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Decay of a charged scalar and Dirac fields in the Kerr-Newman-de Sitter background
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We find the quasinormal modes of the charged scalar and Dirac fields in the background of the rotating
charged black holes, described by the Kerr-Newman-de Sitter solution. The dependence of the quasi-
normal spectrum upon the black hole parameters mass M, angular momentum a, charge Q, as well as on
values of the A-term and a field charge ¢ is investigated. Special attention is given to the near extremal
limit of the black hole charge. In particular, we find that for both scalar and Dirac fields, charged
perturbations decay quicker for ¢ > 0 and slower for ¢ < 0 for values of black holes charge Q less than
some threshold value, which is close to the extremal value of charge and depend on parameters of the

black holes.
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I. INTRODUCTION

The quasinormal (QN) spectrum of black holes has been
extensively investigated during recent years for a great
variety of black hole backgrounds and fields, because it
is an important characteristic for observation of the gravi-
tational waves [1], stability analysis [2], and AdS/CFT
calculations of temperature Green functions [3]. Special
attention has been paid to perturbations of a scalar field [4],
as a simplest model, when the influence of the spin of the
field is neglected. When one considers the charged black
hole, the scalar electrodynamic can successfully model the
interaction of the charged field with the electromagnetic
background of the black hole. Therefore the calculation of
the quasinormal modes (QNMs) of charged fields, initiated
in [5] for the charged scalar field in the Reissner-Nordstom
and dilaton backgrounds, was continued in further research
[6-9]. In particular, in [7] the quasinormal modes of the
massive charged scalar field were found with the WKB
accuracy. In [5,7] it was shown that the quasinormal
modes, corresponding to the charged scalar field, decay
quicker than those of the neutral field unless the black hole
charge is larger than some large near extremal value. This
is opposite to the behavior at asymptotically late times,
characterized by the so-called ‘“‘tail” decay, when the
charged scalar field decays slower, and therefore, domi-
nates at asymptotically late times [10]. Yet, the quasinor-
mal frequencies calculated for Reissner-Nordstrom black
holes in [5—7] with the help of the WKB method need
better accuracy and cannot be trusted near the extremal
limit, especially for the scalar case, because the effective
potential is frequency dependent in this case, and the WKB
equation for the QN frequency must be solved together
with a frequency dependent equation determining the po-
sition of the maximum of the effective potential.

On the other hand, one has a much richer physical
situation, when one takes into consideration all the relevant
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parameters, such as black hole angular momentum and the
cosmological term, i.e. when one starts from the Kerr-
Newman-de Sitter (KNdS) black hole as a gravitational
background. In this paper we achieve both the above
mentioned aims: to find QN modes with very high accu-
racy, by using the convergent Frobenius expansion, and to
consider the most general relevant black hole solution of
the general relativity, KNdS solution. The latter gives us
dependence of the QN spectrum on a great number of
parameters: charge of the black hole Q, charge of the field
g, normalized angular momentum of the black hole a, the
cosmological term A.

The paper is organized as follows: Sec. II gives some
basic formulas on the KNdS metric and on radial wave
equation for charged massless scalar and Dirac fields, and
also discusses the system of units we used for showing the
QNMs. Section III reviews the obtained numerical results.
In the conclusion we summarize the obtained results.

II. BASIC FORMULAS

In the Boyer-Lindquist coordinates the Kerr-Newman-
de Sitter metric has the form [11]

dr* de? Agsin6
2 — _ 2 + _ 0 (2 + 2 2
ds p <_Ar _A0> U+ ars? P [adt — (r* + a*)dp]
A, .
+ m(d[ - aSln20d§0)2, (1)
where

A, =+ d)(1 — ar?/a?) —2Mr + Q?,
a = Ad?/3, Ay =1+ acos?d, )
p? = r* + a*cos?6.

The electromagnetic background of the black hole is given
by the four-vector potential

A, dx* = or

“ - m(dt - asin20dqo). (3)
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The charged scalar and Dirac fields in curved space-time
are described by the following equations of motion:

DL, gh — igA, g 0L — igA,d)
—igA,.,g"" PV =, (charged scalar) (4)

ylei(a, +T, + qAM)CID(l/z) =0, (charged Dirac)

(&)

where ¢ is the charge of particles and A, is the electro-
magnetic potential of the background.

Some manipulation with scalar and Dirac equations
allow in some separable form (see [11] and references
therein). The existence of the Killing vectors d,, d #> im-
plies the exponential harmonics of the following form
~e i@t ~eimd) After the separation of the angular, radial,
and time variables

®Y (L, 1,0, p) x e @™ S(O)R(r),
one can obtain the equation for the angular part [11]

1+ a)? £

(1 + a)(s* + 2smx)
2

{%(1 + ax?)(1 —xz)%-i- A=s(l—a)+

(1 + a)*m?
(1 + ax?)(1 —x?)

_2ax2_
1—x

1+« (1 + @)y

+ 42[2s(am —(1+ a)é)x

2
1+ ax ¢

—2m(l + a)¢ + SZ}}SS()C) =0, (6)

where s is the spin of the field (s = 0, 1/2 for the scalar and
Dirac field, respectively), x = cosf, ¢ = aw, and A is the
separation constant (for the nonrotating case A=
€€+ 1) — s(s — 1), where € = s is the positive (half)in-
teger multipole number). The angular equation can be
solved numerically with respect to A for each value of w
by using the three-term recurrence relation [11].
The equation for the radial part is [11]
1

_d ., d , . dA, )
sCAST S 4 (K2 — sk S + 4is(1 +
{A, As P Ar<K isK P ) 4is(1+ a)wr

—i—czy(s +1)2s+ 1)r? +2s(1 — a) —2isqQ — /\}Rs(r) =0,

(7

where K = [w(r? + a®) — am](1 + a) — qOr.
Generally, this equation has five regular singularities:
the event horizon r, the internal horizon r_, the cosmo-
logical horizon r/_, the spatial infinity, and one more
singularity at r_. One should note that r. and 7/, are roots
of equation A, = 0.
In the limit of A — 0 one has

a
re — M =*\M?>—a>— Q7 Py — +—,
Ja
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and, therefore, the spacial infinity becomes an irregular
singularity [11].

By the definition, the QNMs are eigenfrequencies @ of
(7) which satisfy the following boundary conditions (b.c.):
¢ represents purely ingoing waves at the event r = r,
horizon and purely outgoing waves at the cosmological
horizon r = ¥/, (or the spacial infinity if A = 0).

Now we introduce the new function, which is regular at
these two points if the QNM b.c. are satisfied

] r—r s+2iK(r+)/AL(r+) .
y(r) = ,~23+1<r — r*) e BOR®M),  (8)
dB(r) _ K
where =7~ = 1.

r

The appropriate Frobenius series is

T

n=0

where p = r, /7.
Substituting (8) and (9) into (7), one can obtain the
N-term recurrence relation for the coefficients a;

min(N—1,i)
> Mwai;=0, fori>0,  (10)
=0

where N depends on the black hole parameters. For the
particular Schwarzschild case N = 3, but for the general
case under consideration N is higher than 3. We decrease
the number of terms in the recurrence relation using the
Gaussian eliminations:

W(w) = 5V(w), for j=0, ori<k

(k+1) )
i (@)l (o)
(e = et - O

k
ngl,ifl(w)

After one finds cﬁ) numerically, he can solve the equation
with infinite continued fraction (see [12] for more details)

3) .3 3 .0 3) .3)

JE) _ CanCon-1 C2n-1%n-2  €22C01
Ln+1 3 _ @3 _ 03
Ln—1 Cln-2 €11
(3) (3) (3) (3)
_ Cont1n+2 Con+22,n+3 (11
RO O R
I,n+2 I,n+3

Since we can find the separation constant A for each
particular value of w, (11) allows to find QNMs with the
desired precision. This technique of the QN spectrum
calculation was proposed by Leaver [13].

Now we shall discuss the units of measurements and
ranges of the black hole parameters. In this paper we shall
measure all the quantities in units of the event horizon. For
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this we choose the black hole mass, so that A.(1) = 0.
Then one has

2M = <1 - %)(1 +ad?) + Q2

We parametrize the cosmological constant A by the pa-
rameter p < 1

1—pla®+ Q%
[+ p+pa® + 0

A 2
g—P

In these units the condition A.(1) > 0 gives us the range of
values of the black hole charge,

1+2p

_a2
1+ 2p +3p> + a?p?

0> <

The positivity of the right-hand side of the above equation
bounds the possible values of the parameter of rotation a,

2<(1+p),/1+2p+9p2—(1+2p+3p2)51_

2p?

III. RESULTS

The quasinormal frequencies of the Kerr-Newman-de
Sitter black holes depend on a number of parameters:

(1) black hole parameters: mass M, charge Q, angular

momentum a,

(2) field parameters: field charge ¢ and spin s,

(3) cosmological constant A,

(4) numbers of modes in the spectrum: the multipole

number €, the azimuthal number m, and the over-
tone number n.

Therefore, if one wants to represent quasinormal fre-
quencies for all values of the above parameters, one has to
show a great amount of table data. We decided to be limited
here by representative tables or plots, which will show
dependence of the quasinormal modes on each of the above
parameters. Thus, for example, in Fig. 1, one can see the
dependence of the Re(w) and Im(w) on the black holes
charge Q for fundamental mode € = n = 0 of perturba-
tions of the scalar field. The real part of @ monotonically
grows with the black hole charge Q and the field charge g
(note that ¢ can be both positive and negative). For positive
values of g, Re(w) attains some maximum value as a
function of Q, at some large value of Q. The imaginary
part has more complicated behavior: it monotonically de-
creases as a function of Q until some near extremal value
of the black hole charge, keeping meanwhile monotonic
dependence on ¢g. Then the curves with different ¢ inter-
sect, that is, the larger ¢ does not guarantee larger Imw.
Thus if for not very large Q, the charged field decays
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quicker than the neutral one, for the near extremal Q, the
charged field decays slower than neutral. From Fig. 1 one
can see that this happens at Q ~ 0.8 Q. in the units of the
event horizon, while in “M = 1 units” this corresponds to
0 ~ 0.9950Q.- Even though the WKB technique, devel-
oped until higher orders [14], reproduces this intersection
shown in Fig. 1, it could not be easily trusted in this case
because of w dependency of the effective potential [5].
Therefore, confirmation of the intersection with the help of
the convergent and accurate Frobenius method leaves apart
possible interpretations of charged quasinormal modes in
the context of universality of the critical collapse [7]. Let
us note also that the nonmonotonic behavior for some
curves for real and imaginary parts of w, near the extremal
values of charge, depends on the value gQ and is not new in
fact. When approaching the extremal limit of values of Q
closely enough, one has the picture of spiraling of the plot
of Re(w)-Im(w) [15].

Re(w)

030

0201

010t

0.15

0.10 S =

0.2 0.4 0.6 0.8 \ Q

FIG. 1 (color online). Charged (e) scalar field fundamental
frequency (I = 0) for the Reissner-Nordstrom black hole as a
function of its charge (Q). ¢ = —0.3 (purple), ¢ = —0.2 (ma-
genta), g = —0.1 (red), ¢ = 0 (orange), ¢ = 0.1 (green), g =
0.2 (cyan), ¢ = 0.3 (blue). The larger g corresponds to the larger
real and larger imaginary (for small black hole charge) part of
the QNM.
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An important point is the checking of all the known
particular limits for our calculations. For ¢ = Q = 0 we
reproduce the quasinormal modes for the scalar and Dirac
fields for Kerr-de Sitter black holes, while for A =0, a =
0 we obtain the limit of pure Reissner-Nordstrom black
holes and the results of [5,6]. For ¢ = 0 we find the
quasinormal modes for neutral fields for KNdS black
holes. When approaching the limit of extreme values of
the A-term, one can reproduce the exact quasinormal
modes obtained as a solution of the Poschl-Teller equation
[16],if g =a = 0.

In Fig. 2 we demonstrate the dependence of Re(w) and
Im(w) of scalar field modes on the angular momentum a
for a few fixed values of the charges Q and q. There one
can see that for not large values of g(Q, one has the
monotonic decay of both real and imaginary parts of w
as a function of a. In other words, the quicker rotating
black holes have longer lived modes and smaller real
oscillation frequencies. This monotonic behavior breaks
for larger values gQ, as it can be seen from the curve Q =
0.8, ¢ = 0.3 on Fig. 2.

The numerical data for QNMs are represented in
Tables I, II, III, and IV and in Figs. 1-3. In Tables I and
III, the quasinormal frequencies for different values of
multipolar € and azimuthal m numbers are given for the
first mode n = 0, for some values of the charges Q and g,
and for a fixed value of the angular momentum. In Tables II
and IV, on the contrary, we fix the values of the black holes
charge Q, and consider different values of a and ¢. From
the above table one can see that larger values of the multi-
pole number €, under the same value m, imply larger

TABLE 1.
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Re(w)

0.25

0.201

0.051

-Im(w)
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0.18 [
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FIG. 2 (color online). Charged (e) scalar field fundamental
frequency (I = 0) for the Kerr-Newman black hole of charge
0 =0.2 (a <26/5) and O = 0.8 (a < 0.6) as a function of a.
g = —0.3, ¢ = 0 (orange), g = 0.1 (green), g = 0.2 (cyan), g =
0.3 (blue). The larger g corresponds to the larger real and larger
imaginary (for small black hole charge) part of the QNM.

QNMs of the scalar perturbation of the Kerr-Newman black holes (a = 0.4).

m

0=02g=—-03

0=02,49=0

0=024¢=03

0=08,¢g=-03

0=08,4=0

0=08,¢=03

PR RRON = —— O |

0 0.153622 — 0.158460i

-1

o

-2
—1

N o= O

0.396 131 — 0.156 1251
0.479 121 — 0.151767i
0.603295 — 0.145951i
0.656529 — 0.156419i
0.726 943 — 0.154996i
0.815194 — 0.152025i
0.927 889 — 0.147965i
1.072198 — 0.144 707

0.193444 — 0.164777i
0.428770 — 0.160 382
0.514846 — 0.154 723i
0.642846 — 0.147968i
0.688008 — 0.159 179i
0.760246 — 0.157287i
0.850587 — 0.153 847i
0.965 608 — 0.149 382
1.112314 — 0.145847i

0.234254 — 0.169 836i
0.462269 — 0.164 345i
0.551295 — 0.157438i
0.682964 — 0.149 826i
0.720043 — 0.161 832i
0.794 064 — 0.159477i
0.886446 — 0.155578i
1.003 731 — 0.150 726i
1.152765 — 0.146933i

0.027 107 — 0.085597i
0.236903 — 0.098 374i
0.285439 — 0.093 609i
0.364922 — 0.075 864i
0.443727 — 0.102703i
0.488765 — 0.100428i
0.546 533 — 0.095 406i
0.625000 — 0.085 165i
0.742952 — 0.064 746i

0.141475 — 0.105014i
0.337666 — 0.109 255i
0.399 817 — 0.098 162i
0.505807 — 0.068 374i
0.543278 — 0.109491i
0.595790 — 0.105290i
0.663393 — 0.097 610
0.756 010 — 0.083 476i
0.897 860 — 0.058 622i

0.274019 — 0.093 648i
0.452137 — 0.115708i
0.528 744 — 0.097 728i
0.667302 — 0.058 104i
0.651446 — 0.114 6761
0.711645 — 0.108 424i
0.789555 — 0.097 946i
0.897414 — 0.079871i
1.064 754 — 0.052 886i

TABLE II.

QNMs of the

scalar perturbation of the Kerr-Newman black holes (Q = 0.2).

a=024g=-03

a=02,4g=0

a=02,4g=03

a=038,¢g=-03

a=08,¢g=0

a=0.8,4g=03

NN NN === O

0 0.167766 — 0.184220i

-1

(=]

-2
-1

N = O

0.470255 — 0.176 446i
0.522 144 — 0.175672i
0.585319 — 0.175043i
0.787475 — 0.176 507i
0.834779 — 0.176 198i
0.887964 — 0.175702i
0.947908 — 0.175 148i
1.015500 — 0.174 7411

0.211875 — 0.192171i
0.507611 — 0.180941i
0.561332 — 0.179 498i
0.626523 — 0.178 296i
0.823858 — 0.179 350i
0.872296 — 0.178 790i
0.926678 — 0.178 052i
0.987872 — 0.177273i
1.056 747 — 0.176 665i

0.257011 — 0.198 680i
0.545869 — 0.185127i
0.601 338 — 0.183 0461
0.668457 — 0.181312i
0.860824 — 0.182078i
0.910368 — 0.181272i
0.965915 — 0.180299:
1.028 326 — 0.179 304
1.098451 — 0.178 503

0.105432 — 0.103 623i
0.266598 — 0.109 174i
0.351193 — 0.097777i
0.545520 — 0.054 487i
0.438203 — 0.109 596i
0.505143 — 0.106 753i
0.600747 — 0.097 893i
0.754274 — 0.075327i
1.039415 — 0.048 194

0.132795 — 0.106 936i
0.289229 — 0.112303i
0.377 110 — 0.099 006i
0.578091 — 0.054 264i
0.459854 — 0.111675i
0.528 641 — 0.108 258i
0.626 685 — 0.098 644i
0.783768 — 0.075 164i
1.072980 — 0.048 219i

0.160904 — 0.109 273i
0.312498 — 0.115211i
0.403 534 — 0.100 059i
0.610920 — 0.054 055i
0.481918 — 0.113 676
0.552512 — 0.109 685i
0.652951 — 0.099 329i
0.813525 — 0.074974i
1.106 653 — 0.048 245i
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TABLE III.

PHYSICAL REVIEW D 76, 084018 (2007)
QNMs of the Dirac field perturbation of the Kerr-Newman black holes (a = 0.4).

¢

m

0=02,¢g=-03

0=024=0 0=024=03 Q=08 ¢g=-03 0=08,4=0 0=08,¢=03

1/2-1/2
12 1/2
3/2-3/2
3/2—1/2
3/2 1/2
3/2 3/2

0.246256 — 0.154133i
0.342822 — 0.141572i
0.515027 — 0.155523i
0.588694 — 0.153027i
0.687238 — 0.148 338i
0.820628 — 0.143438i

0.280565 — 0.160311i 0.316133 — 0.165779i 0.118776 — 0.090357i 0.221025 — 0.107204i 0.344 150 — 0.113238i
0.380628 — 0.144 882 0.419348 — 0.147793i 0.171964 — 0.078 2147 0.297229 — 0.073804i 0.454 538 — 0.058 993i
0.546793 — 0.158973i 0.579262 — 0.162249i 0.332623 — 0.100337i 0.432175 — 0.108952i 0.542690 — 0.114981i
0.622736 — 0.155715i 0.657409 — 0.158246i 0.378403 — 0.097 191i 0.487 664 — 0.102514i 0.608266 — 0.105015i
0.723951 — 0.150318i 0.761209 — 0.152174i 0.442312 — 0.088796i 0.565 845 — 0.089041: 0.701 925 — 0.086213i
0.860 126 — 0.144895i 0.900057 — 0.146265i 0.543282 — 0.067958i 0.693 191 — 0.060714i 0.858738 — 0.053 488i

TABLE IV.

QNMs of the Dirac field perturbation of the Kerr-Newman black holes (Q = 0.2).

¢

m

a=024g=-03

a=02,¢4g=0 a=02,4g=03 a=09,g=-03 a=09,¢g=0 a=09, ¢g=03

1/2-1/2
1/2 1/2
3/2-3/2
3/2-1/2
3/2 1/2
3/2 3/2

0.287309 — 0.174 116i
0.340964 — 0.170 124i
0.615316 — 0.175418i
0.663381 — 0.174 822i
0.718975 — 0.173997i
0.783304 — 0.173201i

0.325875 — 0.180887i 0.365774 — 0.186924i 0.151829 — 0.097351i 0.173649 — 0.101276i 0.196306 — 0.104 704i
0.381353 — 0.175322i 0.422875 — 0.179958i 0.260575 — 0.043 041 0.289 055 — 0.039671i 0.318597 — 0.036 871i
0.651857 — 0.178999i 0.689134 — 0.182397i 0.311602 — 0.098 794i 0.331456 — 0.101 142; 0.351785 — 0.103 372i
0.701296 — 0.1780017 0.739902 — 0.181009i 0.378 115 — 0.093711i 0.400 157 — 0.095 125 0.422609 — 0.096 429i
0.758346 — 0.176798i 0.798356 — 0.179445i 0.488898 — 0.074 552i 0.514298 — 0.074568i 0.540039 — 0.074 515i
0.824167 — 0.175660i 0.865612 — 0.177982i 0.749 656 — 0.064 353i 0.781326 — 0.064 171i 0.813053 — 0.064 004i

Re(w) and smaller Im(w). Under some fixed ¢, large
azimuthal numbers give larger Re(w) and smaller damping
rates. When the rotation is large, this decreasing of Im(w)
for larger m is considerable, so that high m modes can be
many times longer lived than those for the nonrotating case
a = 0. This happens for all values of Q and g. Finally, in
Fig. 3, one can see the representative dependence of the
quasinormal frequencies on the values of the A-term. The
behavior is qualitatively the same as for the ordinary
Schwarzschild-de Sitter black holes [17], that is, the in-
creasing A-term suppresses considerably the Rew and
Imw, independently on the values of other parameters.
Let us note that when all the parameters a, Q, and ¢ are
nonvanishing, and the A-term approaches near the ex-
tremal limit, the Frobenius series converges very slowly,

0.10

0.04

0.02

0.8

so that we could not reach their extremal limit very closely.

IV. CONCLUSION

In this work, with the help of an accurate convergent
Frobenius method, we performed an extensive calculation
of quasinormal modes of charged scalar and Dirac fields
for Kerr-Newman-de Sitter black holes and have analyzed
the dependence of the QN spectrum upon the great variety
of parameters of the black holes Q, M, a, of A-term, and of
the field parameters ¢ and s. This generalizes a number of
previous works when only some of the parameters were
considered nonvanishing. The model we considered might
be successful, when considering the interaction of the
charged fields with the electromagnetic background of

FIG. 3 (color online).

0.2 0.4

Real and imaginary parts of the funda-
mental QNMs of Kerr-Newman-de Sitter BH s = [ = 1/2, m
—-1/2,0=02,a=08,g=0(red) (p <051)s=1l=m
0,0 =0.5,a=0.5,qg =0 (blue) (p <0.94) as a function of p.

0.6 0.8

rotating black holes.
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