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We analyze the stability of the Einstein static universe by considering homogeneous scalar perturba-
tions in the context of f�R� modified theories of gravity. By considering specific forms of f�R�, the
stability regions of the solutions are parametrized by a linear equation of state parameter w � p=�.
Contrary to classical general relativity, it is found that in f�R� gravity a stable Einstein cosmos with a
positive cosmological constant does indeed exist. Thus, we are lead to conclude that, in principle,
modifications in f�R� gravity stabilize solutions which are unstable in general relativity.
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I. INTRODUCTION

Independent observations have confirmed that the
Universe is presently undergoing a phase of accelerated
expansion [1]. Although the introduction of a cosmological
constant into the field equations seems to be the simplest
theoretical approach to generate a phase of accelerated
expansion, several alternative candidates have been pro-
posed in the literature, ranging from dark energy models to
modified theories of gravity. Amongst the latter, models
generalizing the Einstein-Hilbert action have been pro-
posed. A nonlinear function of the curvature scalar, f�R�,
is introduced in the action given by

 S �
1

2�2

Z
d4x

�������
�g
p

f�R� � Sm; (1)

where Sm is the matter action. We consider �2 � 8�G � 1
throughout this work, for notational simplicity. Varying the
action with respect to g�� provides the following field
equation

 FR�� �
1

2
fg�� �r�r�F� g���F � Tm��; (2)

where F � df=dR. Note that the Ricci scalar is now a fully
dynamical degree of freedom, which is transparent from
the following relationship

 FR� 2f� 3�F � T; (3)

obtained from the contraction of the modified field Eq. (2).
One may generalize the action (1) by considering an
explicit coupling between an arbitrary function of the
scalar curvature, R, and the Lagrangian density of matter
[2]. Note that these couplings imply the violation of the
equivalence principle [3], which is highly constrained by
solar system tests. One may also mention alternative ap-
proaches, namely, the Palatini formalism [4,5], where the
metric and the connections are treated as separate varia-
bles; and the metric-affine formalism, where the matter

part of the action now depends on the connection and is
varied with respect to it [5].

A fundamental issue extensively addressed in the litera-
ture is the viability of the proposed f�R� models [6,7]. In
this context, it has been argued that most f�R� models
proposed so far in the metric formalism violate weak-field
solar system constraints [8], although viable models do
exist [7,9–11] (static and spherically symmetric solutions
have also been found [12]). The issue of stability [13] also
plays an important role in the viability of cosmological
solutions [11,14,15]. In Ref. [10] it was argued that the sign
of fRR � d2f=dR2 determines whether the theory ap-
proaches the general relativistic limit at high curvatures,
and it was shown that for fRR > 0 the models are, in fact,
stable. The stability of the de Sitter solution in f�R� gravity
has also been extensively analyzed in the literature [16].
Recently, f�R� models which have a viable cosmology
were analyzed, and it was found that the models satisfying
cosmological and local gravity constraints are practically
indistinguishable from the �CDM model, at least at the
background level [11]. Note that to be a viable theory, the
proposed model, in addition, to simultaneously account for
the four distinct cosmological phases, namely, inflation,
the radiation-dominated and matter-dominated epochs, and
the late-time accelerated expansion [17,18], should be
consistent with cosmological structure formation observa-
tions [19]. In the latter context, it has been argued that the
inclusion of inhomogeneities is necessary to distinguish
between dark energy models and modified theories of
gravity, and therefore, the evolution of density perturba-
tions and the study of perturbation theory in f�R� gravity is
of considerable importance [20–22]. See Ref. [23] for
studies of a parametrized growth factor approach to dis-
tinguish between modified gravity and dark energy models
using weak lensing.

In this work, we explore the stability of the Einstein
static universe in f�R� modified theories of gravity. This is
motivated by the possibility that the Universe might have
started out in an asymptotically Einstein static state, in the
inflationary universe context [24]. On the other hand, the
Einstein cosmos has always been of great interest in vari-
ous gravitational theories. In general relativity for instance,
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generalizations with nonconstant pressure have been ana-
lyzed in [25]. In the context of brane world models the
Einstein static universe was investigated in [26], while its
generalization within Einstein-Cartan theory can be found
in [27]. Finally, in the context of loop quantum cosmology,
we refer the reader to [28,29].

We analyze the stability of the Einstein static universe
against homogeneous scalar perturbations in the context of
f�R� gravity. In the following section, we provide two
specific forms of f�R�, and analyze the stability of the
solutions, by considering homogeneous scalar perturba-
tions around the Einstein static universe. The stability
regions are given in terms of the linear equation of state
parameter w � p=� and the unperturbed energy density
�0.

II. THE EINSTEIN STATIC UNIVERSE IN f�R�
GRAVITY

Consider the metric given by

 ds2 � �dt2 � a2�t�
�
dr2

1� r2 � r
2�d�2 � sin2�d�2�

�
:

(4)

For the Einstein static universe, a � a0 � const, the Ricci
scalar reduces to R � 6=a2

0, and the field equations take the
following form:

 �0 �
f
2
; p0 �

2F

a2
0

�
f
2
; (5)

where �0 and p0 are the unperturbed energy density and
isotropic pressure, respectively.

In what follows, we consider specific forms of f�R�, and
analyze the stability against linear homogeneous scalar
perturbations around the Einstein static universe given in
Eqs. (5). Thus, we introduce perturbations in the energy
density and the metric scale factor which only depend on
time:

 ��t� � �0�1� ���t��; a�t� � a0�1� �a�t��: (6)

Subsequently, we consider a linear equation of state,
p�t� � w��t�, linearize the perturbed field equations, and
analyze the dynamics of the solutions.

First, motivated by the possibility that the Universe
might have started out in an asymptotically Einstein static
state [24], we analyze the case of f�R� / R� R2, as in
principle R2 dominates for high curvatures, i.e., the early
Universe. Second, we consider the case of f�R� /
R� 1=R, which is known to generate a late-time acceler-
ated expansion phase [30], and has been used in the weak-
field limit constraints, as the 1=R term dominates for low
curvatures.

A. f�R� / R�R2 theory

Consider the case of

 f�R� � R�
	
2a4

0

6
R2 � 2�; (7)

where 	 � �1, and 
 is a positive parameter. We intro-
duced the factor a4

0=6 in the second term to considerably
simplify the equations and results in the analysis outlined
below.

In this model the unperturbed field Eqs. (5) take the form

 �0 �
3

a2
0

� 3	
2 ��; (8)

 p0 � �
1

a2
0

� 	
2 ��; (9)

and yield the following cosmological constant of the
Einstein static universe

 � �
1

2
�0�1� 3w� � 3	
2: (10)

We derive an evolution equation for the scale factor
perturbation in the following way. The perturbations de-
fined in Eq. (6) are introduced in the metric and the energy-
momentum tensor. Then the perturbed field Eqs. (2) are
linearized and the unperturbed Eqs. (8) and (9) are sub-
tracted to end up having only first order terms. The
�tt�-component reduces to

 ���t� � �3�1� w��a�t�; (11)

which we use to simplify the spatial component to
 

�8	
2��0�1�w��1� 3w�	��4	
2��0�1�w�	2�a�t�

� 2�8	
2��0�1�w�	�4	
2��0�1�w�	


�a00�t� � 8	
2�a�4��t� � 0: (12)

Note that in the general relativistic limit, 
! 0,
Eq. (12) reduces to

 2�a00�t� � �0�1� w��1� 3w��a�t� � 0; (13)

which provides the solution

 �a�t� � C1e �!t � C2e� �!t; (14)

where C1 and C2 are constants of integration, and �! is
defined by

 �! �

��������������������������������������������
1

2
�0�1� w��1� 3w�

s
: (15)

In order to avoid the blow-up, due to the exponential
increase in the scale factor, or the collapse, the solution
is stable in the range

 � 1<w<�1=3: (16)
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Note that this interval violates the strong energy condition
which stipulates that �� 3p � 0.

Since the cosmological constant of the classical Einstein
universe is given by

 � �
1

2
�0�1� 3w�; (17)

and we are only considering positive energy densities, it
turns out that it is negative in the region of stability.

Now, the full modified perturbation differential equa-
tion, Eq. (12), provides the following solution:

 �a�t� � C1e
!1t � C2e

�!1t � C3e
!2t � C4e

�!2t; (18)

where Ci (with i � 1 . . . 4) are constants, and the parame-
ters !1 and !2 are given by

 !1;2 �

�
�0�1� w� � 4	
2

8	
2

�
8	
2 � �0�1� w�

�
�����������������������������������������������������������������������������������
�0�1� w���0�1� w� � 8	
2�3w� 1�	

q ��
1=2
;

(19)

respectively.
In the following, we require the cosmological constant

to be positive. For 	 � �1 and �> 0 no stable solutions
can be found. Considering 	 � �1 and �> 0, we have
the following three stability regions: First,

 AI : 8
2 <�0 <
3�7�

������
17
p
�
2

2
; (20)

 

8
2 � �0

24
2 � �0

� w<
1

3

�
�2�

�����������������������
24
2 � �0

�0

s �
: (21)

Second,

 AII : �0 �
3�7�

������
17
p
�
2

2
; (22)

 �
5� 3

������
17
p

3�23�
������
17
p
�
<w<

1

3

�
�2�

���������������������
23�

������
17
p

7�
������
17
p

vuut �
: (23)

The latter inequality reduces to �0:213<w<�0:146.
Finally,

 AIII : �0 >
3�7�

������
17
p
�
2

2
; (24)

 

6
2 � �0

3�0

� w<
1

3

�
�2�

�����������������������
24
2 � �0

�0

s �
: (25)

These stability regions are summarized in Table I, and
depicted in Fig. 1. Note that these results are consistent
with the stability condition fRR � d2f=dR2 > 0 of cosmo-
logical models at high curvatures [10].

B. f�R� / R� 1=R theory

In this section, we use the specific form of

 f�R� � R�
	�4

a2
0

1

R
� 2�; (26)

where 	 � �1, and � is considered a positive parameter.
As in the previous example, we have inserted the factor a2

0

which simplifies the calculations and the respective nota-
tion outlined below.

The choice of the f�R� given by Eq. (26) has been
extensively analyzed in the literature since it was first
demonstrated to account for the late-time accelerated ex-
pansion of the Universe without the need for the introduc-
tion of dark energy [30]. It has also been used in the weak-
field limit, as now the 1=R term dominates for low curva-

TABLE I. Summary of the stability regions in the Einstein static universe for the specific case
of f�R� / R� R2 theory.

Case AI 8
2 < �0 <
3�7�

����
17
p
�
2

2
8
2��0

24
2��0
� w< 1

3 ��2�
���������������
24
2��0

�0

q
�

Case AII �0 �
3�7�

����
17
p
�
2

2 � 5�3
����
17
p

3�23�
����
17
p
�
<w< 1

3 ��2�
�������������
23�

����
17
p

7�
����
17
p

q
�

Case AIII �0 >
3�7�

����
17
p
�
2

2
6
2��0

3�0
� w< 1

3 ��2�
���������������
24
2��0

�0

q
�

FIG. 1. The stability regions, for the case of f�R� / R� R2

theory, are depicted between the curves. The thick solid line
represents general relativity. In the lower left region, which tends
to general relativity, the cosmological constant is negative.
However, in the upper triangularlike shaped region (AI, AII,
and AIII) the Einstein static universe is stable and � is positive;
compare also with Fig. 2. Note that the equation of state
parameter w is strictly negative.
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tures. Unfortunately, it was demonstrated that the origi-
nally proposed form suffers from instabilities [31].
However, it was recently shown in [10] that a modification
of the sign stabilizes the solution such that fRR �
d2f=dR2 > 0, as emphasized in the introduction.

Considering this case, the unperturbed field Eqs. (5) take
the form

 �0 �
3

a2
0

�
	�4

12
��; (27)

 p0 �
1

a2
0

�
5	�4

36
��; (28)

which implies that the cosmological constant of the modi-
fied Einstein static universe is given by

 � �
1

2
�0�1� 3w� �

	�4

6
: (29)

Applying linear perturbation theory, in the procedure
outlined in the previous case, we deduce the following
differential equation
 

�2	�4� 9�1�w��1� 3w��0	�	�
4� 18�1�w��0	

2�a�t�

� 36�2	�4� 9�1�w��0	�	�
4� 18�1�w��0	


�a00�t�� 648	�4�a�4��t� � 0: (30)

In the limit �! 0 this differential equation also reduces to
the general relativistic one, i.e., Eq. (13). Equation (30)
provides the following solution:

 �a�t� � C1e!3t � C2e�!3t � C3e!4t � C4e�!4t: (31)

The parameters !3 and !4 are given by

 !3;4�

�
�4	�18�0�1�w�

36�4	

�
2�4	�3

�
3�0�1�w�

�
�������������������������������������������������������������������������������������
�0�1�w��2�

4	��1�3w��9�0�1�w�	
q ���

1=2
:

(32)

As in the previous example, we verify that for 	 � �1
and a positive cosmological constant, the solutions are
unstable. Considering 	 � �1 and �> 0, we have the
following stability regions:

 BI :
2�4

9
< �0 <

�5�
������
41
p
��4

12
; (33)

 

2�4 � 9�0

3�2�4 � 3�0�
� w<

1

9

�
�6�

�����������������������������
3�2�4 � 3�0�

�0

s �
: (34)

Second,

 BII : �0 �
�5�

������
41
p
��4

12
; (35)

 �
7� 3

������
41
p

3�13�
������
41
p
�
<w<

1

3

�
�2�

���������������������
13�

������
41
p

5�
������
41
p

vuut �
: (36)

Finally

 BIII : �0 >
�5�

������
41
p
��4

12
; (37)

 �
�4 � 3�0

9�0
<w<

1

9

�
�6�

�����������������������������
3�2�4 � 3�0�

�0

s �
: (38)

We summarize these stability regions in Table II, and
depict the solutions in Fig. 2. Note that, as emphasized
above, these results are also consistent with the stability
condition fRR � d2f=dR2 > 0 [10].

TABLE II. Summary of the stability regions in the Einstein static universe for the specific case
of f�R� / R� 1=R theory.

Case BI 2�4

9 < �0 <
�5�

����
41
p
��4

12
2�4�9�0

3�2�4�3�0�
� w< 1

9 ��6�
�������������������
3�2�4�3�0�

�0

q
	

Case BII �0 �
�5�

����
41
p
��4

12 � 7�3
����
41
p

3�13�
����
41
p
�
<w< 1

3 ��2�
�������������
13�

����
41
p

5�
����
41
p

q
�

Case BIII �0 >
�5�

����
41
p
��4

12 � �4�3�0

9�0
<w< 1

9 ��6�
�������������������
3�2�4�3�0�

�0

q
	

FIG. 2. The stability regions, for the case of f�R� / R� 1=R
theory, are depicted between the curves. As before, the thick
solid line represents general relativity. In the lower left region,
which tends to general relativity, the cosmological constant is
negative. In the upper triangularlike shaped region (BI, BII, and
BIII) the Einstein static universe is stable and � is positive. As
before, w is strictly negative.
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III. SUMMARY AND DISCUSSION

The Einstein static universe has recently been revived as
the asymptotic origin of an emergent universe, namely, as
an inflationary cosmology without a singularity [24]. The
role of positive curvature, negligible at late times, is crucial
in the early universe, as it allows these cosmologies to
inflate and later reheat to a hot big-bang epoch. An attrac-
tive feature of these cosmological models is the absence of
a singularity, of an ‘‘initial time,’’ and of the horizon
problem, and the quantum regime can even be avoided.
Furthermore, the Einstein static universe was found to be
neutrally stable against inhomogeneous linear vector and
tensor perturbations, and against scalar density perturba-
tions provided that the speed of sound satisfies c2

s > 1=5
[32]. Further issues related to the stability of the Einstein
static universe may be found in Ref. [33]

In this work we have analyzed linear homogeneous
scalar perturbations around the Einstein static universe in
the context of f�R� modified theories of gravity. We have
considered two specific forms of f�R� and found the
stability regions of the solutions for the scale factor per-
turbation. The first case considered, namely, f�R� / R�
R2, was motivated by the fact that, in principle, R2 domi-
nates for high curvatures which is expected in the early
universe. Secondly, we considered the case of f�R� / R�
1=R, which is known to generate a late-time accelerated
expansion phase [30], and has been used in the weak-field
limit, as now the 1=R term dominates for low curvatures.
The stability regions were parametrized by an equation of
state parameter w � p=�, and it was found that in the
context of f�R� modified theories of gravity the range of
the parameter is greatly enhanced relatively to the results
obtained in general relativity. However, in both cases we
analyzed, the equation of state parameter was strictly
negative, an issue which we hope to overcome in future

work by considering other modified gravity models. These
results are consistent with the condition fRR � d2f=dR2 >
0, for the stability of cosmological models [10]. Relative to
the issue of inhomogeneous perturbations in f�R� gravity,
with the closed Einstein static universe as here investigated
as a background metric, work is currently underway, and
the respective paper is in preparation [34]. However, we
would also like to emphasize that the inhomogeneous
perturbation case lies outside the scope of this work, as
we are mainly interested in the Einstein static universe as
an asymptotic origin of an emergent universe, and its
respective stability as a static solution to Einstein’s
equations.

Concluding, we have found that the modified Einstein
static universe, with a positive cosmological constant and
matter described by the equation of state, p � w�, can be
stabilized against homogeneous perturbations, contrary to
classical general relativity. Therefore, we are led to con-
clude that, in principle, stable modified gravity solutions,
which are unstable in general relativity [34], do indeed
exist. That this is actually possible relies on the fact that the
perturbations of the metric couple to the matter perturba-
tions; see our Eq. (11). Similar results have been obtained
in [29] where the modified Friedmann equations in loop
quantum cosmology are considered.
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