AB
�
q

B2�
F0

F

� _A
A
�2

_B
B

�
_��

�
2F

� _�2

2
�U���

�
� 0;

(10)

 

2
�B
B
�

_B2

B2 �
q

B2 �
F0

F

�
��� 2

_B
B

_�
�
�

�
F00

F
�

�
4F

�
_�2

�
�

2F
U��� � 0; (11)

 

�A
A
�

�B
B
�

_A _B
AB
�
F0

F

�
���

� _A
A
�

_B
B

�
_�
�
�

�
F00

F
�

�
4F

�
_�2

�
�

2F
U��� � 0; (12)

 

�A
A
� 2

�B
B
�

_B2

B2 � 2
_A _B
AB
�
q

B2

�
�

2F0

�
���

� _A
A
� 2

_B
B

�
_��U0���

�
� 0; (13)

where F0 � 0. Using the Lagrangian (9), the obtained
Euler-Lagrange equations are the same as Eqs. (11)–(13).
The energy function EL associated with the Lagrangian (9)
is found as
 

EL �
@L

@ _A
_A�

@L

@ _B
_B�

@L

@ _�
_�� L

�
_B2

B2 � 2
_A _B
AB
�
q

B2 �
F0

F

� _A
A
� 2

_B
B

�
_�

�
�

2F

� _�2

2
�U���

�
: (14)

Therefore, it is obviously seen that the (0,0)-Einstein equa-
tion given by (10) is equivalent to EL � 0.

The continuity equation obtained by eliminating �A and �B
from the Eqs. (10)–(13) is given as
 

2�3F02 � �F�
�

���
_A
A

_�� 2
_B
B

_�
�
� F0�6F00 � �� _�2

� 2��2UF0 � FU0� � 0: (15)

To obtain the Noether symmetry one has to choose F andU
in such a way that Eq. (15) is identically satisfied.
Therefore this equation is required to check the existence
of the Noether symmetry (see Refs. [14,15] for detailed
information about Noether symmetry).

Now we seek the condition in order that the Lagrangian
(9) would admit Noether symmetry. The configuration
space of this Lagrangian is Q � �A;B;��, whose tangent
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space is TQ � �A;B;�; _A; _B; _��. The existence of Noether
symmetry implies the existence of a vector field X such
that

 X � �
@
@A
� �

@
@B
� �

@
@�
� _�

@

@ _A
� _�

@

@ _B
� _�

@

@ _�
;

(16)

where�,�, and � are dependent on A,B, and �. Hence the
Noether equation (6) yields the following set of equations:

 2
@�
@A
� B

F0

F
@�
@A
� 0; (17)

 

�
2
� B

@�
@B
� A

@�
@B
� A

F0

F

�
�
2
� B

@�
@B

�
� 0; (18)

 

�
2
� �

A
B
� A

@�
@�
� 2�F0

�
@�
@�
� 2

A
B
@�
@�

�
� 0; (19)

 

��B
@�
@A
�A

@�
@A
�B

@�
@B
�B

F0

F

�
��A

@�
@A
�
B
2

@�
@B

�
� 0;

(20)

 

2
@�
@�
�
F0

F

�
2�� B

@�
@A
� B

@�
@�
� 2A

@�
@A

�
�
F00

F
B�

�
�

2F
AB

@�
@A
� 0; (21)

 

@�
@�
�
F0

F

�
��

A
B
��

B
2

@�
@B
� A

@�
@B
� A

@�
@�

�
�
A
B
@�
@�

�
F00

F
A��

�
4F

AB
@�
@B
� 0; (22)

 

2�q�F��F0A����B��2A��BU����AB2�U0���� 0:

(23)

Before tackling the solution of these equations for differ-
ent choices of F���, we note that there is a special choice:
The Hessian determinant

 W � �

�������� @2L

@ _Qi@ _Qj

��������� 16AB4F�3�F02 � F� (24)

vanishes if F is given by

 F �
�
12
����0�

2 (25)

and then the Lagrangian (9) becomes degenerate. The
above form is also nonminimal coupling.

For this coupling function, the above set of differential
equations (17)–(22) can be solved for �, �, and � using
separation of variables to give

 � �
‘

�1�m�
A1�mBn=3����0�

n; (26)

 � �
‘
m
AmB1��m=2�����0�

n; (27)

 � � �
‘
m
AmBm=2����0�

�1�n�; (28)

where n � 3m=2 and m � 0;�1. These results generalize
the solutions of Eqs. (17)–(22) obtained by Sanyal [15] for
the KS model. (Note that Sanyal’s paper appears to contain
a misprint: In his Eq. (18), the third term should be divided
by f.) They reduce to his study for n � �3 and m � �2.

Now �, �, �, and F��� obtained here have to satisfy
Eq. (23) for the existence of the Noether symmetry. If m is
arbitrary and q � 0 (BI), the solution of Eq. (23) gives

 U��� � �����0�
�3m�2=m�1�: (29)

If q � 0 (BIII, KS), then we must have m � �2, and
Eq. (23) yields

 U��� � �����0�
4: (30)

When we consider induced gravity, that is, choose the
coupling function as F � c�2, where c � �=12, which
means that the Lagrangian (9) is nondegenerate, the solu-
tions of the Noether symmetry equations (17)–(22) are

 � � 0; � � �kB; � � k�; (31)

where k is a constant. The remaining Eq. (23) implies that
we must have q � 0 (BI), which gives the potential as

 U��� � ��2: (32)

This means that BIII and KS models (q � 0) have no
nontrivial potential for induced gravity.

For F��� � 1� ��2, which is of the form of standard
nonminimally coupled scalar field theory, there is no
Noether symmetry in BI, BIII, and KS spacetimes.

III. FIELD EQUATIONS AND SOLUTION

For the case of the degenerate Lagrangian and q � 0
(BIII, KS), the coupling function is given by (25) and the
potential by (30); so for �0 � 0, the field equations (10)–
(13) reduce to

 

_B2

B2
� 3

_�2

�2 � 2
_A _B
AB
� 2

_A _�

A�
� 4

_B _�

B�
�
q

B2 � 6��2 � 0;

(33)

 2
�B
B
� 2

��

�
�

_B2

B2 �
_�2

�2 � 4
_B _�

B�
�
q

B2 � 6��2 � 0; (34)

 

�A
A
�

�B
B
� 2

��

�
�

_�2

�2 � 2
� _A
A
�

_B
B

� _�

�
�

_A _B
AB
� 6��2 � 0;

(35)
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�A
A
� 2

�B
B
� 3

��

�
�

_B2

B2 � 2
_A _B
AB
� 3

� _A
A
� 2

_B
B

� _�

�
�
q

B2

� 12��2 � 0: (36)

For the Cartan one-form

 �L �
@L

@ _A
dA�

@L

@ _B
dB�

@L

@ _�
d�; (37)

the constant of motion iX�L for the Noether symmetry
given by (26)–(28) is obtained as

 

�B���

A�2
� c0 ,

_B
B
�

_�

�
� c0

A�

B
; (38)

which is actually the constraint that has to be satisfied by
the field equations (33)–(36), where c0 is a constant of
motion.

Substracting Eq. (34) from Eq. (33) and using (38) in it,
yields

 

�B
B
�

��

�
� 2

_�2

�2 � c0
� _A
B
; (39)

which can also be obtained taking the time derivative of
Eq. (38) (see Ref. [15] for KS metric). Thus one can
eliminate acceleration terms between Eqs. (34) and (39),
and then obtain another constraint equation as follows:

 �A��� � �
1

2c0B
�q� �c0A��2� �

3�
c0
B�2 (40)

which can also be found using Eq. (38) in Eq. (33).
Therefore, the last equation can be used instead of
Eq. (33) or Eq. (34). Further, it follows from the remaining
field equations (35) and (36) using Eq. (38) that

 

�A
A
�

��

�
�

_�2

�2 � 2c0
A�

B

� _A
A
�

_�

�

�
�

_A _�

A�
� 6��2 � 0;

(41)

 

�A
A
�

��

�
� 3

_�2

�2 �
_A _�

A�
� c0

A�

B

�
3

_A
A
� 4

_�

�

�
� c2

0

A2�2

B2

�
q

B2 � 12��2 � 0: (42)

Then, subtracting Eq. (41) from Eq. (42), and using (40),
one gets

 

_�2

�2
�
c0

2

A _�

B
�
c2

0

4

�A��2

B2 �
q

4B2 �
3�
2

�2: (43)

In order to find solution of the field equations, we use the
transformation of the time coordinate by dt � B�A���1d	
in the above Eqs. (38), (40), and (43). Hence, Eq. (38) can
immediately be integrated to get

 B� � a exp�c0	�; (44)

where a�>0� is a constant of integration. Under this time
transformation, Eq. (40) becomes

 A��A��;	 �
c0

2
�A��2 �

3�a2

c0
exp�2c0	� �

q
2c0
� 0;

(45)

which has the solution

 �A��2 � �
2�a2

c2
0

exp�2c0	� � b exp��c0	� �
q

c2
0

; (46)

where b is an another integration constant. Finally, taking
into consider the last relation, Eq. (43) can be transformed
into the following form

 �2
;	 �

c0

2
��;	 � g�	��2 � 0; (47)

where the function g�	� is given by

 g�	� � �
c2

0

4
�

c2
0�q� 6�a2 exp�2c0	��

4�2�n2 exp�2c0	� � bc
2
0 exp��c0	� � q�

:

(48)

Then, the solution of Eq. (47) is obtained as

 ��	� � ke��c0=4�	�1	
��������������������������������������������������������������������������������������������������������������
�5bc2

0�q exp�c0	��14�a2 exp�3c0	��=fbc2
0��q�2�a2 exp�2c0	�� exp�c0	�g

p
�; (49)

where k is an integration constant. Hence, using this form
of �, the metric functions A and B can be found from (44)
and (46), respectively.

For the coupling function (25) and the potential (29) in
which q � 0 (BI), the constant of motion c1 corresponding
to this Noether symmetry satisfies

 

_B
B
�

_�

�
� c1A

�1��2n=3�B�2��n=3���2�n; (50)

where n � 3m=2. Then, using the potential (29) in the field
equations (10) and (11), and subtracting the resulting
equations, we have the same equation with (38). Thus,
comparing Eqs. (38) and (50), it is found that n � �3
and so m � �2. Therefore, for BI metric, we have same
solution as (49) taking q � 0 in it.

For the potential (32) which is only valid for BI �q � 0�
metric, the constant of motion corresponding to the
Noether symmetry expressed in (31) is now given by
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 ‘
_B
B
�

_�

�
�
�c2=�1� 8�c��

AB2�2 ; (51)

where c2 � �@L=@ _A� �@L=@ _B� �@L=@ _� is a constant
of motion, and ‘ � 4�c=�1� 8�c�, ‘ � 0, 1.

IV. CONCLUSIONS

In this work we have studied the Noether symmetries of
BI, BIII, and KS cosmological models in some scalar-
coupled theories of gravity, including induced gravity.
Assigning a parameter �, we have treated our results in
both signatures �2 (� � �1) and �2 (� � �1). Further,
using the relevant coupling function F��� and the potential
U���, we have solved the equations obtained through the
field equations (or the Euler-Lagrange equations of mo-
tion) for BI, BIII, and KS spacetimes. For the coupling
function (25), we find the potential (30), and the explicit
form of the scalar field � in terms of the conformal time 	
[where we have used dt � B�A���1d	] is obtained which
is given by (49). For the latter scalar field, the metric
functions A and B for BIII (q � �1) and KS (q � 1)
spacetimes are found from (44) and (46) as

 A �
1

�

�
�

2�a2

c2
0

exp�2c0	� � b exp��c0	� �
q

c2
0

�
1=2
;

(52)

 B �
a
�

exp�c0	�: (53)

If we use the potential (29) together with the coupling
function (25), this case corresponds to the BI (q � 0)
model and it follows the same potential with (49) and
metric functions as given above. For induced gravity, i.e.
the potential (32) with nondegenerate coupling function
F � c�2 (c � �=12), we have a constant of motion given
by (51) which is a generic first order differential equation
depending upon the values of ‘.

We note that the continuity Eq. (15) is required to check
the existence of the Noether symmetry. Hence, for the
potential (29), using the continuity Eq. (15), it is found
that m is not arbitrary and it takes the value m � �2 and
thus the corresponding potential (29) reduces to the form of
(30). It is explicitly seen from Eq. (15) that the potential
(32) together with the coupling function F � c�2 (c �

�=12) gives rise to the following constraint equation:

 

���
_A
A

_�� 2
_B
B

_��
_�2

�
�

�
�12c�� 1�

� 0: (54)
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