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We perform axisymmetric simulations of the magnetorotational collapse of very massive stars in full
general relativity. Our simulations are applicable to the collapse of supermassive stars with masses M *

103M� and to very massive Population III stars. We model our initial configurations by n � 3 polytropes,
uniformly rotating near the mass-shedding limit and at the onset of radial instability to collapse. The ratio
of magnetic to rotational kinetic energy in these configurations is chosen to be small (1% and 10%). We
find that such magnetic fields do not affect the initial collapse significantly. The core collapses to a black
hole, after which black-hole excision is employed to continue the evolution long enough for the hole to
reach a quasistationary state. We find that the black-hole mass is Mh � 0:95M and its spin parameter is
Jh=M

2
h � 0:7, with the remaining matter forming a torus around the black hole. The subsequent evolution

of the torus depends on the strength of the magnetic field. We freeze the spacetime metric (‘‘Cowling
approximation’’) and continue to follow the evolution of the torus after the black hole has relaxed to
quasistationary equilibrium. In the absence of magnetic fields, the torus settles down following ejection of
a small amount of matter due to shock heating. When magnetic fields are present, the field lines gradually
collimate along the hole’s rotation axis. MHD shocks and the magnetorotational instability generate MHD
turbulence in the torus and stochastic accretion onto the central black hole. When the magnetic field is
strong, a wind is generated in the torus, and the torus undergoes radial oscillations that drive episodic
accretion onto the hole. These oscillations produce long-wavelength gravitational waves potentially
detectable by the Laser Interferometer Space Antenna. The final state of the magnetorotational collapse
always consists of a central black hole surrounded by a collimated magnetic field and a hot, thick accretion
torus. This system is a viable candidate for the central engine of a long-soft gamma-ray burst.
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I. INTRODUCTION

Population III stars born with zero metallicity comprise
the first generation of stars. It is believed that their for-
mation causes the reionization of the universe and termi-
nates the ‘‘dark ages’’ (see, e.g., [1] and references
therein). The disruption of Pop III stars following nuclear
burning may be responsible for the small metal abundance
observed in later generations of stars (e.g. Pop II stars).
Simulations of the collapse of primordial molecular clouds
suggest that Pop III stars tend to be massive. Masses in the
range between 100M� and 1000M� are not uncommon [2].
Some of these calculations suggest that the initial mass
function for Pop III stars has a bimodal distribution, with
peaks at �100M� and 1M�–2M� [3]. Stars with masses
between 140M� and 260M� encounter a pair instability
and are likely to be completely disrupted by nuclear-
powered explosions [4]. The recent observation of the
peculiar Type IIn supernova SN2006gy in NGC1260 points
to the possibility that such a disruption can occur in a
massive star ( * 120M�) even during the current epoch
[5]. For stars with masses above 260M�, the explosive
nuclear burning is unable to reverse the implosion and
the stars are likely to collapse directly to black holes [4].

Growing evidence indicates that supermassive black
holes (SMBHs) with masses in the range 106M�–1010M�

exist and are the engines that power active galactic nuclei
(AGNs) and quasars [6,7]. There is also ample evidence
that SMBHs reside at the centers of many, and perhaps
most, galaxies [8], including the Milky Way [9]. The high-
est redshift of a quasar discovered to date is zQSO � 6:43,
corresponding to QSO SDSS 1148� 5251 [10].
Accordingly, if they are the energy sources in quasars
(QSOs), the first SMBHs must have formed prior to
zQSO � 6:43, or within t � 0:87 Gyr after the big bang in
the concordance �CDM cosmological model. This re-
quirement sets a significant constraint on black-hole seed
formation and growth mechanisms in the early universe.
Once formed, black holes grow by a combination of merg-
ers and gas accretion.

The more massive the initial seed, the less time is
required for it to grow to SMBH scale and the easier it is
to have a SMBH in place by z � 6:43. One possible
progenitor that readily produces a SMBH is a supermassive
star (SMS) withM� 103M� [6,11]. SMSs can form when
gaseous structures build up sufficient radiation pressure to
inhibit fragmentation and prevent normal star formation;
plausible cosmological scenarios have been proposed that
can lead to this situation [12]. Alternatively, the seed black
holes that later grow to become SMBHs may originate
from the collapse of Pop III stars & 103M� [13]. To
achieve the required growth to �109M� by zQSO * 6:43,
it may be necessary for gas accretion, if restricted by the
Eddington limiting luminosity, to occur at low efficiency of
rest-mass to radiation conversion ( & 0:2). Recent relativ-
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istic simulations [14–16] show that accretion onto a rotat-
ing black hole that has reached spin equilibrium does occur
at low efficiency in a magnetized disk with turbulence
driven by the magnetorotational instability (MRI) [17–
19]. Such accretion may enable a Pop III seed to achieve
the necessary growth by z � 6:43 [20]. But it may be more
difficult to use the Pop III seeds to explain the origin of the
first generation of the SMBHs should quasars be detected
at redshifts significantly higher than zQSO � 6:43.

Recent simulations of binary black-hole mergers suggest
that gravitational radiation reaction can induce a large kick
velocity ( * 1000 km=s) in the remnants following merg-
ers [21]. These large kick velocities may pose a great
hazard for the growth of black-hole seeds to SMBHs by
z� 6 [22], but such large kicks are possible only if the
spins of the black-hole binary companions are appreciable
and their masses are comparable. Determining the spins of
the seed black holes formed from collapse and tracking
their subsequent evolution via accretion and minor mergers
[15,23] is therefore important for estimating the kick ve-
locities following major mergers.

It is very likely that massive Pop III and SMSs are
rotating and have magnetic fields. A SMS does not reach
sufficiently high temperature for nuclear burning to be-
come important before the onset of the general relativistic
radial instability [24]. Quasistatic contraction driven by
radiative cooling will spin up the star to the mass-shedding
limit, provided that viscosity and/or magnetic fields are
sufficient to maintain uniform rotation [24]. The star will
then evolve secularly along the mass-shedding limit, si-
multaneously emitting electromagnetic radiation, matter,
and angular momentum (see, e.g., [24–26]). After reach-
ing the onset of radial instability, the star collapses on a
dynamical time scale. During the collapse, the rotation
becomes differential, and the rotational and magnetic en-
ergies are both amplified. The black hole that forms will be
rotating and surrounded by a magnetized accretion disk. A
qualitatively similar final fate should characterize a mas-
sive Pop III star * 260M�.

Shibata and Shapiro performed the first full general
relativistic (GR) simulation of the collapse of a very mas-
sive, rotating star [27]. They modeled the massive star as a
uniformly rotating n � 3 polytrope spinning at the mass-
shedding limit at the onset of radial instability. A massive
star is supported largely by thermal radiation pressure and
is adequately modeled by an n � 3 polytrope. They termi-
nated their simulation soon after the black hole formed
because of numerical inaccuracies associated with the
spacetime singularity that inevitably forms inside the black
hole. They estimated the final state of the system using
semianalytic methods (see also [28,29]). They concluded
that, independent of the initial mass M of the progenitor
star, the mass of the black hole that forms is Mh � 0:9M
and the hole spin parameter is Jh=M2

h � 0:75. The remain-
ing gas forms a rotating torus around the nascent black
hole.

In this paper, we first repeat the full GR (axisymmetric)
simulation performed by Shibata and Shapiro of massive
star collapse to the appearance of a black hole. We then
employ the technique of black-hole excision [30,31] to
continue the evolution. We are able to follow the spacetime
evolution for another 200M by this means. By this time, the
central black hole and the spacetime metric have both
settled down to a quasistationary state. We find that the
mass and spin parameter of the final black hole are Mh �
0:95M and Jh=M

2
h � 0:7. These results are close to the

semianalytic estimates in [27–29]. The torus surrounding
the black hole continues to evolve long after the black hole
has settled down. In order to study the subsequent evolu-
tion of the torus, we adopt the ‘‘Cowling approximation’’
whereby we freeze the metric at t� 150M after the ex-
cision and continue to evolve the system for another
2000M. We find that a small amount of material (�
10�3M) is ejected from the system due to shock heating,
and the torus relaxes to a dynamical equilibrium state
�1000M after the formation of the central black hole.

Next, to study the important role of magnetic fields, we
add a small, seed poloidal magnetic field to the initial
rotating star and follow the collapse once again. We con-
sider two different strengths of the seed magnetic fields
(models S1 and S2). The initial magnetic energy M is 1%
of the initial rotational kinetic energy T for model S1, and
10% of T for model S2. Since T=jWj � 0:009, we have
M=jWj 	 1 in both models, where W is the gravitational
potential energy. Hence in both cases the magnetic fields
represent small perturbations to the dynamics of the initial
star. During the collapse, the frozen-in poloidal field is
amplified as a result of compression. The development of
differential rotation generates a toroidal field due to mag-
netic winding. However, we find that magnetic fields do not
affect the collapse significantly before the formation of the
central black hole. The final mass and spin parameter of the
black hole are about the same as in the unmagnetized case.
But magnetic fields do affect the evolution of the torus
significantly. Magnetic fields intensify the outflow of the
ejected material. The outflow also lasts longer than in the
unmagnetized case. As the torus evolves, magnetic fields
are collimated along the black hole’s rotation axis. For
model S1, MHD shocks and the MRI in the torus create
turbulence, which leads to stochastic accretion of material
from the torus to the central black hole. For model S2, a
strong wind is generated (possibly by the magnetocentri-
fugal mechanism [32]) during the period �900M–1200M
following central black-hole formation. This wind induces
a radial oscillation of the torus, which leads to episodic
accretion of material to the central black hole, and long-
wavelength gravitational radiation potentially detectable
by the Laser Interferometer Space Antenna (LISA).

The final state of the magnetorotational collapse consists
of a central black hole surrounded by a collimated mag-
netic field and a massive, hot, accretion torus. These fea-
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tures provide the essential ingredients for generating ultra-
relativistic jets at large distance. Our simple equation of
state (EOS) is a reasonable approximation for the collapse
of SMSs, but our omission of neutrino emission and other
microphysics is certainly not adequate to capture all of the
physical processes occurring during the collapse of mas-
sive Pop III and Pop I/II stars. Nevertheless, we expect that
the black-hole-torus remnant that we find will be qualita-
tively similar to the remnants formed from these progeni-
tors if they are rotating rapidly at the onset of collapse. The
reason is that these stars may also be crudely modeled by
n � 3 polytropes initially and their EOSs may also be
represented by an adiabatic � � 4=3 law during collapse
(see [29]).

Our simulations may also help explain the formation of
the central engine in the collapsar model [33] of long-soft
gamma-ray bursts (GRBs). In addition, some GRBs ob-
served at very high redshift might be related to the gravi-
tational collapse of very massive Pop III stars [34]. Hence
our simulations may also provide insights into the forma-
tion of GRB central engines arising from these stars.

The remainder of this paper is organized as follows. In
Sec. II, we briefly describe the mathematical formulation
of the Einstein-Maxwell-MHD coupled equations and nu-
merical techniques used to solve them. We then describe
our initial data and computational setup in Sec. III. We
present our numerical results in Sec. IV and provide a
summary of our simulations in Sec. V. Throughout this
paper, we adopt geometrical units in which G � 1 � c,
where G and c denote the gravitational constant and speed
of light, respectively. Cartesian coordinates are denoted by
xk � 
x; y; z�. The coordinates are oriented so that the
rotation axis is along the z direction. We define the coor-

dinate radius r �
���������������������������
x2 � y2 � z2

p
, cylindrical radius $ �����������������

x2 � y2
p

, and azimuthal angle ’ � tan�1
y=x�.
Coordinate time is denoted by t. Greek indices �; �; . . .
denote spacetime components 
t; x; y; z�, and small Latin
indices i; j; . . . denote spatial components (x, y, and z).

II. FORMULATION

A. Basic equations and numerical methods

The formulation and numerical scheme for our GRMHD
simulations are the same as those reported in [35], to which
the reader may refer for details. Here we briefly summarize
the method and introduce our notation.

We use the 3� 1 formulation of general relativity and
decompose the metric into the following form:

 ds2 � ��2dt2 � �ij
dxi � �idt�
dxj � �jdt�: (1)

The fundamental variables for the metric evolution are the
spatial three-metric �ij and extrinsic curvature Kij. We
adopt the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formalism [36] to evolve �ij and Kij. In this formalism, the
evolution variables are the conformal exponent � �

ln�=12, the conformal three-metric ~�ij � e�4��ij, three
auxiliary functions ~�i � �~�ij;j, the trace of the extrinsic
curvature K, and the tracefree part of the conformal ex-
trinsic curvature ~Aij � e�4�
Kij � �ijK=3�. Here, � �
det
�ij�. The full spacetime metric g�� is related to the
three-metric ��� by ��� � g�� � n�n�, where the future-
directed, timelike unit vector n� normal to the time slice
can be written in terms of the lapse � and shift �i as n� �
��1
1;��i�.

The Einstein equations are solved in Cartesian coordi-
nates. In this paper, we assume both equatorial and axi-
symmetry so we only evolve the region with x > 0 and
z > 0. We adopt the Cartoon method [37] to impose ax-
isymmetry in the metric evolution, and use a cylindrical
grid to evolve the MHD and Maxwell equations. As for the
gauge conditions, we adopt the hyperbolic driver condi-
tions as in [31] to evolve the lapse � and shift �i.

The fundamental variables in ideal MHD are the rest-
mass density �0, specific internal energy �, pressure P,
four-velocity u�, and magnetic field B� measured by a
normal observer moving with a four-velocity n� (note that
B�n� � 0). The ideal MHD condition is written as
u�F�� � 0, where F�� is the electromagnetic tensor.
The tensor F�� and its dual in the ideal MHD approxima-
tion are given by

 F�� � �����u�b�; (2)

 F�� �
1
2�����F

�� � b�u� � b�u�; (3)

where ����� is the Levi-Civita tensor. Here we have
introduced an auxiliary magnetic four-vector b� �

B�

u�=

�������
4	
p

, where B�

u� is the magnetic field measured by

an observer comoving with the fluid and is related to B� by

 B�

u� � �



�� � u
�u��B

�

n�u�
: (4)

The energy-momentum tensor is written as

 T�� � TFluid
�� � TEM

�� ; (5)

where TFluid
�� and TEM

�� denote the fluid and electromagnetic
pieces of the stress-energy tensor. They are given by

 TFluid
�� � �0hu�u� � Pg��; (6)

 TEM
�� �

1

4	

�
F��F�� �

1

4
g��F��F��

�

�

�
1

2
g�� � u�u�

�
b2 � b�b�; (7)

where h � 1� �� P=�0 is the specific enthalpy, and
b2 � b�b�. Hence, the total stress-energy tensor becomes
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 T�� � 
�0h� b
2�u�u� �

�
P�

b2

2

�
g�� � b�b�: (8)

In our numerical implementation of the GRMHD and
magnetic induction equations, we evolve the densitized
density �, densitized momentum density ~Si, densitized
energy density ~, and densitized magnetic field Bi. They
are defined as

 � � �
����
�
p

�0n�u
�; (9)

 

~S i � �
����
�
p

T��n
���i; (10)

 ~ �
����
�
p

T��n
�n� � �; (11)

 B i �
����
�
p

Bi: (12)

During the evolution, we also need the three-velocity vi �
ui=ut.

The GRMHD and induction equations are written in
conservative form for variables �, ~Si, ~, and Bi and
evolved using a high-resolution shock-capturing (HRSC)
scheme. Specifically, we use the monotonized central
(MC) scheme [38] for data reconstruction and the HLL
(Harten, Lax, and van Leer) scheme [39] to compute the
flux. The magnetic field Bi has to satisfy the no monopole
constraint @iBi � 0. We adopt the flux-interpolated con-
strained transport (flux-CT) scheme [40] to impose this
constraint. This scheme guarantees that no magnetic
monopoles will be created in the computational grid during
numerical evolution. At each time step, the primitive var-
iables 
�0; P; vi� must be computed from the evolution
variables 
�; ~; ~Si�. This is done by numerically solving
the algebraic equations (9)–(11) together with an EOSP �
P
�0; ��.

As in many hydrodynamic simulations in astrophysics,
we add a tenuous ‘‘atmosphere’’ that covers the computa-
tional grid outside the star. The atmospheric rest-mass
density is set to� 10�10�c
0� before the black hole forms,
where �c
0� is the initial rest-mass central density of the
star. In the excision evolution where the system consists of
a central black hole and a surrounding torus, the maximum
density in the torus is �100�c
0�, and we set the atmo-
sphere density to 10�3�c
0�.

The codes used here have been tested in multiple rela-
tivistic MHD simulations, including MHD shocks, non-
linear MHD wave propagation, magnetized Bondi
accretion, and MHD waves induced by linear gravitational
waves [35]. We have also compared this code with the
GRMHD code developed independently by Shibata and
Sekiguchi [41] by performing simulations of the evolution
of magnetized, differentially rotating, relativistic, hyper-
massive neutron stars [42,43], and of magnetorotational
collapse of stellar cores [44]. We obtain good agreement
between these two independent codes.

B. Equation of state

In this paper, we adopt the simple n � 3 (� � 4=3)
polytropic EOS to construct the initial model and P �

�� 1��0� (�-law EOS) during the evolution. This EOS
is a good approximation for the precollapse core of a
massive Pop III star [45] or the bulk of a SMS [25,46],
where pressure is dominated by thermal radiation. For a
Pop I/II star, which has smaller mass, the pressure of the
precollapse core is dominated by the relativistic degenerate
electron pressure, which is also well approximated by a
� � 4=3 EOS. During the collapse, the EOS stiffens when
the density exceeds nuclear density �nuc � 2�
1014 g cm�3. However, if the mass of the collapsing core
exceeds a critical value Mcrit, the black-hole horizon ap-
pears before the star reaches the nuclear density. In this
case, the stiffening of the EOS has no effect on the col-
lapse. To estimate Mcrit, consider the collapse of a uniform
density dust sphere (Oppenheimer-Snyder collapse). A
horizon appears when the areal radius of the sphere reaches
R � 2M. At this time, the density is �0 � 3M=
4	R3� �
1:7� 1016
M�=M�2 g cm�3. Setting �0 � �nuc, gives
Mcrit � 10M�. For a SMS, the mass is much larger than
Mcrit. For a Pop III star of mass M � 300M�, the mass of
the collapsing core is 180M� [4], which is still much larger
than Mcrit. Hence the � � 4=3 EOS is also a good approxi-
mation during the entire collapse phase for very massive
Pop III stars. For Pop I/II stars, on the other hand, the core
mass is less than 2M� and a more realistic EOS is required
in the late stages. In addition, neutrino emission and trans-
port are also important to the dynamics of the collapse for
these stars. Neutrino generation and transport also play a
role in the collapse of Pop III stars [4,47], but are probably
not dynamically important for the most massive progeni-
tors or for SMSs because of their low temperature and
density.

C. Diagnostics

During the evolution, we monitor the L2 norm of the
Hamiltonian and momentum constraints as in [43]. We find
the violation of the constraints is at most a few percent
before excision. After the excision, the constraints can rise
to � 10%. We terminate the excision evolution before the
constraints reach �20%.

We also compute the rest mass M0, ADM mass M, and
angular momentum J during the evolution. They are com-
puted by the following volume integrals:

 M0 �
Z
V
�d3x; (13)

 

M �
Z
V

�
e5�

�
��

1

16	
~Aij ~Aij �

1

24	
K2

�

�
1

16	
~�ijk~�jik �

1� e�

16	
~R
�
d3x; (14)
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 J �
Z
V

~S’d
3x; (15)

where ~�ijk is the Christoffel symbol and ~R is the Riemann
scalar associated with ~�ij. Note that the above formula for
J is only valid in an axisymmetric spacetime [48]. The rest
mass M0 is conserved as a result of the baryon number
conservation. Angular momentum J is conserved in axi-
symmetry, as gravitational radiation carries no angular
momentum. However, M is not conserved since gravita-
tional radiation carries energy and propagates off the com-
putational grid. We find that M remains constant to within
2%. Our finite difference scheme guarantees that M0 and J
computed from the above volume integrals are conserved
to machine precision provided that no fluid leaves the
computational grid. However, we perform several regrid-
dings during the calculation (see Sec. III), and these leave
behind a few percent of M0 and J in the outermost layers.

During the excision evolution, we compute the rest mass
Mdisk and angular momentum Jdisk of the disk outside the
black hole by computing integrals (13) and (15) over the
volume outside the apparent horizon. The irreducible mass
Mirr of the black hole is given byMirr �

���������������
A=16	

p
, where A

is the surface area of the apparent horizon. Since J is
conserved, we can compute the black hole’s angular mo-
mentum Jh by

 Jh � J� Jloss � Jdisk; (16)

where Jloss is the loss of angular momentum as a result of
regriddings and matter leaving the grid. The black hole’s
mass Mh is then computed from the formula

 Mh �
��������������������������������������
M2

irr � 
Jh=2Mirr�
2

q
; (17)

which is exact for a Kerr spacetime, and is in accord with
the formula derived using the isolated and dynamical
horizon formalism [49].

At �t � 150M after the excision evolution, we find that
the spacetime becomes nearly stationary. In this case, the
energy E is approximately conserved thereafter, where

 E �
Z
�

����
�
p

Tttd
3x: (18)

We can then define the fluxes of rest mass, energy, and
angular momentum across any closed two-dimensional
surface S in a time slice:

 FM
r� �
I
S
��0v

id2�i; (19)

 FE
r� � �
I
S
�Titd

2�i; (20)

 FJ
r� �
I
S
�Ti’d

2�i; (21)

where

 d2�i �
1
2�ijkdx

j ^ dxk; (22)

and �ijk � n��
�
ijk is the Levi-Civita tensor associated

with the three-metric �ij. If S is a sphere of radius r, the
above expressions reduce to

 FM
r� �
I
r�const

dA�v
rr2; (23)

 FE
r� � �
I
r�const

dA�
����
�
p

Trt; (24)

 FJ
r� �
I
r�const

dA�
����
�
p

Tr’; (25)

where dA � r2 sin�d�d�. The total energy flux FE is very
close to the rest-mass flux FM since FE is primarily com-
posed of the rest-mass energy flow. Thus, we define an-
other energy flux by subtracting the rest-mass flow:
Fe � FE � FM. We note that Fe contains kinetic, thermal,
electromagnetic, and gravitational potential energy fluxes.
If Fe > 0 at sufficiently large radius, an unbound outflow
(overcoming gravitational binding energy) is present.

Another method to determine whether a fluid particle is
unbound is to compute ut. In a stationary spacetime, the
value of ut of a particle moving on a geodesic is conserved.
If the particle is unbound, the radial velocity vr > 0 and
�ut � 1=

��������������
1� v2
p

> 1 at infinity. Hence vr and ut are
useful diagnostics to determine if the fluid element is un-
bound, provided that the fluid motion is predominantly
ballistic and pressure and electromagnetic forces can be
neglected. This is usually the case in the low-density
region.

During the excision evolution, the MRI may develop in
the torus surrounding the central black hole. The growth
time (e-folding time) and wavelength of the fastest-
growing MRI mode can be roughly estimated by the fol-
lowing formulas derived in linear perturbation theory in
Newtonian gravitation [19,44]:

 tMRI � 2j@�=@ ln$j�1; (26)

 �max �
2	vzA

�

�
1� 


�
2�
�4
�
�1=2

; (27)

where � is angular velocity, vzA � Bz=
������������
4	�0

p
is the z

component of the Alfvén speed, and

 � �
�

1

$3

@
$4�2�

@$

�
1=2

(28)

is the epicyclic frequency.

III. INITIAL DATA AND GRID SETUP

A. Initial data

We model the precollapse star as a uniformly rotating
star satisfying the n � 3 polytropic EOS P � K�4=3

0 . We
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set K � 1 in our code. As explained in [50], our result can
be scaled to arbitrary values of K or, equivalently, the
ADM mass M; only nondimensional ratios are invariant.
For example, M / K3=2, B / K�3=2, �0 / K

�3, etc.
We use the same initial model as in [27], whereby the

star is rotating near the mass-shedding limit with T=jWj �
0:009. The equatorial radius of the star is Req � 640M �
107
M=104M�� km. This is the configuration where the
polytrope is on the verge of radial instability against gravi-
tational collapse due to general relativity [24]. The central
density of the star is �c � 103
M=104M��

�2 g cm�3. For a
SMS with mass M * 104M�, this general relativistic in-
stability triggers the collapse, as opposed to microphysical
processes such as pair instability.

We add a small amount of poloidal seed magnetic field
to this equilibrium star, employing a magnetic vector po-
tential of the form

 A� � A’

’
� � Ab$

2 max
�1=6
0 � �1=6

cut ; 0�

’
�; (29)

where �cut � 10�5�c, and Ab is a constant that determines
the strength of the initial magnetic field. The magnetic field
is computed by the formula Bi � �ijk@jAk. A similar form
of the initial magnetic field has been used in the study of
magnetized accretion disks around a stationary black hole
[14,51], the collapse of hypermassive neutron stars [42,43],
and the collapse of a magnetized, stellar core of a high
mass star [44]. We choose two nonzero values of the
constants Ab so that the values of initial magnetic energy

 M �
Z ����

�
p

n�n�T
��
EMd

3x (30)

are 1% and 10% of the initial rotational kinetic energy
(corresponding to M=jWj � 9� 10�5 and 9� 10�4).
Hence adding this seed magnetic field causes only a slight
perturbation to the star. We label these two models as S1
and S2, respectively. We also study the unmagnetized case
(M � 0, model S0) to compare with the previous result
reported in [27]. We can also characterize the strength of
the magnetic field by the volume-averaged ratio of gas
pressure to the magnetic pressure. Specifically, we define
� � hPi=hPmagi, where the magnetic pressure is Pmag �

b2=2 and

 hqi �

R
qdV
Vs

:

Here dV �
����
�
p

d3x is the proper volume element and Vs �R
P>0 dV is the volume of the star. This definition of � is

used in [51] in the study of magnetized accretion disks
around central black holes. The values of � for models S1
and S2 are 3700 and 370, respectively. We also define the
averaged strength of magnetic field �B by �B �

���������������������
8	M=Vs

p
.

In cgs units, we find

 

�B � 3� 108

�
M

104M�

�
�1
G

for model S1 and

 

�B � 109

�
M

104M�

�
�1
G

for model S2.
The strength of the magnetic field inside a Pop III star is

unknown and is currently not addressed by theoretical
models dealing with their cosmological formation [52].
Our goal is to determine what effects, if any, magnetic
fields may have on the eventual collapse of the stars to
black holes. After all, they are possible progenitors of
GRBs, and many GRB models require a magnetized disk
around a black hole. Here, we choose the strengths of the
seed magnetic field to be sufficiently large for us to per-
form reliable simulations with limited computational re-
sources and still be able to resolve the wavelength of the
fastest-growing MRI mode. We note that these magnetic
field strengths are still quite small dynamically (small
M=jWj and large �), and so the magnetic field does not
affect the dynamics of the collapse (see Sec. IV). However,
the post-collapse evolution does depend on the chosen
strengths. In Sec. IV, we will discuss how our results may
change for even smaller field strengths.

Following [27], we induce collapse by depleting 1% of
the pressure (i.e., P! 0:99P) everywhere inside the star.
The parameters of our models are summarized in Table I.
The density and magnetic field profiles of our precollapse
model are shown in Fig. 1.

B. Grid setup

We perform simulations using a cell-centered uniform
grid with size N � 3� N in x� y� z, covering a compu-
tational domain �=2 � x � L� �=2, �=2 � z �
L��=2, and �� � y � �. Here, N and L are constants
and � � L=N. The variables in the y � �� planes are
computed from the quantities in the y � 0 plane by impos-
ing axisymmetry. Since the characteristic radius of the star
decreases by a factor of �1000 during the collapse (from
�600M to�M), using a fixed uniform grid with sufficient
resolution for the entire collapse phase is computationally
prohibitive. In order to save computational resources and at
the same time ensure adequate resolution throughout the
simulation, we adopt a regridding technique similar to the
algorithm described in [27]. When gravity is weak (in the
Newtonian regime), the characteristic radius of the star is
proportional to 1=
1� �c�, where �c is the central lapse.
We thus use a regridding algorithm based on the values of

TABLE I. Model parameters.

Model M=T � �B� 
M=104M��

S0 0 0 0
S1 0.01 3700 3� 108 G
S2 0.10 370 109 G
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�c. During the early stages, the collapse proceeds in a
homologous manner. We set N � 400 and L � 929M
when �c > 0:984. Keeping N fixed, we decrease L as the
collapse proceeds: L � 656M when 0:976 � �c < 0:984;
L � 459M when 0:905 � �c < 0:976. After this stage, the
collapse in the core is faster than in the outer layers. We
increase the grid number N and decrease � as follows:
N � 900 and L � 158M when 0:7 � �c < 0:905; N �
1400 and L � 135M when 0:3 � �c < 0:7. In the last
stage, the star collapses to a black hole. In order to allocate
our grid more effectively in this last stage, we interpolated
the data onto multiple-transition fisheye coordinates [53]
when �c < 0:3.

The multiple-transition fisheye coordinates �xi are related
to the original coordinates xi through the following trans-
formation:

 xi �
�xi

�r
r
 �r�; (31)

 r
�r� � an �r�
Xn
i�1

�i ln
cosh�
�r� �r0i�=si�
cosh�
�r� �r0i�=si�

; (32)

 �i �

ai�1 � ai�si
2 tanh
�r0i=si�

; (33)

where r �
���������������������������
x2 � y2 � z2

p
, �r �

���������������������������
�x2 � �y2 � �z2

p
, n, ai, �r0i,

and si are constant parameters. In the last stage of collapse

(�c < 0:3), we use a cell-centered uniform grid with N �
600 in fisheye coordinates with parameters n � 3,

a0; a1; a2; a3� � 
0:125; 0:25; 0:5; 1�, 
�r01; �r02; �r03� �

31:5M; 59:5M; 81:4M�, s1 � s2 � s3 � 5:69M, and �L �
118M. When transformed back to the original coordinate
system, the outer boundary is � 60M and the resolutions
are

 � �

8>>>><
>>>>:

0:025M r & 4M;
0:05M 4M & r & 11M;
0:1M 11M & r & 22M;
0:2M r * 22M:

(34)

We find that the total rest mass and angular momentum
that are discarded as a result of the regriddings are about
1% and 5%–8% of their initial values for the models
considered.

IV. RESULTS

Figure 2 shows the evolution of central density and lapse
for the three models. Figures 3–5 show the density con-
tours and velocity vectors during preexcision evolution for
models S0, S1, and S2, respectively. Poloidal magnetic
field lines are also shown for models S1 and S2 in
Figs. 4 and 5. We see that magnetic fields slightly slow
down the collapse. As mentioned in Sec. III, the collapse
proceeds in a homologous manner at the beginning. When
the central lapse decreases to �c & 0:9, the central region
collapses faster than the outer layers. The apparent horizon
appears at t � 28 280M for model S0, t � 28 360M for S1,

FIG. 2 (color online). Evolution of central rest-mass density
(upper panel) and lapse (lower panel) for models S0 (black solid
lines), S1 (red dotted lines), and S2 (blue dashed lines). The
central density is normalized by its initial value �c
0�. Note that
the results for S0 and S1 are very close and their lines almost
overlap. The plots terminate soon after the apparent horizons
appear.

FIG. 1 (color online). Initial density contour curves (thick,
black) and magnetic field lines (thin, green). The density contour
curves are drawn for �0 � 10�i�0:1�c with j � 0; 1; . . . ; 10, and
the poloidal magnetic field lines (for models S1 and S2 only),
which coincide with contours of A’ in axisymmetry, are for
A’ � A’;max
j=20� with j � 1; 2; . . . ; 19 where �c and A’;max

denote the central density and maximum value of A’, respec-
tively. Note that, although the magnitudes of the magnetic fields
are different for models S1 and S2, the field lines have the same
profile when normalized as described.

MAGNETOROTATIONAL COLLAPSE OF VERY MASSIVE . . . PHYSICAL REVIEW D 76, 084017 (2007)

084017-7



and t � 29 149M for S2. Without excision, the code be-
comes inaccurate soon after the formation of the apparent
horizon because of the grid stretching.

To continue the evolution, we excise a spherical region
inside the apparent horizon. We start the excision evolution
a few �t�M after the apparent horizon forms. We are
able to follow the evolution reliably for another �200M,
after which the Hamiltonian and momentum constraints
increase substantially. This eventual breakdown is proba-
bly because the metric inside the horizon, which is not
computed accurately, slowly leaks out to the region outside
due to superluminal gauge modes. We are currently inves-
tigating other gauge conditions, as well as other techniques
to overcome the numerical difficulty. As the collapse pro-

ceeds, the mass and angular momentum of the central
black hole increase before settling down to quasistationary
values. Figures 6–8 show the post-excision evolution of
the black hole’s irreducible mass Mirr, mass Mh, spin
parameter Jh=M2

h, and the rest mass of the material outside
the apparent horizon Mdisk, for the three models. We see
that, after �t� 150M, the black hole settles down to a
quasistationary state, with Mh � 0:95M and Jh=M2

h � 0:7
for all three models. This result agrees roughly with our
earlier simulations and analytic estimates for unmagne-
tized collapse (Mh � 0:9M and Jh=M2

h � 0:75) in [27–
29]. The remaining material, having too much angular
momentum, forms a torus surrounding the black hole
(see Figs. 9–11). Even though the central black hole has

FIG. 4 (color online). Density contour curves and velocity vector fields (upper graphs), and magnetic field lines (lower graphs) in the
meridional plane for model S1. The thick (red) lines near the lower left corner in the far right graph denote the apparent horizon. The
density levels are drawn for �0 � �scal10�0:3j (j � 0–12), where �scal � 11�c
0� at t � 25 420M, �scal � 340�c
0� at t � 28 000, and
�scal � 1000�c
0� at t � 28 364M. The poloidal magnetic field lines are drawn as contours of A’, with levels given by A’ �

j=20�A’;max with j � 1–19, where A’;max is the maximum value of A’ at the given time. Note that the scale is different for each time
slice to show the central region in detail.

FIG. 3 (color online). Density contour curves and velocity vector fields in the meridional plane for model S0 (preexcision). The
density levels are drawn for �0 � �scal10�0:3j (j � 0–12), where �scal � 11�c
0� at t � 25 260M, �scal � 340�c
0� at t � 27 930, and
�scal � 1000�c
0� at t � 28 284M. The thick (red) line near the lower left corner in the far right graph denotes the apparent horizon.
Note that the scale is different for each time slice to show the central region in detail.

LIU, SHAPIRO, AND STEPHENS PHYSICAL REVIEW D 76, 084017 (2007)

084017-8



settled down after�150M, the torus continues to evolve as
material from the outer layers gradually reaches the central

region. The dynamical time scale at radius r is tdyn �

2	
������������
r3=M

p
. Hence tdyn � 1000M at r � 30M, and tdyn �

2000M at r � 50M. Since the torus extends beyond 50M,
we need to follow the evolution for at least 2000M. To
study the subsequent evolution, we adopt the Cowling

approximation by freezing the metric at t� tex � 150M,
where tex is the time when excision starts. This is a fairly
good approximation since the material outside the horizon
contributes only�5% of the total mass, and so the metric is
dominated by the central black hole, which has settled
down. We have compared the results of our Cowling (sta-
tionary metric) and non-Cowling (dynamic metric) runs
during the transition interval 150M & t� tex & 200M and
find good agreement.

Figure 9 shows snapshots of density contours and ve-
locity fields for model S0 in the post-excision evolution.

FIG. 5 (color online). Same as Fig. 4 but for model S2.

FIG. 7 (color online). Same as Fig. 6 but for model S1.
Excision starts at tex � 28 364M.

FIG. 6 (color online). Post-excision evolution of the mass Mh,
spin parameter Jh=M2

h, and the irreducible mass Mirr of the
central black hole, and the rest mass of the disk Mdisk outside
the apparent horizon for model S0. Time is measured from the
beginning of excision (tex � 28 284M).
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We terminate the simulation at t� tex � 2200M, where
most of the dynamical processes have ended. We find that
an outflow develops at t� tex � 120M near the horizon
and becomes prominent at t� tex � 170M. The outflow is
due to the fact that material from the outer layers arrives
into the inner region with a substantial amount of angular
momentum. When it reaches the inner region, the centrifu-
gal barrier prevents it from falling into the black hole. The
fluid particles move with ‘‘zoom-whirl’’-like trajectories
[54] and accumulate near the black hole. As more fluid
particles arrive and smash into interior layers, the fluid

heats up and forms a shock, which propagates outward
and creates an outflow along the surface of the torus. While
this outflow is still expanding, we find that a secondary,
weaker outflow forms at t� tex � 160M, which can be
seen in the second and third plots in Fig. 9. A few more
episodes of smaller outflow develop as more material from
the outer layers arrives. However, the process damps by
t * 250M by which time most of the material has reached
the central region and the residual infalling fluid does not
have enough momentum to push on the torus and generate
further outflow. To determine if the outflowing material is
unbound, we calculate the quantity �ut. As discussed in
Sec. II, any unbound fluid particle moving in a low-density
region (in which pressure and electromagnetic forces are
negligible) has �ut > 1. We find that the outflow material
is indeed unbound, but the total rest mass of the unbound
fluid is only 10�3M. The outflow reaches the outer bound-
ary of our grid (r � 60M) after t� tex * 500M. Most of
the unbound material leaves the grid after t� tex * 700M.
During this same time, the infalling material in the outer
region of the torus close to the equatorial plane also re-
bounds outward because of the centrifugal barrier. We have
checked that this outward moving fluid remains bound (�
ut < 1), but about 0:02M of rest mass leaves the grid by the
time we terminate our simulation at t� tex � 2200M. This
outward moving fluid has too much angular momentum to
be able to remain in the inner region. The torus in the inner
region with r & 30M settles down to quasiequilibrium by
t * 500M.

Figures 10 and 11 show snapshots of density contours,
velocity fields, and poloidal magnetic field lines for models
S1 and S2 in the post-excision evolution. We find similar
outflow as in case S0, but the outflow in S2 develops at time

FIG. 8 (color online). Same as Fig. 6 but for model S2.
Excision starts at tex � 29 150M.

FIG. 9 (color online). Snapshots of density contour curves and velocity vectors in the post-excision evolution for model S0. The
contours are drawn for �0 � 100�c
0�10�0:3j (j � 0–10). The red line denotes the apparent horizon.
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t� tex � 75M, much earlier than that in S0. Unlike S0, the
outflow in S1 and S2 is generated continuously rather than
intermittently. The outflow is stronger than S0, and about
4� 10�3M of the rest mass becomes unbound for S1 and
8:7� 10�3M for S2, much larger than the case of S0. In the
presence of magnetic fields, the outflow carries the frozen
magnetic field and travels outward along the torus’s sur-
face. This causes the field lines near the boundary of the
outflow and torus to bend (see Figs. 10 and 11). This
bending amplifies the magnetic field in that region, and
hence the outflow is intensified by the extra magnetic

pressure. A magnetic shock is also generated in the region,
which leads to turbulence in the torus. The bending is more
significant in S1 than in S2. This is because in S2 the
magnetic field is strong enough to quickly counteract the
bending and drives more fluid outward. Figure 12 shows
the rest-mass flux FM, energy flux Fe, and angular mo-
mentum flux FJ through a spherical surface of radius 50M
for the three models. We see that the outflow is signifi-
cantly stronger in the presence of magnetic fields.
Figure 12 also indicates that a sustained flux is present in
the time period 900M–1200M for model S2. We find that

FIG. 10 (color online). Snapshots of density contour curves and velocity vectors (first and third rows), and poloidal magnetic field
lines (second and fourth rows) in the post-excision evolution of model S1. The contours are drawn for �0 � 100�c
0�10�0:3j (j �
0–10). The thick (red) line near the lower left corner denotes the apparent horizon. The poloidal magnetic field lines are drawn for
A’ � 
j=20�A’;max with j � 1–19.
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this flux is not due to outflow generated near the black hole,
but rather due to a wind that arises in the middle of the
torus. We find that in the wind the fluid moves along the
magnetic field lines. The inclination angle between the
field lines and the z axis is between 20� and 40�. This
suggests that the wind is driven by the magnetocentrifugal
mechanism [32]. The outflows in models S1 and S2 cause
the field lines to collimate along the rotation axis of the
black hole. For model S2, the outflow and the subsequent
wind carry away a substantial amount of magnetic energy
from the torus. At t� tex > 1500M, the wind subsides and
the interior of the remaining torus has a weak magnetic
field. The outflow and wind in model S2 are so strong that
they perturb the equilibrium of the inner torus and cause it
to oscillate radially. As in the case of S0, there is bound

fluid moving out of the grid as a result of centrifugal
bounce in models S1 and S2. By the end of the simulation
(t� tex � 2000M), only 0:04M of the rest mass remains in
the inner torus in model S1 and 0:02M remains in model
S2.

Figure 13 shows the rest-mass flux through the apparent
horizon for the three models. For model S0, the inward flux
decreases with time as the torus settles down to dynamical
equilibrium. Without magnetic fields or viscosity, there is
no dissipation to drive further accretion. For model S1, we
see that at late time (t� tex * 800M) material from the
torus accretes into the central black hole in a stochastic
manner. Stochastic accretion is often seen in simulations of
magnetized accretion disks around stationary black holes
(see, e.g., [51,55]). This suggests that the accretion is due

FIG. 11 (color online). Same as Fig. 10 but for model S2.
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to magnetic-induced turbulence in the torus. The turbu-
lence is generated initially by the magnetic shock as a
result of the outflow, and is then sustained by the MRI.
To verify that we are able to resolve the MRI, we compute
the wavelength of the fastest-growing MRI mode �MRI

using Eq. (27). We find that �MRI=�> 15 in some region
near the equatorial plane, where � is our grid spacing. This
suggests that the MRI can be resolved in our simulation.
For model S2, the radial oscillation of the inner torus
causes episodic accretion into the central black hole.
When the torus swings away from the black hole, no
accretion occurs. Accretion resumes when the torus swings

towards the black hole. This explains the episodic mass
accretion pattern seen in Fig. 13. The small accretion rate
in the figure is due to accretion from the atmosphere.

When the magnetic field strength is much smaller than
that in S1, we expect the dynamics of the fluid evolution to
be very similar to S0 initially. As in the cases of S1 and S2,
the outflow is expected to collimate the magnetic field lines
and generate magnetic shocks which may create turbulence
in the torus. Turbulence can also be generated by the MRI,
which operates on the orbital time scale of the torus
independent of the field strength. We should then expect
to see the stochastic accretion similar to the case in S1.
Both a collimated magnetic field and a massive, accretion
torus surrounding a central black hole are essential ingre-
dients for launching ultrarelativistic jets [56]. The black-
hole-torus system observed in our simulations provides a
viable central engine for long-soft GRBs.

The radial oscillation observed in model S2 gives rise to
gravitational radiation. The oscillation period of �500M
corresponds to the gravitational wave frequency f�
1=�500M
1� z�� � 0:04
104M�=M�=
1� z� Hz at red-
shift z. For a SMS with M * 104M�, the signal is in the
LISA frequency band. To estimate its amplitude, we apply
the quadrupole formula h � 2��I=DL, where DL is the
source’s luminosity distance,�I is the tracefree quadrupole
moment, and ��I �!2Mdisk�R2

c � 2!2MdiskARc. Here
Rc � 30M is the characteristic radius of the torus and A�
5M is the amplitude of the oscillation. Setting Mdisk �
0:04M and ! � 2	f, we obtain

 h� 4� 10�23

�
M

104M�

��
48 Gpc

DL

�
; (35)

where DL � 48 Gpc corresponds to redshift z � 5 in the
concordance �CDM cosmology model with H0 �
71 km s�1 Mpc�1, �M � 0:27, and �� � 0:73 [57]. We
note that if the signal can be tracked for n cycles, where n
is expected to be a few, the effective wave strength will be
increased by a factor of

���
n
p

. Such a gravitational wave
signal may be detectable by LISA (see [58] for LISA’s
sensitivity curve).

Our simulations are adiabatic and do not take into
account the heat loss due to neutrino cooling. To determine
if this effect can be neglected during the phase in which the
torus forms and evolves around the black hole, we estimate
the neutrino cooling time scale. We first compute the
temperature in the disk from the specific thermal energy
density �th � �� �cold, where �cold � 3�1=3

0 for our
adopted � � 4=3 EOS. We find from our data that the
typical values of �0 and �th in the disk at late times are

 �0 � 6000
�

M

104M�

�
�2

g cm�3; (36)

 �th=c2 � 0:005; (37)

where we have restored the speed of light c in the above

FIG. 12 (color online). Rest-mass flux FM, energy flux Fe, and
angular momentum flux FJ through a spherical surface of radius
50M for models S0 (black solid lines), S1 (red dotted lines), and
S2 (blue dashed lines).

FIG. 13 (color online). Rest-mass flux FM through the appar-
ent horizon for models S0 (black solid lines), S1 (red dotted
lines), and S2 (blue dashed lines).
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equation. To calculate the temperature T, we adopt the
expression of �th
�0; T� in [59]:

 

�th

c2 �
3kT

2mpc2

�
1� 3Xnuc

4

�
� f

aT4

�0c2 ; (38)

where k is the Boltzmann constant, a is the radiation
constant, mp is proton mass, and Xnuc is the mass fraction

of free nucleons approximately given by [60] Xnuc �

min�34:8��3=4
10 T9=8

11 exp
�0:61=T11�; 1�. Here �10 �
�0=1010 g cm�3 and T11 � T=1011K. The first term in
Eq. (38) is the specific thermal energy density of an ideal
gas, and the second term is the contribution from thermal
radiation. The quantity f is a temperature-dependent nu-
merical factor depending on the species of ultrarelativistic
particles that contribute to thermal radiation. When T �
2mec

2=k� 1010K, photons, ultrarelativistic electrons, and
positrons are present (assuming thermal neutrinos are neg-
ligible) and f � 11=4. On the other hand, when T 	
1010K, only photons contribute to thermal radiation and
f � 1. Combining Eqs. (36)–(38), we obtain

 0:0345
1� 3Xnuc�T9 � 1:40f
�

M

104M�

�
2
T4

9 � 5; (39)

where T9 � T=109K. ForM � 104M�, we find T � 1:4�
109K and, not surprisingly, �th is dominated by thermal
photon radiation. At this density and temperature, the torus
is optically thin to neutrinos. The cooling rate Q� is domi-
nated by the pair neutrino process and the value is Q� �
1016 erg cm�3 s�1 [61]. The neutrino cooling time scale is
� � �0�th=Q� � 3� 106 s� 5� 107M, which is much
longer than the time scale in our simulations (� 2000M).
Even for M � 100M�, we find � � 90 s� 2� 105M�
2000M. The same conclusion (i.e. � � 2000M) holds for
all M * 100M�. Hence neutrino cooling can be neglected
in the torus evolution.

V. SUMMARY AND CONCLUSION

In this paper, we study the magnetorotational collapse of
very massive stars by performing full GRMHD simulations
in axisymmetry.We model the precollapse star by an n � 3
polytrope uniformly rotating near the mass-shedding limit
at the onset of radial collapse. We adopt an adiabatic � �
4=3 EOS for the fluid. We study three models, which we
label S0, S1, and S2. The three models differ by the
strength of the initial magnetic field (see Table I). Model
S0 is unmagnetized (M � 0), whereas the ratios of the
initial magnetic to kinetic energies (M=T) are 1% and
10% for models S1 and S2, respectively.

We find that these magnetic fields do not affect the initial
collapse significantly. An apparent horizon forms at time
t � 29 000M. The black hole grows as the collapse pro-
ceeds, and settles down at a time �150M after the for-
mation of the apparent horizon. For all three models we
study, we find that the mass Mh and spin parameter Jh=M2

h

of the black hole are approximately 0:95M and 0.7, re-
spectively, where M is the initial mass of the star. These
values roughly agree with the semianalytic estimates in
[27–29]. The remaining material forms a torus around the
central black hole. Although the central black hole has
settled down to quasistationary equilibrium, the ambient
torus continues to evolve as fluid from the outer layers of
the star gradually reaches the central region. During this
epoch, magnetic fields have substantial influence on the
evolution of the torus. The infalling fluid particles have
large angular momenta. They pile up near the black-hole
horizon, are heated by shocks, and then get ejected along
the surface of the torus, forming an unbound outflow. In the
presence of magnetic fields, the outflow bends the mag-
netic field lines near the boundary of the outflow, which
amplifies the field and induces magnetic shocks. The extra
magnetic pressure makes the outflow stronger than in the
unmagnetized case. The outflow also causes the magnetic
fields to collimate along the black hole’s rotation axis. For
model S0, when the outflow leaves the central region, the
torus settles down to equilibrium. For model S1, MHD
turbulence generated by magnetic shocks and MRI in the
disk causes stochastic accretion of material into the black
hole. For model S2, when the outflow leaves, strong mag-
netic fields in the torus create a magnetic wind, driving
more material and magnetic field out of the torus. During
this time, the torus acquires a quasiperiodic radial oscil-
lation. The wind subsides as the magnetic field inside the
torus decreases. The radial oscillations of the torus induce
episodic accretion of material into the central black hole.
The oscillations also generate gravitational radiation,
which might be detectable by LISA at redshift z� 5 if
the mass of the star satisfies M * 104M�.

If the initial magnetic field strength is smaller than that
in model S1, we expect the evolution to be similar to S1. In
particular, the evolution in the collapse phase should re-
main unchanged. We also expect the outflow to collimate
the magnetic field lines and generate magnetic shocks,
which then leads to turbulence in the disk. Turbulence
will be maintained as a result of the MRI. We thus expect
stochastic accretion of the torus as in the case of S1.

In typical cases, the final stage of the magnetorotational
collapse consists of a central black hole surrounded by a
collimated magnetic field and a massive torus. These are
the main ingredients for generating ultrarelativistic jets at
large distance from the central source. The final system
obtained in our simulations is thus capable of generating a
long-soft GRB. In principle, the collapse of a very massive
star could result in the simultaneous detection of gravita-
tional waves and a GRB. The gravitational wave signal
consists of an initial burst signal due to collapse, a black-
hole ring-down signal, and a quasiperiodic signal due to the
torus’s oscillation if the magnetic field is strong.

A few issues warrant further study. The first is the EOS.
Our � � 4=3 adiabatic EOS is a good approximation only
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for very massive stars. But most of the observed long-soft
GRBs are believed to be triggered by the magnetorota-
tional core collapse of smaller-mass Pop I/II stars [33]. The
core mass of a Pop I/II star is less than 2M�. A � � 4=3
EOS describes the early phase of core collapse in such a
star, when the pressure is dominated by relativistic degen-
erate electrons. But the EOS stiffens when the core density
exceeds nuclear density, and this happens before an appar-
ent horizon forms. Also, a realistic EOS for this scenario
must incorporate more detailed microphysics and neutrino
transport.

A second issue concerns a search for a more robust
singularity-avoiding algorithm once a black hole forms.
As mentioned in Sec. IV, we are only able to evolve the
system for�200M after the black-hole formation with our
current excision technique. However, the evolution time
scale of the torus is >2000M. While this evolution could
be reliably tracked in the Cowling approximation, we are
interested in more general scenarios. We plan to explore
this issue in two ways. The first will be to search for better
lapse and shift conditions that can suppress troublesome
superluminal gauge modes. The other will be to identify a
gauge that can drive the metric inside the horizon to a
puncture-like solution, a technique which has been used
with great success in binary black-hole simulations [62].
Simple experimentation with vacuum black holes and
black holes immersed in hydrodynamic fluid suggests
that there exist such gauge choices [63].

The third issue concerns our assumption of axisymme-
try. Nonaxisymmetric instabilities such as bar and/or one-

armed spiral instabilities may develop during the collapse,
which could affect the subsequent dynamics (but see [64]
for a treatment of unmagnetized collapse in full 3� 1 post-
Newtonian gravitation). Additionally, the MHD turbulence
developed as a result of magnetic shocks and the MRI will
be different. In particular, turbulence arises and persists
more readily in 3� 1 due to the lack of symmetry. More
specifically, according to the axisymmetric antidynamo
theorem [65], sustained growth of the magnetic field en-
ergy is not possible through axisymmetric turbulence.
However, a full 3� 1 GRMHD simulation covering the
required dynamic range for massive stellar collapse is
computationally challenging and possibly beyond the re-
sources currently available. This is because the torus ex-
tends to a large distance away from the central black hole,
requiring vast dynamic range, and the dynamical time scale
of the torus is very long. Though simulations in full 3� 1
dimensions will eventually be necessary to capture the full
behavior of the collapse, the 2� 1 results presented here
likely provide a reasonable first approximation.
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