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It is argued that under a natural hypothesis the fermions inside a black hole formed after the collapse of
a neutron star could form a noncompressible fluid (well before reaching the Planck scale) leading to some
features of the integer quantum Hall effect. The relations with black hole entropy are analyzed. Insights
coming from the quantum Hall effect are used to analyze the coupling with the Einstein equations.
Connections with some cosmological scenarios and with the higher dimensional quantum Hall effect are
briefly pointed out.
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I. INTRODUCTION

Black hole thermodynamics and Hawking radiation ([1–
3]) are some of the few sound results in which general
relativity and quantum field theory (henceforth QFT) fit
together. On the other hand, there are some important open
problems in this field. Mainly, it is still not understood the
final stage of black hole evaporation and how to solve the
information loss paradox. Black hole entropy is propor-
tional to the area of the horizon and many different ways to
deduce such an area law have been proposed (for a review
see [4] and references therein). Many such models assume
that the effective degrees of freedom of the black hole live
on the boundary of the black hole itself and can be de-
scribed by a conformal theory. Indeed, the success of such
proposals has partially inspired the holographic principle
(after the pioneering ideas of Bekenstein [5], ’t Hooft [6],
and Susskind [7]) which is believed to play a fundamental
role in the yet to be discovered final theory of gravity.
However, the questions of why such effective degrees of
freedom should live on the boundary of the black hole and
of how the bulk degrees of freedom get frozen are still
opened.

Here it is analyzed the case of a black hole formed due to
the collapse of a typical neutron star. It is argued that at an
energy scale of order 10�21 � 10�18 of the Planck scale
(after the horizon is formed) many features of quantum
Hall effects (QHE) come into play. The classical gravita-
tional force is likely to dominate the other processes of the
standard model and the spectrum of the fermions living
inside the black hole turns out to be discrete. Because of
the gap, the fermions gas inside the black hole cannot be
compressed anymore. It is not a scope of the present paper
neither to write down an effective action for the effective
degrees of freedom of a black hole nor to argue about the
quantum degrees of freedom of gravity. The idea is to
explain why, in a concrete situation, many of the available

‘‘conformal’’ descriptions of the effective degrees of a
black hole should work.

Based on the AdS/CFT correspondence [8] and on the
geometry of the 3-dimensional BTZ black hole [9,10], an
analogy between quantum Hall effect and gravity in three
dimensions has been pointed out in [11]. It appears that the
quantum Hall bulk degrees of freedom as well as the edge
excitations are suitable to describe the dynamical features
of the BTZ black hole. The perspective in [11] is com-
pletely different from the present scheme in which the
starting point is the collapse of a neutron star in 4-
dimensional general relativity. It is therefore interesting
that many connections between so different approaches
arise anyway.

The structure of the paper is the following: In Sec. II, the
assumptions of the present paper are explained and the
standard order of magnitude inside a neutron star are
resumed. In Sec. III the arising of features typical of
quantum Hall effects is described. In Sec. IV the relations
with black hole entropy are analyzed and a simple bound
on the entropy is derived. In Sec. V the Einstein equations
in the presence of a ‘‘quantum Hall’’ source are solved and
the connection with higher dimensional quantum Hall
formalism is pointed out. In Sec. VI the relations of the
present proposal with some interesting cosmological sce-
narios are outlined together with the possible weakness of
the approach. In Sec. VII some conclusions are drawn.

II. THE STANDARD APPROXIMATIONS

The first basic assumption of the standard model of a
neutron star is that at the energy scale of the standard
model of particles physics (up to TeV) the collapsing
neutron star can be described very well by QFT coupled
to classical general relativity.

The second basic assumption is that the quantum dy-
namics of the neutrons (or of the quarks) living inside the
neutron star is much faster than the dynamics of the
gravitational field. This implies that one can compute the*canfora@cecs.cl
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equation(s) of state of the fermions as usual and then use
such equation(s) to solve the Einstein equations in which
the source is described by the equation of state itself. The
success of this theory initiated by Landau, Chandrasekhar,
Tolman, Oppenheimer, Volkoff, Snyder (and many others)
tells that such adiabatic approximation is excellent.

The two basic assumptions which will be needed in the
following are that the above approximations also hold up to
an energy scale of 10�21–10�15 of the Planck scale: it will
be assumed that the standard model and general relativity
are the correct theories at these scales. It will be also
assumed that at this scale of energy the fermions living
inside the collapsed neutron star have a dynamic much
faster than the dynamics of the gravitational field so that
one can compute the equation of state of the fermions and
than use the result to solve the Einstein equations coupled
with the fermions themselves.

A. Orders of magnitude inside a neutron star

Let us remind the reader of the typical order of magni-
tudes of a neutron star (NS). The typical mass MNS, radius
RNS, density �NS, the baryon number NNS, and the
Schwarzschild radius rG�MNS� of a NS are

 MNS � 1033 g; RNS � 106 cm;

�NS � 1015 g=cm3; NNS � 1054;

rG�MNS� � 104 cm:

One can compute the strength of the gravitational interac-
tion on fermions living inside a neutron star (which to a
very good approximation can be considered as a sphere of
constant density) of these characteristics; the result is

 "!G � "
������������
G�NS

p
� 10�38EPlanck:

Therefore, the gravitational interaction is negligible when
compared to the strength of the interactions of the standard
model (which are of the order of 10�21 � 10�18 of the
Planck scale). A neutron star with a mass of the above
order of magnitude is unstable against the gravitational
collapse to a black hole. During the collapse the baryon
number is conserved so that the black hole which is even-
tually formed should have the same parameters MNS and
NNS of the parent neutron star (let us forget for a moment
Hawking radiation which is, in any case, negligible for
black holes of the mass of a neutron star; the issues con-
nected with Hawking radiation will be briefly discussed
later on). On the other hand, at first glance, RNS should
decrease without bound at least up to the Planck length
since, apparently, there is no process which can prevent
such a decreasing after the black hole is formed since
‘‘gravity dominates Pauli pressure.’’ In fact, if the radius
decreases, at a certain point the strength of the gravitational

interaction on fermions inside a blackhole will be compa-
rable and stronger than the other interactions. When the
radius decreased up to the following value of the density

 "!�G � "
������������
G��NS

q
� �10�21–10�18�EPlanck; (1)

the other interactions among the fermions inside the black
hole should be treated as perturbations of the gravitational
interaction.

III. QUANTUM HALL EFFECT AND BLACK
HOLES

The principal insight comes from the physics of integer
QHE but possible effects related to the interactions of the
fermions which could give rise to phenomenology of the
fractional QHE should not be excluded a priori [12]. In the
presence of a strong confining potential a gap opens up in
the spectrum. Therefore, when the number of fermions is
such that an integer number of levels is full the gas be-
comes incompressible because of the gap so that its equa-
tion of state is simply � � const. If the assumptions made
above are correct this also should happen inside a black
hole formed after the collapse of a neutron star. The
gravitational field inside a neutron star can be well ap-
proximated by the Newtonian harmonic oscillator1 of fre-
quency!G �

������������
G�NS

p
. As it will be discussed in a moment,

the corrections due to general relativity enhance the arising
of ‘‘quantum Hall phenomenology’’ so that the essential
physics can be understood using the Newtonian expression
of the gravitational field. The gap satisfies

 "
������������
G��NS

q
� Egap >ESM; (2)

where ESM is the typical energy scale of a process of the
standard model.

That this should happen well before reaching the Planck
scale can be argued as follows. Any cross section �SM

computed in the standard model2 decreases with energy
(because of the unitarity of the gauge interactions appear-
ing in the standard model):

 �SM � g�s�s��; � > 0;

1Indeed, the first computations in the theory of the gravita-
tional equilibrium of a neutron star, made in these approxima-
tions, were quite successful. The reason is that the neutrons
perceive around them a density which is almost uniform.
Moreover, the probability for a neutron to escape from the star
is negligible already at the level of Newtonian gravity and, as it
is well known, ‘‘general relativity is more attractive’’ than
Newtonian gravity.

2In the case of a neutron star, at the densities at which gravity
begins to dominate, it is possible that all the neutrons could be
transformed into quarks. In this case, besides gravity, the domi-
nant interaction would be the strong interaction which is asymp-
totically free.
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where s is the typical energy (which in this case is propor-
tional to a negative power of the radius of the collapsed
neutron star) and g�s� is the coupling constant at the energy
scale of interest.3 On the other hand, the strength of the
gravitational oscillator increases when the radius is de-
creased so that at a certain point it begins to dominate
the other processes. Usually ‘‘in vacuum’’ this happens at
the Planck scale when general relativity is not a meaningful
theory. In the present case, in the expression of the strength
of the gravitational oscillator, also present is the baryon
number NNS of the parent neutron star:

 �NS � NNS
mFermions

R3
NS

(where mF could be the neutron mass or the quark mass,
but this is not relevant as far as the present paper is
concerned). This huge number NNS helps in lowering the
critical scale beyond which gravity dominates in a domain
in which classical general relativity and QFT can be
trusted.

In the case of a black hole formed during the collapse of
a nonrotating neutron star one should solve the Dirac
equation in a three-dimensional harmonic potential.
However, being the mass of the neutrons as well as the
mass of the quarks much smaller than "!�G

 mquarksc
2 � "!�G

the Schrodinger equation can also be used.4 Therefore, the
fermions live in a three-dimensional harmonic oscillator
with frequency !�G in Eq. (1) (an analysis of the quantum
Hall behavior of a fermion gas in a three-dimensional
harmonic trap can be found in [14]; interesting ‘‘harmonic
oscillator’’ features in black hole physics have been
stressed in [15–18]). Actually, the problem is more com-
plicated since at densities of the order of the critical density
of Eq. (1) the collapsed matter is well inside its
Schwarzschild radius. Therefore, the potential should be
a harmonic potential up to the end of the collapsed matter
and a Schwarzschild potential outside the collapsed matter
but inside the horizon:

 VG�r� � I1 �
mquarks

2
�!�G�

2r2; r 	 rM;

VG�r� � �G
MNS

r
; rM 	 r 	 rG�MNS�;

VG ! 1 r > rG�MNS�;

where I1 is a positive constant, G is the Newton constant,
rM is the radius of the collapsed matter, and the Hawking
radiation is still neglected5 (so that it can be assumed that
the fermions are confined to be inside the horizon). This
complication does not change the main new feature of the
model: the energy spectrum is still discrete. The harmonic
oscillator part of the potential dominates since in all the
successful models of neutron stars the gravitational field
outside the neutron star is not important to determinate the
equation of state of the fermions living inside the star
itself.6 As it is well known, the eigenvalue and the degen-
eracies of a three-dimensional harmonic oscillator are
 

En � "!�G�n
 3=2� � I1;

d�n� � 2
�
�n
 1��n
 2�

2

�
;

where the factor of 2 into the degeneracies is due to the
spin degree of freedom, the negative constant �I1 repre-
sents negative contributions related to the binding energy
of the collapsed matter. Let us first suppose that the Baryon
number is such that an integer number of levels is exactly
filled

 NNS �
Xnmax

n

d�n� � �nmax�
3: (3)

Because of the energy gap, the fermions gas becomes
incompressible and its equation of state becomes simply

 � � const;

which will be used later on to discuss the coupling with the
Einstein equations of such a gas. If the number of baryons
does not allow the complete filling of an integer number of
levels, one can write

 NNS �

�Xnmax

n

d�n�
�

 �nmax

; �nmax
< d�nmax�:

In this case (whose physical features will be discussed in
more details in the next section), the fermions will form a
gas partially compressible. However, such a gas cannot be
compressed beyond the ‘‘incompressible core’’ constituted

3In the case of the gauge interactions of the standard model the
‘‘worst’’ case could be one in which the coupling constant
increases logarithmically with the energy scale. However, this
behavior does not change the main qualitative conclusion that at
an energy scale well below the Planck scale inside a neutron star
gravity begins to dominate. Moreover, the results in [13] indicate
that gravitational corrections lower the scale of asymptotic free-
dom of the gauge interactions.

4The corrections due to the Dirac equation are proportional to
positive powers of the ratio mquarksc2

"!�G
� 1.

5The effects of Hawking radiation are small at this scale. In
any case, they will be discussed later on.

6The inclusion of such deviations is only a technical problem.
The discreteness of the spectrum would not change being, in any
case, a confining potential (see, for instance, [19]). Also the
order of magnitude of the gap should be dominated by the
harmonic part which increases with the decreasing of the radius
‘‘strengthening the incompressibility.’’
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by the first nmax fully filled levels. The largest part of the
fermions is in the incompressible core since

 

�nmax

NNS
< �NNS�

�1=3 � 1:

A. The general relativistic corrections

It can be argued that general relativity enhances the
arising of quantum Hall phenomenology of the model:
the reason is that general relativity is more attractive than
Newtonian gravity. For a Newtonian star of uniform den-
sity the equilibrium is always possible while in general
relativity the central pressure needed for equilibrium di-
verges when its gravitational radius �2GM�=c2 is greater
than 8=9 of its actual radius while the pressure far from the
origin is quite near to the Newtonian counterpart. The
corrections due to general relativity are ‘‘attractive’’ and
strong at the center of the star. The fermions perceive a
modified harmonic potential VGR which schematically can
be written as follows:

 VGR � I1 �
mquarks

2
�!�G�

2r2 � fGR�r�; (4)

where fGR is a positive function small far from the origin of
the star but which can be large at the origin representing the
increased attraction due to general relativity: for instance

 fGR�r� �
�2

r�
; � > 0;

(� and � being real constants) is a reasonable choice to
describe the general relativistic effects on the potential
perceived by the fermions inside the black hole [the precise
form of fGR�r� is not important, only its qualitative features
matter]. The effects of such correction on the wave func-
tions of the fermions can be evaluated with perturbation
theory. They are very small on the wave functions belong-
ing to high energy levels since such wave functions are
small near the origin where fGR�r� is large (actually, such
effects can be neglected for all the wave functions which
are not peaked near the origin). The corrections to the
eigenvalues of the Hamiltonian are

 �En � �h njfGR�r�j ni;

where  n is an eigenfunction belonging to the nth level of
the three dimensional harmonic oscillator. The strength of
such corrections decreases with n

 @nj�Enj< 0;

while for small n could be quite strong. The generic result
is that the corrections due to general relativity enhance the
gap between the levels (and, in particular, this fact mani-
fests itself in the eigenfunctions corresponding to the low-
est levels). This means that the corrections due to general
relativity strengthen the incompressibility of the fermions
gas.

It is worthwhile to stress an interesting point. The actual
potential perceived by the particles is the sum of a har-
monic oscillator term plus a further attractive general
relativistic correction in which the coupling constants
!�G�t� and ��t� depend adiabatically on time

 VGR � I1 �
mquarks

2
�!�G�t��

2r2 �
���t��2

r�
: (5)

Because of the assumptions made in this paper, the fermi-
ons perceive a static potential. The degeneracies of the
highest energy levels are dominated by the harmonic os-
cillator part and consequently are constant in time.
However, in the hypothesis of a spherically symmetric
collapse, the whole set of degeneracies is likely not to
depend on time. The reason is that any central potential
(besides few integrable exceptions like the harmonic os-
cillator itself, the Coulombian potential and so on) has the
same degeneracies related to the spherical symmetry.
Therefore, one can roughly divide the energy levels into
the most interior levels which feels the general relativistic
corrections (but whose degeneracies are constant) and the
higher energy levels which are very well approximated by
harmonic oscillator states (so that the corresponding de-
generacies are constant as well).

IV. QUANTUM HALL EFFECT AND BLACK HOLE
ENTROPY

Many different proposals lead to the same conclusion:
the entropy is related to the area of the horizon. This
universality could be related to the underlying conformal
theory living on the boundary which allows one to use the
powerful results in [20]. It is important to stress also a
known but important fact. The three-dimensional BTZ
black hole [9,10] has entropy as well as Hawking radiation.
In such a case, the degrees of freedom to which the BTZ
entropy refers are not related in an obvious way to gravi-
tational degrees of freedom since in three dimensions
gravity has not local degrees of freedom (this is a highly
nontrivial question under active investigation; see [21] and
references therein). To get a reasonable physical picture of
the situation (in the approximation in which gravity is
classical), one can imagine to assign the BTZ entropy to
suitable matter degrees of freedom which generate the
singularity at the origin. In the analysis of the spherically
symmetric collapse of a neutron star in four dimensions
there are not propagating gravitational degrees of freedom
as well (which would need, at least, a nontrivial quadrupole
moment). Therefore, when quantum gravitational effects
are neglected, one can assign the black hole entropy to the
degrees of freedom living inside (and generating) the black
hole itself (in the same way as one actually does in the case
of gas fermions living inside a Newtonian star).

In the case analyzed here, QHE (see [12,22]) provides
one with a very natural insight into ‘‘why the bulk degrees
of freedom are frozen’’ so that only boundary excitations
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are left. The only ingredients are the presence of a huge
number of fermions (related to the Baryon number conser-
vation up to energy scale of 10�15 of the Planck scale) and
the dominance of the classical gravitational attraction.

One possible criticism is that, as the theory of quantum
Hall effect clearly stresses [12,22], the assumption that the
fermion gas cannot be compressed anymore depends quite
strongly on the ‘‘exceptional’’ fact that the number of
fermions is such that an integer number of levels is exactly
filled. There is a further argument (which does not depend
on the above exceptional fact) to see that the present
scheme provides with a qualitative explanation both of
why the ‘‘dynamical’’ entropy (this term will be explained
in a moment) is related to the area of the horizon and of
how the bulk degrees of freedom are frozen. However, this
argument only works in the case of fermions. In the pres-
ence of a strong classical gravitational field, the fermions
feel a potential with discrete energy levels. Except the most
interior levels, the other levels and the relative degener-
acies are well approximated by the corresponding quanti-
ties of a harmonic oscillator. The entropy of such a system
can be written as follows:

 S � S0 
 Sdyn S0 � �
Xnmax�1

n

pn logpn;

Sdyn � �pnmax
logpnmax

;

where pn is the probability to be in the nth energy level,
nmax is the last partially filled energy level, and the reason
to split the entropy into two pieces will be explained in a
moment. The present fermion gas can be considered as a
system at zero temperature since, already for a neutron star,
the Fermi level is much higher than the temperature. For
this reason, the probabilities to be in a given level only
depend on the relative occupation number and on the
corresponding degeneracy. It is important in the present
context to split the entropy into two terms because such
terms play different roles. The first term S0 is the entropy
corresponding to the interior fully filled levels. Such a term
is likely to be constant in time: due to the gap, even if the
whole system could not be in a static situation, the fermi-
ons inside the fully filled energy level are frozen. There is
no possibility to jump in different energy levels because of
the gap. It is also impossible to jump into different places
of the same energy level because they are fully filled. The
first part of the entropy only depends on the degeneracies
of the fully filled levels. In the hypothesis of the present
paper, such degeneracies can be assumed to be constant in
time7:

 @tS0 � 0:

On the other hand, the last term Sdyn corresponds to the last
partially filled energy level. This part is likely not to be
constant in time: the level is only partly filled and the
particles living there may interact jumping into different
free places of the same energy level. Because of the gap,
the fermions inside the partially filled level can only re-
main in the same level: the interactions are not able to
change the fermions’ energies. Therefore, the only possible
excitations should be low energy excitations. The fermions
living in the last partially filled energy level are not frozen
and Sdyn corresponds to the dynamical part of the entropy
which can play an important role during the evolution:

 @tSdyn � 0:

One can derive a bound for the dynamical entropy: Nlast

(which is the number of fermions living in the last partially
filled energy level) is bounded by the degeneracy of the last
level:

 Nlast & d�nmax� � �nmax 
 1��nmax 
 2� � �NNS�
2=3; (6)

where it has been taken into account Eq. (3). The total mass
of the gas is proportional to the number of particles (NNS in
this case) and consequently (being the density constant) the
volume also is proportional to NNS. Equation (6) tells Nlast

is proportional to the area ANS of the horizon of the
collapsed neutron star. To get the bound for Sdyn one can
write as usual

 Sdyn � log�;

� being the number of possible microscopical configura-
tions corresponding to the partially filled energy level. A
reasonable estimate for � is the standard binomial expres-
sion

 � �
�d�nmax��!

�d�nmax� � Nlast�!�Nlast�!
:

Eventually, taking into account the Stirling formula which
can be applied in this case being NNS a very large number,
the dynamical part of the entropy is bounded as follows:

 logANS & Sdyn & ANS logANS; (7)

which, because of the simplicity of the argument, appears
to be a good order of magnitude estimate strongly suggest-
ing the Bekenstein-Hawking law.

It is also worth noting the above qualitative reasoning
works in any dimension: the reason is that the degeneracies
of a D-dimensional harmonic oscillator increases with the
energy level label n as

 dD�n� � nD�1 ) �nD�max � �NNS�
1=D ) d��nD�max�

� �NNS�
�D�1�=D;

where �nD�max is the last partially filled energy level in D
dimensions and dD�n� is the degeneracy of the nth level in
D dimensions. Assuming that the fermions’ gas in D
dimensions becomes incompressible, one is lead to the

7This is obvious in the case of a harmonic oscillator since the
collapse simply enhances the gap keeping fixed the degenera-
cies. However, even if the general relativistic corrections are
taken into account, the degeneracies of the energy levels are
likely not to depend on time [see the considerations after
Eq. (5)].
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conclusion that the dynamical part of the entropy should be
proportional to the area of the collapsed neutron star.

A. Some considerations on Hawking radiation

Even if for black holes of the mass of a neutron star
Hawking radiation is negligible, it is interesting to note that
Hawking radiation should be also affected by the presence
of the discrete spectrum inside the collapsed matter.
Assuming that the black hole evaporation is a real physical
process implies that Hawking particles in some way have
to ‘‘bring the mass of the black hole to infinity.’’ Until the
final stages, the evaporation is not a strong gravitational
field phenomenon because the black hole mass decreases
slowly with time [23]. The standard Einstein equations
with a suitable matter source can describe how the metric
evolves during the evaporation. As the standard semiclas-
sical program has shown (for a highly incomplete list of
references see [24–32] and references therein) the back
reaction on the metric due to a null energy-momentum
tensor describing the Hawking particles is not able to
stop the evaporation.

It is nevertheless worth noting that it can be shown in the
spherical symmetric four-dimensional case without ap-
proximation that if one adds a trace anomaly term to the
energy-momentum tensor (allowing, in principle, arbitrary
violations of the energy conditions) the evaporation pro-
cess stops [33]. This conclusion fits quite well with the
results obtained in [34,35].

If the energy spectrum of the particles living inside the
horizon is gapped, the Hawking weight could be reduced:
as originally found by Hawking [3], the expectation value
of the operator number of a Bosonic field of spin zero,
measured by a static observer in the asymptotic future of
Schwarzschild black hole of mass M, is

 ni�E� �
1

exp�E=kTH� � 1
; TH �

@c3

8�kGM
; (8)

where k is the Boltzmann constant and E is the energy of
the particle. If the spectrum is gapped, the maximum of the
above expression is obtained for

 ni�Egap� �
1

exp�Egap=kTH� � 1
;

where Egap is of order in Eq. (1). This number, as one can
expect, turns out to be extremely small in the concrete case
of a black hole formed during the collapse of a neutron star.
The only possibility for the Hawking particles is to bring
outside the black hole the only low energy degrees of
freedom available, namely, the gapless boundary excita-
tions. Therefore, the present scheme suggests that the
evaporation process, after the Hawking particles ‘‘have
brought away’’ the gapless deformations of the boundary,
should be highly suppressed by the presence of the gap.

V. THE COUPLING WITH EINSTEIN EQUATIONS

In [36] a very interesting alternative scenario for the final
state of the gravitational collapse has been proposed: the
relation of such a proposal with the present scheme will be
discussed in the following sections. In this section we will
set

 @ � 1; c � 1

while keeping the Newton constant.
One has to describe the interior space time inside the

horizon of a black hole. The metric inside the horizon but
outside the collapsed matter is the Schwarzschild metric.
Inside the collapsed matter before classical gravity begins
to dominate the interactions of the standard model, the
solution can be represented by the well-known Tolman-
Oppenheimer-Volkoff-Snyder solution (which behaves
like a Friedman-Robertson-Walker cosmological solution
matched with the Schwarzschild metric). Thus, the interior
QHE solution, whose equation of state is � � const, has
two boundaries: one spacelike boundary separating the
standard Tolman-Oppenheimer-Volkoff-Snyder interior
solution from the interior solution in which the equation
of state of the matter changes into an incompressible gas.8

The timelike boundary separates the interior QHE solution
from the exterior Schwarzschild metric.9 Furthermore, one
would like to find an interior solution which as smoothly as
possible matches with the standard interior Tolman-
Oppenheimer-Volkoff-Snyder (TOVS) solution.

One can analyze this problem with the technique of the
junction conditions. Such a technique allows one to match
two different solutions provided that the metric is continu-
ous and the discontinuity of the extrinsic curvature is
compensated by a suitable energy-momentum tensor S�	
living on the junction hypersurface. With a strange enough
S�	 also quite different metrics could be matched. One has
to search for a junction in which S�	 is suitable to describe
‘‘QHE’’ features. In the present context, since S�	 is the
candidate to describe the boundary degrees of freedom of
the incompressible gas, it should represent the classical
limit of an energy-momentum tensor describing low en-
ergy gapless excitations. This means that one should only
allow vanishing or traceless S�	. This problem can be
solved using two results in the cosmological literature
found in a different context ([37–40]).

8Schematically, one can write the surface representing the
spacelike boundary as 
 � 
� where 
 is the proper time of
the fermions inside the collapsed neutron star and 
� can be
thought of as the time when gravity begins to dominate the other
interactions.

9Schematically, one can write the surface representing the
timelike boundary as R � R�
� where R�
� is the radius of the
collapsed matter which, in principle, could depend on time.
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A. The spacelike boundary

Here it will be analyzed how to match the interior
‘‘quantum Hall metric’’ with the standard interior solution
describing the collapsed neutron star. Actually, the would-
be interior metric describing the quantum hall fluid has not
been found yet. There is indeed some arbitrariness due to
the fact that it is only known that � is constant while the
pressure is unconstrained. To overcome this problem one
can search for an interior solution with � � const such that
the matching with the TOVS solution is as smooth as
possible. Using the results of [38,39], one can see that
this can be done without introducing any S�	 when the
interior metric is the de Sitter one (in which both � and
p are constant). It is a very welcome fact that along the
spacelike boundary no S�	 is needed.10 This implies that the
present model is quite natural since the matching can be
done in a rather smooth way.

Different interior metrics can indeed be considered since
the equation of state does not determine uniquely the
interior solution. On the other hand, the relations with
higher dimensional QHE (discussed in the next sections)
strongly suggest that the interior QHE solution should be
described by a constant curvature metric.

The metric inside the matter during the collapse is a part
of the closed Friedman-Robertson-Walker universe (see,
for instance, [41])

 ds2 � a2
F�
���d


2 
 d�2 
 sin2�d�2�;

aF�
� � a0�1� cos
�; 0 	 � 	 �0 <
�
2
:

(9)

When 
 � � the collapsing star reaches the maximum
expansion aF��� � 2a0. The mass m of the collapsing
Friedman fluid is constant during the evolution and reads

 m �
3a0

2
��0 � sin�0 cos�0�:

Because of the gravitational self-energy, the mass of the
external Schwarzschild black hole is

 M � a0sin3�0:

The radius r�
� of the collapsing matter evolves as

 r�
� � aF�
� sin�0: (10)

The metric in Eq. (9) has to be matched with the de Sitter
metric. The suitable coordinates system to write the
de Sitter metric is

 

ds2 � a2
dS�t���dt

2 
 d�2 
 sin2�d�2�;

adS�t� �
l

sint
;

where l is the cosmological length. As it has been already
explained, the matching has to be performed on a spacelike
hypersurface �0 in such a way that the energy-momentum
tensor S�	 of the hypersurface vanishes.11

The matching conditions, as formulated in [42], can be
introduced as follows. Let � be the nonnull hypersurface
on which the matching has to be performed. Let �	 be the
normal to �, and let

 h	� � g	� � �	��

be the metric induced on � (in which the minus sign
corresponds to a spacelike �	 and to timelike � and the
plus sign to the other case). The matching conditions are
that the metric has to be continuous across � and
 

�	� � �8�G
�
S	� �

1

2
�	� trS

�
;

�	� � lim
"!0
�K	��
 � 
"� � K	��
 � �"�
;

(11)

where K	� is the extrinsic curvature of �

 K�� � h	�h��r	��;


 is the arc length measured along the geodesic orthogonal
to �. and S�	 is the energy-momentum tensor living on �
needed to compensate for the discontinuity of the extrinsic
curvature

 S�� � h	�h��S	�:

The jump conditions at the spacelike hypersurface �0

(which has parametric equations t � t0 � const and 
 �

0 � const in the de Sitter and Friedman metrics, respec-
tively) are (see [39])

 aF�
0� � adS�t0�; S�	 � �
�

4�
��	; (12)

 � � a�2
dS

@adS
@t

��������t�t0

�a�2
F
@aF
@t

��������
�
0

: (13)

Because of the requirements coming from ‘‘quantum Hall
physics,’’ we have to search for a solution of the equation

10A traceless S�	 is a welcome feature on the timelike boundary
while on the spacelike boundary the interpretation of S�	 as the
energy-momentum tensor of gapless excitations would be less
clear (since such excitations would live on a manifold without a
time direction).

11The possibility to do the matching without any S�	 is a rather
nontrivial requirement. The reason is that the equation of state in
the standard phase (in which the pressure can be considered
small and the density increases) is completely different from the
equation of state of the ‘‘quantum Hall phase’’ (in which the
density is constant and the pressure can be, in principle, arbi-
trarily large). The fact that de Sitter space time passes this test is
a strong confirmation that the approach proposed here is physi-
cally sensible.
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 a�2
dS

@adS
@t

��������t�t0

� a�2
F
@aF
@t

��������
�
0

: (14)

Obviously, such a requirement (which is an input of quan-
tum Hall physics) was not present in the main references
for this section [38,39]. Explicitly, taking into account
Eq. (12), Eq. (14) reads

 

�
2

a0

aF�
0�
� 1

�
1=2
�

��
aF�
0�

l

�
2
� 1

�
1=2

so that

 aF�
0� � �2la0�
1=3; (15)

which [when inserted in Eq. (10)] gives a measure of the
radius of the collapsed star when the quantum hall regime
sets in.

B. The timelike boundary

One is left with the problem to match the interior
de Sitter solution with the exterior Schwarzschild solution
with a traceless S�	 along the timelike boundary. A trace-
less S�	 is a welcome feature because it would allow the
description of the boundary gapless excitations expected
on quantum Hall grounds. It is convenient, in this case, to
use the following coordinates systems for the interior
de Sitter solution ds2

I and for the exterior Schwarzschild
solution ds2

E, respectively,

 ds2
I � ��1� k

2R2�dT2 

dR2

�1� k2R2�

 R2d�2; (16)

 ds2
E � �

�
1�

2GM
R

�
dT2 


dR2

�1� 2GM
R �

 R2d�2; (17)

 k2 �
8�G

3
�0; (18)

where �0 is the density of collapsed matter which is of the
order in Eq. (2). The results in [37]12 tells that a matching
along a timelike boundary can be achieved. Because of the
spherical symmetry, it can be assumed that the spatial
sections of the timelike matching hypersurface ��t� are
isomorphic to the two sphere so that there exists a coor-
dinates system in which the induced metric ds2j��
� and S�	,
respectively, read:

 

ds2j��
� � �d

2 
 r2�
�d�2;

S	� � ��
��U	U�� � ��
��h	� 
U	U��;

h	� � g	� � �	��;

(19)

where, as in the previous subsection, h	� is the metric
induced on ��
�, �	 is the (spacelike) normal to ��
�, 
 is
the arc length measured along the timelike geodesic be-
longing to ��
�, U	 is the normalized four velocity of ��
�,
� is the surface energy density of ��
�, ��
� is the surface
tension, and the conservation of S�	 implies

 @
� � �2��� ��
@
r
r
;

r�
� being the proper circumferential radius of the domain
wall ��
�. Unlike the dynamics of a false vacuum bubble,
here the requirement to be consistent with a ‘‘quantum Hall
picture’’ tells that S	� has to be chosen traceless (otherwise
it would not correspond to the classical description of
boundary gapless degrees of freedom); therefore, one gets

 �
 2� � 0!
@
�
�
� �3

@
r
r
) (20)

 � �
�0

r3 ; �0 > 0; (21)

where �0 is an integration constant which depends on the
microscopic model.

Namely, �0 is related to the surface tension (also related
to the energy density of the boundary degrees of freedom)
of the incompressible three-dimensional gas (so that it can
be assumed to be positive). In the quantum Hall case many
tools (related to conformal field theory) would come into
play to determine the analogous parameter; in the present
case to determine �0 from the microscopic theory appears
to be a rather difficult task. One can therefore deal with �0

as a phenomenological parameter: the following results
have a nice interpretation if compared with the dynamics
of a false vacuum bubble.

The ‘‘equation of motion of the domain wall’’ that is, the
equation which determines the evolution of r�
�, can be
deduced from the matching condition (11). In particular,
the important equation is the angular �� component of
Eq. (11)

 ��� � �8�GS��: (22)

One can see that the 

 component of the matching equa-
tions is not independent on the �� one provided the con-
servation of energy of S�	 is taken into account so that it is
enough to deal with the �� component.

It is interesting to note that at first glance, the right-hand
side of Eq. (22) is the same as it appears in the dynamics of
a false vacuum bubble (even if in such a case [37] the S�	 is
not traceless)

 � 8�GS�� � 8�G� � �4�G�;

12In which the authors considered the problem to match the
de Sitter solution to the exterior Schwarzschild solution along a
timelike hypersurface. However, in [37] the authors were not
interested in a traceless S�	 and considered a different S�	 to
describe the evolution of false vacuum bubbles.
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where Eqs. (19) and (20) have been taken into account,
because in the dynamics of a false vacuum bubble the trace
of S�	 cooperates to give, formally, the same result. The
important difference related to the traceless condition will
be manifest in a moment.

The standard procedure to compute ��� is as follows:
because the domain wall is spherically symmetric, on the
exterior Schwarzschild side, the four velocity of any of its
point can be written as follows:

 U	
�E� �

�
@
r

1� 2GM
r

;
�
1�

2GM
r

�
@
t; 0; 0

�
; (23)

where it has been taken into account that, on the exterior
Schwarzschild side (17), the coordinate R approaches to r
when approaching the domain wall. On the interior
de Sitter side, the four velocity of any of the point of the
domain wall is

 U	
�I� �

�
@
r

1� k2r2 ; �1� k
2r2�@
t�I�; 0; 0

�
; (24)

where the notation t�I� has been introduced to stress that t�I�
refers to the interior coordinate. To compute the left-hand
side of Eq. (22) the four velocity has to have unit norm in
both coordinates systems; therefore, taking into account
Eq. (23) in the exterior Schwarzschild coordinates system
one has

 

�
1�

2GM
r

�
@
t � �

���������������������������������������
�@
r�

2 
 1�
2GM
r

s
;

while taking into account Eq. (24) in the interior de Sitter
side one gets

 �1� k2r2�@
t � �
�������������������������������������
�@
r�2 
 1� k2r2

q
:

The �� component of the extrinsic curvature on the exte-
rior side can be computed

 K���ext� � �r

���������������������������������������
�@
r�2 
 1�

2GM
r

s
; (25)

while the �� component of the extrinsic curvature on the
interior side is

 K���int� � �r
�������������������������������������
�@
r�

2 
 1� k2r2
q

: (26)

Eventually, Eq. (22) reads

 r�K���int� � K���ext�� � 4�G�r2: (27)

As it will be shown in a moment, in the dynamical equation
for r�
� the ambiguity on the relative sign of K���int� and
K���ext� is not present. This equation can be written as an
ordinary first order equation for r�
� bringing on the right-
hand side K���ext� and then squaring (obtaining, at a first
glance, Eq. (5.1) of [37]). However, now an important
difference comes into play. Namely the traceless condition

of S�	 together with the conservation of energy for S�	 itself
which imply that� is in Eq. (21) while in the description of
the dynamics of a false vacuum bubble � can be assumed
to be constant. Thus one obtains the following equation:

 K���int� � K���ext� �
4�G�0

r2 : (28)

Equation (28) can be written in the standard form
 

�1 � �@
r�2 
 V�r�;

V�r� � �
�

2GM
r

 f�r�2

�
;

V�r�!
r!0
�1; V�r� !

r!1
�1;

f�r�2 �
��

M
4��0

�
r�

�
k

8�G�0

�
r4 �

2�G�0

r2

�
2
:

(29)

It is suggestive to recall that in the dynamics of a false
vacuum bubble the effective potential VBV , which reads in
normalized units

 VBV�z� � �
�

1� z3

z2

�
2
�
�2

z
; (30)

has (no matter the choice of parameters) only one maxi-
mum so that all the solutions r�
� asymptotically for large

 approach 
1 or zero. In particular, neither solutions
oscillating between two finite values of r nor stable con-
stant solutions exist.

Remarkably enough, in the present case, for suitable
choices of the parameters such solutions exist. In particu-
lar, sets of parameters which provide the potential in
Eq. (29) with two maxima and a minimum in between
the two maxima exist. It is not possible to write down an
analytic formula for such cases because the potential in
Eq. (29) is involved but a numerical graph unravels this
important feature. V�r� can be written as

 V�z� � �
�

1

�0

�
2
�
��0�

2

z



�
Bz� Cz4 �

��0�
2D

z2

�
2
�
;

(31)

 B �
�GM�2

4�G
; C �

�2GM�4�0

3
; D �

2�G

�2GM�2
;

(32)

where Eq. (18) has been taken into account and the depen-
dence on the unknown microscopic parameter �0 has been
displayed (see Fig. 1 for a graph of �V�z� in the range of
parameters allowing periodic solutions). Taking for sim-
plicity �0 � 1 the choice

 B � 10; C �
1

20
; D �

1

80

does the required job [note that the product of coefficient B
and D in Eq. (32) is fixed to be 1=8]. One can understand
this feature by comparing VBV in Eq. (30) with the one in
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Eq. (31). In the first case the term

 

�
1� z3

z2

�
2

has only one zero for z � 1 while the quadratic term in
Eq. (31)

 

�
Bz� Cz4 �

D

z2

�
2
�

1

z4 �Bz
3 � Cz6 �D
2

can have two zeros13 opening the possibility to have oscil-
lating as well as stable static solutions living in the local
minimum of �V�z�: such a possibility appears to be fa-
vored by small values of �0. The fact that, once the
quantum Hall regime sets in, solutions for r�
� oscillating
around a local minimum do indeed exist is an interesting
new feature of the present scheme. In Fig. 2 there is a
schematic Penrose diagram in the interesting range of
parameters.

C. Connection with the higher dimensional quantum
Hall effect

Even if QHE appears as a purely two-dimensional phe-
nomenon, its theoretical structure has been generalized to
higher dimensions in [43] (for a review, see [44] and
references therein). The basic mathematical structure
needed to achieve such generalizations is a manifold en-
dowed with a connection acting on spinors and taking
value in a Lie algebra. The curvature of such quantum
Hall connection has to be ‘‘constant’’: namely, the compo-

nents of the curvature evaluated in a suitable basis of
vielbein have to be constant. The prototype of such mani-
folds are coset spaces, namely, manifolds diffeomorphic to
G=H where G is a Lie group and H a compact subgroup of
dimension � 1: the spin connection provides one with a
constant background field so that one can choose the
background gauge field to be proportional to the spin
connection generalizing the concept of a constant magnetic
field.14 Eventually, the Landau problem is expressed in
terms of the covariant derivative of such quantum Hall
connection and gives rise to a discrete highly degenerate
spectrum with a gap [43]. It is a highly nontrivial self-
consistency test of the present scheme that from the solu-
tions of the Einstein equations fulfilling the requirements
motivated above it naturally emerges the de Sitter metric
which has precisely the characteristic giving rise to higher
dimensional quantum Hall providing one with a spin con-
nection acting on fermions whose curvature, as it is well
known, is constant. This relation between higher dimen-

FIG. 2. A schematic Penrose diagram in the range of parame-
ters in which oscillating solutions exist. The line separating the
de Sitter from the Schwarzschild solutions is ‘‘wavy’’ to stress
the Mexican hat form of �V�z�.

FIG. 1. A graph of (minus) the effective potential for a choice
of parameters allowing periodic solutions (a possibility which is
not present in the dynamics of false vacuum bubbles). The graph
has been rescaled in order to show clearly the ‘‘Mexican hat’’
form of (minus) the potential.

13So that (at least when the term �1=z in the potential is not
taken into account) it is clear that V�z� may have two maxima
and a minimum in between.

14It was found in [43] that in order to obtain a reasonable
thermodynamic limit with a finite spatial density of particles, one
has to consider very large SU�2� representations. Each particle is
then endowed with an infinite number of SU�2� internal degrees
of freedom. Basically, the reason for this choice is that the
authors want to find a ground state which already has a macro-
scopic degeneracy (as it happens in the 2
 1 dimensional
quantum Hall effect). In the present case, this is not an issue:
the fermions live in their own representation (which is not a large
representation of the ‘‘internal’’ Lorentz group of the spin
connection). This is a welcome feature in the present case: an
important ingredient to get the previous entropy bound (7) is that
the last partially filled energy level is highly degenerate while the
ground state has not a macroscopic degeneracy.
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sional quantum Hall effect and the interior of a black hole
is worth further investigation. Furthermore, a connection
with noncommutative geometry based on the present
scheme and the results in [15–18] should not be excluded.

VI. RELATIONS WITH COSMOLOGY AND
GRAVASTARS

It has been shown that the interior solution describing a
phase in which the fermions’ gas is incompressible can be
chosen to be a de Sitter metric which is smoothly matched
with the standard TOVS solution (describing the interior of
a collapsed neutron star up to energy of the order 10�21 of
the Planck energy) along the spacelike boundary and with
the Schwarzschild solution on the timelike boundary (with
a surface energy-momentum tensor describing the bound-
ary gapless excitations expected on quantum Hall
grounds). In the cosmological literature, interesting models
(see, for instance, [37–39]) propose that ‘‘inside a black
hole a baby universe could be generated.’’ The matching
with an interior de Sitter metric is argued to be reasonable
on various grounds. In [37] this scheme represents the
evolution of a false vacuum bubble separated by the true
vacuum bubble by a timelike hypersurface. In [38,39]
(assuming that the would-be quantum theory of gravity
will regularize the divergence of the curvature invariants of
general relativity) the collapsing black hole is matched
with a de Sitter interior inside the horizon on a spacelike
boundary. In the proposal of [37], part of the
Schwarzschild singularity is smoothed while in the pro-
posal of [38,39] the whole Schwarzschild singularity is
removed. In both cases, instead of the (partially or fully)
removed singularity a ‘‘baby universe’’ is present in which
the inflationary evolution would arise in a rather natural
way. It is therefore interesting that the conditions to realize
such a scenario would arise inside a collapsed neutron star
at an energy scale of order 10�18 of the Planck scale.

Recently, an interesting proposal, called gravastar, for
the final state of the collapse of a massive star (alternative
to the black hole) has been discussed [36] (for a discussion
on how it is possible to distinguish phenomenologically a
gravastar from a black hole see, for instance, [45] and
references therein). The authors propose as a final state
of the gravitational collapse an incompressible fluid (which
could be a Bose-Einstein condensate) described by an
equation of state in which both � and p are constant so
that their interior solution is described by a de Sitter metric.
The ambitious idea is that if this would happen before the
formation of the event horizon one could solve the difficult
theoretical problems related with black hole entropy and
Hawking radiation. A point which in the literature on
gravastars has not been solved yet is the precise mechanism
giving rise to a Bose-Einstein condensate. On the other
hand, once a neutron star is formed, the theory predicts that
for masses larger than (more or less) five solar masses the
neutron star should collapse to form a black hole: such

predictions appear to be quite sound. Therefore, if the
would-be mechanism giving rise to gravastar does not
come into play preventing the formation of a neutron
star, the formation of a black hole seems unavoidable.
The main idea of the present paper is that the fermionic
nature of the particles living inside a neutron star together
with the strong gravitational field could give rise to quan-
tum Hall phenomenology. When the typical order of mag-
nitudes of a neutron star are taken into account, one
recognizes that this would-be quantum Hall phase occurs
after the horizon is formed. The quantum Hall phenome-
nology tells that the interior solution is well described by a
de Sitter metric as in [36]. However, unlike the results in
[36], the present scheme suggests that quantum Hall phe-
nomenology together with the fermionic nature of the
particles living inside the neutron star confirm that the
entropy should be the sum of a frozen constant plus a
term proportional to the area.

A. About the correctness of the assumptions

The arising of an incompressible gas of fermions depend
on the assumption that at energy scales up to 10�18 of the
Planck energy quantum gravitational effects can be ne-
glected and that the standard model can be fully trusted
(so that, for instance, the Baryon number is conserved).
Another key assumption related to the previous one is that
at energy scales lower than 10�18 of the Planck energy the
time scale of the dynamics of the gravitational field is
greater than the typical time scale of the quantum evolution
of the fermions living inside the neutron star so that the
fermions reach equilibrium ‘‘before the gravitational field
changes’’ (which is the standard assumption in the theory
of the evolution of neutron stars). If these assumptions are
correct, the results of the present paper can be trusted.
About the first assumption, nothing precise can be said
since the final theory of quantum gravity is still lacking.
Nevertheless, a comparison with some analogous situ-
ations suggests that such an assumption could be safe.
For instance, if one is studying quantum electrodynamics
at an energy scale which is 18 orders of magnitude less than
the energy scale at which quantum effects come into play,
classical electrodynamics should be enough (unless there
are very few photons but this is not the present case in
which there should be a huge number of gravitons).
Standard dimensional arguments would suggest that the
second assumption also could not be incorrect. The time
derivatives in the Einstein equations appear together with
factors of the Newton constant G

 

1

G

@2

@t2
;

while the time derivatives in quantum field theory acting on
the fermionic operators appear as follows:
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1

@

@
@t

;

therefore, the two evolutions become comparable at the
Planck scale. This standard argument leads one to think
that (as it happens inside usual collapsing neutron stars)
fermions reach equilibrium before the gravitational field
changes relevantly so that one can use the fermions equa-
tion of state (� � const in the present case) to solve the
Einstein equations. In similar situations (in which the
microscopic time scale is 18 orders of magnitude smaller
than the macroscopic time scale) one would say that it is
safe to assume that the microscopic degrees of freedom
reach the equilibrium. On the other hand, quantum gravi-
tational effects could manifest themselves in a subtle way
preventing the fermions from reaching equilibrium (and
making incorrect the hypothesis made here). If this is the
case, it would be a rather novel type of ‘‘low energy’’
quantum gravitational effect worth further investigation
(since, to the best of the author’s knowledge, no similar
effects of ‘‘lacking of equilibrium’’ in the presence of so
different time scales have been studied).

A possible mechanism preventing the picture here pro-
posed could be to transform the fermions into Bosons: in
this case, the present picture would be incorrect. On the
other hand, no obvious way to realize that is available. At
an energy scale of 10�18 of the Planck energy, the leading
interactions are the strong interactions among the neutrons
(or the quarks) which, as it has been already discussed, are
weaker than the classical gravitational field inside the
black hole.

Various models leading to superfluidity due to the for-
mation of Bosonic bound states of neutrons via ‘‘Bardeen-
Cooper-Schrieffer mechanism’’ inside a neutron star (see,
for a review, [46]) have been proposed. On the other hand,
at the energy scales at which classical gravity dominates
the strong interactions which are responsible for the super-
fluidity can be considered as small perturbations. More-
over, the strong interactions are weaker the higher the
energy scale is so that the ‘‘Bardeen-Cooper-Schrieffer
mechanism’’ could not be effective anymore at density of
the order in Eq. (1). This interesting question is worthwhile
to be further investigated.

VII. CONCLUSIONS AND PERSPECTIVES

It has been argued that the collapse of a black hole
formed during the evolution of a typical neutron star could
lead to an incompressible gas of fermion well before reach-
ing the Planck scale. The fermionic nature of the degrees of
freedom together with the strong classical gravitational
field perceived by the fermions lead to some features
typical of quantum Hall effects. The entropy of the gas
splits naturally into two terms: a ‘‘frozen’’ constant (cor-
responding to the fermions living in the fully filled discrete
energy levels) and a dynamical term which is bounded by
two suitable functions of the area of the horizon strongly
suggesting the Bekenstein-Hawking area law. The Einstein
equations have been solved with this incompressible fluid
and it has been shown that the interior metric describing
the incompressible phase is well described by de Sitter
space time. The behavior of the matching hypersurface
manifests an interesting dependence on the parameters of
the model allowing oscillating solutions around a local
minimum of the effective potential for r�
� (the proper
circumferential radius of the domain wall ��
�), a peculiar
feature of the present model which is related to the gapless
nature of the boundary excitations. The relations with
higher dimensional quantum Hall effect and with interest-
ing cosmological scenarios have been pointed out and
worth further investigation. The case in which the hypothe-
sis of the present paper does not hold has been briefly
discussed.
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