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We find the quasinormal modes of the charged scalar and Dirac fields in the background of the rotating
charged black holes, described by the Kerr-Newman-de Sitter solution. The dependence of the quasi-
normal spectrum upon the black hole parameters mass M, angular momentum a, charge Q, as well as on
values of the �-term and a field charge q is investigated. Special attention is given to the near extremal
limit of the black hole charge. In particular, we find that for both scalar and Dirac fields, charged
perturbations decay quicker for q > 0 and slower for q < 0 for values of black holes charge Q less than
some threshold value, which is close to the extremal value of charge and depend on parameters of the
black holes.
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I. INTRODUCTION

The quasinormal (QN) spectrum of black holes has been
extensively investigated during recent years for a great
variety of black hole backgrounds and fields, because it
is an important characteristic for observation of the gravi-
tational waves [1], stability analysis [2], and AdS/CFT
calculations of temperature Green functions [3]. Special
attention has been paid to perturbations of a scalar field [4],
as a simplest model, when the influence of the spin of the
field is neglected. When one considers the charged black
hole, the scalar electrodynamic can successfully model the
interaction of the charged field with the electromagnetic
background of the black hole. Therefore the calculation of
the quasinormal modes (QNMs) of charged fields, initiated
in [5] for the charged scalar field in the Reissner-Nordstöm
and dilaton backgrounds, was continued in further research
[6–9]. In particular, in [7] the quasinormal modes of the
massive charged scalar field were found with the WKB
accuracy. In [5,7] it was shown that the quasinormal
modes, corresponding to the charged scalar field, decay
quicker than those of the neutral field unless the black hole
charge is larger than some large near extremal value. This
is opposite to the behavior at asymptotically late times,
characterized by the so-called ‘‘tail’’ decay, when the
charged scalar field decays slower, and therefore, domi-
nates at asymptotically late times [10]. Yet, the quasinor-
mal frequencies calculated for Reissner-Nordström black
holes in [5–7] with the help of the WKB method need
better accuracy and cannot be trusted near the extremal
limit, especially for the scalar case, because the effective
potential is frequency dependent in this case, and the WKB
equation for the QN frequency must be solved together
with a frequency dependent equation determining the po-
sition of the maximum of the effective potential.

On the other hand, one has a much richer physical
situation, when one takes into consideration all the relevant

parameters, such as black hole angular momentum and the
cosmological term, i.e. when one starts from the Kerr-
Newman-de Sitter (KNdS) black hole as a gravitational
background. In this paper we achieve both the above
mentioned aims: to find QN modes with very high accu-
racy, by using the convergent Frobenius expansion, and to
consider the most general relevant black hole solution of
the general relativity, KNdS solution. The latter gives us
dependence of the QN spectrum on a great number of
parameters: charge of the black hole Q, charge of the field
q, normalized angular momentum of the black hole a, the
cosmological term �.

The paper is organized as follows: Sec. II gives some
basic formulas on the KNdS metric and on radial wave
equation for charged massless scalar and Dirac fields, and
also discusses the system of units we used for showing the
QNMs. Section III reviews the obtained numerical results.
In the conclusion we summarize the obtained results.

II. BASIC FORMULAS

In the Boyer-Lindquist coordinates the Kerr-Newman-
de Sitter metric has the form [11]
 

ds2���2

�
dr2

�r
�
d�2
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�
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�1���2�2 �adt��r
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�1���2�2 �dt�asin2�d’�2; (1)

where

 �r � �r2 � a2��1� �r2=a2� � 2Mr�Q2;

� � �a2=3; �� � 1� �cos2�;

�2 � r2 � a2cos2�:

(2)

The electromagnetic background of the black hole is given
by the four-vector potential

 A�dx� � �
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The charged scalar and Dirac fields in curved space-time
are described by the following equations of motion:
 

��0�;��g�� � iqA�g
���2��0�;� � iqA���0��

� iqA�;�g����0� � 0; �charged scalar� (4)

 �ae�a �@� � �� � qA���
�1=2� � 0; �charged Dirac�

(5)

where q is the charge of particles and Aa is the electro-
magnetic potential of the background.

Some manipulation with scalar and Dirac equations
allow in some separable form (see [11] and references
therein). The existence of the Killing vectors @t, @�, im-
plies the exponential harmonics of the following form
�e�i!t,�eim�). After the separation of the angular, radial,
and time variables

 ��s��t; r; �;�� / e�i!teim�S���R�r�;

one can obtain the equation for the angular part [11]
 �
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where s is the spin of the field (s � 0; 1=2 for the scalar and
Dirac field, respectively), x � cos�, 	 � a!, and � is the
separation constant (for the nonrotating case ��
‘�‘� 1� � s�s� 1�, where ‘ 	 s is the positive (half)in-
teger multipole number). The angular equation can be
solved numerically with respect to � for each value of !
by using the three-term recurrence relation [11].

The equation for the radial part is [11]
 �
��sr

d
dr
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Rs�r��0;

(7)

where K � �!�r2 � a2� � am��1� �� � qQr.
Generally, this equation has five regular singularities:

the event horizon r�, the internal horizon r�, the cosmo-
logical horizon r0�, the spatial infinity, and one more
singularity at r0�. One should note that r
 and r0
 are roots
of equation �r � 0.

In the limit of �! 0 one has

 r
 ! M

�������������������������������
M2 � a2 �Q2

q
; r0
 ! 


a����
�
p ;

and, therefore, the spacial infinity becomes an irregular
singularity [11].

By the definition, the QNMs are eigenfrequencies ! of
(7) which satisfy the following boundary conditions (b.c.):
 represents purely ingoing waves at the event r � r�
horizon and purely outgoing waves at the cosmological
horizon r � r0� (or the spacial infinity if � � 0).

Now we introduce the new function, which is regular at
these two points if the QNM b.c. are satisfied

 y�r� � r2s�1

�
r� r�
r� r�

�
s�2iK�r��=�0r�r��

e�iB�r�R�r�; (8)

where dB�r�
dr �

K
�r

.
The appropriate Frobenius series is

 y�r� �
X1
n�0

an

�
r� r�
r� r�

�
n
�
1� �r�=r�

1� �

�
n
; (9)

where � � r�=r0�.
Substituting (8) and (9) into (7), one can obtain the

N-term recurrence relation for the coefficients ai

 

Xmin�N�1;i�

j�0

c�N�j;i �!�ai�j � 0; for i > 0; (10)

where N depends on the black hole parameters. For the
particular Schwarzschild case N � 3, but for the general
case under consideration N is higher than 3. We decrease
the number of terms in the recurrence relation using the
Gaussian eliminations:

 c�k�j;i �!� � c�k�1�
j;i �!�; for j � 0; or i < k;

c�k�j;i �!� � c�k�1�
j;i �!� �

c�k�1�
k;i �!�c

�k�
j�1;i�1�!�

c�k�k�1;i�1�!�
:

After one finds c�3�j;i numerically, he can solve the equation
with infinite continued fraction (see [12] for more details)

 c�3�1;n�1 �
c�3�2;nc
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c�3�1;n�1�

c�3�2;n�1c
�3�
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. . .
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�3�
0;1

c�3�1;1

�
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�3�
2;n�2

c�3�1;n�2�

c�3�0;n�2c
�3�
2;n�3

c�3�1;n�3�
. . . (11)

Since we can find the separation constant � for each
particular value of !, (11) allows to find QNMs with the
desired precision. This technique of the QN spectrum
calculation was proposed by Leaver [13].

Now we shall discuss the units of measurements and
ranges of the black hole parameters. In this paper we shall
measure all the quantities in units of the event horizon. For
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this we choose the black hole mass, so that �r�1� � 0.
Then one has

 2M �
�
1�

�

3

�
�1� a2� �Q2:

We parametrize the cosmological constant � by the pa-
rameter � < 1

 �r�1=�� � 0 ���! �

3
� �2 1� ��a2 �Q2�

1� �� �2�a2 �Q2�
:

In these units the condition �0r�1�> 0 gives us the range of
values of the black hole charge,

 Q2 <
1� 2�

1� 2�� 3�2 � a2�2 � a
2:

The positivity of the right-hand side of the above equation
bounds the possible values of the parameter of rotation a,

 a2 <
�1� ��

�����������������������������
1� 2�� 9�2

p
� �1� 2�� 3�2�

2�2 � 1:

III. RESULTS

The quasinormal frequencies of the Kerr-Newman-de
Sitter black holes depend on a number of parameters:

(1) black hole parameters: mass M, charge Q, angular
momentum a,

(2) field parameters: field charge q and spin s,
(3) cosmological constant �,
(4) numbers of modes in the spectrum: the multipole

number ‘, the azimuthal number m, and the over-
tone number n.

Therefore, if one wants to represent quasinormal fre-
quencies for all values of the above parameters, one has to
show a great amount of table data. We decided to be limited
here by representative tables or plots, which will show
dependence of the quasinormal modes on each of the above
parameters. Thus, for example, in Fig. 1, one can see the
dependence of the Re�!� and Im�!� on the black holes
charge Q for fundamental mode ‘ � n � 0 of perturba-
tions of the scalar field. The real part of ! monotonically
grows with the black hole charge Q and the field charge q
(note that q can be both positive and negative). For positive
values of q, Re�!� attains some maximum value as a
function of Q, at some large value of Q. The imaginary
part has more complicated behavior: it monotonically de-
creases as a function of Q until some near extremal value
of the black hole charge, keeping meanwhile monotonic
dependence on q. Then the curves with different q inter-
sect, that is, the larger q does not guarantee larger Im!.
Thus if for not very large Q, the charged field decays

quicker than the neutral one, for the near extremal Q, the
charged field decays slower than neutral. From Fig. 1 one
can see that this happens at Q� 0:8Qextr in the units of the
event horizon, while in ‘‘M � 1 units’’ this corresponds to
Q� 0:995Qextr. Even though the WKB technique, devel-
oped until higher orders [14], reproduces this intersection
shown in Fig. 1, it could not be easily trusted in this case
because of ! dependency of the effective potential [5].
Therefore, confirmation of the intersection with the help of
the convergent and accurate Frobenius method leaves apart
possible interpretations of charged quasinormal modes in
the context of universality of the critical collapse [7]. Let
us note also that the nonmonotonic behavior for some
curves for real and imaginary parts of !, near the extremal
values of charge, depends on the value qQ and is not new in
fact. When approaching the extremal limit of values of Q
closely enough, one has the picture of spiraling of the plot
of Re�!�-Im�!� [15].
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FIG. 1 (color online). Charged (e) scalar field fundamental
frequency (l � 0) for the Reissner-Nordström black hole as a
function of its charge (Q). q � �0:3 (purple), q � �0:2 (ma-
genta), q � �0:1 (red), q � 0 (orange), q � 0:1 (green), q �
0:2 (cyan), q � 0:3 (blue). The larger q corresponds to the larger
real and larger imaginary (for small black hole charge) part of
the QNM.
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An important point is the checking of all the known
particular limits for our calculations. For q � Q � 0 we
reproduce the quasinormal modes for the scalar and Dirac
fields for Kerr-de Sitter black holes, while for � � 0, a �
0 we obtain the limit of pure Reissner-Nordström black
holes and the results of [5,6]. For q � 0 we find the
quasinormal modes for neutral fields for KNdS black
holes. When approaching the limit of extreme values of
the �-term, one can reproduce the exact quasinormal
modes obtained as a solution of the Pöschl-Teller equation
[16], if q � a � 0.

In Fig. 2 we demonstrate the dependence of Re�!� and
Im�!� of scalar field modes on the angular momentum a
for a few fixed values of the charges Q and q. There one
can see that for not large values of qQ, one has the
monotonic decay of both real and imaginary parts of !
as a function of a. In other words, the quicker rotating
black holes have longer lived modes and smaller real
oscillation frequencies. This monotonic behavior breaks
for larger values qQ, as it can be seen from the curve Q �
0:8, q � 0:3 on Fig. 2.

The numerical data for QNMs are represented in
Tables I, II, III, and IV and in Figs. 1–3. In Tables I and
III, the quasinormal frequencies for different values of
multipolar ‘ and azimuthal m numbers are given for the
first mode n � 0, for some values of the charges Q and q,
and for a fixed value of the angular momentum. In Tables II
and IV, on the contrary, we fix the values of the black holes
charge Q, and consider different values of a and q. From
the above table one can see that larger values of the multi-
pole number ‘, under the same value m, imply larger

TABLE I. QNMs of the scalar perturbation of the Kerr-Newman black holes (a � 0:4).

‘ m Q � 0:2, q � �0:3 Q � 0:2, q � 0 Q � 0:2, q � 0:3 Q � 0:8, q � �0:3 Q � 0:8, q � 0 Q � 0:8, q � 0:3

0 0 0:153 622� 0:158 460i 0:193 444� 0:164 777i 0:234 254� 0:169 836i 0:027 107� 0:085 597i 0:141 475� 0:105 014i 0:274 019� 0:093 648i
1 �1 0:396 131� 0:156 125i 0:428 770� 0:160 382i 0:462 269� 0:164 345i 0:236 903� 0:098 374i 0:337 666� 0:109 255i 0:452 137� 0:115 708i
1 0 0:479 121� 0:151 767i 0:514 846� 0:154 723i 0:551 295� 0:157 438i 0:285 439� 0:093 609i 0:399 817� 0:098 162i 0:528 744� 0:097 728i
1 1 0:603 295� 0:145 951i 0:642 846� 0:147 968i 0:682 964� 0:149 826i 0:364 922� 0:075 864i 0:505 807� 0:068 374i 0:667 302� 0:058 104i
2 �2 0:656 529� 0:156 419i 0:688 008� 0:159 179i 0:720 043� 0:161 832i 0:443 727� 0:102 703i 0:543 278� 0:109 491i 0:651 446� 0:114 676i
2 �1 0:726 943� 0:154 996i 0:760 246� 0:157 287i 0:794 064� 0:159 477i 0:488 765� 0:100 428i 0:595 790� 0:105 290i 0:711 645� 0:108 424i
2 0 0:815 194� 0:152 025i 0:850 587� 0:153 847i 0:886 446� 0:155 578i 0:546 533� 0:095 406i 0:663 393� 0:097 610i 0:789 555� 0:097 946i
2 1 0:927 889� 0:147 965i 0:965 608� 0:149 382i 1:003 731� 0:150 726i 0:625 000� 0:085 165i 0:756 010� 0:083 476i 0:897 414� 0:079 871i
2 2 1:072 198� 0:144 707i 1:112 314� 0:145 847i 1:152 765� 0:146 933i 0:742 952� 0:064 746i 0:897 860� 0:058 622i 1:064 754� 0:052 886i

TABLE II. QNMs of the scalar perturbation of the Kerr-Newman black holes (Q � 0:2).

‘ m a � 0:2, q � �0:3 a � 0:2, q � 0 a � 0:2, q � 0:3 a � 0:8, q � �0:3 a � 0:8, q � 0 a � 0:8, q � 0:3

0 0 0:167 766� 0:184 220i 0:211 875� 0:192 171i 0:257 011� 0:198 680i 0:105 432� 0:103 623i 0:132 795� 0:106 936i 0:160 904� 0:109 273i
1 �1 0:470 255� 0:176 446i 0:507 611� 0:180 941i 0:545 869� 0:185 127i 0:266 598� 0:109 174i 0:289 229� 0:112 303i 0:312 498� 0:115 211i
1 0 0:522 144� 0:175 672i 0:561 332� 0:179 498i 0:601 338� 0:183 046i 0:351 193� 0:097 777i 0:377 110� 0:099 006i 0:403 534� 0:100 059i
1 1 0:585 319� 0:175 043i 0:626 523� 0:178 296i 0:668 457� 0:181 312i 0:545 520� 0:054 487i 0:578 091� 0:054 264i 0:610 920� 0:054 055i
2 �2 0:787 475� 0:176 507i 0:823 858� 0:179 350i 0:860 824� 0:182 078i 0:438 203� 0:109 596i 0:459 854� 0:111 675i 0:481 918� 0:113 676i
2 �1 0:834 779� 0:176 198i 0:872 296� 0:178 790i 0:910 368� 0:181 272i 0:505 143� 0:106 753i 0:528 641� 0:108 258i 0:552 512� 0:109 685i
2 0 0:887 964� 0:175 702i 0:926 678� 0:178 052i 0:965 915� 0:180 299i 0:600 747� 0:097 893i 0:626 685� 0:098 644i 0:652 951� 0:099 329i
2 1 0:947 908� 0:175 148i 0:987 872� 0:177 273i 1:028 326� 0:179 304i 0:754 274� 0:075 327i 0:783 768� 0:075 164i 0:813 525� 0:074 974i
2 2 1:015 500� 0:174 741i 1:056 747� 0:176 665i 1:098 451� 0:178 503i 1:039 415� 0:048 194i 1:072 980� 0:048 219i 1:106 653� 0:048 245i

0.2 0.4 0.6 0.8 1.0
a

0.05

0.15

0.20

0.25

0.30

Re(w)

-Im(w)

0.08

0.12

0.14

0.16

0.18

0.20

a

a
0.2 0.4 0.6 0.8 1.0

FIG. 2 (color online). Charged (e) scalar field fundamental
frequency (l � 0) for the Kerr-Newman black hole of charge
Q � 0:2 (a < 2

���
6
p
=5) and Q � 0:8 (a < 0:6) as a function of a.

q � �0:3, e � 0 (orange), q � 0:1 (green), q � 0:2 (cyan), q �
0:3 (blue). The larger q corresponds to the larger real and larger
imaginary (for small black hole charge) part of the QNM.
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Re�!� and smaller Im�!�. Under some fixed ‘, large
azimuthal numbers give larger Re�!� and smaller damping
rates. When the rotation is large, this decreasing of Im�!�
for larger m is considerable, so that high m modes can be
many times longer lived than those for the nonrotating case
a � 0. This happens for all values of Q and q. Finally, in
Fig. 3, one can see the representative dependence of the
quasinormal frequencies on the values of the �-term. The
behavior is qualitatively the same as for the ordinary
Schwarzschild-de Sitter black holes [17], that is, the in-
creasing �-term suppresses considerably the Re! and
Im!, independently on the values of other parameters.
Let us note that when all the parameters a, Q, and q are
nonvanishing, and the �-term approaches near the ex-
tremal limit, the Frobenius series converges very slowly,
so that we could not reach their extremal limit very closely.

IV. CONCLUSION

In this work, with the help of an accurate convergent
Frobenius method, we performed an extensive calculation
of quasinormal modes of charged scalar and Dirac fields
for Kerr-Newman-de Sitter black holes and have analyzed
the dependence of the QN spectrum upon the great variety
of parameters of the black holesQ,M, a, of �-term, and of
the field parameters q and s. This generalizes a number of
previous works when only some of the parameters were
considered nonvanishing. The model we considered might
be successful, when considering the interaction of the
charged fields with the electromagnetic background of
rotating black holes.
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TABLE IV. QNMs of the Dirac field perturbation of the Kerr-Newman black holes (Q � 0:2).

‘ m a � 0:2, q � �0:3 a � 0:2, q � 0 a � 0:2, q � 0:3 a � 0:9, q � �0:3 a � 0:9, q � 0 a � 0:9, q � 0:3

1=2�1=2 0:287 309� 0:174 116i 0:325 875� 0:180 887i 0:365 774� 0:186 924i 0:151 829� 0:097 351i 0:173 649� 0:101 276i 0:196 306� 0:104 704i
1=2 1=2 0:340 964� 0:170 124i 0:381 353� 0:175 322i 0:422 875� 0:179 958i 0:260 575� 0:043 041i 0:289 055� 0:039 671i 0:318 597� 0:036 871i
3=2�3=2 0:615 316� 0:175 418i 0:651 857� 0:178 999i 0:689 134� 0:182 397i 0:311 602� 0:098 794i 0:331 456� 0:101 142i 0:351 785� 0:103 372i
3=2�1=2 0:663 381� 0:174 822i 0:701 296� 0:178 001i 0:739 902� 0:181 009i 0:378 115� 0:093 711i 0:400 157� 0:095 125i 0:422 609� 0:096 429i
3=2 1=2 0:718 975� 0:173 997i 0:758 346� 0:176 798i 0:798 356� 0:179 445i 0:488 898� 0:074 552i 0:514 298� 0:074 568i 0:540 039� 0:074 515i
3=2 3=2 0:783 304� 0:173 201i 0:824 167� 0:175 660i 0:865 612� 0:177 982i 0:749 656� 0:064 353i 0:781 326� 0:064 171i 0:813 053� 0:064 004i

0.8
ρ

ρ

0.2 0.4 0.6

0.2 0.4 0.6 0.8

Re(w)

−Im(w)

0.05
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0.04

0.06

0.08
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0.12

FIG. 3 (color online). Real and imaginary parts of the funda-
mental QNMs of Kerr-Newman-de Sitter BH s � l � 1=2, m �
�1=2, Q � 0:2, a � 0:8, q � 0 (red) (� < 0:51) s � l � m �
0, Q � 0:5, a � 0:5, q � 0 (blue) (� < 0:94) as a function of �.

TABLE III. QNMs of the Dirac field perturbation of the Kerr-Newman black holes (a � 0:4).

‘ m Q � 0:2, q � �0:3 Q � 0:2, q � 0 Q � 0:2, q � 0:3 Q � 0:8, q � �0:3 Q � 0:8, q � 0 Q � 0:8, q � 0:3

1=2�1=2 0:246 256� 0:154 133i 0:280 565� 0:160 311i 0:316 133� 0:165 779i 0:118 776� 0:090 357i 0:221 025� 0:107 204i 0:344 150� 0:113 238i
1=2 1=2 0:342 822� 0:141 572i 0:380 628� 0:144 882i 0:419 348� 0:147 793i 0:171 964� 0:078 214i 0:297 229� 0:073 804i 0:454 538� 0:058 993i
3=2�3=2 0:515 027� 0:155 523i 0:546 793� 0:158 973i 0:579 262� 0:162 249i 0:332 623� 0:100 337i 0:432 175� 0:108 952i 0:542 690� 0:114 981i
3=2�1=2 0:588 694� 0:153 027i 0:622 736� 0:155 715i 0:657 409� 0:158 246i 0:378 403� 0:097 191i 0:487 664� 0:102 514i 0:608 266� 0:105 015i
3=2 1=2 0:687 238� 0:148 338i 0:723 951� 0:150 318i 0:761 209� 0:152 174i 0:442 312� 0:088 796i 0:565 845� 0:089 041i 0:701 925� 0:086 213i
3=2 3=2 0:820 628� 0:143 438i 0:860 126� 0:144 895i 0:900 057� 0:146 265i 0:543 282� 0:067 958i 0:693 191� 0:060 714i 0:858 738� 0:053 488i
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