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When a source emits a gravity-wave (GW) pulse over a short period of time, the leading edge of the
GW signal is redshifted more than the inner boundary of the pulse. The GW pulse is distorted by the
gravitational effect of the self-energy residing in between these shells. We illustrate this distortion for GW
pulses from the final plunge of black hole binaries, leading to the evolution of the GW profile as a function
of the radial distance from the source. The distortion depends on the total GW energy released � and the
duration of the emission �, scaled by the total binary mass M. The effect should be relevant in finite box
simulations where the waveforms are extracted within a radius of & 102M. For characteristic emission
parameters at the final plunge between binary black holes of arbitrary spins, this effect could distort the
simulated GW templates for LIGO and LISA by a fraction of 10�3. Accounting for the wave distortion
would significantly decrease the waveform extraction errors in numerical simulations.
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I. INTRODUCTION

The observation of gravitational waves (GWs) is ex-
pected to open a new window on the universe within the
following decade. First generation GW detectors (InLIGO
[1], VIRGO [2], TAMA [3], GEO [4]) are already operat-
ing at or close to their design sensitivity levels and the
development of the next advanced-sensitivity GW detec-
tors (Advanced LIGO [5], Advanced Virgo [6], LCGT [7])
and the space-detector LISA [8] are well underway. It is
now increasingly important to fully understand the precise
characteristics of the GW waveforms that we expect to
observe.

The most luminous GW sources are expected to be
associated with mergers of BH binaries. The physical
understanding of these sources has greatly improved by
recent breakthroughs in numerical relativity [9–11]. It is
now finally possible to simulate the merger of a BH binary,
from the initial circular inspiral, through the plunge to a
common surrounding horizon, to the final ringdown, as the
remnant settles down to a quiescent stationary Kerr-BH. It
is widely believed now that existing simulations are suffi-
ciently precise to allow targeted searches for these wave-
forms in real data [12]. In fact, it has been recently shown
that the errors are not even limited by the numerical
precision of the simulation (� 10�5), but the GW extrac-
tion method itself entails a much larger uncertainty
(� 10�3) [13]. In this paper, we demonstrate that the
self-gravity during the propagation of gravitational radia-
tion in the zone of wave extraction of numerical simula-
tions leads to the distortion of the waves, corresponding to
similar magnitude modifications in typical cases.

A. Description of the effect

Let us imagine a compact spherically symmetric con-
figuration of matter (representing the remnant) and a rap-
idly expanding sphere of massless particles (representing
the radiation) carrying away some of the initial mass of the
system (Fig. 1). First, let us assume Newtonian gravity and
spherical symmetry. In this case, the various shells are
pulled back only by the gravity of the mass interior as if
it was concentrated to a point mass at the center of the
sphere, and the effect of the outer enclosing shells exactly
cancels out. Thus, the particles on the outermost shell are
always attracted by the total mass, including the mass of
the radiation, but the innermost shells experience only the
gravity of the remnant. Therefore, the gravity of the radia-
tion implies that the innermost shells of radiation will be
continuously catching up to the outer boundary during
their journey from the source to the observer.

Do we expect an analogous effect to exist also for
gravitational waves in full general relativity? First, let us
consider conventional (i.e. nongravitational) radiation. In
analogy to the Newtonian gravitational pull, relativistic test
particles are slowed down by gravity: the null-geodesics in
a gravitational field experience the so-called Shapiro delay
[14], decreasing the radial coordinate velocity with in-
creasing gravity. Furthermore, according to Birkhoff’s
theorem, the spacetime outside a spherically symmetric
distribution of energy is equivalent to the spacetime of a
point-mass placed at the center of the sphere, the
Schwarzschild metric, and the spacetime inside a cavity
is the free-space Minkowski spacetime. More generally,
the spherically symmetric expansion of collisionless radia-
tion is a known simple exact solution of the Einstein
equations, the Vaidya metric [15,16]. This solution has
exactly the same characteristics as the Newtonian example,
whereby various shells react only to the mass interior to
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them, i.e. they move on worldlines neglecting the exterior
shells and the effect of the interior shells is the same as if
they were concentrated to a point mass at the center.

Next, let us turn to the case of gravitational radiation.
The effect of the self-energy of gravitational radiation can
be accounted for in the first nonlinear-order approximation
of the Einstein field equations by attaching terms of order
h2 to the stress-energy, Tij, considering these terms as
sources in addition to the regular radiation fields [17–
23]. Here hij is the wave amplitude which is the correction
to the background metric. If the wavelength of the GW
wave-packet is much smaller than the size of the wave
envelope, the evolution of the wave-packet is determined
by the WKB cycle-averaged effective stress-energy tensor
[18,19], independent of the specific wave-characteristics of
the radiation. In this regime, we may treat the GW packet
as an ensemble of relativistic particles for which our pre-
vious arguments apply. In conclusion, we anticipate that

(i) the wave-envelope will continuously expand due to
the redshift of the initial mass of the binary,

(ii) it will contract due to the self-gravity of the radia-
tion, and

(iii) in analogy to electrodynamics, we expect that the
distortion of the wave envelope would lead to a
continuous adiabatic modification in the GW
frequency.

The purpose of this paper, is to quantify these expectations
for typical BH merger waveforms using simple models and
to demonstrate that this effect should be accounted for in
relation to numerical simulations and observed merger
waveforms.

B. Related literature

To our knowledge the effect of self-gravitational distor-
tion of GWs had not been explicitly recognized previously.
We elaborate on the relation of the self-distortion effect to
numerical general relativity, analytical investigations like
the multipolar post-Minkowskian (MPM) and post-
Newtonian (PN) theory, and the studies of the scattering
of gravitational radiation in curved spacetimes.

The self-gravitational distortion of GWs is a relatively
small effect on short scales currently accessible to numeri-
cal simulations. Current state-of-the-art simulations of bi-
nary BH mergers are restricted to the central strong-gravity
domain near the black holes, and extract gravity waves
from the boundary of this domain. The standard method of
extracting and extrapolating the waveforms to larger dis-
tances, is based on the Regge–Wheeler–Zerilli-Moncrief
perturbation formalism [24–26]. This is a linear-order
representation of the Einstein field equations and so it
neglects self-energy effects of order h2. Cumulative non-
linear effects like the self-distortion effect should lead to
systematical deformations of the linear waveform ex-
tracted at different radii, which can in principle be discov-
ered by a rigorous convergence test. In fact, nearly all
papers on simulated merger GWs study the convergence
behavior in some detail. However, due to computational
limitations, the extraction radius is currently restricted to
r & 50M, and the extraction has been preformed on only a
few, typically 3–4 different radii with the extrapolation
done empirically based on these radii [9–12,27–35].
Recently, Pazos et al. [13] reported a systematic effect of
order 10�3 (for extraction radii r � 80M), which is much
larger than the numerical precision of the simulation
�10�5. This is roughly the same order of magnitude
systematic effect that we expect for the GW distortion
for the given radii (see below). Note however, that Berti
et al. [33] showed that the convergence behavior is also
largely sensitive to simulation assumptions. On small
scales probed by these simulations, other near-field non-
linearities might also be of equal importance.

A precise treatment of the waveforms at large radii is
possible by analytical methods, such as the MPM-
expansion introduced by Thorne [22] (see also [21]) and

FIG. 1 (color online). A sketch of the effect under considera-
tion. The coalescence of two BHs in a binary of total initial mass
M0 results in the emission of a burst of gravitational radiation
which carries away a non-negligible � fraction of M0. The
remnant BH mass is Mf. The proper temporal width of the
wave-packet for a hypothetical observer fixed at a radial distance
r is ��. As the packet propagates outwards, it (1) expands due to
gravitational redshift of the initial mass M0 (solid lines), (2) con-
tracts due to the mean self-gravity of the radiation (dotted line,
��0), and also (3) distorts its profile due to the self-gravity of the
radiation (not shown). As a result the inner shells begin to catch
up, and the proper time separation in excess of gravitational
redshift from the front of the burst decreases with distance.
Consequently, the net luminosity of the radiation burst changes
with distance.
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developed further by Blanchet and Damour [36–38]. In
Ref. [22], Thorne introduced the concept of ‘‘local-wave
zone,’’ which is outside the dynamical zone of wave gen-
eration, but where nonlinear effects are still important. In
this region the propagation of gravity waves is expressed in
terms of an expansion in powers of hij as an infinite sum of
multipole contributions with rapidly decreasing amplitude,
which needs to be matched to the dynamical gravitational
field generated by the source. The GWs in the local wave
zone are given formally by the MPM expansion, whose
terms correspond to different powers of the gravitational
coupling constant G. In the PN approach, the dynamical
wave generation is calculated analytically in an infinite
series in the inverse speed of light c�2. Matching the PN
and MPM expansions in the local wave zone is a successful
method for the calculation for steady source GWs pro-
duced by relatively slow motions, like the inspiral phase
of BH mergers where the distance between the BHs is large
enough to allow an adiabatic quasicircular orbit at r > 6M.
To date, the PN waveforms for circular binary inspirals are
available to 3.5PN order for general mass ratios [39]
(which is the highest order that is expected to have a
measurable contribution for circular inspirals by a LISA-
type detector [40]) and 5.5PN order for extreme mass ratios
and no BH spins [41]. To our best knowledge, the self-
gravitational distortion effect has not been identified in
these works. However, in this paper we show that the radius
for a fixed luminosity shift or a fixed frequency shift is
linearly sensitive to the energy density of the radiation. The
luminosity at the inspiral phase of binaries is less than 1%
of the luminosity at the final plunge [34]. Therefore, even if
it is negligible for inspirals, the self-gravitational modula-
tion of GWs could be significant for the final plunge.

We expect the self-gravitational distortion of GWs to be
consistent with the PN/MPM expansion, and to have cor-
responding PN tail counterparts [42]. The tails of GWs are
caused by the scattering of linear waves on the spacetime
curvature generated by the total mass-energy of the source
[43], which is related to the Shapiro time-delay [14] of the
radiation crawling out of the background gravity of the
source. At 2.5PN order beyond the Newtonian quadrupole
formula, GW tails scatter off the monopole field of the
remnant [44– 46]. Furthermore, above 3PN order, the tails
of the tails are produced by curvature scattering of the tails
of the waves themselves, associated with the cubic non-
linear interaction between two mass monopole moments
and the mass quadrupole of the source [47]. In this paper
we show that the modification caused by the spherical self-
gravitational distortion of GWs is to lowest order propor-
tional to the original waveform (i.e. without this effect)
times the energy density of the waveform. Since the energy
density is proportional to the square of the amplitude, this
possibly implies to lowest order a monopole-quadrupole2

type interaction counterpart.
The self-gravitational distortion effect is also related to

the ‘‘memory effects’’ (or ‘‘hereditary effects’’) of gravi-

tational radiation, since it is a cumulative effect that de-
pends on the full past history of the radiation, as opposed to
regular PN terms which only depend on the instantaneous
retarded fields. Other known hereditary GW effects are the
tails of GWs [38,48], the Christodoulou effect [49,50], and
the GW recoil kick [51].

Finally, nonlinear effects were also examined for the
interaction of plane GWs on a free space (i.e.
Minkowski) background [52–57]. The nonlinear terms in
the scattering problem are found to exactly cancel up to
fourth order, leaving no self-phase-modulation effect for
GWs in vacuum to this order. However, the geometry of
this case is very different from the one discussed in this
paper where a curved background is initially present. It is
also unclear whether there are self-phase modulation ef-
fects at higher nonlinear orders. Fortunately, our approach
does not face such convergence issues, since we adopt the
exact (i.e. nonperturbative) solution of the Einstein equa-
tions in the spherical WKB approximation of an expanding
radiation shell.

The present paper aims to quantify the self-gravitational
distortion effect for recently compiled merger waveforms.
In Sec. II, we list the main properties of the waveforms
relevant for our study. In Sec. III we present our analysis in
spherical symmetry, and derive the results for the self-
gravitational distortion of signal duration and the luminos-
ity profile. In Sec. IV we summarize the main conclusions,
and then discuss their implications. Finally, we discuss
the validity of the spherical approximation and consider
the possible effect of the anisotropy in the appendix. We
use units with G � c � 1 and a metric signature of
��1; 1; 1; 1�.

II. MERGER WAVEFORMS

To illustrate our effect, we adopt a simplified treatment
for the merger GW waveforms. Table I lists the total
radiated mass �mtot relative to the initial total mass M0

for various encounters between compact objects found in
the literature. While all of these encounters would have a
non-negligible GW self-gravitational effect, the inspiral-
merger-ringdown events are expected to have the most
prominent event rates for interferometric GW detectors.
Inspiral detection rate estimates are between 0:3–3 yr�1

and several per day for NS/BH mergers for inLIGO and
adLIGO, respectively [67]; 3 and 100 yr�1 for stellar BH/
BH inspirals in globular clusters [68] and in galactic nuclei
[69] with adLIGO, respectively; 1–100 yr�1 and 30 yr�1

for supermassive (SMBH) and intermediate mass BH
(IMBH) [70–72] and SMBH/SMBH inspirals [73,74]
with LISA, respectively. The dynamic time of the encoun-
ter is proportional to the total mass; consequently we do
not consider extreme mass ratio inspiral-mergers (EMRI),
as the GW luminosity of these sources is much smaller.
Although high velocity stellar BH encounters can be very
bright in GWs, these events are expected to be rare, less

DISTORTION OF GRAVITATIONAL-WAVE PACKETS DUE . . . PHYSICAL REVIEW D 76, 084022 (2007)

084022-3



than 1 yr�1 for adLIGO or LISA [75]. In this analysis, we
focus on equal mass inspiral-merger-ringdown waveforms.

Generally, the waveforms can be expanded in multipoles
[22]

 h�� �
X
n

�1� z�An
��

dL
ei�n (1)

where � is the high frequency GW phase which is related
to the instantaneous frequency through f � d�=dt; A��

is a slowly varying envelope describing how the instanta-
neous amplitude changes over the waveform, the index n
labels the various polarizations and multipoles, and dL is
the luminosity distance, and z is the redshift. For binary
inspiral merger waveforms, the (l � 2, m � 2) multipole
(i.e. quadrupole) dominates the waveform [33–35]. For the
sake of simplicity, we restrict our attention to a single
monochromatic wave.

During a single GW cycle, corresponding to a time
interval f�1, the envelope A�� can be regarded as constant.
In the WKB approximation, the energy carried by the
radiation can be calculated as a cycle-averaged quantity.
The effective stress-energy tensor of the radiation is
[19,20]

 T�� �
1

64�
A2

d2
L

k�k�; (2)

where A2 �A��A�� is the squared effective amplitude
and k� � �;� is the wave number.

Each infinitesimal volume of the wave can be attributed
the mass-energy that it carries according to Eq. (2). In the
spherically symmetric approximation, the total luminosity
(or more precisely the graviton number) is [19]

 L �
dE

drdt
� 4�r2Ttr �

A2

16
ktkr: (3)

With this equation it is possible to obtain the waveform
�A�t�; f�t�	 within radius r from the luminosity function
L�t�.

Based on the waveforms derived by numerical simula-
tions (such as Fig. 25 in Ref. [34]), we adopt the following
simple fit to the effective luminosity

 L�t� � L0 


8><>:
��t1 � t�=t1	�1:5 if � t0 < t < 0
1 if 0< t < t1
exp���t� t1�=t2	 if t > t1

(4)

where the intervals t < 0, 0< t < t1 and t1 > t correspond
to the late inspiral/final orbits, the peak luminosity at the
plunge, and the ringdown phases, respectively, �t0 sets
the initial time of the calculated profile, t1 represents the
characteristic time scale of the most intensive part of the
radiation, t2 sets the ringdown decay rate, and L0 is the
normalization luminosity. Numerical simulations show
[34] that the characteristic frequency of the radiation rap-
idly increases after the inspiral and saturates at ! �
2�f�M�1

0 =2 at t� 0, where M0 is the initial mass of
the source. The characteristic number of wave cycles dur-
ing the brightest phase is N � �t=f�1 � 3 over a time
�t � 12�M0. Note that we assume that the WKB method

TABLE I. Total radiated mass relative to the initial total mass,
�, for bright GW encounters. For a detailed comparison of BH
inspiral computations see Ref. [58].

Objects Encountera
Spins
�S1

m2
1
; S2

m2
2
� orientationb Refs. � [%]

NS-BH head-on (0.0,0.0) [59] 0.01
BH-BH head-on (0.0,0.0) [60] 0.05
BH-BH head-on (0.1,0.1) [60] 0.06
NS-BH orbiting (tidalc,0) [61,62] 0.1
BH-BH head-on (0.2,0.2) [60] 0.12
BH-BH head-on (0.0,0.0) [63] 0.13
BH-BH whirl (0.0,0.0) [32] 0.5–3
BH-BH grazing (0.9,0.7) � ? � [64] 0.9
BH-BH grazing (0.9,0.7) � ? � [64] 1.0
BH-BH grazing (0.0,0.0) [64] 1.2
BH-BH inspiral (0.2,0.2) � k � [28] 1.8
BH-BH inspiral (0.1,0.1) � k � [28] 2.0
BH-BH inspiral (0.2,0.2) � k � [28] 2.0
BH-BH inspiral (0.8,0.8) � k � [30] 2.2
BH-BH inspiral (0.1,0.1) � k � [28] 2.4
BH-BH inspiral (0.0,0.0) [28] 2.5
BH-BH inspiral (0.0,0.0) [11,29] 3.2
BH-BH inspiral (0.0,0.0) [27,30] 3.5
BH-BH inspiral (0.0,0.0) [33,35] 3.7d

BH-BH inspiral (0.1,0.1) � k � [34] 5.2
BH-BH inspiral (0.8,0.8) generale [31] 5–6
BH-BH inspiral (0.8,0.8) � k � [30] 6.7
BH-BH r.whirl (0.0,0.0) [32] 15f

BH-BH r.head-on (0.0,0.0) [65] 16
BH-BH r.head-on (1.0,0.0) ? [66] 17 �

1=4
g

BH-BH whirl (0.0,0.0) [32] 24h

BH-BH r.whirl (0.0,0.0) [32] 100h

aHere ‘‘head-on’’ stands for a direct collision with v k r initially,
‘‘orbiting’’ stands for the tidal stripping of a NS by a BH in close
orbit, ‘‘grazing’’ stands for inspiral collisions in which the initial
separation is within the final orbit in a merger, ‘‘inspiral’’ is the
complete inspiral-merger-ringdown event, ‘‘whirl’’ stands for
particles approaching from infinity with some impact parameter
leading to a quasicircular whirl-type orbit before merger,
‘‘r.whirl’’ and ‘‘r.head-on’’ corresponds to relativistic initial
velocities v � 1 at r� M.
bHere we give the sign of S1  J, the relationship between S1 and
S2, and the sign of S2  J, where J is the orbital angular
momentum. In case of a head-on collision with spins, we give
the initial direction of the spin relative to the separation vector.
cNS tidally locked.
dReference [33] provides the results for different mass ratios,
m1=m2 � 1–4, and found that �m / �2, where � �
m1m2=�m1 �m2�

2 � 1=4.
eEight different choices of spin orientations.
fIn case the impact parameter is small enough to end up in a
merger.
gCalculated for m1 � m2.
hIn case the impact parameters are fine-tuned for the binary to
approach the unstable circular orbit.
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is applicable to the waveform, implying that L�t� does not
change greatly over a single cycle. This condition is just
marginally satisfied for these waveforms.

For a simple analysis, we assume that the total luminos-
ity crossing a sphere at infinity L1�t� is given by Eq. (4)
with the following parameters: �t0; t1; t2� � �100; 10; 5�M0,
and use �t � 12�M0 in reference to average quantities
below. Under the WKB approximation the luminosity (4)
evolves independently of the carrier frequency f�
1=�4�M0�. The L0 normalization is set using the total
radiated mass of the system as a fraction of M0 by � �
�mtot=M0 for the inspiral-mergers (3) listed in Table I. For
pedagogical comparison purposes we distinguish the in-
spiral events only based on the normalization L0, and do
not consider the variations in the shape of the waveform
(e.g. �t).

III. QUANTITATIVE ESTIMATES IN SPHERICAL
SYMMETRY

To give a first quantitative estimate of the magnitude of
the wave-packet distortion due to self-energy, we start by
computing the propagation of unpolarized radiation pack-
ets in the spherically symmetric Vaidya spacetime. The
possible effect of anisotropies is discussed in the appendix.

The Vaidya metric [15] in radiation coordinates
�u; r; �; �� is

 ds2 � �

�
1�

2m�u�
r

�
du2 � 2drdu� r2d�; (5)

where d� � d�2 � sin2�d�2. This metric is an exact (i.e.
nonperturbative) solution of Einstein’s equations in spheri-
cal symmetry in the eikonal approximation to a radial flow
of unpolarized radiation. Here u is the retarded time pa-
rameter which is constant along the worldlines of radially
outgoing radiation, and m�u� describes the mass function
interior to u. Outside the radiation (i.e. where m�u� is
constant in the spacetime), the Vaidya metric (5) is the
Schwarzschild solution in Eddington-Finkelstein coordi-
nates [20]. For our approximate waveforms described in
Sec. II, m�u� is M0 constant outside, it is quickly changing
within a short range 0 � u � �utot across, and it is Mf �

M0 � �mtot inside the radiation shell. Here, �mtot and
�utot are set by the simulated waveforms Sec. II.

For the metric given by Eq. (5) it is straightforward to
derive the convergence of null-geodesics describing the
worldlines of radiation shells using Raychaudhuri’s equa-
tion or the equation of geodesic deviation [76]. In either
way, we find that radially outgoing shells of radiation
simply follow the worldlines u�r� � const, implying that
the �u coordinate difference between the shells does not
change during the propagation. The physical contraction of
radiation shells can be examined using the proper time
measure between shells and the observed luminosity
profile.

A. Proper time duration

First, we estimate the proper-time duration of the GW
signal along the worldline of a hypothetical observer cross-
ing the radiation shell. For simplicity, we restrict to ob-
servers at a fixed spacial coordinate �r; �; ��. Then we have
dr � d� � d� � 0 and Eq. (5) gives

 d�2 � �ds2 �

�
1�

2m�u�
r

�
du2 (6)

leading to d� �
���������������������������
1� 2m�u�=r

p
du. Therefore, du can be

interpreted as the infinitesimal proper time difference be-
tween two radiation shells at fixed radius approaching
infinity. Thus, we adopt the notation du � d�1, and simi-
larly �u � ��1 for integrated quantities. Finally, let us
definemi � m�ui� for i 2 f1; 2g and �m � jm2 �m1j. We
set �m1; m2;�mtot� � �M0;Mf; �M0� when referring to the
total GW signal duration.

Integrating between two arbitrary shells of radiation u2

and u1 gives

 �� �
Z �2

�1

d� �
Z u2

u1

�
1�

2m�u�
r

�
1=2
du: (7)

After expanding m�u� in a Taylor-series, the integrand
becomes

 

�
1�

2m1

r
�

2uhm0i
r
�
u2hm00i
r
�   

�
1=2
: (8)

Substituting in Eq. (7), and using hm0i � ��m=��1 and
hm00i � 0 to first order, we get

 ���m1; m2; r� �
r��1

3jm2 �m1j

�
1�

2m
r

�
3=2
��������m2

m1

: (9)

Setting m1 � M0 and expanding in terms of �m, we get

 

��
��1

�

������������������
1�

2M0

r

s �
1�

1

2

�m
r� 2M0

�O��m2�

�
: (10)

The leading order term can be identified as the gravita-
tional redshift for constant mass M0, the second term
describes the correction due to the radiation mass. If we
expand also in terms of powers of 1=r, the relative change
in the proper time duration of the signal becomes

 

�����1
��1

� �

�
M0 �

�m
2

�
1

r
�O�r�2;�m2�: (11)

Equations (9)–(11) describe the self-gravitational dis-
tortion between radiation shells in terms of proper time
along worldlines of r � const. One can notice that to
leading order this is simply the gravitational redshift for
the average enclosed mass between the shells. However,
since �m changes along the wave packet nontrivally for a
fixed radius as a function of time, the modification of the
profile is generally not self-similar, leading to the distor-
tion of the luminosity profile as a function of radius.
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To make this point clearer, we correct for the average
distortion of the signal and calculate the residual distortion
of the signal. Let us define

 ��0 � �1� z������1 (12)

where (1� z) is a time-independent constant representing
the ‘‘average gravitational redshift’’ at a given r, given by

 1� z �
1����������������

1� 2hmi
r

q ; (13)

hmi � �m1 �m2�=2 is the average mass, and to leading
order

 z �
hmi
r
�
M0

r
�

�m
2r

: (14)

Now let us take an arbitrary radiation shell enclosing
mass �m relative to the shell enclosing mass M0 �
0:5�mtot, i.e. we setm1 � M0 � 0:5�mtot andm2 � m1 �
�m in Eq. (9). After correcting for the average gravita-
tional redshift using Eqs. (12) and (13), the residual rela-
tive distortion to leading order is

 

��0

��1
� �

�m
2r
�O�r�2;�m2�: (15)

Figure 2 shows the residual distortion using the exact
formula [Eq. (12), thick lines] and the leading order con-
tribution [given by Eq. (15), dotted lines]. At the typical
radius used by numerical simulations for waveform extrac-

tion, r � 50M�, the primary bulk waveform distortion
changes the signal duration by M0=r� 2%, and the sec-
ondary relative waveform distortion between the front and
the back of the signal is �M0=�2r� � 7
 10�4 for a typical
BH inspiral–merger with high spins � � 7% (see Sec. II).
The figure also shows that the higher order effects beyond
1=r lead to an uncertainty of order 10�3–10�4 for r �
�30–50�M0.

B. Luminosity profile

Since Eqs. (9) and (11) are applicable to two arbitrary
shells of radiation, we can use them to compute the evo-
lution of an arbitrary initial radiation profile, whereas the
luminosity is simply L � �m=��, the total mass-energy
crossing a sphere at radius r within proper time ��.

The profile at infinity is given by m�u� in radiation
coordinates, or ��1�m�, the proper time a shell enclosing
mass m arrives at r � R where R! 1, relative to the
outermost shell of radiation [77]. Here ��1�m� can be
any monotonically decreasing function, for which the lu-
minosity at R in Eq. (3) is

 L1��� � �
�
d��1�m�
dm

�
�1
; (16)

where the minus sign originates from our definition of m:
the shell labeled by the largest value of m arrives the
earliest. The luminosity profile can also be obtained as
the function of time, L1���, using the relationship
���m�. Conversely, for given L1���, we can compute
��1�m� using Eq. (16). The luminosity at some other
distance r can be obtained similarly if given ���m; r�,
the arrival time of mass m relative to the outermost shell
at distance r. This function is given by Eq. (9), substituting
the waveform ��1�m� for ��1, and �m1; m2� � �M0; m�.
The luminosity profile at r is then

 Lr�m� � �
�
@���m; r�

@m

�
�1
�

�
1�

2m
r

�
�1=2

L1�m�:

(17)

Therefore, the modification of the profile in Bondi radia-
tive coordinates �m; r� the profile is distorted self-similarly.
However, in terms of the observer proper time variable,
���m� �

R
m
0 Lr�m�

�1dm, Lr���, the modification to the
profile will not be self-similar:

 Lr��� �
�
1�

2
R
�
0 Lr��

0�d�0

r

�
�1=2

L1

�Z �

0
Lr��

0�d�0
�
:

(18)

Equation (18) relates the luminosity profile as a function of
proper time at radius r, Lr���, to the profile at infinity,
L1���. Comparing Eqs. (17) and (18) shows the advantage
of Bondi type radiative coordinates as opposed to proper
time.

FIG. 2. The residual self-gravitational distortion of shells after
correcting for the bulk gravitational redshift. The thick curves
show the change in the proper time duration of the signal at
radial distance r from the source between shells enclosing 7%
(top) or 3% (bottom) of the total mass, dotted lines correspond to
the leading order term given by Eq. (15). The vertical lines
highlight the typical radii used in numerical simulations for GW
extraction.
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Figure 3 plots Lr��� for our fit to the luminosity profile at
infinity of merging binary BHs L1��� with � � 7% (see
Sec. II). The top panel shows the absolute profile while the
bottom panel shows the difference between the profile at
some radius r and the profile at infinity, such that the peak
of the profiles are at � � 0. The bottom panel is useful to
visualize the characteristic evolution of the profile.

In Sec. III A, we have identified the two main effects
responsible for the convergence rate of the waveform to be

the gravitational redshift corresponding to the average
mass and the self-gravitational effect. Indeed, the differ-
ences visible in Fig. 3 are primarily due to the former.
However, correcting for only the average gravitational
redshift at each radius r leaves a non-negligible systematic
error with respect to the true signal. To see this, we sub-
stitute ��1=�1� z� given by Eq. (13) into Eqs. (16) and
(17), and refer to the corresponding luminosity as the
average gravitational redshifted luminosity profile, Lzr���.
After subtracting from the true profile for each �, the
residual luminosity distortion is

 L0r��� � Lr��� � Lzr���; (19)

where we set the reference time again to � � 0 for the peak
of the luminosity profiles.

FIG. 3. Our fits to the GW luminosity profile for binary BH
inspiral merger simulations as a function of observer proper time
� and the evolution of the profile at various distances, r. The
profile parameters are given in Sec. II and � � 7%. Top: The
absolute profile (in units of c5=G) is shown for two extremes, a
nearby distance (r � 12:5M0) and far away distance (r �
103M0). Bottom: The difference between the GW luminosity
profiles at infinity (i.e. r � 103M0) and three cases of smaller r,
in units of peak luminosity at infinity. The peaks of the profiles
are set to � � 0. The main effect responsible for the differences
seen in this figure is the bulk gravitational redshift.

FIG. 4. The residual self-gravitational distortion to the lumi-
nosity profiles after accounting for the average gravitational
redshift, z � M0=r (top) or �M0 � 0:5�mtot�=r (bottom), respec-
tively. Other parameters are the same as in Fig. 3.
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Figure 4 shows the residual self-gravitational distortion
L0r��� for various radii in units of the peak luminosity at
infinity, L1;max. Naturally, the definition of the ‘‘average
gravitational redshift,’’ z, used for defining L0r��� makes a
difference in the result. The top panel uses only the initial
binary mass hmi � M0=r in Eq. (14) totally neglecting the
gravity of the radiation shell, while the bottom panel has
hmi � �M0 � 0:5�mtot�=r, i.e. the redshift is chosen to
account also for the average gravity of the radiation shell.
In the later case we find a much quicker convergence for
the waveform peak at increasing radii, but the former
choice is more suitable for the early parts of the waveform
corresponding to the late inspiral waveform. A comparison
of Figs. 3 and 4 shows that the self-gravitational distortion
is roughly an order of magnitude smaller than the effect of
the average gravitational redshift.

C. Self-gravitational coordinate effects

In the previous sections we have derived the time dura-
tion and the luminosity profile of the radiation shell as it
propagates radially outward from the source. We have
assumed that the GW profile at each fixed arial radius r
is parameterized by the proper time � of a hypothetical
observer fixed at that radius, in particular, the luminosity
Lr��� was the total mass-energy crossing a sphere at radius
r within infinitesimal proper time d�. Therefore, the
adopted time-coordinate � corresponds to a synchronous
gauge at each radius. Since physical observables depend
precisely on proper measures, these coordinates allow a
simple interpretation of the convergence characteristics of
the GW profile at large radii.

Other choices of coordinates would have introduced
additional artificial distortion effects making the conver-
gence characteristics of the waveforms much different.
Consider for instance the ‘‘natural’’ coordinate system
�t; r; �;�� in the spherically symmetric case that is chosen
to be Schwarzschild both before and after the GW burst has
arrived with masses M0 and Mf � M0 � �mtot, respec-
tively, and which changes smoothly in between these re-
gions. An example of such a coordinate system can be
derived from the Vaidya metric equation (5) with the
implicit transformation t � u� r� 2m�u� ln�r� 2m�u�	
where m�u� describes the mass function interior to u
(which is constant along the outgoing radiation world-
lines). Indeed, everywhere in the spacetime where
dm=du � 0, these coordinates yield a Schwarzschild met-
ric, and the Vaidya metric in radiation coordinates (5) is
then simply the Schwarzschild solution in Eddington-
Finkelstein coordinates [20] in these regions. This map
covers all relevant parts of the spacetime including the
GW zone. The world-lines of radiation shells can be shown
to follow

 

dr
dt
� 1�

2mu

r
; (20)

where the second term is called the Shapiro time-delay [14]
for a particle crawling out of the gravitational potential of
massmu interior to it. After integration, we find that to first
order the temporal separation of two radiation shells en-
closing mass �m at radius r evolves to leading order as
�t�r� � �t�R0� � 2�m ln�r=R0�, where R0 is an arbitrary
initial radius. In these coordinates, the signal duration
contracts uniformly in exponential distance intervals.
Even though the metric is asymptotically Minkowski
(where t approaches � for r� M0), the resulting profile
evolution is fundamentally different from ���r� given by
Eq. (11)!

The appearance of the logarithmic radial dependence of
the waveform was first realized by Fock [78]. This effect is
specific to the harmonic coordinates and can be avoided if
changing to Bondi type radiative coordinates [79,80].
Blanchet and Schäfer [46] have shown that a similar loga-
rithmic dependence of the GW tail leads to a tail-induced
amplitude and phase shift (typically of order 10�7) for
stationary sources. In contrast, the logarithmic radial de-
pendence of the wave contraction for merger waveforms
can be significant for GW merger simulations. Between
r � �20–40�M0, the waveform contracts in �t by a fraction
of 5
 10�3, which is just of the order of the current wave
extraction precision [13,34,35]. This apparent logarithmic
contraction effect can be avoided if one changes to the
proper time variable as we have done in the previous
sections. The remaining ���r� evolution is however a
physical effect.

Both the logarithmic �t�r� contraction and the physical
���r� evolution (in particular the contribution denoted by
��0�r� above) are consequences of higher order radiation
effects in the Einstein equations beyond the scope of first-
order methods such as the Regge–Wheeler–Zerilli-
Moncrief perturbation method used for extrapolating the
numerical waveforms to infinity. Therefore these effects
cause the extrapolated waveforms to be different when
extracting GWs from numerical simulations at various
radii by standard methods using no self-gravitational in-
teraction. For a related recent analysis see Ref. [81].

IV. DISCUSSION

A. Summary

We considered the self-gravitational effect of gravita-
tional radiation on the propagation of GWs from a compact
source. We adopted simple approximations for the geome-
try of the radiation, by considering spherical symmetry on
scales comparable to the radial width of the radiation
packet. This approximation appears adequate for the quad-
rupolar (l � 2, m � 2) radiation pattern around binary BH
sources in numerical simulations [33–35]. Nevertheless,
we use the appendix to examine the maximal effects of
anisotropy in the opposite (exaggerated) extreme, when the
outgoing radiation is concentrated into a compact region.
We find that irrespective of the level of anisotropy, the
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gravitational radiation is distorted under the influence of its
own gravity as it propagates. Contrary to the standard
gravitational redshift, which is a uniform shift of the
waveform, the self-gravitational effect depends on the
intensity and is predominant only for the most intensive
bursts of radiation causing a nonuniform distortion of the
waveform. The self-gravitational distortion depends on
distance to leading order as �m=r, and is therefore relevant
on scales rsg=M0 & �=	 where � is the radiation efficiency
and 	 is the desired calculation accuracy. For BH binary
mergers simulations �� 7% and 	� 10�5 implying that
rsg & 7
 103M0. If the GWs are extracted within this
region, the self-gravitational distortion should be taken
into account.

B. Testing the effect with numerical simulations

Numerical simulations based on the full set of Einstein
equations for binary BH inspirals have not yet reported
evidence for the waveform distortion effect considered
here although they have shown that the waveforms do
not converge within a fractional accuracy of 	� 10�3

[13,34,35]. This is because the simulations are restricted
to a limited volume, typically of radii ��80–850�M, while
the extracted waveforms are typically compared between
r� 20–50M. For a radiation mass �m=M0 � 7%, the
primary effect is a shift of the waveform due to a logarith-
mic Shapiro time delay of the remnant, a uniform gravita-
tional redshift, and the self-gravitational effect. We have
shown that the logarithmic Shapiro delay does not show up
if using proper measures to describe the waveform, and the
uniform gravitational redshift is accounted for in the linear
wave propagation models. However, the residual self-
gravitational effect in the GW luminosity has a character-
istic profile that has to be subtracted when extrapolating the
extracted waveform. The peak of the effective luminosity
distortion reaches 2
 10�3 and 5
 10�4 at r � 30 and
50M0, respectively.

Present-day numerical relativity simulations should al-
ready be capable of directly measuring the relevance of our
effect by artificially amplifying the gravitational radiation
found at the extraction radius r� 20M, and starting the
simulation with these amplified initial conditions. For ex-
ample, for a total GW energy �m=M0 � 30%, the effec-
tive luminosity distortion between r � 20M between
20–50M is several percent, which is well within simulation
and extraction errors. For consistency, the simulation
should confirm that the total energy content of the radiation
does not change. We also expect the initial ringdown
frequency (corresponding to the most energetic shell) to
be smaller than the final ringdown frequency.

In order to avoid errors caused by the self-gravitational
distortion effect up to the desired numerical precision 	�
10�5, the waveform extraction radius should be chosen to
be rsg * 7
 103M0. Alternatively, if the waveforms are
extracted at smaller radii, the waveforms should be con-

verted to Bondi type radiative coordinates and then ex-
trapolated with the scaling 1=r.

C. Observational implications

The self-gravitational waveform distortion is important
for future observations of BH binary mergers.

(1) The waveform distortion is expected to be resolv-
able for the LISA instrument with respect to simu-
lated waveforms for total BH masses of
�104–109�M�. The total signal to noise ratio of
merger waveforms is 104 for LISA observing zc �
1 [12]. The distortion effect modifies the waveform
amplitude and frequency by ��10�3–10�4� for
numerical waveforms extracted between r �
�30–80�M0.

(2) The distortion involves a systematic modification of
the waveform which needs to be accounted for in
order to interpret observed merger waveforms and
improve the estimation uncertainty of physical pa-
rameters beyond the uncertainty of the preceding
inspiral signal. The signal to noise ratio of the final
BH merger waveform is an order of magnitude
larger than for the inspiral, implying that the merger
waveform has a potential to greatly reduce parame-
ter estimation errors. Note that the relative accuracy
using only the inspiral signal with LISA is expected
to be 10�3–10�5 [82,83] for estimating the compo-
nent masses, which is smaller than the distortion
effect.

(3) This effect is different from the uncertainties caused
by gravitational lensing [84], in that it is only an
issue concerning the convergence properties of nu-
merical simulations. Lensing causes an error of
several percent on the inferred luminosity distance
(due to the unresolved matter along the line of
sight), and lensing errors increase with the source
distance. In contrast, the self-gravitational effect is
of order 0.1%–0.01% for numerical simulations if
the waveforms are extracted at 30M–80M and dies
off quickly as 1=r. The wave distortion effect is of
order 10�20 relative to the waveform amplitude for
typical astrophysical scales. Therefore, the wave-
contraction effect does not provide any additional
physical parameters for observations.
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APPENDIX A: ANISOTROPY

Our analysis considered only perfectly spherically sym-
metric configurations. The approach was motivated by the
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quasispherical radiation patterns found around binary BH
sources in numerical simulations [33–35]. In this appen-
dix, we would like to examine the sensitivity of our basic
results to deviations from sphericity. To gauge whether
there is any such sensitivity, we analyze the most extreme
case in which the outgoing radiation is concentrated into a
highly compact region.

But first let us define more precisely what we assumed so
far. The derivation presented in Sec. III requires that the
radiation field is ‘‘initially locally spherically symmetric,’’
so that it is initially described by the Schwarzschild metric
locally within some narrow solid angle �� & �r=r before
the GW arrives, where �r� c�t is the radial width of the
wave-packet along its propagation direction. But since the
radiation propagating through this solid angle is in no
causal contact with the radiation field expanding towards
other directions, it cannot distinguish the actual spacetime
from a spherically symmetric one. Note that the outermost
shells of radiation expanding along different directions are
always causally disconnected by definition, and the interior
shells of radiation can only be affected by the outer shells
within ��. Since we examine the distortion effect on large
distances compared to the width of the burst r� �r,
spherical symmetry must only be required within a very
narrow angle. This simple set of considerations implies
that if high-order multipoles have a vanishing contribution
at large distances, the results derived in Sec. III are appli-
cable very generally for short bursts of radiation, �r� r.
Indeed, numerical simulations confirmed that the dominant
contribution to the wave amplitude is given by the (l � 2,
m � 2) multipole and higher order terms are suppressed
by more than a factor of magnitude (see references in
Sec. II). In the remainder of this appendix we demonstrate
the validity of this simple conclusion through explicit
calculations.

We consider three variations on a toy model to estimate
the effect of anisotropy. We start with the simplest model
and refine this model by adding more details and complex-
ity in the successive models. In each case, we discuss
general implications for the model under consideration.
In all models we consider the extreme opposite regime to
spherical symmetry, namely, that the radiation is maxi-
mally clumped into two outgoing BHs L (leading) and T
(trailing) of masses mL and mT , representing the leading
and trailing edges of the radiation, respectively. We assume
that L and T are moving in the same direction on lightlike
worldlines, so that T lies in the causal past of L, but L is
outside the causal past of T throughout their propagation.
We assume that there is also a remnant Schwarzschild BH
R with mass mR. The instantaneous radial position coor-
dinate of R, T, and L at time t are 0, rT�t�, and rL�t�. We are
interested in obtaining the worldlines of BHs T and L to
see how the coordinate separation �r�t� � rL�t� � rT�t�
decreases with time as compared to the spherically sym-
metric result. In our first model we neglect the remnant R

(setting mR � 0), assume that L moves with constant
velocity vL in free space, and calculate the trajectory of
T in the spacetime created by L. Subsequently, we will
generalize L to move on a more general worldline with a
slowly changing velocity vL�t�. Finally, we can turn on the
remnant R in addition to L, and include the retardation
effect when calculating the relative motion of T.

We note that the spacetime of BHs moving at the speed
of light have been calculated previously in Ref. [54], which
found that BHs moving in the same direction do not
interact. However, Ref. [54] assumed that the BHs move
in free space and consequently adopted v � 1 for their
velocity. In contrast, the BHs T and L travel on null-
geodesics in the perturbed spacetime which is initially
the Schwarzschild spacetime. This difference gives rise
to a nontrivial interaction between the BHs T and L.

We compare our results to the spherical case, using the
�t; r� coordinate system defined by Scwarzschild coordi-
nates before and after the radiation shells as described in
Sec. III C.

1. No remnant mR � 0, constant vL velocity

We start by assuming that L is a BH with constant
velocity vL < 1 in free space, and wish to calculate the
worldline of T in this background. Here, we assume that no
remnant is present, and that L and T move along the same
spatial direction, which we denote by x. Thus it is sufficient
to restrict our attention to the two dimensions �t; x� of the
spacetime.

Let us start by deriving the metric. In the coordinate
system �t0; x0� comoving with L, the metric is the
Schwarzschild metric ds2 � ��1��0�dt02 � �1�
�0��1dx02, where�0 � 2m0L=jx

0j. Here x0 � 0 corresponds
to the BHL for all t0, andm0L � mL=
 is the rest mass of L,
where mL is the energy carried by L in the original �t; x�

coordinates and 
 � 1=
���������������
1� v2

L

q
is the Lorentz factor. To

derive the metric in the �t; x� coordinate system, we apply
the diffeomorphism �t; x� � 
�t0 � vLx

0; vLt
0 � x0�, i.e. a

global Lorentz transformation,
 

ds2 � �
�1��0�2 � v2

L

�1� v2
L��1��

0�
dt2 �

1� v2
L�1��

0�2

�1� v2
L��1��

0�
dx2

�
2vL�

0�2��0�

�1� v2
L��1��

0�
dtdx (A1)

which can be rearranged as
 

ds2 �
�vL � �1��0�	dt� �1� vL�1��0�	dx������������������������������������

�1� v2
L��1��

0�
q



�vL � �1��0�	dt� �1� vL�1��0�	dx������������������������������������

�1� v2
L��1��

0�
q : (A2)

Here �0 is to be expressed as the function of the new
coordinates �t; x�, i.e. �0 � 
�2� where � � 2mL=j�xj,
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�x � xL � x, and xL � vLt is the instantaneous position
of the singularity.

The xT�t� null-geodesics describing the worldline of T
can be obtained by setting ds2 � 0. Equation (A2) shows
that there are two solutions

 �vL � �1� 
�2��	dt� �1� vL�1� 
�2��	dxT � 0;

(A3)

 �vL � �1� 
�2��	dt� �1� vL�1� 
�2��	dxT � 0:

(A4)

These differential equations can also be obtained more
simply by finding the null-geodesics in the comoving
coordinates �t0; x0� first, and changing to the �t; x� coordi-
nates only in the resulting equation. The null geodesics
in the comoving coordinates are simply dx0T=dt

0 �
�j1��0j [see Eq. (20)], and the Lorentz boost coordinate
transformation of this differential equation leads instantly
to (A3) and (A4). Therefore, the two solutions (A3) and
(A4) describe the null geodesics approaching or receding
the moving BH, respectively.

We would like to find the solution for the T test particle
approaching the source L from behind, namely, Eq. (A3)
for an initial condition xT < xL. This first-order differential
equation can be solved analytically by a linear substitution.
The coordinate velocity vT � dxT�t�=dt monotonously
decreases from 1 to vL as the event horizon at xL hor�t� �
vLt� 2
�2mL is approached. In particular if vL � 1, i.e.
the source L has the speed of light in the free-space
background, then the trailing test particle T will not be
delayed at all, vT�t� � 1 for all t. However, if vL � 1 then
T is considerably affected by the Shapiro delay near the
horizon of L.

In concluding the description of this model, let us sum-
marize how the clumpy case compares to the spherically
symmetric case of expanding radiation shells. First recall
that in the spherically symmetric case, L has no effect on T
throughout the dynamics regardless of vL or �r. In the
clumpy case, the gravity of L delays the motion of T. The
magnitude of this delay is significant only if both of two
conditions are violated: (a) vL � 1 and (b) �x �
xL � xT � 2
�2mL. What are the ‘‘typical numbers’’ for
these quantities? Equation (20) implies that vL �
1� 2M0=x (which is also true in the clumpy case, see
Sec. A 3), implying that 
�2 � 4M0=r, and for binary
mergers �x� 12�M0, mL <M0 �Mf & 0:06M0, we
find that the two cases are equivalent to (a) x� 2M0 and
(b) x� 0:2�m * 0:01M0. Quite clearly, these conditions
will not be violated for distances outside the dynamical
regime of strong gravity e.g. x * R0 � 30M0. Thus, we
expect only very minor modifications relative to the spheri-
cally symmetric case, even in the most clumpy case. For a
quantitative estimate we need to integrate these modifica-
tions over the relevant distances which we describe next.

2. No remnant, slowly changing vL�t�

Next we consider a slowly changing source velocity
vL�t� for the BH L, continue to neglect a remnant R, and
calculate the motion of T in this spacetime. Since L is
assumed to move on a lightlike worldline, it is not effected
by R and only responds to the background created prior to
the production of the bursts. Thus we assume L moves on
the null-geodesic of the background as described by (20)
with vL � 1� 2mT=xL.

If vL is slowly changing, we can consider vL to be
constant during short time intervals with infinitesimal
jumps on their boundaries. We can then find the corre-
sponding worldline segments of T by solving the differen-
tial equation (A2) and matching the boundary conditions of
the successive segments by requiring continuity. In the
limit that the length of the constant time intervals ap-
proaches zero, the worldline xT�t� at every instant is given
by Eq. (A2) with vL now denoting the instantaneous
velocity, and �0 referring to the instantaneous value of
the potential: �0 � 
�2�, where � � 2mL=j�xj with
�x � xL � x and xL �

R
vL�t�dt. Thus,

 

dxT
dt
�

vL � 1� 
�2�

1� vL�1� 

�2��

� 1�
2mL�1� vL�

2

�x� 2mLvL�1� vL�
: (A5)

Substituting vL � 1� 2mT=xL, the distance between the
clumps of radiation satisfies

 

d�x
dt
�

2mT

xL

�
�1�

4mLmT

xL�x� 4mLmT�1� 2mTx�1
L �

�
:

(A6)

Note that xL�t� can be used to express the width of the
packet �x as a function of xL. To simplify the result, we
use qL � mL=mT , set the units to the Schwarzschild radius
2mT � 1, and express (A6) in terms of the logarithmic
distance variable, y � ln�xL � 1�. Then

 

d�x
dy
� �1�

qL
xL�x� qL�1� x

�1
L �

(A7)

which to first order in 1=xL becomes

 

d�x
dy
� �1�

qL
xL�x

: (A8)

Equation (A8) shows that to leading order, the wave-packet
packet contracts linearly in terms of the logarithmic dis-
tance variable x. In the spherically symmetric case, the
inner shell T is not influenced by L and so dxT=dt � 1
instead of Eq. (A5), leading to d�x=dy � �1. Therefore
the distortion of wave-packets in the maximally clumpy
case is the same as in the spherically symmetric case to
leading order. The difference arises in the next order given
by the second term in (A8) describing how the gravity of L
Shapiro-delays the motion of T. This is typically of order
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�4
 6%�=�12�� 
 x�1
L � 10�4 for xL � 30M0 and gets

exponentially smaller for exponentially larger distances.

3. Remnant included, changing vL
The previous model assumed no remnant (i.e. mR � 0),

and postulated that T propagated in the spacetime of L by
assuming that the spacetime at T was the spacetime of L at
the same instant. Here we consider a nonzero mR and
account for the retardation of the effect of L as perceived
by T. We assume a slowly changing velocity and that the
gravitational perturbations are sufficiently small to allow
simple superposition to leading order. We follow a simpli-
fied approach with the following essential assumptions:

(1) The initial condition is a spherically symmetric
Schwarzschild spacetime centered at x � 0.

(2) L moves on a null-geodesic xL�t� of the initial
background metric of R and T, i.e. in a
Schwarzschild metric centered at x � 0 for all t
and for a massmR �mT . The worldline of L follows
(20) accordingly.

(3) T moves on a null-geodesic xT�t� of the background
metric of R and L, which we assume to be a simple
superposition gij � �ij � 	g

R
ij � 	g

L;ret
ij . Here

	gNij � gNij � �ij for a given metric, gNij, where �ij
is the Minkowski metric, gRij is the metric of the
remnant i.e. the Schwarzschild metric centered at
x � 0 for all t with mass mR. The metric gLij is the
stationary boosted Schwarzschild metric (A1) and
(A2) with mass mL, velocity vL, centered at xL. The
label ret stands for retardation, which we describe
next separately.

(4) We account for retardation by setting �tret � t� tret

to be the light-travel time from L to T. For this we
compute the inward propagating null-geodesics
from L to T [i.e. between positions �tret; rL�tret��
and �t; rT�t��], based on the initial background met-
ric of R and T (i.e. neglecting the gravity of L).

To find the retardation time, we note that the inward
propagating null geodesics satisfies dx=dt � ��1�
2�mR �mT�=x	. Since this is exactly the time-reversed
worldline of L, we get xT�t� � xL�t� 2�tret�. Integrating
dt=dx for the worldline of L between xL�t� 2�tret� and
xL�t�,

 2�tret �
Z xL�t�

xT �t�

xL
xL � 2mR � 2mT

dxL; (A9)

from which

 �tret �
xL � xT

2
� �mR �mT� ln

xL � 2mR � 2mT

xT � 2mR � 2mT
:

(A10)

The distance where T perceives L is xret
L �t� � xL�t��tret�

and the separation is �xret � xret
L � xT . Substituting xT as

xT � xL � �x and xT � xret
L � �xret into (A10), we can

find �xret for given �x and xL. To first nonvanishing order
in 1=xL,

 �xret �
�x
2
�
�mR �mT��x

2

4x2
L

: (A11)

The leading order term corresponds to the propagation at
the speed of light in free space, vL � vT � 1. Note that the
correction is proportional to x�2

L , which is extremely small
for the physical cases beyond the strong field zone. Finally,
we define the retarded position and velocity xret

L � xL �
�xret, and vret

L � 1� 2�mR �mT�=xret
L , which can be writ-

ten in terms of xL and �x using Eq. (A11).
The metric contribution 	gL;ret

ij of L at T at time t, is the
boosted Schwarzschild metric (A1) and (A2) with instan-
taneous velocity vret

L , a singularity at xret
L , and distance

�xret.
Now we can redo the derivation presented in Sec. A 2 to

find the motion of T, using the modified spacetime gij
given above. Again we find two solutions for ds2 � 0
representing the ingoing and outgoing radiation.
Expanding the outgoing solution in a series in x�1

L , we find

 

dxT
dt

��������clumpy
� 1�

2qR
xL
�

�
qR�x�

2qL�1� q2
R�

�x

�
1

x2
L

;

(A12)

where qi � mi=�mR �mT� for i 2 fR; T; Lg and distance
units are chosen to be the Schwarzschild radius 2�mR �
mT� � 1. In order to get the instantaneous shell width �x
as a function of logarithmic distance y, we can redo the
manipulations of (A6)–(A8) for the result (A12). To first
order in 1=xL,

 

d�x
dy

��������clumpy
� �qT �

�
qR�x�

2qL�1� q2
R�

�x

�
1

xL
:

(A13)

In the limit of no remnant qR � 0, we almost recover the
solution derived previously in Eq. (A8). There is a factor 2
difference, which is the direct consequence of the retarda-
tion of the perceived distance �x, which had been ne-
glected in Eq. (A8).

Equation (A13) should be contrasted to the expansion of
two spherically symmetric shells mT and mL in the pres-
ence of a remnant mR. We may expand the corresponding
spherical solution of Sec. III C in a series in 1=xL to first
order:

 

d�x
dy

��������spherical
� �qT �

qR�x
xL

: (A14)

The first two terms in Eqs. (A13) and (A14) are identical.
The correction describing the ‘‘Shapiro delay’’ of contrac-
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tion in the clumpy case due to the gravity of L is 2qL�1�
q2
R�=�xL�x�. Substituting typical physical values qR �

97%, qT � 3%, qR � 3%, and �x0 � 6�� xL0 in units
of Schwarzschild radii, we see that the correction is of
order 10�4 initially, and becomes exponentially smaller at

exponentially larger distances. In summary, even in the
most extreme case of clumpiness, the radiation packet
propagates to very high precision according to the spheri-
cally symmetric description.
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