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We study the evolution of simple cosmic string loop solutions in an inflationary universe. We show, for
the particular case of circular loops, that periodic solutions do exist in a de Sitter universe, below a critical
loop radius RcH � 1=2. On the other hand, larger loops freeze in comoving coordinates, and we explicitly
show that they can survive more e-foldings of inflation than pointlike objects. We discuss the implications
of these findings for the survival of realistic cosmic string loops during inflation and for the general
characteristics of post-inflationary cosmic string networks. We also consider the analogous solutions for
domain walls, in which case the critical radius is RcH � 2=3.
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I. INTRODUCTION

Topological defects are unavoidably formed at cosmo-
logical phase transitions [1,2]. Studying their physical
properties, evolution and cosmological consequences is
therefore mandatory for a proper understanding of the
early universe. The last three decades have seen dramatic
progress in this task (see [2] for a review), but significant
knowledge gaps still exist. The aim of the present paper is
to eliminate one of these gaps.

Defect-forming phase transitions often occur near or at
the end of inflation. Moreover, it is possible that various
stages of inflation occur, with defects being formed in
between them [3]. It is therefore important to understand
the effects of inflation on the defects, as well as to quantify
their ability to survive any inflationary periods that occur
after they form. The effects of inflation on the internal
(microscopic) structure of defects have been studied in
[4], which shows that those with thickness �H > 1=

���
2
p

get smeared by expansion, while those with smaller thick-
ness survive. Effects on macroscopic (cosmological) scales
are well known for the case of long-string networks [5,6],
but this is not so for the loop populations, despite the fact
that they are known to contain a total amount of energy
which is comparable to (if not greater than) that in the long
strings [5,7].

Here we study the effects of inflation on specific loop
solutions and consider both their microscopic and macro-
scopic evolution. We also discuss the consequences of our
findings for cosmological scenarios involving string net-
works. Incidentally, we note that loops in a flat anisotropic
universe were studied in [8], where it was shown that the
anisotropy of the background has an effect on the loop
motion; the reasons for this will become clearer in what

follows. We will also present a brief analysis of the analo-
gous solutions for domain walls. We shall assume that the
source of inflation is a perfect fluid with equation of state
p � w� (with w<�1=3) and the scale factor behaves as
a / t2=3�1�w�; if w � �1 then a / exp�Ht� with H being
constant.

II. MICROSCOPIC LOOP EVOLUTION

The world history of a Goto-Nambu cosmic string [1]
can be represented by a two-dimensional world sheet [2]
x� � x���a�, with a � 0, 1 � � 0, 1, 2, 3, obeying the
usual Goto-Nambu action. In a flat FRW universe the line
element is given by ds2 � a2����d�2 � dx2�, where a is
the scale factor, � is the conformal time, and x are con-
formal spatial coordinates. If we identify conformal and
world-sheet times and require that the string velocity be
orthogonal to the string direction (i.e. _x � x0 � 0) then the
string equations of motion take the form [2,5,9]

 

�x� 2H �1� _x2� _x �
1

�

�
x0

�

�
0
; _�� 2H _x2� � 0;

(1)

where the coordinate energy per unit length, �, is �2 �
x02=�1� _x2, H � _a=a, and dots and primes are deriva-
tives with respect to the conformal time and space
coordinates.

Now consider the evolution of a circular cosmic string
loop. Its trajectory can be described by x��; �� � q����
�sin�; cos�; 0� with 0 � � � 2�. Let us define the invari-
ant loop radius as R � jqja	, proportional to the energy of
the loop (it is also useful to define the physical radius, r �
aq) and 	 � �1� v2��1=2, with v � _q being the micro-
scopic speed of the loop. Then the microscopic string
equations of motion (1), written in terms of R, v and
physical time t, are
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dR
dt
� �1� 2v2�HR;

dv
dt
� �1� v2�

�
f�v�
R
� 2Hv

�
;

(2)

where H �H =a is the Hubble parameter and f�v� �
	sign��q�.

We start by studying the evolution of four different
initially static circular loops (with a range of initial sizes)
in a de Sitter universe (w � �1). In Fig. 1 we plot their
phase space diagrams (r=ri, v): their motion is periodic as
long as the loop is small enough compared with the Hubble
radius, that is

 riH < RcH �
1
2: (3)

This happens because if H is a constant then Eqs. (2) are
invariant with respect to the transformation v! �v, f !
�f. This symmetry of the circular loop equations of
motion implies that if the loop is able to collapse, which
is the case for ri < Rc (as in this regime the effect of
curvature dominates over the maximum Hubble damping
effect), then the loop motion will necessarily be periodic.
One can therefore say that the motion of a loop with initial
radius smaller than the critical radius given by (3) never
becomes dominated by the background cosmology.
Nevertheless, smaller loops than this critical size do get
affected by it. This can be easily seen, for example, in
Fig. 2 where we plot the loop evolution as a function of
cosmic time: the distortion of the curves caused by the very

rapid expansion of the Universe is evident. In particular the
loop period becomes larger as we increase their size,
approaching infinity when ri ! Rc.

For periodic solutions hd�lnR�=dti � 0 and conse-
quently it follows from Eq. (2) that hv2i � 1=2 if H is a
constant. Here the brackets denote a time average over one
period. This is expected since the energy density in sub-
critical periodic loops should evolve as matter (� / a�3)
assuming a negligibly small loop production from the long-
string network. Since the cosmic strings equation of state is
w 	 p=� � �2hv2i � 1�=3 then hv2i � 1=2 is just what
we need for w � 0.

There is also a stationary solution of Eqs. (2) with fixed
physical radius and velocity

 Hr � 1=
���
2
p
; _r � 0: (4)

This may appear to be static but it is only stationary—it is
a contracting loop standing still against the Hubble expan-
sion. Note that in comoving coordinates one has Hq �
1=

���
2
p

and v � _q � �1=
���
2
p

. Above we assumed the loops
to be initially static (vi � 0), which does not include this
limiting case. However, with vi � 0 and ri � Rc, our
solutions asymptote to the stationary solution. For larger
loops with ri > Rc the motion is not periodic and the loop
will freeze in comoving coordinates. Specifically, the loop
will asymptotically behave as

 q � const, R / a; v / a�1: (5)
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FIG. 1. Phase space evolution of four circular loops (with different initial sizes) in an Einstein–de Sitter universe.
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FIG. 3. Phase space diagram and time evolution of a circular loop with near-critical size in the case w � �0:5 (top) and of an
initially elliptic loop with a major to minor axis ratio of 2 (bottom). Solid and dashed lines, respectively, correspond to the loop size
and velocity, and time is in units of the initial loop length. For the elliptic loop there are two sets of curves, corresponding to
projections along the major and minor axes (respectively, x and y).
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FIG. 2. The time evolution of the loop radius and velocity, for the loops of Fig. 1. The solid and dashed lines correspond to the loop
size and velocity, respectively. Time is in units of the initial loop length.
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This behavior is similar to the corresponding scaling law
for the long-string network, discussed in [6].

The situation is more complicated if w � �1 and/or for
noncircular loops: then the loop motion will no longer be
periodic. An example can be seen in Fig. 3. Given that for
w>�1 the Hubble radius will be a growing function of
time, the de Sitter case will actually be the best possible
situation for loop survival in the absence of phantom
behavior. In all other cases, loop survival will be more
difficult and for R< Rc � 0:5H�1 � 0:75�1� w�t the
loops slowly disappear by decaying into gravitational ra-
diation. Although we only study very simple loop solu-
tions, we expect these results to approximately hold for
realistic loops chopped off by a cosmic string network.
Most of these are produced on scales smaller than the
horizon, typically at the scale of the string correlation
length if there is no significant amount of small-scale
structure (which we would expect after a few e-folds), or
even on much smaller scales if small-scale wiggles are
present. However, such very small loops will be irrelevant
as far as the ability of cosmic strings to survive an infla-
tionary era is concerned.

III. AVERAGED STRING EVOLUTION

The averaged properties of a cosmic string network can
be accurately described in the context of the velocity-
dependent one-scale (VOS) model [5,6,9]. It describes
the string dynamics in terms of two macroscopic parame-
ters, the string root-mean-squared velocity, v, and the
string correlation length, L, which is assumed to be the
same as the string curvature radius and is related to the
string energy density via � � 
=L2 (with 
 being the
string mass per unit length). We note that we will be using
the variable v to denote both the microscopic and the string
root-mean-squared velocity depending, respectively, on
whether the microscopic or the averaged cosmic string
evolution is considered.

In this context the evolution equations for these quanti-
ties have the following form [5,9]:

 

2
dL
dt
� 2HL�1� v2� � ~cv;

dv
dt
� �1� v2�

�
k�v�
L
� 2Hv

�
;

(6)

where ~c is the loop chopping efficiency and k�v� is a
function of velocity known as the momentum parameter
[6]. One can also use the model to describe the evolution of
a given cosmic string loop; circular loops are characterized
by their radius R (now an averaged quantity). In this case
the evolution equations are

 

dR
dt
� �1� 2v2�HR;

dv
dt
� �1� v2�

�
k�v�
R
� 2Hv

�
:

(7)

Note the obvious similarities with (2).
We can use this model to study the evolution of the loops

larger than Rc and compare it with the evolution of the
long-string correlation length. We solve numerically the
Eqs. (7) or (6) for given values of the equation of state w
and the initial loop size or string correlation length, which
we parametrize as RiHi � � and LiHi � �, respectively
(note that for an initially static loop Ri � ri). We expect
large loops to be conformally stretched, so the relevant
quantity to plot is �loopRai=Ria for loops of radius R, or
�longLai=Lia for the long-string correlation length, as a
function of � � a=ai. Examples can be found in Fig. 4 for
loops, and in Fig. 5 for the long strings; the solid lines
correspond to the numerical solutions.

The difference between the two results is more apparent
than real and has to do with the fact that we did not take
into account an energy loss mechanism for large loops, and
moreover R and L are not directly related to each other.
Recall that R is directly proportional to the loop’s energy
density, while L is inversely proportional to (the square
root of) the energy density of long strings in a given
volume, L2 � 
V=E. Therefore, the dynamical effect of
expansion will be reflected differently in R and L. We can
see this easily by defining an effective long-string energy
length scale that is proportional to the energy, E �

V=L2 	 
Leff . Substituting this definition in Eq. (6)
we find

 

dLeff

dt
� �1� 2v2�HLeff � ~cvNeff ; (8)

which is similar to Eq. (7) except for the loop production
term (which is now negative since loop production re-
moves energy from the long strings). We have defined
Neff � Leff=L which is the number of segments of size L
in the chosen volume. The energy density of both large
loops and long strings will eventually scale as a�2 instead
of a�3 (the case of nonrelativistic pointlike particles).
Consequently both large cosmic loops and long strings
have the ability to survive more e-foldings of inflation
than pointlike objects.

Since we know that the string motion will be damped,
we can use the VOS model prediction for the relation
between the velocity and the correlation length in this
regime, namely [5,6], v
 k0=2Hr, where k0 � 2

���
2
p
=�

is the value of the momentum parameter k�v� in the non-
relativistic limit v! 0. This can then be substituted in the
evolution equations, and the following solutions are ob-
tained:

 �2
loop � 1�

k2
0

�2�1� 3w�
��1�3w � 1�; (9)
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FIG. 5. Comparing the full [numerical, see Eqs. (6)] and approximate [analytic, see Eq. (10)] VOS model solutions for the evolution
of long strings during an inflationary epoch. These are, respectively, shown by solid and dashed lines, for each set of initial conditions.
Each panel corresponds to a different value of the equation of state parameter w, and within each one the three sets of lines correspond
to an initial long-string correlation length given by � � 0:5, 1, 5, respectively, from top to bottom.
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large loops during an inflationary epoch. These are, respectively, shown by solid and dashed lines, for each set of initial conditions.
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 �2
long � 1�

k0�k0 � ~c�

2�2�1� 3w�
��1�3w � 1�: (10)

In fact these solutions are also valid for the de Sitter case,
w � �1. The equation of state factor is negative, and
hence one always has � > 1 for long strings, and � < 1
for loops. Figures 4 and 5 also show (in dashed lines) this
solution for comparison with the numerical solution of the
full VOS model. This analytic approximation works very
well for very large loops, and it becomes less accurate for
relatively smaller ones. These loops do not have nonrela-
tivistic velocities throughout their evolution: they can be
mildly relativistic for the first few e-foldings, before they
suffer enough stretching to slow them down, in which case
the above ansatz is a good approximation in the early
stages of the evolution. On the other hand, the loop solution
(9) also breaks down when the size is very small.

IV. INTERLUDE: DOMAIN WALLS

We will now provide a brief discussion of the case of
domain wall networks. At the conceptual level the analysis
is of course entirely analogous to the case of cosmic
strings, but the different codimension of the defects will
introduce some quantitative differences, and determining
where and why they emerge is helpful in the overall under-
standing of the problem.

Thin spherical domain walls in Minkowski space have a
conserved wall invariant area given by Sw � 4�	r2, where
as before 	 	 �1� v2��1=2, v is the domain wall velocity
and r is the coordinate radius of the domain wall. This
implies that Rw � 	1=2r is a conserved wall invariant
radius—the invariant circular cosmic string loop radius
is given by Rs � 	r. Now consider the evolution of a
spherical domain wall in a flat FRW universe. Its trajectory
can be described by x��; �� � q��� ( cos� cos�,
cos� sin�, sin�)with 0 � � � 2�, 0 � � � �. Then the
microscopic wall equation of motion can be written as
 

dRw
dt
�

�
1�

3

2
v2

�
HRw;

dv
dt
� �1� v2�

�
g�v�
Rw
� 3Hv

�
;

(11)

where now g�v� � 2	1=2sign��q�. The differences be-
tween the Hubble damping terms in the string and wall
equations are related to the fact that the domain wall
momentum per unit comoving area is proportional to
a�1 in the case of an infinite planar domain wall (so that
vw	 / a

�3) while in the case of an infinite straight string it
is the momentum per unit comoving length that is propor-
tional to a�1 (so that v	 / a�2).

As for circular loops, the motion of spherical domain
walls in de Sitter space is periodic as long as the domain
wall is small compared with the Hubble radius, that is

 riH < RcH �
2
3: (12)

Again, notice that if H is a constant then Eqs. (11) are
invariant with respect to the transformation v! �v, g!
�g which implies that if the wall is able to collapse then
the wall motion will necessarily be periodic. For periodic
solutions hd�lnR�=dti � 0 and consequently hv2i � 2=3 if
H is a constant. This happens because the energy density in
subcritical periodic domain walls should evolve as matter
(with � / a�3) assuming a negligible energy transfer from
super to subcritical domain walls. The equation of state
parameter for a domain wall gas is w 	 p=� � �2=3�
hv2i and consequently hv2i � 2=3 yields w � 0.

One can similarly find a stationary solution of equations
of motion with fixed physical radius and velocity, repre-
senting a contracting domain wall standing still against the
Hubble expansion. It has the form

 Hr �
��������
3=8

p
; _r � 0; (13)

where r � aq is the physical radius, and in comoving
coordinates Hq �

��������
3=8

p
, v � _q � �

��������
2=3

p
. These are

the analogues of Eq. (4). For walls with ri > Rc the motion
is no longer periodic and the domain wall will soon be-
come frozen in comoving coordinates. Specifically, the
domain wall will asymptotically behave as

 q � const, R / a; v / a�3; (14)

and again if H is not constant and/or for nonspherical
domain walls the wall motion will not be periodic. The
de Sitter case is again the best possible context for domain
wall survival (assuming w � �1). In all other cases, do-
main wall survival will be more difficult and we expect that
domain walls with R< Rc will decay into radiation.
Finally, notice that the energy density of large domain
walls will eventually scale as a�1 instead of a�3 (the
case of nonrelativistic pointlike particles) or a�2 (the
case of long strings). Consequently cosmic domain walls
have the ability to survive more e-foldings of inflation than
pointlike objects or strings.

V. CONCLUSIONS

We studied the evolution of simple cosmic string loop
solutions during an inflationary era, showing that large
loops and long strings can survive more e-foldings of
inflation than pointlike objects. In a de Sitter universe,
circular loops below an initial invariant radius Rc �
H�1=2 (assuming vi � 0) have periodic motion, while
larger loops freeze in comoving coordinates. Realistic
small loops will simply decay into gravitational radiation
while large loops are stretched by the inflationary expan-
sion. We have also shown that loop solutions with ri � Rc
will asymptote a stationary solution with constant velocity
and invariant loop radius. These are very special loop
solutions which we expect to be uncommon even in the
context of string evolution in an inflationary era where the
small-scale structure can be significantly reduced. For non-
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circular loops or varying H, the loop motion is no longer
periodic even in the case of small loops.

Our results should provide a very good approximation to
the overall behavior of realistic loops produced by a string
network, and are also relevant for the final distribution of
cosmic strings loops nucleated during an inflationary era
which usually assumes that loops are simply stretched by
the expansion. It has been shown [3,8] that a cosmic string
network can survive up to 60 e-foldings of inflation: even
though it is pushed outside the horizon, its evolution once
inflation ends ensures that it will be back inside the horizon
in time to have observable consequences. Large loops
produced during the final stages of inflation must therefore

be included in any quantitatively realistic study of these
scenarios. A detailed analysis of these issues is left for
future work.
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