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We apply a singularity-resolution technique utilized in loop quantum gravity to the polymer repre-
sentation of quantum mechanics on R with the singular �1=jxj potential. On an equispaced lattice, the
resulting eigenvalue problem is identical to a finite-difference approximation of the Schrödinger equation.
We find numerically that the antisymmetric sector has an energy spectrum that converges to the usual
Coulomb spectrum as the lattice spacing is reduced. For the symmetric sector, in contrast, the effect of the
lattice spacing is similar to that of a continuum self-adjointness boundary condition at x � 0, and its effect
on the ground state is significant even if the spacing is much below the Bohr radius. Boundary conditions
at the singularity thus have a significant effect on the polymer quantization spectrum even after the
singularity has been regularized.
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I. INTRODUCTION

It is expected that a viable quantum theory of gravity
will have to say something about what happens to the
curvature singularities in classical solutions of general
relativity. This would involve making concrete intuitive
ideas about the role to be played by the Planck length as
a fundamental discreteness scale. A possible guide con-
cerning how to do this is the quantum resolution of the
Coulomb potential in quantum mechanics, where the basic

result is that the expectation value hd1=ri is finite in all
eigenstates of the Hamiltonian. This kinematic result to-
gether with dynamical Coulomb scattering may be taken to
constitute quantum singularity avoidance associated with
the classically singular �1=r potential.

In the Hamiltonian approach to quantum gravity, the
problem of quantization from a mathematical point of
view is to find a suitable representation of an algebra of
functions of position and momentum as operators on a
Hilbert space. The Wheeler-DeWitt approach utilizes a
functional Schrödinger representation where the basic var-
iables are the Arnowitt-Deser-Misner (ADM) variables
[1,2]. The loop quantum gravity (LQG) approach uses a
Poisson algebra of functions of a connection and triad,
based on loops and surfaces, to build a quantum theory
[3]. The basic variables quantized are the holonomy of the
connection along a curve, and the integral of the (densi-
tized) triad over a surface. The latter approach naturally
leads to a nonseparable kinematical Hilbert space associ-
ated with graphs embedded in a spatial manifold [3].
Because of the association of kinematic states with graphs,
there is an intrinsic spatial discreteness built into the
quantum theory which is not a priori present in the

Schrödinger approach. Field excitations of the basic op-
erators are probed on graphs rather than at points.

An approach similar to that of loop quantum gravity can
be employed for the quantum mechanics of a particle
moving in a potential in one or more dimensions. Here
graphs are replaced by lattices of spatial points (not nec-
essarily equispaced), and the basic observables realized in
the quantum theory are the configuration and translation
operators. This is of course natural since generators of
infinitesimal translations cannot be represented on a spatial
lattice. For a given equispaced lattice, the position eigen-
states are normalizable, and the Hilbert space is obviously
separable. However, the Hilbert space that incorporates all
possible lattices (equispaced or not) is nonseparable. The
quantum theory that utilizes this space has been referred to
as polymer quantization [4].

From a mathematical viewpoint, conventional
Schrödinger quantization and polymer quantization are
inequivalent. In the former, wave functions are square-
integrable functions on R3, with position and momentum
operators acting as multiplication and differential opera-
tors, respectively. A remarkable fact is that this quantiza-
tion is unique up to unitary equivalence provided that the
configuration space of the system is topologically R3 and
that the representation of the Weyl-Heisenberg algebra of
exponentiated position and momentum operators is weakly
continuous [4]. It is known, however, that if either of these
assumptions is abandoned, there are infinitely many in-
equivalent representations. A simple example is a system
where the configuration space is the torus rather than R3.
Polymer quantization provides another example. Its non-
separable Hilbert space may be viewed as the inductive
limit of the separable Hilbert spaces associated with quan-
tum mechanics on all possible lattices, including the one-
parameter family of equispaced ones.

From a practical viewpoint, since only a finite number of
calculations are possible, the full polymer Hilbert space
can never be utilized. Rather, only a separable subspace is
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computationally useful. In this case, however, polymer
quantization appears to reduce to the finitely-differenced
Schrödinger equation on a lattice. We elaborate on this
below by observing that various finite-difference schemes
for differential equations may be rewritten using configu-
ration and translation operators on a lattice.

In the representation used in LQG, there is a way to write
inverse triad operators using certain classical Poisson
bracket identities due to Thiemann [5]. These identities
are in fact much more general than the context in which
they first arose; similar ones may be written for any theory
on a lattice. They may be used to write inverse scale factor
operators that are bounded on kinematical states in quan-
tum cosmology in both the connection-triad and ADM
variables [6,7], as well as curvature operators for a field
theoretic formalism for gravitational collapse [8]. The
boundedness property of such operators has been used in
discussions of singularity avoidance in quantum gravity at
the kinematical level [9,10].

In this paper we apply these ideas of singularity avoid-
ance in quantum gravity to polymer representation quan-
tum mechanics on R with the singular �1=jxj potential.
For x > 0, and with an appropriate boundary condition at
x � 0, this may be thought of as the spherically symmetric
sector of the Coulomb problem on R3. We address two
main questions. First, we show that in any lattice context,
the LQG singularity resolution technique is equivalent to
replacing a singular derivative by a nonsingular finite
difference scheme. Second, we show that even after the
singularity in the potential has been resolved, the spectra in
the symmetric and antisymmetric sectors are significantly
different. The latter is close to the usual Coulomb spectrum
when the lattice spacing is much below the Bohr radius, but
in the former the lattice spacing plays a role similar to a
continuum self-adjointness boundary condition at x � 0,
and the effect on the ground state is significant even when
the spacing is much below the Bohr radius. We conclude
that boundary conditions at the singularity have a signifi-
cant effect on the polymer quantization spectrum even after
the singularity itself has been regularized.

The rest of the paper is as follows: In Sec. II we recall the
basic structure of polymer quantization on R. In Sec. III we
specialize to the potential �1=jxj, introducing the lattice
regularization of the potential and showing that the bound-
ary conditions of the radial Coulomb problem can be
implemented by the restriction to the antisymmetric sector.
Our numerical results for the spectrum are given in Sec. IV.
The symmetric sector is analyzed in Sec. V. Section VI
summarizes the results and discusses their implications and
limitations for the problem of singularity resolution in
quantum gravity.

II. POLYMER QUANTIZATION ON R

In this section we briefly describe how a mechanical
system is quantized in the polymer representation [4]. To

keep the notation simple, and because the radial Coulomb
problem we discuss later is a one-dimensional system, we
will consider a particle on the real line. The generalization
to n particles in R3 is straightforward.

Recall that the Hilbert space for the Schrödinger quan-
tization of a particle on the real line is L2�R�, the space of
square-integrable functions on R in the Lebesgue measure.
The operators corresponding to configuration and momen-
tum variables act, respectively, as multiplication and dif-
ferentiation operators. The Hilbert space is separable; an
example of a countable basis are the harmonic oscillator
eigenfunctions.

To introduce polymer quantization on R, we start with
the basis states

  x0
�x� �

�
1; x � x0

0; x � x0:
(1)

The polymer Hilbert space is the Cauchy completion of the
linear span of these basis states in the inner product

 h x;  x0 i � �x;x0 ; (2)

where the quantity on the right-hand side is the Kronecker
(rather than Dirac) delta. This space is clearly nonsepar-
able, and hence inequivalent to L2�R� [11–13]. Intuitively,
building from the polymer basis states a single nonzero
L2�R� state would require an uncountable superposition,
and thus lead to an unnormalizable state in the polymer
Hilbert space. Conversely, any state in the polymer Hilbert
space has support on at most countably many points, and
will thus represent the zero state in L2�R�.

Next we define the action of the basic quantum opera-
tors. The position operator x̂ acts by multiplication,

 �x̂ ��x� � x �x�; (3)

and its domain contains the linear span of the basis states
(1). The translation operators Û�, � 2 R, act by

 �Û� ��x� �  �x� ��; (4)

and are clearly unitary. Formulas (3) and (4) are identical
to those in L2�R�. In L2�R�, the action of Û� is
weakly continuous in �, and there exists a densely defined
self-adjoint momentum operator p̂ such that p̂ �
�i�@�Û����0 � �i@x and Û� � ei�p̂. By contrast, in the
polymer Hilbert space the action of Û� is not weakly
continuous in �, and a basic momentum operator does
not exist.

The states in the polymer Hilbert space can be described
as points in a certain compact space, the (Harald) Bohr
compactification of the real line, and the operators intro-
duced above can be described in terms of a representation
of the Weyl algebra associated with the classical position
and momentum variables [11–13]. There exists also a
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mirror-image quantization in which a momentum operator
and a family of translation operators in the momenta exist,
but there is no basic position operator [14]. These mathe-
matical structures will however not be used in the rest of
the paper.

As there is no basic momentum operator, any phase
space function containing the classical momentum p,
most importantly the Hamiltonian, has to be quantized in
an indirect way. Following [4], we fix a length scale � > 0
and define
 

p̂ �
1

2i�
�Û� � Û

�1
� �; (5a)

p̂2 �
1

�2 �2� Û� � Û
y
��: (5b)

The Hamiltonian operator that corresponds to the classical
Hamiltonian H � 1

2p
2 � V�x� is then

 Ĥ �
1

2�2 �2� Û� � Û
y
�� � V̂; (6)

where V is assumed so regular that V̂ can be defined by
pointwise multiplication, �V̂ ��x� � V�x� �x�. In L2�R�,
the �! 0 limit in (5) would give the usual momentum and
momentum-squared operators �i@x and �@2

x, and the ki-
netic term in (6) would reduce to � 1

2@
2
x. In the polymer

Hilbert space the �! 0 limit does not exist, and � is
regarded as a fundamental length scale. For �� 1, one
expects the polymer dynamics to be well approximated by
the Schrödinger dynamics, and certain results to this effect
are known [4,15,16].

Although the polymer Hilbert space is nonseparable, the
dynamics generated by Ĥ (6) breaks into separable super-
selection sectors. To discuss this, it is convenient to intro-
duce a Dirac bra-ket notation in which the basis state  �
(1) is denoted by j�i. From (2)–(4) we then have

 h�j�0i � ��;�0 ; (7)

 x̂j�i � �j�i; (8)

 Û �j�i � j�� �i: (9)

The action of Ĥ on j�i gives a state with support at�,��
�, and �� �. The time evolution of j�i thus has support
only on the regular �-spaced lattice f�� n� j n 2 Zg.
This means that the time evolution breaks into superselec-
tion sectors, where each sector has support on a regular
�-spaced lattice and is hence separable, and the sectors can
be labeled by the lattice point � 2 �0; ��. The time evo-
lution of any given initial state will consequently have
support only on a countable union of �-spaced lattices.
The upshot is that the time evolution of any separable
subspace is restricted to a separable subspace. Thus, even

though the polymer Hilbert space is nonseparable, the
fundamental length scale � and the choice of an initial
state or an initial separable subspace will result in quantum
dynamics that takes place in a separable Hilbert space.

We note that on a fixed �-spaced lattice, the Hamil-
tonian (6) agrees with a conventional discretization of
Schrödinger’s equation by the replacement

  00�xn� !
1

�2 � n�1 � 2 n �  n�1�: (10)

This suggests investigating versions of (6) in which the
kinetic term is replaced by an operator that, in the finite-
difference approximation context, is higher-order accurate
in �. The discussion of superselection sectors would extend
to such versions with only minor changes. As the main
interest in the present paper concerns singular potentials
rather than higher-order accurate discretizations of the
second derivative, we shall work with (6).

In summary, the restriction of the polymer dynamics
into any of its superselection sectors is mathematically
equivalent to a conventional discrete approximation to
the continuum Schrödinger equation on the corresponding
equispaced lattice. The conceptual difference is, however,
that in the polymer theory the lattice spacing is regarded as
a new fundamental scale.

III. THE RADIAL COULOMB PROBLEM ON A
LATTICE

Reduction of Schrödinger’s equation with the Coulomb
potential to the spherically symmetric (l � 0) sector yields
the radial Hamiltonian operator

 Ĥ rad � �
d2

dr2 �
1

r
; (11)

acting in the Hilbert space of square-integrable functions
on �0;1� in the measure dr [17]. (For numerical conve-
nience, the radial coordinate r has been chosen as twice the
Rydberg radial coordinate.) Ĥrad has a one-parameter fam-
ily of self-adjoint extensions, each characterized by a
boundary condition at r! 0 [18]. The conventional choice
for the self-adjoint extension is to assume the three-
dimensional eigenfunctions in L2�R

3; d3x� to be bounded
at the origin: in terms of the rescaled wave functions on
which Ĥrad acts, this means that the wave function vanishes
at r! 0 [17]. The spectrum then consists of the positive
continuum and the negative discrete eigenvalues

 �n � �
1

4n2 ; n � 1; 2; . . . : (12)

We shall return to the other possible choices of the self-
adjointness boundary condition in Sec. V.

To introduce a polymer counterpart of Ĥrad along the
lines of (6), we need to address the positivity of r, the
boundary condition at r � 0, and the singularity of the
potential at r! 0. Suppressing the singularity issue for the
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moment, the first two issues can be solved by extending r
to negative values: denoting this extended coordinate by
x 2 R, and assuming that the discretized potential is sym-
metric under the reflection x � �x, we require the states
to be antisymmetric under x � �x. In the two superselec-
tion sectors in which the lattice points are at, respectively,
xn � n� and xn � �n�

1
2��, n 2 Z, this antisymmetry

condition just chooses the antisymmetric states. The re-
maining superselection sectors are pairwise coupled by the
antisymmetry condition. However, since the potential is by
assumption symmetric under x � �x, the energy eigen-
values can be found within each sector without using an
antisymmetry condition, and the antisymmetric eigenstates
are then obtained by just taking appropriate linear
combinations.

Let us return now to the singularity of the potential at
x � 0. Although this issue only arises in the single super-
selection sector that has a lattice point at x � 0, we wish to
give a prescription that handles all the superselection sec-
tors in a unified manner. Let xn denote the lattice points.
Since

 

sgn�x�������
jxj

p � 2
d�

������
jxj

p
�

dx
; (13)

we can represent �sgn�x��=�
������
jxj

p
� by a finite-difference

version of the derivative,

 

sgn�xn���������
jxnj

p !
1

�
�
�������������
jxn�1j

q
�

�������������
jxn�1j

q
�: (14)

Taking the square, this leads to the lattice potential

 �
1

jxnj
! �

1

�2 �
�������������
jxn�1j

q
�

�������������
jxn�1j

q
�2; (15)

which is well defined even for xn � 0. The resulting
Hamiltonian operator can be written in terms of the fun-
damental translation and multiplication operators as
 

Ĥ �
1

�2 �2� Û� � Û
y
�� �

1

�2 �Û�

������
jxj

p
Ûy� � Û

y
�

������
jxj

p
Û��

2

�
1

�2 �2� Û� � Û
y
�� �

1

�2 �Û
y
��Û�;

������
jxj

p
�

� Û��Û
y
�;

������
jxj

p
��2; (16)

and its action on the basis state j�i is
 

Ĥj�i �
1

�2 �2j�i � j�� �i � j�� �i�

�
1

�2 �
�����������������
j�� �j

q
�

�����������������
j�� �j

q
�2j�i: (17)

The potential term in the last form of (16) could have
been arrived at by considering a phase space version of the

identity (13), namely

 

sgn�x�������
jxj

p �
2

i�
e�i�pf

������
jxj

p
; ei�pg; (18)

where x and p are canonically conjugate variables. This
would be the route that led to Thiemann’s regularization of
inverse triad operators in LQG [5]. In the present context,
we have arrived at (16) simply by representing a derivative
by a finite difference on a lattice. A comparison of the
Coulomb potential and its lattice regulated version is
shown in Fig. 1 for � � 0:1. There is a striking repulsive
modification near x � 0, a result which in its quantum
gravity incarnation leads to a bounded curvature at the
Planck scale [8].

IV. SPECTRUM

Let us focus now on the superselection sector with the
lattice points xn � n�, � 2 Z. As this is the sector in
which resolving the singularity at x � 0 is necessary, we
expect it will provide the most interesting test of the
resolution proposal (15).

We look for energy eigenstates in the form
P
ncnjn�i,

where the coefficients cn are subject to the normalizability
condition

P
njcnj

2 <1 and the antisymmetry condition
cn � �c�n. The energy eigenvalue equation with eigen-
value � reads

 Ĥ
X
n

cnjn�i � �
X
n

cnjn�i: (19)

It reduces to the recursion relation

 cn�2� �fn � �
2�� � cn�1 � cn�1; (20)

where

0

−4

−8

−12

−16

−20

x

−28

−24

1.00.80.60.40.20.0

FIG. 1. The solid line is the Coulomb potential and the dashed
line is the lattice regularized potential (17) for � � 0:1.
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 fn � �
���������������
jn� 1j

p
�

���������������
jn� 1j

p
�2: (21)

Suppose from now on that � < 0. The asymptotic form
of the recursion relation (20) as n! 1 is

 cn�2� �2�� � cn�1 � cn�1: (22)

It has the linearly independent solutions

 cn �
�

1�
1

2
�2��

��������������������������������������
1�

1

2
�2�

�
2
� 1

s �
	n
: (23)

It follows [19] that the exact recursion relation (20) has
only one linearly independent solution that does not grow
exponentially as n! 1, and this solution has the asymp-
totic form (23) with the lower sign, and is hence exponen-
tially decreasing in n. We use this observation to set up a
shooting method for a numerical computation of the eige-
nenergies. We start at an initial n0 
 1=�����, in which
regime the asymptotic recursion relation (22) holds, com-
pute cn0�1 using (23), and then compute c0 using the exact
recurrence relation (20). Because of the antisymmetry
condition cn � �c�n, the eigenenergies are those for

8

10−5

14

0

6

k

−2

−6

−8

16

32

c0

12

10

2

4

−4

FIG. 3. The coefficient c0 as a function of k � 1=
����������
�4�
p

for
1:98 � k � 3:2, with � � 0:01. The zeroes are near k � 2 and
k � 3.

−6

−1

−4

1

−7

c0

−5

−8

0

1

−2

k
2

−3

2

10−3

FIG. 2. The coefficient c0 as a function of k � 1=
����������
�4�
p

for
0:98 � k � 2:2, with � � 0:01. The zeroes are near k � 1 and
k � 2.

0.30.250.20.15

ε

−0.27

0.1

−0.29

−0.31

0.050.0

−0.24

−0.25

−0.26

−0.28

−0.3

−0.32

λ

FIG. 4. The lowest eigenenergy as a function of � for 0:005 �
� � 0:3. The vertical error bar of each point is 10�4.
Convergence to � � �0:25 is apparent as �! 0.

0.30.250.20.15

λ

10−2

−6.3

−6.5

−6.9

0.10.050.0

ε

−6.2

−6.4

−6.6

−6.7

−6.8

−7.0

FIG. 5. The second-lowest eigenenergy as a function of � for
0:005 � � � 0:3. The vertical error bar of each point is 5�
10�5. Convergence to � � �0:0625 is apparent as �! 0.
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which c0 � 0. The accuracy of the method is monitored by
increasing the value of n0 until the results no longer change
to the desired accuracy.

When � � 0:1, we find that the lowest 14 eigenvalues
are such that the quantity k � 1=

����������
�4�
p

is a few percent
below the lowest 14 positive integers, being thus a good
approximation to the continuum spectrum (12). For the
higher eigenvalues the numerics becomes slow, and we do
not have an estimate of when k starts to differ significantly
from integers.

For smaller � the numerics becomes slower but indicates
convergence towards the continuum eigenvalues from be-
low as �! 0. Figures 2 and 3 show plots of c0 as a
function of k for � � 0:01: within the resolution of the
plots, the three lowest roots are indistinguishable from k �
1, k � 2, and k � 3. Figures 4 and 5 show the lowest two
eigenenergies as functions of � for 0:005 � � � 0:3.

V. SYMMETRIC BOUNDARY CONDITION

The results in Sec. IV show that the singularity-
resolution method (16) gives good agreement with the
continuum results for the antisymmetric boundary condi-
tion. While this is the boundary condition that arises from
the conventional treatment of the three-dimensional
Coulomb problem [18], we now wish to consider the
resolution method for the �1=jxj potential on the full
real line in its own right. We must then find also the energy
eigenstates that are symmetric under x! �x.

Staying in the superselection sector in which the lattice
points are xn � n�, � 2 Z, the numerical algorithm of
Sec. IV can be adapted to the symmetric boundary condi-
tion by starting again at n0 
 1=����� but computing
now c1 and c�1. The eigenenergies are those for which
c1 � c�1.

The numerics is now considerably slower than for the
antisymmetric boundary condition. When � � 0:1, we find
that there is a ground state at � 
 �4:94, well below the
continuum hydrogen ground state, and the first 12 excited
states are such that the quantity k � 1=

����������
�4�
p

is approxi-
mately 0.2 above the lowest 12 positive integers. When �
decreases to 10�5, the lowest eigenvalue decreases and
shows no evidence of converging to a limiting value
as �! 0, whereas the higher eigenvalues appear slowly

to converge from above to �1=�4n2�, n � 1; 2; . . . .
Eigenenergies of the ground state and the first excited state
for selected values of � are shown in Table I.

The behavior of the ground state in the limit �! 0 has a
counterpart in the continuum theory. In the continuum
theory, the solutions to the eigenvalue differential equation
Ĥrad � � that do not vanish as r! 0� have a logarith-
mic singularity there, and it is not possible to single out a
boundary condition at r! 0� by a ‘‘symmetric’’ extension
to negative r. Instead, the self-adjointness boundary con-
ditions at r! 0� can be parametrized by a length scale
L 2 R [ f1g, such that the eigenenergies are the solutions
to the transcendental equation

 

1

L
� G

�
�1����������
�4�
p

�
; (24)

where

 G�z� :� ��1� z� � lnjzj � 1=�2z� (25)

and � is the digamma function [18]. The usual boundary
condition is obtained with L � 0. For all the other values
of L, the eigenenergies are shifted downwards: in the limit
L! 0�, the lowest eigenenergy tends to �1 as �1=L2,
while the higher eigenenergies tend to the L � 0 values
from above, with corrections that are proportional to L
[18]. Our symmetric boundary condition on the lattice
produces thus eigenenergies that appear at �! 0 to be in
qualitative agreement with the continuum eigenenergies at
L! 0, although the rate of convergence on the lattice is
significantly slower.

The singularity-resolution method appears therefore to
be in qualitative agreement with the continuum theory also
for the symmetric sector. The contrast between the sym-
metric sector and the antisymmetric sector shows, how-
ever, that boundary conditions on the quantum states at the
singularity have a significant effect on the spectrum even
after the singularity has been regularized.

VI. DISCUSSION

In this paper we have discussed polymer quantization in
the �1=jxj potential on the real line. We resolved the
singularity of the potential at x � 0 by representing a
derivative by its finitely differenced lattice version, by a
technique that mimicks the regularization of the inverse
triad operator in LQG [5]. Focusing on an equispaced
lattice with a lattice point at x � 0, our numerical simula-
tions indicated that the energy eigenvalues in the antisym-
metric sector converge rapidly to those of the conventional
continuum Coulomb problem as the lattice scale � goes to
zero. This is not unexpected, since antisymmetry on the
full real line corresponds to the conventional boundary
condition at the origin in the spherically symmetric
three-dimensional Coulomb problem. In contrast, for the
symmetric sector we found that the ground state eigenvalue
appears to decrease without bound as � approaches zero,

TABLE I. The energy eigenvalue as a function of � for the
ground state ��0� and the first excited state ��1� with the sym-
metric boundary condition.

� ��0 ��1

10�1 4.94 0.153
10�2 14.8 0.181
10�3 32.3 0.196
10�4 58.5 0.207
10�5 93.9 0.214
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while the eigenvalues of the excited states appear to ap-
proach the eigenvalues of the conventional Coulomb prob-
lem from above. The singularity-resolution method in the
symmetric sector thus yields dynamics that is qualitatively
similar to that in the Coulomb problem with an unconven-
tional choice of the self-adjointness boundary condition at
the origin, with � corresponding to the length scale asso-
ciated with this boundary condition.

We view these results as evidence that the singularity-
resolution method yields physically reasonable results for
the �1=jxj potential on the real axis, whether one regards
the finite-difference equation simply as a discrete approxi-
mation to the Schrödinger dynamics in L2�R� or whether
one regards the lattice scale � as a fundamental length
within polymer quantization. We emphasize that the sym-
metric and antisymmetric sectors were found to have
qualitatively different spectra, where the antisymmetric
sector produces the conventional continuum eigenvalues
in the limit of small �. This shows that even after the
singularity in the potential has been regularized, boundary
conditions that one may wish to impose at the locus of the
singularity can have a significant effect on the spectrum.

We note in passing that our singularity-resolution tech-
nique may also be of interest as a numerical technique in
the context of pure Schrödinger quantization, as an alter-
native to numerical techniques that invoke the asymptotic
form of the continuum solution near the singularity [20].
To explore this suggestion, one would need to compare the
convergence properties of our scheme, as evidenced in
Figs. 4 and 5, to the convergence properties of the match-
ing scheme of [20].

Our results may be viewed as supporting Thiemann’s
regularization of the inverse triad operator in LQG [5].
Furthermore, they suggest that a boundary condition at the
classical singularity may have a significant role also in the
loop quantum gravity context, both when evolving through

a spacelike singularity [6,21,22] and when setting bound-
ary conditions at a timelike singularity [23].

There are however at least three subtleties in this respect.
(i) We focused the numerical simulations on a regular
lattice that has a lattice point at the origin. Will the situ-
ation remain similar also on irregular lattices, and is there a
systematic control on the singularity effects when the
lattice is refined [15,16,24]? In particular, would a signifi-
cant symmetry-antisymmetry distinction emerge also on
irregular lattices? (ii) We introduced the polymer quanti-
zation after first reducing the continuum Coulomb problem
to the spherically symmetric sector. If one wanted to dis-
cuss polymer quantization corrections to the Coulomb
energy levels from a phenomenological viewpoint, the
polymer Hilbert space should presumably be introduced
already at the level of three independent spatial dimen-
sions. (iii) The polymer Hilbert space utilized was the
genuine physical Hilbert space of the system, and the
energy eigenstates were simply the normalizable solutions
to the eigenvalue difference equation in the polymer inner
product. In LQG, the polymer Hilbert space is only the
kinematical Hilbert space, and further issues may emerge
when the physical Hilbert space for solutions of the
Hamiltonian constraint is introduced [3,25,26].
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