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We derive the complete spectrum of gravitational waves induced by primordial scalar perturbations
ranging over all observable wavelengths. This scalar-induced contribution can be computed directly from
the observed scalar perturbations and general relativity and is, in this sense, independent of the
cosmological model for generating the perturbations. The spectrum is scale invariant on small scales,
but has an interesting scale dependence on large and intermediate scales, where scalar-induced gravita-
tional waves do not redshift and are hence enhanced relative to the background density of the Universe.
This contribution to the tensor spectrum is significantly different in form from the direct model-dependent
primordial tensor spectrum and, although small in magnitude, it dominates the primordial signal for some
cosmological models. We confirm our analytical results by direct numerical integration of the equations of
motion.
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I. INTRODUCTION

Arguably the most striking prediction of inflationary
cosmology [1] is the causal generation of nearly scale-
invariant spectra of both scalar (energy density) and tensor
(gravitational wave, GW) perturbations. The natural pre-
diction is that the scalar and tensor amplitudes are compa-
rable within 1 or 2 orders of magnitude of one another by
virtue of the fact that both are created by the same de Sitter
quantum process. The existence of a scalar spectrum is
now firmly established by measurements of the cosmic
microwave background (CMB) [2] and large-scale struc-
ture [3], and its amplitude is well determined. Tensor
fluctuations, on the other hand, have yet to be detected,
although current measurements have only begun to probe
the expected range of amplitudes.

Detecting primordial tensor fluctuations is an important
milestone because it rules out a whole class of alternative
cosmological scenarios, like the ekpyrotic [4] and cyclic
models [5], which produce virtually the identical scalar
spectrum as inflation but a completely different tensor
spectrum. In particular, the primordial tensor contribution
in ekpyrotic/cyclic models is exponentially smaller and
more blue [6]. Detection of a primordial tensor signal is
therefore widely regarded as a smoking gun signature of
inflation. However, failing to detect the tensor modes at the
expected level does not necessarily rule out inflation. The
inflationary tensor signal can be suppressed by extra fine-
tuning of the inflationary model and/or the addition of extra
fields (e.g. hybrid inflation [7]) so that the background

equation of state of the Universe, instead of changing
smoothly during the final stages of inflation, undergoes a
sequence of jerks and gyrations [8]. A number of studies
have discussed the limits to how far a search for the tensor
spectrum can go based on detector sensitivity and fore-
grounds [9].

At second order in perturbation theory the observed
scalar spectrum sources the generation of secondary tensor
modes [10]. In this paper, we analyze the stochastic spec-
trum of second-order gravitational waves induced by the
first-order scalar perturbations. Since the scalar spectrum is
already measured, this contribution to the tensor spectrum
must exist and must be the same for both inflationary and
ekpyrotic models because their predictions for the scalar
spectrum match. For inflation, this second-order contribu-
tion is generically negligible, orders of magnitude smaller
than the first-order contribution except for models with
extreme fine-tuning. For ekpyrotic and cyclic models, the
scalar-induced, second-order contribution computed here
is actually the dominant contribution on astrophysical and
cosmological scales, because the first-order tensor spec-
trum is always exponentially small compared to the scalar
spectrum. Hence, the calculation here supersedes previous
predictions of the tensor spectrum for ekpyrotic and cyclic
models [6]. Because the gravitational wave spectrum we
compute here is purely a consequence of the observed
scalar spectrum and general relativistic evolution, any
mechanism that accounts for the observed spectrum of
scalar fluctuations also generates the same secondary ten-
sor spectrum, provided Einstein’s equations hold. Hence,
this second-order signal provides an absolute lower limit
on tensors from the early Universe.

Our work builds on important earlier work by
Mollerach, Harari, and Matarrese [11] and Ananda,
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Clarkson, and Wands [12]. Mollerach et al. [11] computed
the effect of second-order gravitational waves on large-
scale CMB polarization. They found that the second-order
tensors dominate over the first-order signal if the ratio of
the tensor-to-scalar amplitude on the largest observable
wavelengths is r < 10�6. Then, more recently, Ananda,
Clarkson, and Wands [12] numerically studied the present
spectrum of gravitational waves on very small scales ac-
cessible to direct-detection experiments like the big bang
observer (BBO). Typically, the signal is expected to be at
the extreme limit of the predicted sensitivity of BBO. Here
we compute the complete spectrum of scalar-induced
gravitational waves on all scales and discuss how it evolves
with time. We analytically determine a critical scale above
which second-order gravitational waves do not redshift.
This nontrivial transfer function for scalar-induced gravi-
tational waves leads to an interesting feature in the current
spectrum (see the schematic in Fig. 1) with a factor 107

enhancement of modes of order of the horizon size at
matter-radiation equality relative to the scale-invariant
small-scale spectrum. We confirm our analytical findings
by numerical integration of the equations of motion.

The outline of the paper is as follows: In Sec. II, we
derive the evolution equations for second-order tensor
fluctuations sourced by first-order scalar fluctuations.
Allowing for an anisotropic stress contribution to the
energy-momentum tensor, we derive a general expression
for the power spectrum of scalar-induced gravitational
waves. This generalizes the work of Ref. [12]. In Sec. III,
we analyze the spectrum using various approximations and
scaling arguments. These analytical estimates are con-
firmed by direct numerical integration of the equations of
motion in Sec. IV. Finally, we discuss the implications of
these results in Sec. V. In two appendices we recall the
Green’s functions for gravitational waves and the transfer
functions for first-order scalar fluctuations [13].

We use the following conventions: Throughout we em-
ploy natural units, @ � c � 1, and (reduced) Planck mass
M�2
P � 8�G � �2, as well as ‘‘East coast’’ signature for

the metric, ��;�;�;��. Greek indices, �; � � 0; . . . ; 3,
denote four-dimensional spacetime indices, while roman
indices, i; j � 1; . . . ; 3, are reserved for spatial indices. The
parameter � is conformal time, a���d� � dt.

II. SECOND-ORDER TENSORS FROM
FIRST-ORDER SCALARS

Let us recall some basic facts about second-order per-
turbation theory, before deriving the explicit form of the
evolution equations for second-order, scalar-induced ten-
sors. We consider perturbations to a flat Friedmann-
Robertson-Walker (FRW) background, g�0��� � a2������,

 g�� � g�0��� � �g��; (1)

where g�0��� satisfies the 0th-order Einstein equations,
G�0��� � �2T�0���,

 H 2 �
�2a2

3
��0�; H � @� lna;

H 2 �H 0 �
�2a2

2
���0� � P�0��:

(2)

Here ��0� and P�0� are the homogeneous background den-
sity and pressure, respectively, and �. . .�0 denotes a deriva-
tive with respect to conformal time, �. Including to linear
order the small quantum perturbations to the metric and
energy density, the solution to the first-order Einstein
equations, G�1��� � �2T�1���, can be decomposed into inde-
pendent scalar, vector, and tensor modes. At linear order,
different k-modes in Fourier space are independent. This is
in contrast to the second-order Einstein equations, G�2��� �
�2T�2���, where different k-modes mix and scalar, vector, and
tensor modes are not independent. However, it is important
to notice that, at second order, there is no mixing between
second-order scalar, vector, and tensor modes. On the other
hand, there is a second-order contribution to the tensor
mode, h�2�ij , that depends quadratically on the first-order
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FIG. 1 (color online). Spectra of first- and second-order gravi-
tational waves: This schematic illustrates the conjectured form
of �GW�k�, the fraction of the critical density in gravitational
waves per log-interval of wave number k, as derived in Sec. III.
The topmost curve represents the typical first-order inflationary
tensor spectrum. With fine-tuning, it can be suppressed below the
level of the second-order, scalar-induced tensor perturbations
(bottom curves). The bottom curves represent a sequence of
times: matter-radiation equality (aeq), redshift z � 100, and to-
day (a0). The scalar-induced tensor spectra shown here are for a
perfectly scale-invariant scalar input spectrum (ns � 1). If the
scalar spectrum is blue (ns > 1) the induced tensor spectrum is
enhanced on small scales (large k), while a red spectrum (ns < 1)
suppresses tensor fluctuations on small scales (see Sec. V for
cautionary remarks about extrapolating spectra to very small
scales using the large-scale power law form of the scalar spec-
trum). �GW is of course ill-defined on superhorizon scales. On
superhorizon scales (dashed lines) we therefore formally define
the rescaled tensor power spectrum, k2Ph�k�, but do not interpret
it as an energy density of gravitational waves (see Sec. III).
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scalar metric perturbation. This contribution, the ‘‘scalar-
induced’’ tensor mode, is the focus of this paper.1

A. Evolution equations

To compute the second-order, scalar-induced tensor
mode we begin with the following perturbed metric
 

ds2 � a2������1� 2��1� � 2��2��d�2 � 2V�2�i d�dxi

� f�1� 2��1� � 2��2���ij �
1
2hijgdx

idxj�; (3)

where hij � h�2�ij and we have ignored first-order vector and
tensor perturbations. Here and in the following, the super-
scripts are formal labels for the order of the perturbation.
The second-order Einstein tensor and energy-momentum
tensor are [15]
 

G�2�ij � a�2�14�h
i00
j � 2H hi0j �r

2hij� � 2��1�@i@j��1�

� 2��1�@i@j��1� � 4��1�@i@j��1� � @i��1�@j��1�

� @i��1�@j�
�1� � @i��1�@j�

�1� � 3@i��1�@j�
�1�

� ���2�;��2�; V�2�i terms� � �diagonal part��ij�;

(4)

and
 

T�2�ij � ��
�0� � P�0��v�1�iv�1�j � P

�0���2�i
j � P

�1���1�i
j

� P�2��ij; (5)

where �,P, v, and � are energy density, pressure, velocity,
and anisotropic stress, respectively. We act on the spatial
components of the Einstein equations with the projection

tensor T̂ ij
lm

[12],

 T̂ij
lm
G�2�lm � �2T̂ij

lm
T�2�lm : (6)

We will define the operator T̂ij
lm

explicitly below, but we
note here that it extracts the transverse, traceless part of any
tensor and eliminates the terms involving ��2�, ��2�, V�2�i ,
P�2� and the scalar and vector parts of ��2�i

j in the second-
order Einstein equations. Using the following first-order
relations,

 P�1� � c2
s��1�; (7)

 ��1� � �
2

�2a2 �3H �H��1� ���1�0� � r2��1��; (8)

 v�1�i � �
2

�2a2���0� � P�0��
@i��

�1�0 �H��1��; (9)

 ��1�i
j � �

1

�2a2P�0�

�
@i@j �

1

3
�ijr

2

�
���1� ���1��; (10)

the evolution equation (6) can be written as follows,

 h00ij � 2Hh0ij �r
2hij � �4T̂ ij

lm
Slm; (11)

where we have neglected the tensor part of ��2�i
j and

defined

 

Sij � 2�@i@j�� 2�@i@j�� 4�@i@j�� @
i�@j�

� @i�@j�� @
i�@j�� 3@i�@j�

�
4

3�1� w�H 2
@i��0 �H��@j��0 �H��

�
2c2

s

3wH 2
�3H �H���0� � r2��@i@j�����:

(12)

Here, w � P�0�=��0�, � � ��1�, and � � ��1�. We define
the Fourier transform of tensor metric perturbations as

 hij�x; �� �
Z d3k

�2��3=2
eik	x�hk���eij�k� � �hk��� �eij�k��;

(13)

where the two time-independent polarization tensors eij
and �eij may be expressed in terms of orthonormal basis
vectors e and �e orthogonal to k,

 e ij�k� � 1��
2
p �ei�k�ej�k� � �ei�k� �ej�k��; (14)

 

�e ij�k� � 1��
2
p �ei�k� �ej�k� � �ei�k�ej�k��: (15)

In terms of these polarization tensors, the projection tensor
in (6) and (11) is

 T̂ij
lm
Slm �

Z d3k

�2��3=2
eik	x�eij�k�elm�k�

� �eij�k� �elm�k��Slm�k�; (16)

where

 Slm�k� �
Z d3x0

�2��3=2
e�ik	x

0
Slm�x0�: (17)

In Fourier space, the equation of motion for the gravita-
tional wave amplitude h (for either polarization h or �h)
becomes

 h00k � 2Hh0k � k
2hk � S�k; ��; (18)

where the source term, S, is a convolution of two first-
order scalar perturbations at different wave numbers,1Scalar-induced vector modes were studied in [14].
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 S �k; �� � �4elm�k�Slm�k�

 

� 4
Z d3 ~k

�2��3=2
elm�k�~kl~km

��
7� 3w

3�1� w�
�

2c2
s

w

�
�~k����k�~k��� �

�
1�

2c2
s
~k2

3wH 2

�
�~k����k�~k���

�
2c2

s

w

�
1�

~k2

3H 2

�
�~k����k�~k��� �

�
8

3�1� w�
�

2c2
s

w

�
1

H
�~k����

0
k�~k
��� �

2c2
s

wH
�~k����

0
k�~k
���

�
4

3�1� w�H 2
�0~k����

0
k�~k
���

�
: (19)

Equation (19) reduces to the expression in [12] in the limit
�! �, w! 1=3, and c2

s ! 1=3. The limit �! �, w!
0, and c2

s ! 0 was discussed in [11].

B. Power spectrum

The power spectrum of tensor metric perturbations,
Ph�k; ��, is defined as follows

 hhk���hK���i �
2�2

k3 ��k�K�Ph�k; ��: (20)

We now derive an expression for the power spectrum of
scalar-induced second-order gravitational waves by solv-
ing Eq. (18). It is convenient to remove the Hubble damp-
ing term in (18) by defining ahk � vk, where vk satisfies
the following equation of motion

 v00k �
�
k2 �

a00

a

�
vk � aS: (21)

The particular solution of (18) is then found by the Green’s
function method

 hk��� �
1

a���

Z
d ~�gk��; ~���a�~��S�k; ~���; (22)

where

 g00k �
�
k2 �

a00

a

�
gk � ���� ~��: (23)

Exact solutions to (23) for both matter and radiation domi-
nation are derived in Appendix A. Substituting the solution
(22) into the expression for the tensor power spectrum (20)
we find
 

hhk���hK���i�
1

a2���

Z �

�0

d ~�2

Z �

�0

d ~�1a�~�1�a�~�2�


gk��; ~�1�gK��; ~�2�hS�k; ~�1�S�K; ~�2�i:

(24)

The source term (19) may be written in the following form

 S �k; �� �
Z

d3 ~ke�k; ~k�f�k; ~k; �� k�~k ~k; (25)

where

 e �k; ~k� � eij�k�~ki~kj � ~k2�1��2�; � �
k 	 ~k

k~k
;

(26)

and

 

f�k; ~k; �� � 4
��

7� 3w
3�1� w�

�
2c2

s

w

�
��~k����jk� ~kj�� �

�
1�

2c2
s
~k2

3wH 2

�
��~k����jk� ~kj��

�
2c2

s

w

�
1�

~k2

3H 2

�
��~k����jk� ~kj�� �

�
8

3�1� w�
�

2c2
s

w

�
1

H
��~k���0�jk� ~kj��

�
2c2

s

wH
��~k���0�jk� ~kj�� �

4

3�1� w�H 2
�0�~k���0�jk� ~kj��

�
: (27)

Here we have split the first-order quantities into transfer
functions, ��k��, ��k��, and primordial fluctuations  k,

 �k��� � ��k�� k; �k��� � ��k�� k: (28)

The primordial fluctuations are characterized by the power
spectrum,

 h k ~ki �
2�2

k3 P�k���k� ~k�: (29)

Observationally, it is found that P�k� is nearly scale invari-
ant, so that the following parametrization is appropriate

 P�k� �
4

9
�2

R�k0�

�
k
k0

�
ns�1

; (30)

where recent CMB and large-scale structure results [2,3]
imply �2

R�k0 � 0:002 Mpc�1� � �2:40� 0:12� 
 10�9

and ns�k0� � 0:94–1:10 (0:95� 0:02; no tensors). Finally,
the correlator in Eq. (24) can be computed using Wick’s
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theorem

 hS�k; ~�1�S�K; ~�2�i �
Z

d3 ~ke�k; ~k�f�k; ~k; ~�1�
Z

d3 ~Ke�K; ~K�f�K; ~K; ~�2�h k�~k ~k K� ~K ~Ki

� ��k�K�
Z

d3 ~ke�k; ~k�2f�k; ~k; ~�1��f�k; ~k; ~�2� � f�k;k� ~k; ~�2��
P�jk� ~kj�

jk� ~kj3
P�~k�

~k3
; (31)

and the power spectrum of scalar-induced second-order gravitational waves is

 Ph�k; �� �
Z 1

0
d~k
Z 1

�1
d�P�jk� ~kj�P�~k�F �k; ~k;�;��; (32)

where
 

F �k; ~k;�;�� �
�1��2�2

a2���

k3 ~k3

jk� ~kj3
Z �

�0

d ~�2d ~�1a�~�1�a�~�2�gk��; ~�1�gk��; ~�2�f�k; ~k; ~�1�


 �f�k; ~k; ~�2� � f�k;k� ~k; ~�2��: (33)

Notice that the power spectrum Ph�k; �� is defined com-
pletely in terms of the Green’s function gk (Appendix A),
the transfer functions � and � (Appendix B), and the
primordial power spectrum of first-order scalar fluctua-
tions, P�k� (WMAP [2]).

III. ANALYTICAL DESCRIPTION OF THE
SPECTRUM

In this section we estimate the complete spectrum of
scalar-induced gravitational waves analytically. To sim-
plify the analysis we neglect anisotropic stress and set � �
�. In Sec. IV we evaluate the exact spectrum numerically
including anisotropic stress and show that this gives only a
small correction. With � � �, the source term of the
equation of motion (18) can be expressed solely by the
Bardeen potential �,

 h00k � 2Hh0k � k
2hk � S���k���; (34)

and f�k; ~k; �� in Eq. (27) is expressed by a single transfer
function �,
 

3�1� w�
4

f�k; ~k; �� � 2�5� 3w���jk� ~kj����j~kj��

� 4�2���jk� ~kj��

� �2�0�jk� ~kj����0�j~kj��: (35)

In Appendix B we show that the transfer function for first-
order scalar modes can be written in the following form

 ��k�� �

8<
:

1
1�k2�2 �< �eq

1
1�k2�2

eq
�> �eq

: (36)

To study the generation of h induced by S we make the
approximation that gravitational waves are produced in-
stantaneously when the relevant mode enters the horizon.
The subsequent evolution of the tensor mode is scale
dependent and determined by the time evolution of the
scalar source term (see Fig. 2). Scalar-induced gravita-

tional waves redshift as long as their magnitude is greater
than S=k2. After that they freeze at a constant value main-
tained by the constant source term during matter domina-
tion. We define the transfer function for scalar-induced
gravitational waves, t�k; ��, as follows

 hk��� � t�k; ��h�i�k ; (37)

where h�i�k is the value of hk just after the instantaneous
generation of gravitational waves after horizon entry (see
Fig. 2). We estimate h�i�k by dropping time derivatives in the
equation of motion (34) (since k� > 1 after horizon entry)

 h�i�k �
1

k2 S
�i�: (38)

In Sec. III A we calculate the initial power spectrum at the
time of horizon crossing,

ln(a)

Amplitude

ak

h   = (i)

h = h(f )

aeq a*

   /kp
2

S  /k(f ) 2

h  = 0p

S

k

S  /k(i) 2

-γ
-1

FIG. 2 (color online). Evolution of scalar source and induced
gravitational waves. Second-order tensors, h, are generated
when the mode k enters the horizon at ak. If horizon entry
occurs during the radiation dominated era, then the scalar source
decays as a�� until matter-radiation equality, aeq. During matter
domination the scalar source terms remain at a constant value,
S�f�. Gravitational waves redshift like a�1 as long as h > S�f�=k2,
but remain at a constant amplitude maintained by the constant
source term after that, a > a
k.
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 P�i�h �k; �i�k�� �
k3

2�2 h�h
�i�
k �

2i; (39)

where �i�k� � k�1 is the conformal time when a comoving
scale k enters the horizon. This initial spectrum is pro-
cessed using the tensor transfer function, t�k; ��, which we
derive in Sec. III B. Finally, in Sec. III C, we put these
results together and compute the relative energy density of
scalar-induced gravitational waves

 ��2�GW�k; �� �
1

6�2H 2���
k2t2�k; ��P�i�h �k�

�
a���k2

aeqk
2
eq

t2�k; ��P�i�h �k�: (40)

A. Power spectrum at horizon crossing

In this section we estimate the k-scaling of the horizon
power spectrum of scalar-induced gravitational waves. The
horizon amplitude h�i�k is estimated from the equation of
motion (34) as follows

 

h�i�k �
1

k2 S
�i�

�
1

k2

Z
d3 ~k~k2�1��2���~k�i���jk� ~kj�i� ~k k�~k;

(41)

and its power spectrum is

 

hh�i�k h
�i�
K i �

1

k2K2

Z
d3 ~kd3 ~K~k2 ~K2�1��2��1� ~�2���~k�i���jk� ~kj�i��� ~K�i���jK� ~Kj�i�h ~k k�~k ~K K� ~Ki

�
1

k4 ��k�K�
Z

d3 ~k~k4�1��2�2�2�~k�i��
2�jk� ~kj�i�

P�~k�
~k3

P�jk� ~kj�

jk� ~kj3
: (42)

Hence,

 P�i�h �k� �
k3

2�2 h�h
�i�
k �

2i �
1

k

Z
d3 ~k~k4�1��2�2�2�~k�i��

2�jk� ~kj�i�
P�~k�

~k3

P�jk� ~kj�

jk� ~kj3
: (43)

To compute (43) we use the transfer function for the scalar potential (36) and assume a scale-invariant spectrum, P�k� �
4
9 �2

R. (The scale-dependence of the scalar spectrum can be reinserted at the end of the computation). Here we have defined
�2

R � 10�9 as a measure of scalar power on COBE scales k0 � 0:002 Mpc�1. Hence, for the radiation dominated phase,
we have
 

P�i�h �k; �i�k�� �
�4

R

k

Z 1
0

d~k
Z 1

�1
d��1��2�2

~k3

�k2 � ~k2 � 2k~k��3=2

1

�1� �~k=k�2�2
1

�1� �k2 � ~k2 � 2k~k��=k2�2

� �4
R

Z 1
0

dx
Z 1

�1
d��1��2�2

x3

�1� x2 � 2x��3=2

1

�1� x2�2
1

�2� x2 � 2x��2

/ �4
R; (44)

where we defined x � ~k=k. On the other hand, for the matter dominated phase, we have
 

P�i�h �k; �i�k�� �
�4

R

k

Z 1
0

d~k
Z 1

�1
d��1��2�2

~k3

�k2 � ~k2 � 2k~k��3=2

1

�1� �~k=keq�
2�2

1

�1� �k2 � ~k2 � 2k~k��=k2
eq�

2

� �4
R

Z 1
0

dx
Z 1

�1
d��1��2�2

x3

�1� x2 � 2x��3=2

1

�1� x2y2�2
1

�1� �1� x2 � 2x��y2�2
; (45)

where x � ~k=k and y � k=keq � 1. Neglecting the �-terms we find
 

P�i�h �k; �i�k�� ��4
R

Z 1
0

dx
x3

�1� x2�3=2

1

�1� x2y2�4
� �4

R

�
5�1� 6y2� arccosy

16y�1� y2�9=2
�

81� 28y2 � 4y4

48�1� y2�4

�

�
5��4

R

32y
/ �4

R

keq

k
: (46)

The power spectrum at horizon crossing therefore scales as follows

 P�i�h �k� / �4
R

� keq

k k < keq

1 k > keq
: (47)
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B. Second-order tensor transfer function

To compute the transfer function for second-order,
scalar-induced gravitational waves we need to estimate
the time evolution of the source term. In particular, the
transfer function for modes that enter the horizon during
radiation domination is sensitive only to the ratio of the
source terms at horizon crossing, S�i� and the asymptotic
value after equality, S�f� (see Fig. 2). We parametrize the
decay of the source term during radiation domination as
follows

 

S�f�

S�i�
�

�
ak
aeq

�
��k�
; (48)

where we have allowed for a scale dependence of the
effective decay rate. In the following we put limits on
��k� by considering the asymptotic evolution of subhor-
izon modes (k�� 1).

Let x � jk� ~kj� and y � j~kj�. Using the following
relations

 

�
x�y;��
k�

�
2
� 1�

�
y
k�

�
2
� 2

�
y
k�

�
� (49)

and

  k�~k ~k /
�3

x3=2y3=2
; (50)

the source term may be written as follows

 S �k; �� /
2�

�2

Z 1
0

dy
Z 1

�1
d��1��2�

y5=2

x�y;��3=2
f�x; y�;

(51)

where

 2f�x; y� � ��x���y��6� y2��x���y��;

 �
1

x2 � 1

1

y2 � 1

�
6�

1

x2 � 1

y2

y2 � 1

�
: (52)

Let us estimate the integral (51). The limit y! 0 is clearly
suppressed by the phase space factor y5=2 in the integrand.
The limit x! 0 (y! k�, �! 1) is suppressed by the
projection factor �1��2�. To see this, first take the limit
y! k�,

 

�
x
k�

�
2
! 2�1���;

1��2

x3=2
! �1���1=4�1���:

(53)

This shows that the integrand vanishes in the limit x! 0.
In addition, large x and y are suppressed by the transfer
function f�x; y� (i.e. the decay of the Bardeen potential on
subhorizon scales). The dominant contribution to the in-
tegral (51) therefore comes from regions of phase space
where ~k� k (y� k�) and jk� ~kj � k (x� k�, �� 0).
Let us therefore write

 

S /
1

�2

Z
d lny

Z
d ln�1����1���2�1���

y7=2

x3=2



1

x2 � 1

1

y2 � 1

�
6�

1

x2 � 1

y2

y2 � 1

�
(54)

and take the subhorizon limit y; x! k� > 1, �! 0

 S /
1

�2

�k��7=2

�k��3=2

1

��k��2 � 1�2

�
6�

�k��2

��k��2 � 1�2

�

�
1

�2

1

�k��2
/

1

a4 : (55)

Hence the source term decays at most as a�4 after the
mode k enters the horizon during the radiation dominated
era, i.e. ��k�< 4. In fact, we expect the source term to
decay considerably slower than that for a while after
horizon crossing. The source will decay more and more
quickly as the horizon grows much larger than the wave-
length of the mode, finally reaching the asymptotic behav-
ior that is proportional to a�4. This leads us to expect that
the effective � in Eq. (48) will be significantly smaller than
4. Numerically, we find � � 3 (see Sec. IV).

The transfer function for second-order gravitational
waves is considerably different from the transfer function
for first-order gravitational waves. First of all, modes
which enter the horizon during matter domination have
constant source terms and hence do not decay

 t�k; �� � 1; k < keq: (56)

Next, consider the evolution of the scalar source term and
induced gravitational waves for modes that enter the hori-
zon during the radiation dominated era (see Fig. 2). Here,
k � akH defines the time of horizon entry (ak) for a mode
of wave number k. We assume that h grows very rapidly
after horizon entry to become of order of the source term.
Then S decays as a�� (where our previous discussion
implies � < 4) while h redshifts as a�1 until h is equal
to the final source term during matter domination at a
k. For
a > a
k, h stays constant. We therefore have

 

h�f�

h�i�
�
ak
a
k
�

S�f�

S�i�
�

�
ak
aeq

�
�
; (57)

and find

 

ak
a
k
�

�
ak
aeq

�
�
�

�
k
keq

�
��
: (58)

For a fixed time �, subhorizon modes with sufficiently
large k have never settled down. The critical wave number
at a time � can be obtained by substituting a
k � a��� into
Eq. (58),

 kc��� �
�
a���
aeq

�
1=���1�

keq: (59)

Modes with k > kc��� simply redshift like a�1,
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 t�k; �� �
ak
a���

�
aeq

a���
1

k�eq
; k > kc���: (60)

The transfer function for second-order gravitational waves
therefore takes the following interesting form

 t�k; �� �

8>><
>>:

1 k < keq

� kkeq
��� keq < k< kc���

aeq

a���
keq

k k > kc���
: (61)

C. Spectrum of scalar-induced gravitational waves

Substituting the power spectrum at horizon crossing (47)
and the tensor transfer function (61) into Eq. (40) for the
relative spectral energy density of gravitational waves at
time �, we find

 ��2�GW�k; �� � A�2�GW�4
R�k0�

�
k
k0

�
2�ns�1�

8>>>><
>>>>:

a���
aeq

k
keq

k < keq

a���
aeq
� kkeq
���2��2� keq < k< kc���

aeq

a��� k > kc���

; (62)

where an overall normalization constant A�2�GW has not been
fixed by our analytical arguments. In Sec. IV we find
A�2�GW � 10 and � � 3 (this is consistent with the normal-
ization of the small-scale spectrum in [12]). Figure 1 sum-
marizes this conjectured form of the scalar-induced
gravitational wave spectrum. If the scalar spectrum can
be treated by a power law with constant spectral index over
a large range of scales, then a blue scalar spectrum (ns > 1)
enhances the tensor spectrum on small scales, while a red
spectrum (ns < 1) suppresses secondary tensor fluctua-
tions. For comparison, the first-order spectrum of primor-
dial gravitational waves in inflationary models can be
expressed as
 

��1�GW�k; �� � A�1�GWr0�2
R�k0�

�
k
k0

�
nt




8><
>:

aeq

a��� �
k
keq
��2 k < keq

aeq

a��� k > keq

; (63)

where A�1�GW � 4:2
 10�2 and r0 �
Ph�k0�
P�k0�

is the first-order
tensor-to-scalar ratio evaluated on the scale of today’s
horizon, k � k0 � 0:002 Mpc�1. For single-field inflation,
the spectral index of the primordial tensor spectrum, nt, is
related to the tensor-to-scalar ratio by the slow-roll con-
sistency relation, nt � �r0=8. Matter-radiation equality is
normalized by recent observations [2] aeq � a0=3400.

The current tensor spectrum (� � �0) on large scales
(k � keq) and on very small scales (k� keq) (assuming
inflation and nt � 0 and ns � 1) satisfies

 

��1�GW�k � keq�

��2�GW�k � keq�
� r0

A�1�GW

A�2�GW

�
aeq

a0
�2

�2
R�k0�

�
1

10
r0 (64)

and

 

��1�GW�k� keq�

��2�GW�k� keq�
� r0

A�1�GW

A�2�GW

1

�2
R�k0�

� 106r0: (65)

Hence, for inflation, on large scales the second-order,
scalar-induced contribution today, in fact, dominates over
the first-order contribution. This reflects the fact that
second-order gravitational waves do not redshift on large
scales, while first-order gravitational waves redshift on all
scales. On small scales the first-order contribution domi-
nates unless r0 < 10�6. For ekpyrotic/cyclic models, the
first-order contribution (due to direct quantum fluctuations
of the metric) is suppressed at k � k0 by 60 orders of
magnitude compared to the inflationary signal [6] and the
spectrum is blue. Hence, in these models, the scalar-
induced tensor modes, ��2�GW, comprise the dominant con-
tribution on all scales.

CMB observations probe the time of photon-baryon
decoupling at aCMB � 3aeq and scales with k < kCMB �

�
aeq

aCMB
�1=2keq. The gravitational wave spectrum at that time

satisfies

 

��1�GW�k � kCMB�

��2�GW�k � kCMB�
� r0

A�1�GW

A�2�GW

�
aeq

aCMB
�2

�2
R�k0�

� keq

kCMB

�
3
� 106r0

(66)

and

 

��1�GW�k� keq�

��2�GW�k� keq�
� r0

A�1�GW

A�2�GW

1

�2
R�k0�

� 106r0: (67)

Hence, at decoupling the first-order tensor signal domi-
nates over the second-order, scalar-induced signal if r0 >
10�6. (This is consistent with the result of Mollerach et al.
[11] who claim that second-order gravitational waves only
have a significant imprint on the CMB if r0 < 10�8. This
corresponds to second-order gravitational waves dominat-
ing over first-order gravitational waves at the time of
recombination. Second-order effects can become visible
for larger r0 < 10�6 if late time polarization generated by
reionization is considered [11].)
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For completeness, let us consider the power spectrum on
superhorizon scales, e.g. during the matter dominated
phase. On superhorizon scales, k�H , the initial ampli-
tude can be estimated from the equation of motion (34) by
ignoring the gradient term and approximating the time
derivatives by a factor of H ,

 H 2h�i�
k�H

� S; (68)

while k2h�i�k � S estimates the initial amplitude on the
horizon scale. Hence, the initial power spectrum, P�i�h , on
superhorizon scales is simply �k=H �4 times the spectrum
on the horizon scale

 P�i�h �k� /
�
k

H

�
4

�4

R�k0�
keq

k
/ k3; k < khor � keq:

(69)

Although the tensor power spectrum, Ph, is a well-defined
gauge-invariant object on superhorizon scales, ��2�GW is not.
In particular, Eq. (40) is only defined on subhorizon scales.
Nevertheless, we formally define ��2�GW / k

2P�i�h / k
5 on

superhorizon scales, but do not attribute physical meaning
to it. This definition is useful, since all our results are
presented in terms of ��2�GW and the shape of the super-
horizon spectrum gives a simple consistency check for the
numerical analysis.

IV. NUMERICAL RESULTS FOR THE EXACT
SPECTRUM

The spectrum of scalar-induced gravitational waves that
we derived in Sec. II and discussed analytically in Sec. III
can be evaluated exactly using standard numerical meth-
ods. The time evolution of the first-order perturbation
variables necessary to compute the spectrum, ��k�� and
��k��, is obtained from publicly available Einstein-
Boltzmann codes such as CMBFAST [16] or CAMB
[17]. We first store the time evolution of � and � in
k-space, then convolve them according to Eq. (31). In
practice, the range of k is taken to be �10�5 Mpc�1;
500 Mpc�1� and variables are evaluated at 50 uniformly
spaced points per log-interval of k. We have checked that
our results are stable under variations of the k-space
boundaries and the discretization.

In the numerical analysis it is possible to incorporate the
difference between � and � resulting from anisotropic
stress of the fluid because the Boltzmann equations of
photons and neutrinos are solved explicitly in the code
by expanding their distribution functions into multipole
moments. (Neglecting anisotropic stress from neutrinos
implies �10% errors for both first-order scalar and tensor
perturbations [18,19]; see Fig. 5 in Appendix B. For
second-order tensors we find that the inclusion of aniso-
tropic stress typically has less than 1% effect on the am-

plitude of the spectrum.) Finally, we should mention here
that our definition of c2

s , Eq. (7), relates first-order pressure
and energy density perturbations in the total matter, P�1�

and ��1�, including entropy perturbations, and thus it is
scale dependent. We have derived and incorporated this
numerically.

The numerically calculated spectra are shown in Fig. 3.
The shape of the scalar-induced gravitational wave spec-
trum agrees well with the analytical results of the previous
section and the schematic diagram in Fig. 1, except for the
fine-scale oscillations and the modest smoothing of the
enhanced feature at large wavelengths. The scalar-induced
spectrum is derived directly from observations of the scalar
perturbations plus general relativity and is, in this sense,
independent of the cosmological model for generating the
primordial perturbations, e.g., inflation vs ekpyrotic/cyclic.
However, the transfer function does depend weakly on the
expansion rate and composition of the Universe, and,
hence, the cosmological background parameters must be
measured or otherwise specified.

V. DISCUSSION

Precise cosmological observations [2,3] have confirmed
the existence of a nearly scale-invariant spectrum of pri-

primordial tensors 
               (z = 0, r = 0.1)

ΩGW

10-10

10-15

10-20

10-24

0.0001 0.001 0.01 0.1 1 10

k (Mpc-1) 

scalar-induced tensors

z = 0 

z = 100

z = 3400

FIG. 3 (color online). Numerical spectra of scalar-induced
gravitational waves (lower curves) and the scale-invariant pri-
mordial tensor spectrum for an inflationary model with tensor-to-
scalar ratio r � 0:1 (upper curve). The scalar-induced spectra are
shown at three different epochs, z� 1 � 3400, 100, and 1. Each
curve has been extended, for pedagogical reasons, to modes with
small wave numbers k that lie outside the horizon at the given
epoch (dotted range of the three lower curves). Note that current
(z� 1 � 1) scalar-induced contributions cross the primordial
inflationary contribution at intermediate wavelengths, as sug-
gested by the schematic in Fig. 1. The simulation assumes a flat
�CDM cosmology with the following model parameters:
�2

R�k0 � 0:002 Mpc�1� � 2:4
 10�9, ns � 1, nt � 0, r �
0:1, �bh

2 � 0:022, �mh
2 � 0:11, h � 0:7.
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mordial scalar fluctuations. These scalar fluctuations in-
duce a second-order contribution to the spectrum of tensor
perturbations that must be present for any cosmological
model that accounts for the observed scalar spectrum. In
particular, the computation of the second-order gravita-
tional wave signal does not assume that the primordial
perturbation spectra were generated by inflation—it only
relies on the observed spectrum of scalar perturbations and
general relativity.

In this paper we have computed the scalar-induced
spectrum of gravitational waves produced in the early
Universe and used the Einstein equations to evolve it to
the present. We have extended previous approaches to this
problem [11,12] by considering the complete cosmic his-
tory for the evolution of scalar-induced gravitational waves
and allowing for anisotropic stress in our numerical work.

Perhaps the most interesting theoretical feature is that
second-order gravitational waves do not redshift on large
and intermediate scales, but are maintained at a constant
amplitude by the scalar source terms. This leads to a trans-
fer function for the scalar-induced gravitational waves that
produces a (nearly) scale-invariant spectrum on small
scales and interesting scale dependence on large and inter-
mediate scales. In particular, there is a peak in the current
spectrum of scalar-induced gravitational waves at the scale
of the comoving horizon at matter-radiation equality (see
Figs. 1, 3, and 4) that is likely to exceed the primordial
tensor spectrum at the present epoch. Unfortunately, there
are no known methods for directly probing the present
gravitational wave spectrum on these scales (correspond-
ing to the size of superclusters today). At earlier times,
such as recombination, the feature was much smaller and
so it only has small effects, e.g. on the CMB [11]. Hence,
this substantial feature is likely to remain of purely aca-
demic interest in the foreseeable future.

On much smaller scales, which may be accessible to
space-based laser-interferometer experiments (for a nice
discussion see Ref. [20]), there are no measurements of the
scalar perturbation spectrum, so one must rely on extrap-
olating from what is known about scalar perturbations on
large scales, e.g. from measurements of the CMB and
large-scale structure. Since these two wavelength regimes
are separated by 16 orders of magnitude, extrapolation
uncertainties can have important effects. For example,
the dashed line in Fig. 4, which illustrates the extrapolation
of the tensor spectrum based on a perfectly scale-invariant
(ns � 1) scalar spectrum, is an estimate of the induced
small-scale tensor signal. Assuming that a nearly constant
spectral index is a valid approximation from CMB scales to
the smallest scales, a blue spectrum (ns > 1) enhances
scalar-induced tensor modes on small scales where direct
gravitational wave detection experiments are planned,
while a red spectrum (ns < 1) suppresses them.
Alternatively, for explicit inflationary models the whole
spectrum can be computed directly from the inflaton po-

tential V�	� without expanding with respect to the CMB
scale.2 This allows a more reliable prediction of the level of
gravitational waves on small scales.

Finally, let us consider the possible scenarios for future
observations of the first- and second-order tensor signals
and what they would signify:

(i) If a spectrum of gravitational waves is observed that
conforms to a nearly scale-invariant, first-order ten-
sor signal and with r > 10�2 (as shown in Fig. 4),
this would be a spectacular confirmation of the infla-
tionary model of the Universe and completely rule

LISA

PULSARS

LIGO II

(2013 ?)

(2013)

(2025 ?)

(2030 ?)

inflation: primordial tensors

BBO Corr 

BBOI 

CMB(2)

ΩGW(f )

k (Mpc-1)

WMAP3 bound:
primordial only

WMAP3 bound:
scalar-induced only

10-20

10-15

10-10

100 105 1010 1015 1020

10–15 10–10 10–5 1010 105

Frequency (Hz)

CMB(1)

scalar-induced tensors

FIG. 4 (color online). Observational prospects. Shown are the
theoretical predictions for the spectrum of scalar-induced versus
primordial inflationary gravitational waves as predicted for the
present epoch, along with the current (solid bars) and future
(dashed bars) experimental bounds (figure modified from [8]).
The band marked ‘‘primordial tensors’’ represents the inflation-
ary predictions for minimally tuned models, as classified in [8];
with further fine-tuning, this spectrum can be shifted down-
wards. In contrast, the amplitude of the scalar-induced tensors
is fixed by the observed amplitude of scalar fluctuations and
therefore provides an absolute lower limit on the stochastic
gravitational wave background. The CMB constraints depend
on assumptions about the transfer function for gravitational
waves to extrapolate constraints obtained at decoupling to the
current spectrum. Since scalar-induced gravitational waves do
not redshift on CMB scales, the CMB observations imply
separate constraints on the current primordial and scalar-induced
spectra. These constraints are labeled CMB(1) and CMB(2),
respectively. The dashed section of the scalar-induced tensor
spectrum illustrates extrapolation from CMB to direct-detection
scales using a scale-invariant scalar spectrum (ns � 1).
Important uncertainties in the extrapolation between CMB and
BBO scales are discussed in the main text.

2For the first-order inflationary tensor spectrum this approach
was followed by [21].
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out ekpyrotic/cyclic models. The observation of such
a signal with r < 10�2 would also rule out ekpyrotic/
cyclic models but, in addition, the inflationary sce-
nario would be limited to models with extraordinary
fine-tuning and/or extra fields and parameters [8].3

(ii) If no nearly scale-invariant, first-order tensor spec-
trum is detected but the scalar-induced, second-
order tensor spectrum is observed (either by ex-
tremely sensitive CMB polarization experiments
or small-scale direct-detection interferometers like
BBO), then inflation could only be compatible with
extreme enough fine-tuning to suppress the first-
order contribution to the tensor signal, and alterna-
tives like the ekpyrotic/cyclic models would be
favored.

(iii) If future experiments show that there is no tensor
signal at or above the level of the predicted scalar-
induced tensor spectrum, either general relativity or
the interpretation of the scalar fluctuations would
have to be amiss.

In practice, observing the scalar-induced tensor signal is a
long way off, at best, and perhaps even impossible given
our current understanding of astrophysical foregrounds and
detector limitations for both CMB and direct-detection
experiments [9,24]. Nevertheless, we consider it interest-
ing that the observed level of scalar fluctuations implies a
model-independent lower limit on gravitational waves
from the early Universe whose detailed features can be
computed from a general relativistic description of cosmic
evolution.
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APPENDIX A: GREEN’S FUNCTION FOR
GRAVITATIONAL WAVES

In this section we derive exact Green’s functions of
Eq. (18) for both the radiation and matter dominated
eras. The Green’s function of a general second-order dif-
ferential equation, L̂g � ���� ~�� is defined as follows

 g��; ~�� �
v1���v2�~�� � v1�~��v2���
v01�~��v2�~�� � v1�~��v

0
2�~��

; (A1)

in terms of the two homogeneous solutions v1 and v2,
which satisfy L̂vi � 0, for a general differential operator
L̂. During the radiation dominated era the Green’s function
for the gravitational wave problem (23) reduces to

 g00k � k
2gk � ���� ~��; (A2)

which has the following homogeneous solutions

 v1 � sin�k��; v2 � cos�k��: (A3)

Hence, the Green’s function during the radiation domi-
nated era (�< �eq) is

 gk��; ~�� �
1

k
�sin�k�� cos�k~�� � sin�k~�� cos�k���: (A4)

During matter domination Eq. (23) reduces to

 g00k �
�
k2 �

2

�2

�
gk � ���� ~��; (A5)

which has the following homogeneous solutions

 v1 � �j1�x�; v2 � �y1�x�; x � k�; (A6)

where j1�x� and y1�x� are spherical Bessel functions. The
Green’s function during the matter dominated era (�>
�eq) therefore is

 gk��; ~�� � �
x~x
k
�j1�x�y1�~x� � j1�~x�y1�x��: (A7)

APPENDIX B: TRANSFER FUNCTION FOR
FIRST-ORDER SCALAR MODES

The first-order scalar perturbations � and � in Eq. (3)
satisfy the following constraint equation [13]

 k2����� � �4�2a2����2 � ��N 2�; (B1)

where �2 and N 2 characterize the quadrupole moments
of the photon (�) and neutrino (�) anisotropies, respec-
tively. �2 and N 2 are determined by the solution to the
Einstein-Boltzmann equations. In practice, these are
solved numerically using CMBFAST [16] or CAMB [17]
(see Fig. 5).

Since �2 and N 2 are typically negligibly small, ana-
lytical studies often assume � � �. In this case, the first-
order equation of motion for the Bardeen potential is (e.g.
[13])

3In multifield models of inflation there is the hope that this
fine-tuning (e.g. the tuning of mass ratios) may have a physical
motivation. In addition, in inflationary models where the curva-
ture perturbation is generated by a second field that is not the
inflaton, like in the curvaton models [22], the first-order tensor
signal is predicted to be unobservable. The second-order, scalar-
induced tensor signal for the curvaton scenario was recently
computed in [23]. In this case, the tensor signal induced by the
isocurvature mode between the end of inflation and the curvaton
decay always dominates over the tensor signal computed in this
paper, i.e. the tensor signal created by second-order curvature
perturbations after the curvaton decay.
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�00 � 3�1� c2
s�H�0 � c2

s��

� �2H 0 � �1� 3c2
s�H

2� / �S; (B2)

where the right-hand side (RHS) is nonzero only in the
presence of entropy perturbations, �S. For p � w� and in
the absence of entropy perturbations (i.e. �S � 0) this
becomes

 �00k �
6�1� w�
1� 3w

1

�
�0k � wk

2�k � 0: (B3)

Equation (B3) has the following exact solution

 �k��� � y�
�C1�k�J
�y� � C2�k�Y
�y��;

y �
����
w
p

k�; 
 �
1

2

�
5� 3w
1� 3w

�
;

(B4)

where J
 and Y
 are Bessel functions of order 
. During
the matter dominated era (w � 0) this becomes

 �k��� � C1�k� �
C2�k�

y5
; (B5)

whereas during the radiation dominated era (w � 1
3 ) we

find
 

�k��� �
1

y2

�
C1�k�

�
siny
y
� cosy

�
� C2�k�

�
cosy
y
� siny

��
:

(B6)

At early times y �
����
w
p

k�� 1 this becomes asymptoti-
cally the primordial value,

 lim
y!0

�k��� � C1�k� �  k; (B7)

where we have dropped the decaying mode (C2 � 0). For
the growing mode solution we therefore obtain the follow-
ing transfer function

 ��k�� �

8<
:

1
�k��2 �

sin�k��
k� � cos�k��� �< �eq

const �> �eq
: (B8)

From this we see that superhorizon modes (k�� 1) freeze
during the radiation era

 ��k�� � 1�O��k��2�; k�� 1; � < �eq;

(B9)

while subhorizon modes (k� > 1) oscillate and decay as
a�2

 

��k�� � �
cos�k��

�k��2
� �

�
�k
�

�
2

cos�k��

� �

�
ak
a

�
2

cos�k��; k� > 1; � < �eq:

(B10)

Ignoring oscillations we therefore may write the following
expression valid for both superhorizon and subhorizon
modes

 ��k�� �
1

1� �k��2
; � < �eq: (B11)

The Bardeen potential freezes on all scales during matter
domination.
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