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The gravitational field of supermassive black holes is able to strongly bend light rays emitted by nearby
sources. When the deflection angle exceeds �, gravitational lensing can be analytically approximated by
the so-called strong deflection limit. In this paper we remove the conventional assumption of sources very
far from the black hole, considering the distance of the source as an additional parameter in the lensing
problem to be treated exactly. We find expressions for critical curves, caustics, and all lensing observables
valid for any position of the source up to the horizon. After analyzing the spherically symmetric case we
focus on the Kerr black hole, for which we present an analytical 3-dimensional description of the higher
order caustic tubes.
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I. INTRODUCTION

Black holes have always attracted the interest of all
physicists who hope to see general relativity at work in a
completely nonperturbative regime, outside any post-
Newtonian expansion. Since most of the information we
receive from black holes and their surroundings is in the
form of electromagnetic waves, one of the fundamental
problems to be faced is the propagation of such waves in a
black hole spacetime. The situation can be possibly com-
plicated by an accretion disk formed by neutral plasma [1].
For wavelengths at which observations are typically led,
the geometrical optics approximation provides a very ro-
bust description for the propagation of the light rays,
defined as the lines orthogonal to the wave fronts. In all
situations in which the plasma physics has little effect on
the rays trajectories, the light rays simply follow null geo-
desics. Then all questions that involve the propagation of
an electromagnetic signal require integration of the null
geodesics equation. In the case of the Kerr metric, the null
geodesics have been expressed by Carter in terms of first
integrals through the separation of the Hamilton-Jacobi
equation [2]. Then, the integrals involved in these geo-
desics can be solved in terms of elliptic functions (see e.g.
[3,4]). Although these analytical solutions are not particu-
larly illuminating by themselves, they can be successfully
employed to build fast and accurate numerical codes [3–
6], by which one can get particular answers, such as the
shape of the iron K-line or the appearance of the accretion
flow into the black hole in a future hypothetical high-
resolution image [7–9].

The problem of finding the null geodesics connecting a
source to an observer in a curved background is usually
referred to as gravitational lensing. It has been pointed out
by many authors that in a black hole spacetime there are
infinitely many possible trajectories for the photons emit-
ted by a point-source to reach the observer [7,10–16]. For
each of these trajectories the observer will detect an inde-

pendent image of the original source. The images can be
classified according to the number of loops performed by
the corresponding photons around the black hole. One
starts from the primary and secondary image, which are
formed by photons performing no loops. These are already
present in the classical weak deflection limit of gravita-
tional lensing. Besides these, there are two infinite sequen-
ces of higher order images, formed by photons performing
one or more loops around the black hole before reaching
the observer. These images are progressively fainter and
appear closer and closer to the apparent shadow cast by the
black hole on the sky.

The higher order images contribute much less than the
primary and secondary images to the total flux and are
often completely masked in situations in which they are not
separable from the main images [17]. Therefore, the best
chances to observe higher order images are offered by a
black hole as massive and close to us as possible, so that its
apparent angular size is the largest. The natural candidate
is the black hole at the center of our Galaxy, identified with
the radio-source Sgr A�. This is believed to be a 3:6�
106M� supermassive black hole slowly accreting material
from the surrounding environment [18,19]. Its distance is
DOL � 8 kpc, so that the Schwarzschild radius RSch of this
black hole spans an angle of roughly 9 �as in our sky. A
resolution of this order of magnitude is needed to detect the
higher order images, besides the requirement of negligible
absorption in the wavelength of the emitted signal by the
surrounding material. In spite of these difficulties, the
detection of higher order images of sources around
Sgr A� should be within range of future interferometers
operating in the sub-mm range, where one expects to detect
higher order images of bright spots on the accretion disk
[9], or in the X-ray band, where low mass X-ray binaries
and other sources are active [3,20–22]. Such images would
be invaluable witnesses of the strong gravitational field
around the supermassive black hole at the center of our
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Galaxy; their direct observation would thus be of striking
importance in the confirmation of our gravitational theory.

In addition to the considerations about their importance,
higher order images can boast two advantages with respect
to lower order ones: if the black hole has non-negligible
spin, they can easily form large arcs and additional images
because their caustics have a larger angular extension
compared to the first caustic; second, they enjoy a rela-
tively much simpler analytical description.

The treatment of higher order images can take advantage
of the fact that the deflection diverges logarithmically
when the impact parameter reaches a minimum value.
Then, the higher order images can be obtained by a sim-
plified lens equation where the deflection terms are re-
placed by the first terms of their expansions in terms of
the impact parameter. This procedure is analogous to the
weak deflection limit but sets its starting point in the
opposite regime and is thus conventionally called strong
deflection limit. It was firstly used by Darwin in 1959 for
the Schwarzschild black hole [10] and then revived several
times [7,12–14] until it was generalized to all spherically
symmetric black holes [23]. This method was then applied
to several interesting black hole metrics, also motivated
by string and alternative theories [24–26]. The time delay
calculation for higher order images was done in Ref. [27].
The method was recently extended to the presence of
external shear fields in a setup analogous to the Chang
and Refsdal lens [28]. The extension to the Kerr metric has
required several steps, starting from the purely equatorial
case [29] to the case of generic trajectories with equatorial
observers [21], and finally to the general case [22] (in the
latter two works, the treatment is however limited to the
second order in the black hole spin). An application to the
Kerr-Sen dilaton-axion black hole has also been performed
[30]. Recently Iyer and Petters have found an alternative
expansion parameter that significantly reduces the discrep-
ancy between the strong deflection limit and the exact
deflection formula [31]. They have also explored the next
to leading order terms in the strong deflection expansion.

The strong deflection limit allows a simple analytic
investigation of the gravitational lensing properties of
any black hole metric in a well-defined limit, in which
the results are easily comparable from one metric to an-
other. For the Kerr metric it has been able to provide the
first analytical formulas for the caustics and the critical
curves involving higher order images and for lensing of
sources near caustics. However, in the formulation used up
to now, it has just been applied to sources very far from the
black hole, so that the limit DLS � RSch has been taken in
all equations (here DLS is the distance of the source from
the black hole and RSch � 2GM=c2 is the Schwarzschild
radius of the black hole).

The purpose of this paper is to remove the limitation to
very far sources, enlarging the investigation of gravita-
tional lensing in the strong deflection limit to sources

placed at arbitrary distances from the black hole. We will
thus be able to discuss the mathematical structure of the
lensing problem and all the lensing observables takingDLS
as an additional parameter. We will show that the strong
deflection limit is well-defined even for sources inside the
photon sphere, so that our discussion can be safely pushed
up to sources lying just outside the horizon of the black
hole. Similarly, in the Kerr metric we will be able to
describe the caustic hypersurface from infinite radial dis-
tance up to the horizon.

This paper is structured as follows. Section II contains
the new outline of the strong deflection limit for spherically
symmetric black holes with arbitrary source position; it
analyzes the lens equation and observables and discusses
the Schwarzschild metric as a simple example. Section III
contains the extension of Kerr black hole lensing to arbi-
trary source distances, with some details moved to the
appendix. Section IV contains the conclusions.

II. SPHERICALLY SYMMETRIC BLACK HOLES

In this section we shall present an updated version of the
method outlined in Ref. [23]. Besides including the finite-
ness of source and observer distances from the black hole,
we also make some more slight refinements that allow
further generalization of the method and more physical
insight. We stress the importance of the study of spheri-
cally symmetric black holes as propaedeutic to the inves-
tigation of the Kerr metric, to be tackled in the next section.

As in Ref. [23], we start from three basic assumptions on
the spacetime metric:

(a) The spacetime is stationary and spherically symmet-
ric, so that the line element can be written in the
form
 

ds2 � A�r�dt2 � B�r�dr2 � C�r��d#2 	 sin2#d�2�:

(1)

(b) We assume that our metric is asymptotically flat, so
that for r! 1 we have

 A�r� ! 1; B�r� ! 1; C�r� ! r2: (2)

(c) Furthermore, we assume that the function C�r�=A�r�
has one minimum at rm > 0, corresponding to the
radius of the photon sphere rm [32].

In some gravitational theories, the photons do not follow
geodesics of the background geometry, but the self-
interaction makes them follow geodesics with respect to
some effective metric [25]. These particular cases can fit
into our treatment, provided that one uses the effective
metric felt by the photons. Assumption (b) can be gener-
alized to spacetimes that are asymptotically conformal to
flat, thanks to the conformal invariance of null geodesics.
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In this way one can include e.g. black holes with a cosmo-
logical constant [26].

Let us give a closer look at assumption (c) and specifi-
cally at the function C=A. We can note that asymptotic
flatness drives the function C=A to approach r2 at very
large r. Moreover, in any metric admitting a static limit rs,
such that A�rs� � 0, the function C=A diverges at rs. So, by
continuity it must have at least one minimum greater than
rs. As a useful reference, in Fig. 1, we plot the function
C=A for the Schwarzschild spacetime, where it assumes
the form r3=�r� RSch�. Following Ref. [32], all stationary
points of C=A are technically photon spheres. However,
maxima are not significant for gravitational lensing, since
they are only accessible to locally emitted photons. We are
actually interested in minima of C=A, since they give rise
to logarithmic divergences in the deflection angle, as it will
be clear later. Although it is relatively easy to find metrics
which also develop a maximum in C=A (e.g. Reissner-
Nordström with superextremal charge), it seems difficult
to imagine a metric developing a second minimum. Such a
metric would require a quite exotic source to be sustained
as a viable solution of gravitational equations. Through
assumption (c), we are discarding these too problematic
spacetimes and stick to more reasonable metrics with only
one minimum for C=A.

Now let us start the calculation of the photon deflection.
The spherical symmetry allows us to choose the equatorial
plane as the plane where the entire motion of the photon
takes place, so that # � �=2 and _# � 0, where the dot
denotes derivative with respect to the affine parameter.

The dynamics of the photon can be derived from the
Lagrangian (see e.g. [33] for a complete discussion of null
geodesics in Schwarzschild and Kerr spacetimes)

 L � �1
2g�� _x� _x�: (3)

The coordinates t and � are cyclic so that their conjugate
momenta are constants of motion. They can be identified
with the specific energy E and angular momentum J

 E � A�r� _t (4)

 J � C�r� _�: (5)

We can choose the orientation of the polar axis so that J >
0.

The last constant of motion comes from the fact that the
photon moves along null geodesics of the metric (1) so that
g�� _x� _x� � 0. From this equation, we derive the expres-
sion of _r:

 _r � 

E�������
BC
p

����������������
C
A
�
J2

E2

s
: (6)

The angle formed by the spatial components of the
photon momentum pi � � _r; _�� with a normalized vector
tangent to a sphere centered on the black hole ti �
�0; 1=

����
C
p
� is

 # � arccos
�gijtipj

jpjjtj
� arccos

�
J
E

����
A
C

s �
: (7)

So, in any point of the photon trajectory, the knowledge
of the value of the combination

 u �
J
E

(8)

allows us to calculate the angles formed by the photon with
respect to the radial and tangent directions. The photon
moves radially if u � 0 and tangentially in points such that
u �

����������
C=A

p
. It is also easy to prove that for those photons

reaching the asymptotic flat region, this quantity equals the
impact parameter, defined as the distance between the
black hole and the asymptotic trajectory followed by the
photon. On the basis of its immediate connection with the
observed direction of the photon, we will eliminate J in
favor of u, where possible.

Inversion of the radial motion can occur only at the
points that make the argument of the square root vanish
in Eq. (6), which correspond to points of instantaneous
tangential motion by virtue of Eq. (7). However,
assumption (c) states that the function C=A has a single
minimum at rm. So, a quick look at Fig. 1 convinces that
the equation

 

C�r0�

A�r0�
� u2; (9)

has real roots only if u > um, with

 um �

�������
Cm
Am

s
; (10)

r rm
r

um
2

C A

s

/

FIG. 1. The function C�r�=A�r� plotted for the Schwarzschild
metric (A � 1� RSch=r, C � r2). In this case the static limit is
rs � RSch and the photon sphere radius is rm � 1:5RSch. The
light-gray region is forbidden because it corresponds to imagi-
nary _r. The dark-gray region lies below the horizon of the black
hole and is uninteresting for gravitational lensing.

STRONG DEFLECTION LIMIT OF BLACK HOLE . . . PHYSICAL REVIEW D 76, 083008 (2007)

083008-3



where we have introduced the short notation Am � A�rm�
and similarly for B and C.

At this point it is convenient to distinguish the case
DLS > rm (source outside the photon sphere) from the
case DLS < rm (source inside the photon sphere). We shall
finally find that they both lead to the same expression for
the deflection of a photon in the strong deflection limit,
given by Eq. (51). The next two subsections deal with the
details of the calculations in the two mentioned cases.

A. Source outside the photon sphere

Let us analyze all possibilities for the radial motion of a
photon emitted by a source outside the photon sphere.

Some photons will leave the source with positive _r.
Since the photons are emitted at DLS > rm, these photons
never meet inversion points and run towards the asymptotic
region without experiencing any effective deflection by the
black hole. If DOL > DLS some of them reach the observer
and give rise to the primary image, which is not the subject
of our analysis anyway.

Some other photons leave the source with negative _r. If
DOL < DLS, there is still the possibility that some of them
can reach the observer without inverting their motion and
form the primary image. But some other photons do not
meet the observer and run towards the black hole. The
photons with u < um will inexorably sink into the black
hole, since Eq. (9) will admit no real roots. If u > um, the
photons invert their motion at the largest root of Eq. (9),
which we indicate by r0 and identify with the closest
approach distance. After the inversion in the radial motion,
these photons go back towards the asymptotic region and
eventually reach the observer, giving rise to the secondary
and higher order images.

All these considerations can be summarized by saying
that light rays shot at too small impact parameters are
swallowed by the black hole, whereas those shot at larger
impact parameters are just deflected, the limiting value of u
being um. Our objective is to quantify the deflection of
these photons as a function of u.

The azimuthal shift of the photon is

 �� �
Z �f

�i

d� �
Z r0

DLS

_�
_r
dr	

Z DOL

r0

_�
_r
dr; (11)

where we have separated the motion of the photon into
approach phase (with r running from DLS to the inversion
point r0) and departure phase (with r running from r0 to
DOL). In the first integral we use the expression for _r with
the minus sign, in the second integral we use the expression
with the plus sign. Using Eqs. (5) and (6), and reversing the
extrema in the first integral, we have

 �� � ��S 	��O (12)

 ��i �
Z DLi

r0

u

����
B
C

s �
C
A
� u2

�
�1=2

dr; (13)

with the short notation i � O, S and DLi � DOL, DLS.
Note that the integrand diverges at r0, which is defined

as the largest root of the last factor. In order to study the
character of the divergence, it is opportune to perform a
detailed analysis of the function

 R�r; u� �
C�r�
A�r�

� u2; (14)

which governs the divergence of the integrand in the lower
extremum. From the previous discussion, we know that
R�r; u� has a minimum at rm for any fixed value of u; it
vanishes at �rm; um� by the definition of um; it vanishes at
�r0; u� by the definition of r0. These properties can be
formalized by the equations

 

@R
@r
�rm; um� � 0 (15)

 R�rm; um� � 0 (16)

 R�r0; u� � 0: (17)

Since we are interested in those trajectories whose in-
version point is very close to the minimum rm, we define a
parameter � by the equation

 r0 � rm�1	 ��: (18)

Correspondingly, also the impact parameter must be very
close to the minimum. We thus define the parameter � by
the equation

 u � um�1	 ��: (19)

Then, inserting (18) and (19) into Eq. (17) and expand-
ing to the lowest order in � and �, we have
 

0 � R�rm; um� 	
@R
@r
�rm; um�rm�	

1

2

@2R

@r2 �rm; um�r
2
m�2

	
@R
@u
�rm; um�um�: (20)

The first two terms vanish because of Eqs. (15) and (16)
and we are left with a simple relation between �2 and �,
which tells us how much the inversion point r0 differs from
the photon sphere radius rm, when we increase the impact
parameter of the photon from the minimum value um to u.
Given the form of R�r; u� it simply reads

 � �
�m
2u2

m
�2; (21)

with

 �m �
1

2

@2R

@r2 �rm; um�r
2
m �

1

2
r2
m
C00mAm � A00mCm

A2
m

; (22)
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where the prime denotes derivative with respect to the
argument and the subscript m means that the result must
be evaluated at rm as usual. Thus we obtain that � is of the
same order as �2.

Let us analyze the behavior of R�r; u� when r is very
close to r0. We introduce the parametrization

 r �
r0

1� �
(23)

with 0 � �< 1, and study R�r���; u� for small values of
�. Expanding to the second order in �, �, and first order in
�, we find
 

R��;u� ’ R�rm;um�	 rm
@R
@r
�rm;um���	�	��	�2�

	
1

2
r2
m
@2R

@r2 �rm;um���	��
2	

@R
@u
�rm;um�um�:

(24)

Again, the first two terms vanish because of Eqs. (15) and
(16). Moreover, the �-term cancels with the remaining
�2-term because of Eq. (20). The behavior of R��; u� for
small � is thus

 R��; u� � �m�2��	 �2� 	 o��2�: (25)

Now that we have found the dominant terms in R��; u�
for � close to 0, which corresponds to r close to r0, we can
return to the integral in Eq. (13). Changing the integration
variable from r to �, the integration ranges become 
0; �i�,
where �i � 1� r0=DLi. Each integral assumes the form

 ��i �
Z �i

0
u

�����������
B���
C���

s

R��; u���1=2 r0

�1� ��2
d�: (26)

Now we add and subtract a term containing the divergence
of the integrand at small values of �. We then separate the
integral into two parts:

 ��i � ID 	 IR (27)

 ID �
Z �i

0

um�������
�m
p

�������
Bm
Cm

s
rm���������������������

2��	 �2
p d� (28)

 

IR �
Z �i

0

�
u

�����������
B���
C���

s

R��; u���1=2 r0

�1� ��2

�
um�������
�m
p

�������
Bm
Cm

s
rm���������������������

2��	 �2
p �

d�: (29)

Of course, the sum of the two integrals ID and IR is just
the original integral (26), but now the first integral is
elementary and reads

 ID � rm

�������������
Bm
Am�m

s
log
�i 	 �	

��������������������������
�i��i 	 2��

p
�

; (30)

The divergence for �! 0 appears explicitly in ID, while IR
is the integral of a regular function and does not diverge
any more for �! 0. Figure 2 illustrates an interesting
comparison between the original integrand of Eq. (26)
and the integrand of ID in Eq. (28) taking the special
case of Schwarzschild metric as an example. Although
the integrand of ID is a drastically simplified form of the
original one which approximates it for� very close to zero,
it turns out to be a very good approximation in the whole
range of �. Only for � close to 1 we see a sensible
difference. Such difference is stored in the integrand of
IR. As � tends to zero, the contribution by ID becomes
more and more dominant with respect to that of IR as the
divergence of the integrand becomes stiffer and stiffer.
These considerations are a good premise to the strong
deflection limit.

Until now we have done no approximation. We have just
added and subtracted some terms and made some changes
of variables. The expression (27) is still exact. The strong
deflection limit amounts to save the first dominant terms
in the expressions for ID and IR as �! 0. We have a
logarithmic divergent term in ID and then some terms
converging to constant values. We also note that the pa-
rametrization (23) tends to

 r �
rm

1� �
; (31)

when �! 0. Consequently, the integration limits �i tend
to �i � 1� rm=DLi.

After the truncation of the expansion in �, we have

 ��i � a log
2�i
�
	 bi 	 o��

0�; (32)

where the coefficients a and bi are given by

0 0.2 0.4 0.6 0.8 1
η

5

10

15

20

25

30

d
φ

/d
η

FIG. 2. The plot illustrates the integrand of ��i in Eq. (26) as
a function of � for � � 0:025 (� � 0:001) in the case of
Schwarzschild black hole; the dashed line is the integrand of
ID in Eq. (28), the difference between the two curves being the
integrand of IR in Eq. (29).
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 a � rm

�������������
Bm
Am�m

s
(33)

 bi �
Z �i

0
g1���d� �

Z �i

0
Sign���g1���d� (34)

 

g1��� � um

�����������
B���
C���

s

R��; um���1=2 rm

�1� ��2

�
um�������
�m
p

�������
Bm
Cm

s
rm
j�j

; (35)

where g1��� is just the integrand of IR in the limit for �!
0, also implying u! um. The function Sign��� has been
introduced only for uniforming the expression of bi to the
corresponding terms we shall derive in Sec. II B in the case
of a source inside the photon sphere. For a source outside
the photon sphere, the variable � is always positive.
Finally, the deflection suffered by the photon is quantified
by the full azimuthal shift ��, given by

 �� � a log
4�O�S
�2 	 bO 	 bS: (36)

When the source and the observer are very far from the
black hole, it makes sense to define a deflection angle as
the difference between the azimuthal shift suffered by the
photon minus �, which represents the total azimuthal shift
of a photon travelling in a flat space without the black hole
on a rectilinear trajectory. This concept becomes ill-
defined for sources and observers that are not in the
asymptotic flat region.

The fact that source and observer are at finite distances is
encoded in the presence of �O and �S. Setting them to 1,
the deflection angle so derived coincides with the expres-
sion originally given in Ref. [23].

With the definition of �m given by Eqs. (14) and (22),
we can formulate an explicit expression for the coefficient
of the logarithmic term in terms of the metric functions

 a �

��������������������������������
2BmAm

C00mAm � CmA
00
m

s
: (37)

This coefficient is independent of the source and ob-
server positions.

B. Source inside the photon sphere

Now let us consider the case in which the source is inside
the photon sphere, but still outside the horizon. The pho-
tons leaving the source with negative _r sink into the black
hole. As for the photons leaving with positive _r, we have
two possibilities: those starting with u > um meet an in-
version point before reaching the photon sphere radius rm.
Therefore, they fall back into the black hole. The photons
with u < um meet no inversion point and escape towards

the asymptotic region. The observer will thus see the
deformed images of a source inside the photon sphere.

Recalling the relation between u and the angle formed
by the photon momentum with the tangential direction
[Eq. (7)], we can reinterpret this discussion noting that
only photons shot along the radial direction (u � 0) or
very close to the radial direction (u < um) will be able to
escape to infinity. Photons shot at larger angles with respect
to the radial direction invert their motion before crossing
the photon sphere. It is interesting to note that the angle
formed with the tangent direction by photons emitted at
DLS < rm decreases until they cross the photon sphere.
After that moment, they align more and more with the
radial direction as they move farther and farther from the
black hole.

At first sight, one may think that this situation is very
different from the one described in the previous subsection.
Actually, even in this case it is possible to define a strong
deflection limit, corresponding to photons with u just
slightly smaller than um. Let us see this in detail.

The azimuthal shift of the photon is

 �� �
Z �f

�i

d� �
Z DOL

DLS

_�
_r
dr

�
Z DOL

DLS

u

����
B
C

s

R�r; u���1=2dr (38)

with DLS < rm < DOL. Even if the function R�r; u� never
vanishes, it becomes minimum at r � rm. Cor-
respondingly, the integrand has a maximum at this point
and is largely dominated by this peak at rm if u is very close
to um. So it is convenient to revisit the analysis of the
function R�r; u�.

Now we have to keep in mind that u < um, so that the
parametrization (19) yields � < 0. As pointed out before,
the function R�r; u� has no real roots when u < um, and in
fact, Eq. (21) with � < 0 gives an imaginary value for �, so
that the inversion point r0 � rm�1	 �� is no longer a real
number. Moreover, it is again convenient to introduce the
parametrization (31), but this time extended to r < rm
corresponding to �< 0. Thus now the � variable ranges
in the interval 1� rm

rS
< � < 1.

We can now study the function R�r���; u� for small
values of � as in the previous subsection and find
 

R��; u� ’ R�rm; um� 	
@R
@r
�rm; um�rm��	 �

2�

	
1

2

@2R

@r2 �rm; um�r
2
m�

2 �
@R
@u
�rm; um�umj�j:

(39)

As usual, the first two terms vanish because of Eqs. (15)
and (16). As for the �-term, we can replace it by the
corresponding �2-term through Eq. (20). We just have to
keep in mind that now �2 < 0. The behavior of R��; u� for
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small � is thus

 R��; u� � �m���2 	 �2� 	 o��2�: (40)

Returning to the integral (38), we can change the inte-
gration variable from r to � using Eq. (31) to get

 �� �
Z �O

�S
u

�����������
B���
C���

s

R�r; u���1=2 rm

�1� ��2
d�; (41)

where the integration extrema are already in the form �i �
1� rm=DLi. Note that, since the source is inside the pho-
ton sphere, we have �S < 0.

As before, we add and subtract a term that contains the
main structure of the integrand, that is the peak at � � 0,
corresponding to r � rm. We have

 �� � ID 	 IR (42)

 ID �
Z �O

�S

um�������
�m
p

�������
Bm
Cm

s
rm����������������������

��2 	 �2
p d� (43)

 

IR �
Z �O

�S

�
u

�����������
B���
C���

s

R��; u���1=2 rm

�1� ��2

�
um�������
�m
p

�������
Bm
Cm

s
rm����������������������

��2 	 �2
p �

d�: (44)

The first integral is again elementary and reads

 ID � rm

�������������
Bm
Am�m

s
log

�����������������������
��2 	 �2

O

q
	 �O����������������������

��2 	 �2
S

q
� j�Sj

; (45)

where we have made the sign of �S explicit. The second
integral contains an integrand that is regular everywhere
for �! 0. Figure 3 illustrates a comparison between the
integrand of Eq. (41) and the integrand of ID in the
Schwarzschild case. We see that even if there is no diver-

gence for � � 0, the integrand has a very pronounced peak
that dominates the integral. The peak structure is caught by
ID, while the wings are corrected by the contribution of IR.
As �! 0, the peak grows larger and larger, dominating the
wings.

Now we make the strong deflection limit approximation,
by requiring that � and consequently �2 is small. Saving
the logarithmically divergent term and the constant terms,
we have

 �� � a log
4�O�S
�2 	 bSO 	 o��

0�; (46)

where the coefficient a is still given by Eq. (33) and bSO is

 bSO �
Z �O

�S
g1���d�; (47)

with g1��� still given by Eq. (35). It is interesting to note
that the argument of the logarithm remains positive, since
both �2 and �S are negative.

We can split the integral in Eq. (47) in two parts

 bSO � ~bS 	 ~bO (48)

 

~b S �
Z 0

�S
g1���d� �

Z �S

0
Sign���g1���d� (49)

 

~b O �
Z �O

0
g1���d� �

Z �O

0
Sign���g1���d� (50)

We observe that ~bO and ~bS have the same formal expres-
sion as bO and bS.

C. Deflection and higher order images formulas

As a result of the previous two subsections, we have a
unique expression for the photon deflection, which can be
conveniently stated in terms of �, which represents the
impact parameter shift from the minimum value [see
Eq. (19)]. By Eqs. (21) and (36) we finally get

 �� � �a log
�

�O�S
	 b	 �; (51)

where we have defined the coefficient

 b � a log
2�m
u2
m
	 bO 	 bS � �: (52)

For quick reference, � is defined in Eq. (19), um is given
by Eq. (10), �m is given by Eq. (22), a is given by Eq. (33),
�i � 1� rm=DLi; bO and bS are given by the integrals
(34), where g1��� is found in Eq. (35) and R�r; u� in
Eq. (14), having changed the integration variable from r
to � through the parametrization (31).

This expression for the total deflection of the photon is
valid for any position of observer and source. Even if we
have not explicitly considered it, time-reversal symmetry
warrants that Eq. (51) is valid even in the unrealistic case of
an observer inside the photon sphere (provided that one
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20
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40

η

d
φ

/d
η

FIG. 3. The integrand of �� in Eq. (41) as a function of � for
� � 0:025i (� � �0:001), compared to the integrand of ID in
Eq. (43) in dashed style.
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correctly relates � to the sky coordinates of an observer in a
strongly curved region). The only approximation per-
formed is that the impact parameter u is very close to the
critical value um.

The general lens equation for spherically symmetric
black holes can be simply stated as

 �O ��S � �� mod 2�: (53)

Fixing the origin of the azimuthal coordinate in such a way
that �O � � and using the expression of the total deflec-
tion in the strong deflection limit (51), we can easily solve
the lens equation and find the position of the images. In
general we have

 �n � �O�Se
��b	�S�2n��=a�; (54)

where n denotes the number of loops done by the photons
before reaching the observer and �S 2 
��;��. Of
course, the strong deflection limit becomes exact in the
limit n! 1 but is typically a very good approximation
already for n � 1, as will be shown in the next subsection.

For an observer in the asymptotic region, which is the
most physically interesting case, the angular separation
between the direction of arrival of the photon and the
direction of the black hole is simply 	 � u=DOL. So, we
have

 	 � 	m�1	 �� (55)

 	m �
um
DOL

: (56)

	m is usually called the angular radius of the shadow of the
black hole, since all images of sources outside the photon
sphere reach the observer from angles 	 > 	m and the
region within the angular radius 	m appears empty.
However, when the source is inside the photon sphere,
DLS < rm and then �S < 0. We thus have � < 0 and the
sequence of images will appear within the shadow of the
black hole, with the lowest order ones closer to the center
and the higher order ones closer and closer to the shadow
border.

The study of the Jacobian of the lens equation confirms
that the critical curves are simply given by (54) and (55)
with �S � 0 for standard lensing and �S � � for retro-
lensing. They are circles outside the shadow for sources
outside the photon sphere and inside the shadow for
sources inside the photon sphere. The caustics are always
pointlike and are located behind and in front of the source.
Altogether, the caustics cover the whole optical axis asDLS
varies from 	1 to the static limit rs.

It is interesting to take the limit of the total azimuthal
shift �� for DOL, DLS � rm and calculate the first order
in rm=DLi. Recalling that �i � 1� rm=DLi, we have

 

�� � �a log
u2
m�

2�m
�
arm
DOL

�
arm
DLS
	 2

Z 1

0
g���d�

	 g�1���O � 1� 	 g�1���S � 1� 	 o��i � 1�:

(57)

g�1� can be calculated using the asymptotic limit of all
metric functions evaluated in � that appear in its expres-
sion and taking the limit for �! 1. It is simply

 g�1� �
um
rm
� a: (58)

Summing up, we get

 ��� � � 
� 	m � �	m; (59)

where 
 is the deflection angle calculated on the asymp-
totic trajectories (DLS � DOL � 1), 	m is defined in
Eq. (56) and

 

�	 m �
um
DLS

; (60)

is the angular size of the shadow of the black hole as
measured by a distant source. The lens equation then
becomes

 ��S � 
� 	m � �	m (61)

The first correction to the lens equation with far source and
observer is thus universal and simply takes into account the
geometry of the lensing problem (compare with the dis-
cussion of the lens equation in Ref. [34]).

D. Testing the formulas in the Schwarzschild case

In this subsection, we shall specify all our general for-
mulas for black hole gravitational lensing in the case of the
simplest possible metric. This will allow us to understand
the sense, the validity and the power of the strong deflec-
tion approximation throughout the range of possible source
positions.

The Schwarzschild metric reads (with G � c � 1)

 A�r� � 1�
2M
r

(62)

 B�r� �
�
1�

2M
r

�
�1

(63)

 C�r� � r2: (64)

The minimum of the function C=A is at rm � 3M.
Correspondingly the minimum impact parameter um �����������������
Cm=Am

p
� 3

���
3
p
M as is well known [10,33].

Now let us calculate the coefficients of the deflection
formula in the strong deflection limit. As already noted
after Eq. (37), the coefficient of the logarithmic term is
independent of the source and observer positions. So,
Eq. (37) simply gives the already known value
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 a � 1: (65)

This can be expected, since the logarithmic term is a
characteristic of geodesics winding around the photon
sphere which does not depend on the start and arrival point.

The constant coefficient in the deflection formula is

 b � ��	 5 log
6� 	 bO 	 bS (66)

 bi � �2 log
�

3	

�������������������
3	

18M
DLi

s �
: (67)

Putting everything together, we have

 ��� � � � log
�

�1� 3M=DLS��1� 3M=DOL�
	 b;

(68)

which reduces to the well-known formula [10]

 
 � � log�	 log
216�2�
���
3
p
�2� � � (69)

in the limit DOL, DLS ! 1. Equation (68) is the general-
ization of Darwin’s formula (69) to sources and observers
at finite distance from the black hole, the only approxima-
tion remaining j�j � 1 (see Appendix A for a discussion
of formulas expressed in terms of alternative perturbative
parameters). In order to test our formula for the deflection
of a photon, we can use it to calculate the radius of the
critical curves.

The angular radius of the critical rings is given by
Eq. (54) with �S � 0 or �. Explicitly, for the
Schwarzschild metric we have

 	k �
3
���
3
p
M

DOL
�1	 �k� (70)

 �k �
216�2�

���
3
p
��2DLS � 3�

�
�����������
3DLS
p

	
������������������
3	DLS
p

�2
e�k�; (71)

where k is an even number in the retro-lensing case (�S �
�), and an odd number in the standard lensing case (�S �
0). The first critical curve for k � 1 is created by photons
experiencing weak deflection and is beyond the range of
validity of Eq. (70). The critical curve with k � 2 is the
first retro-lensing ring, while for k � 3 we obtain the first
higher order Einstein ring of standard lensing.

The displacement of the first relativistic Einstein ring
from the black hole shadow is shown in Fig. 4(a), where it
can be appreciated how �3 stays small throughout the range
of source distances, validating the strong deflection limit
approximation. For DLS � M, the ring radius tends to its
asymptotic value. Our analytic formula for the critical
curve nicely joins the region within the photon sphere
DLS < 3M to that outside the photon sphere DLS > 3M.
The divergent term in the deflection formula at DLS � 3M
forces � � 0, in order to keep �� finite. Since this is true

for any order k, we can conclude that all higher order
images of a source right at the photon sphere collapse
into one degenerate image appearing right at the shadow
border. As DLS < 3M, � becomes negative as expected.
This means that the sequence of Einstein rings for a source
inside the photon sphere is reversed: the brightest rings will
appear closer to the center of the shadow and the fainter
will be farther, approaching the shadow border as k grows
more and more.

The Schwarzschild metric is simple enough to allow an
exact integration of the azimuthal motion in terms of
elliptic integrals. It is thus very important and instructive
to compare the critical curve radius calculated by the
formula (51) obtained in the strong deflection limit to the
exact Einstein ring position, calculated using the exact
deflection angle. The difference between the two positions
is plotted in Fig. 4(b), where it can be appreciated that it
stays of the order �2 throughout the range ofDLS, testifying
to the accuracy of the strong deflection limit as a powerful
approximation to describe higher order images.
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FIG. 4. (a) Angular radius of the first relativistic Einstein ring
relative to the black hole shadow for a source behind the black
hole as a function of the source distance measured in
Schwarzschild radii (�3 � �	3 � 	m�=	m, 2M � 1). (b) Dif-
ference between the value of �3 calculated by the strong de-
flection limit formula and the one calculated by the exact
formula.
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The updated analysis of extreme gravitational lensing by
Schwarzschild black holes presented here can be repeated
for any kind of spherically symmetric black holes, using
the formulas derived in this section. It is interesting to
consider that some metrics could give the same lensing
observables for sources at infinity, whereas they could be
distinguished in gravitational lensing of sources at small
distances from the black hole. Therefore, the introduction
of DLS as a new parameter enriches the arena for the
comparison of different metrics.

III. KERR BLACK HOLE

In this section, we shall describe gravitational lensing of
sources placed at arbitrary distances from a spinning black
hole. With respect to the analysis of Ref. [22], the finite-
ness of DOL and DLS only intervenes in the calculation of
the radial integrals. As a consequence, the first three sec-
tions of Ref. [22], concerning the description of the un-
stable circular orbit and the shadow of the Kerr black hole,
remain unaffected. Their content is briefly reviewed in the
following subsection. The modifications in the radial in-
tegrals are reflected in the lens equation and its Jacobian.
Consequently, also the critical curves and the caustics
contain a dependence on the source position. They are
described in Sec. III B. Finally, lensing of sources near
caustics is updated in Sec. III C. Throughout this section,
we shall preserve the spirit of Ref. [22] expanding all
quantities to the second order in the black hole spin a.
The perturbative expansion is of key-importance to keep
all calculations fully analytic up to the final results. At the
same time, the second order approximation proves to be
very reliable up to values of the black hole spin a ’ 0:1, as
noted in the comparison with numerical results [21].

A. Derivation of the lens equation

The Kerr metric in Boyer-Lindquist coordinates [35] is

 ds2 �
�� a2sin2#

�2 dt2 �
�2

�
dr2 � �2d#2

�
�r2 	 a2�2 � a2�sin2#

�2 sin2#d�2

	
2arsin2#

�2 dtd� (72)

 � � r2 � r	 a2; (73)

 �2 � r2 	 a2cos2#: (74)

Distances are measured in units of the Schwarzschild
radius (2MG=c2 � 1) and a is the specific angular mo-
mentum of the black hole, running from 0 (Schwarzschild
black hole) to 1=2 (extremal Kerr black hole) in our units.

The Kerr geodesics are described in integral form by the
equations

 

Z dr����

R
p � 


Z d#�����
�
p (75)

 �O ��S � a
Z r2 	 a2 � aJ

�
����
R
p dr� a

Z dr����
R
p

	 J
Z csc2#�����

�
p d#; (76)

with

 � � Q	 a2cos2# � J2cot2# (77)

 R � r4 	 �a2 � J2 �Q�r2 	 �Q	 �J� a�2�r� a2Q:

(78)

J is the component of the angular momentum of the photon
along the spin axis and Q is the Carter integral [2], related
to the total angular momentum of the photon (we set the
specific energy E to 1 by a suitable choice of the affine
parameter).

An observer in the position �DOL; #O;�O�, defines an-
gular coordinates �	1; 	2� in the sky, such that the black
hole is in (0, 0) with its spin projected along 	2. A photon
travelling on a geodesic characterized by constants of
motion J and Q hits a distant observer from the direction

 	1 � �
J

DOL

����������������
1��2

O

q ; (79)

 	2 � 
D�1
OL

��������������������������������������������������
Q	�2

O

�
a2 �

J2

1��2
O

�s
; (80)

where �O � cos#O as usual [33].

1. Shadow of the Kerr black hole

Among all photon trajectories ending at the observer,
there is a family of trajectories that approach an unstable
circular orbit around the black hole when traced back
asymptotically in the past. This family can be parametrized
by the parameter � ranging from�1 to 1. The constants of
motion identifying the geodesics of this family are then
given by

 Jm��� �
3
���
3
p

2
�

����������������
1��2

O

q
� a�1��2

O��1	 �
2�

� a2
�

����������������
1��2

O

q
3
���
3
p 
5� 2�2 � 2�2

O�1� �
2��;

(81)
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Qm��� �
27

4

1� �1��2

O��
2�

� 3
���
3
p
a�

����������������
1��2

O

q

1	�2

O � �1��
2
O��

2�

� a2
�1	�2
O�

2 � 4�1��2
O��

2

	 3�1��2
O�

2�4�: (82)

The radius of the unstable circular orbit asymptotically
approached in the past is
 

rm �
3

2
�

2���
3
p a�

����������������
1��2

O

q
�

4

9
a2�1	�2

O�

�
4

27
���
3
p a3��5	 6�2

O�
����������������
1��2

O

q
	O�a4�: (83)

Correspondingly, a distant observer sees such photons
from the directions
 

DOL	1;m � �
3
���
3
p

2
�	 a

����������������
1��2

O

q
�1	 �2�

	 a2 �

3
���
3
p 
5� 2�2

O � 2�2�1��2
O��; (84)

 DOL	2;m � 

3
���
3
p

2

��������������
1� �2

q
� a�

��������������
1� �2

q ����������������
1��2

O

q

� a2

��������������
1� �2

p
3
���
3
p 
1	 2�2

O � 2�2�1��2
O��:

(85)

Equations (84) and (85) define a curve in the observer
sky as � varies between �1 and 1. This curve represents
the border of the shadow of the black hole, in the sense that
all photons emitted by a source outside the unstable circu-
lar orbits reach the observer from directions outside this
border. In the Schwarzschild limit, the shadow border is
simply a circle of radius 3

���
3
p
=2DOL, whereas for generic

values of the spin, the shadow satisfies the ellipse equation

 

�	1;m � 	0�
2

A2
1

	
	2

2;m

A2
2

� 1	 o�a2� (86)

with the origin shifted rightward by

 	0 �
2a

����������������
1��2

o

p
DOL

; (87)

and semiaxes given by

 A1 �
3
���
3
p

2DOL

�
1�

2

9
a2

�
(88)

 A2 �
3
���
3
p

2DOL

�
3
���
3
p

2
�

2�2
o

9
a2

�
; (89)

with ellipticity

 e � 1�
A1

A2
�

2

9
a2�1��2

o� (90)

For more details on the derivation of the parametrization
(83) and of the shadow border, see the deep and detailed
discussion in Ref. [22].

2. Strongly deflected photons

We now introduce the following parametrization of the
observer sky by

 

� 	1��; �� � 	1;m����1	 ��

	2��; �� � 	2;m����1	 ��
: (91)

One half of the sky is covered as � varies from�1 to 1 and
� varies from �1 to 	1. The double sign in 	2;m selects
which half of the sky we are covering. We are interested in
strongly deflected photons, which correspond to very small
values of �. One may regard � as the relative displacement
of the photon direction from the shadow border. As �! 0,
the photon spends more and more time close to the un-
stable circular orbit, and performs more and more loops
around the black hole before emerging.

Using Eqs. (79) and (80) we can calculate the values of J
and Q identifying the geodesics of such photons. For each
value of J andQ, we can calculate the inversion point r0 in
the radial motion examining the roots of the function
R�r; J;Q�, defined by Eq. (78). It is immediate to see that
R�r; J;Q� satisfies the properties

 

@R
@r
�rm; Jm;Qm� � 0 (92)

 R�rm; Jm;Qm� � 0 (93)

 R�r0; J; Q� � 0: (94)

Analogously to the spherically symmetric case, we can
define the parameter � by

 r0 � rm�1	 ��: (95)

� is thus the relative displacement of the inversion point
from the unstable circular orbit radius. Inserting the ex-
pression of J and Q as functions of � and � and solving
Eq. (94) for � to the lowest order in � we find that the two
parameters are related by

 � �

������
2�
3

s �
1�

2

3
���
3
p a�̂	

2

27
a2�10��2

o � 14�̂2�

�
; (96)

where we have introduced the compact notation

 �̂ � �
����������������
1��2

o

q
: (97)

So, for any photons hitting the observer from a direction
close to the shadow border, we can immediately find the
corresponding value of the inversion point in its motion
around the black hole. If the photon comes from the
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interior of the shadow (� < 0), then the inversion point
becomes complex, signaling the fact that the photon fol-
lows a geodesic without inversion points in the radial
motion.

3. From the geodesics equation to the lens equation

Now we can come to the resolution of the radial integrals
appearing in the geodesics equations (75) and (76). We
indicate them by

 I1 � 

Z dr����

R
p (98)

 I2 � 

Z r2 	 a2 � aJ

�
����
R
p dr: (99)

These integrals must be performed along the photon path
from the source to the observer. The double sign indicates
that one has to sum the contributions with different signs of
_r coherently. The task is simplified by the observation that
the function R�r; J;Q� determining the radial motion in the
Kerr metric satisfies the same properties as the function
R�r; u� determining the radial motion in spherically sym-
metric metrics [compare Eqs. (92)–(94) to Eqs. (15)–(17)].
So, we can repeat exactly the same steps of the analysis of
the function R�r; u�, with the trivial extension to the pres-
ence of two constants of motion. The integrals are then
easily solved to

 I1 � �a1 log�	 b1 	 c1�DLS� 	 c1�DOL� (100)

 I2 � �a2 log�	 b2 	 c2�DLS� 	 c2�DOL�; (101)

where the coefficients a1, b1, a2, and b2 remain the same as
those given in the appendix of Ref. [22], whereas the
explicit expressions of the new functions c1 and c2 are
shown in the Appendix B at the end of this work [Eqs. (B3)
and (B4)]. We have stored the whole dependence on the
source and observer distance in these two coefficients.
They are defined in such a way that they vanish when their
argument goes to infinity, so that the expressions for distant
sources and observers are recovered. Although we have
provided the expressions of the integrals for arbitrary ob-
server distances, we shall consider DOL � 1 from now on
for simplicity. If one is interested in studying gravitational
lensing with observers close to the black hole, it is easy to
recover the relevant formulas, since the dependence on
DLS and DOL is interchangeable, thanks to the symmetry
DLS $ DOL in Eqs. (100) and (101).

In the angular integrals

 J1 � 

Z 1�����

�
p d# (102)

 J2 � 

Z csc2#�����

�
p d# (103)

there is no dependence on the source and observer distance.
Therefore, we can safely exploit the expressions in the
appendix of Ref. [22] without any more concern.

Finally, it is convenient to replace the parameter �
(which, as we recall, represents the relative displacement
of the inversion point from the radius of the unstable
circular orbit) by a new variable

  � �2 log�	 log
�

144�7� 4
���
3
p
��2DLS � 3�

�
�����������
3DLS
p

	
������������������
3	DLS
p

�2

�
: (104)

From the physical point of view,  simply represents the
equivalent azimuthal shift of a photon deflected by a
Schwarzschild black hole.

Once all integrals are solved, we can rearrange the
integrated geodesics equations in the typical form of a
lens equation, moving the source angular coordinates on
the left-hand side and leaving everything else on the right-
hand side

 

��S � �S� ; �;�O;DOL;DLS�

�S � �S� ; �;�O;DOL;DLS�
: (105)

The lens mapping relates the source coordinates ��S;�S�
to the set of intermediate variables � ; ��, which character-
ize the photon geodesic by the amount of deflection and its
orientation in space, respectively. The sky coordinates
�	1; 	2� are related to � ; �� by Eqs. (91), (96), and (104).
The observer position and the source distance play the role
of parameters of the lens mapping.

In the following subsections we shall put in evidence the
main features of the lens mapping through the analysis of
its critical points and the discussion of gravitational lensing
near the critical points.

B. Critical curves and caustics

In order to find the critical points of the lens equation,
one has to calculate the Jacobian determinant

 detJ �
@�s

@�
@�s

@ 
�
@�s

@ 
@�s

@�
: (106)

The critical points of the lens mapping are the solutions of
the equation detJ� ; �� � 0. The critical curves are the
corresponding points in the observer sky �	1; 	2� through
Eq. (91) and the caustics are the images of these points in
the ��s;�s� space through the lens mapping. The full
procedure is straightforward and is detailed in Ref. [22].
Here we just state the updated results with the encompass-
ment of the finiteness of DLS.

1. Critical points in the � ; �� space

As mentioned before,  represents the equivalent azi-
muthal shift of a photon moving in the Schwarzschild
metric obtained turning the black hole spin off. It is thus
not surprising that the zero-order critical points are simply
given by  �0�k � k�, with k being an integer number. k is
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the number of half-loops performed by a photon in the
Schwarzschild metric. We will often refer to this integer
number as the critical curve order or caustic order. k � 1
gives the azimuthal shift of a photon emitted by a source
behind the black hole and weakly deflected by the black
hole. Such photons are not the subject of our analysis. The
first interesting case is k � 2 corresponding to photons
emitted by a source in front of the black hole and back-
scattered by the black hole (retro-lensing). Photons with
k � 3 are again emitted by a source behind the black hole,
but now the photons perform a complete loop around the
black hole before reaching the observer. Summing up, odd

critical orders are involved in gravitational lensing of a
source behind the black hole, whereas even critical orders
are involved in retro-lensing. For each kwe have a different
critical curve, which physically corresponds to the degen-
erate image of a source placed on the corresponding caus-
tic. Starting by the zero-order solution, the first and second
order correction can be found solving the Jacobian equa-
tion order by order. For each k, we have

  k��� � k�	 a �1�k ��� 	 a
2 �2�k ���; (107)

with  �1�k and  �2�k given by

  �1�k �
2�̂

���������
DLS
p

�2DLS � 3�
������������������
3	DLS
p (108)
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� f�2DLS � 3��3	DLS�
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���������
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p
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O � 3�̂2� 	 26DLS � 27

� �4DLS � 18��2
O � �18DLS � 27��̂2� � 108DLS�̂

2g: (109)

In the limit DLS ! 1 the first order correction vanishes
while the second order correction reduces to the expression
contained in the first square brackets. These correctly
reproduce the results of Ref. [22]. As � varies between
�1 and 1, we recover all critical points in the � ; �� space.

2. Critical curves

Starting from the solution of the Jacobian determinant
equation in the � ; �� space, we can construct both the
critical curves and the caustics. As for the critical curves, it
is sufficient to use Eq. (91) with � expressed by Eqs. (96)
and (104) in terms of  and put  �  k as given by
Eq. (107). In this way one gets the critical curves in the
form �	1;k���; 	2;k����. These expressions are lengthy and
are not very transparent. However, it is straightforward to
prove that they satisfy the ellipse equation at the second
order in a

 

�	1;k � 	0;k�
2

A2
1;k

	
	2

2;k

A2
1;k

� 1	 o�a2�: (110)

The center of the critical curve is shifted by the quantity

 DOL	0;k � 2a
����������������
1��2

o

q �
1�

3
�����������
3DLS
p

�k
�2DLS � 3�

������������������
3	DLS
p

�
;

(111)

which reduces to the shadow shift in the limit DLS ! 1.
For generic values of the source distance, the center of the
critical curve does not coincide with the center of the
shadow. However, the displacement is very small, since it

is proportional to �k [given in Eq. (71)], which is very
small in the strong deflection limit. We can also note that
the degeneracy between the black hole spin a and the

observer position
����������������
1��2

o

p
that was pointed out in

Ref. [22] holds even when the source is at finite distance.
Figure 5(a) shows the dependence of the shift with DLS.
For any value of the critical order k, the shift tends to the
shadow shift for large values ofDLS. The first retro-lensing
critical curve (k � 2) is the most displaced one.

The major semiaxis of the critical curve is oriented along
the projection of the spin on the observer sky. Its explicit
expression is
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p
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	 9�2DLS � 3� 	 2�2
O�2DLS 	 9��

�
; (112)

and is plotted in Fig. 5(b) as a function of the source
distance. We can appreciate that all critical curves are
external to the shadow as DLS > 3=2 and internal to it
when DLS < 3=2, as in the spherically symmetric case.
The larger the order of the critical curve, the closer the
curve is to the shadow, as �k ! 0 for k! 1.

Rather than giving the expression of the minor semiaxis,
it is instructive to examine the ellipticity of the critical
curve, defined by
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 ek � 1�
A1;k

A2;k
: (113)

Of course, A1;k can be easily derived by this expression if
one is interested in it. To the second order in a and to the

first order in �k, the ellipticity is
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: (114)

This quantity reduces to the first row when DLS ! 1,
which is the same as that given in Ref. [22] safe for the
fact that we stop here at the first order in �k in order to be
consistent with the strong deflection limit approximation.
For large values of k, �k ! 0 and the ellipticity of the
critical curves tend to the ellipticity of the shadow (90).
Figure 5(c) shows the ellipticity of the first three relativistic
critical curves as functions of the source distance. We note
that all curves are more elliptical than the shadow when
DLS is large. But for sources just slightly farther than the
unstable circular photon orbit, the ellipticity of the critical
curves equals the ellipticity of the shadow. This happens at
a value ofDLS slightly greater than 3=2 and different for all
critical curves. Below this distance, the ellipticity of the
critical curves becomes smaller than that of the shadow.
Finally, we can note that the ellipticity remains a function

of a
����������������
1��2

O

q
, thus preserving the degeneracy between the

black hole spin and its orientation relative to the line of
sight.

3. Caustics

The caustics are obtained evaluating the lens mapping in
the critical points  k given by Eq. (107). To the zero order,
the Schwarzschild caustics are recovered. They are point-
like and placed behind the black hole for k odd and in front
of the black hole for k even. As the black hole spin is turned
on, the caustics drift from the optical axis and acquire a
finite extension. Their explicit expression is

 �S � ��1�k�O 
 Rk
����������������
1��2

O

q
�1� �2�3=2; (115)

 �S � �1� k�����k �
Rk����������������

1��2
o

p �3; (116)

with the drift given by
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and the semiamplitude given by
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FIG. 5. (a) Apparent shift of the center of the critical curves
with respect to the black hole position as a function of the source
distance; from the bottom up, the curves are for k � 2, 3, 4,
respectively. (b) Major semiaxis of the critical curves with k �
2, 3, 4 (from top to bottom) as a function of the source distance.
(c) Ellipticity of the critical curves as a function of the source
distance; from the top down the curves are done for k � 2, 3, 4,
respectively. All plots are done for a � 0:1 and equatorial
observer �O � 0.
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The caustic is a four-cusped astroid with the same
angular extension along both axes, as can be explicitly
seen transforming the above expressions to coordinates
centered on the caustic (see Ref. [22]). The outstanding
feature that emerges from these expressions is that the drift
of the caustic diverges logarithmically as the source ap-
proaches the horizon. As can be seen in Fig. 6(a), the drift
is always negative (clockwise as seen from the northern
pole of the black hole) and grows linearly with the caustic
order k. The drift tends to the asymptotic value [given by
the first row of Eq. (117)] for large values of DLS, while it
grows monothonically as DLS is decreased.

The amplitude of the caustic does not present any diver-
gences. As shown in Fig. 6(b), the amplitude increases
linearly with the caustic order and tends to the asymptotic
value [given by the first term in the square brackets in
Eq. (118)] for large DLS. As DLS is decreased up to the
horizon it grows by a fixed amount, given by

 Rk�1� � Rk�1� �
5

3
���
3
p a2�1��2

O�: (119)

Taking DLS as a parameter ranging from 1 to 	1, we
can trace the whole caustic hypersurface using Eqs. (115)
and (116). The result is shown in Fig. 7, where the caustic
appears as a tube with the transverse section having the
shape of a four-cusped astroid. At large distances the
caustic tube keeps its angular extension fixed and thus
covers a larger and larger area. Close to the horizon, the
caustic tube winds around the black hole indefinitely. A
similar picture has already been done by Rauch and
Blandford [3] by numerical techniques for the caustic of
order k � 1. Our plot is entirely based on our analytical
formulas (115) and (116), which are valid for arbitrary
order except k � 1. Our study is thus complementary to
that of Ref. [3]. The origin of the logarithmic divergence in
the caustic angular position can be traced back to the
divergence of the integral I2 in Eq. (76) [see also
Eq. (B4) in Appendix B]. Indeed, the integrand contains
a factor ��1, which diverges linearly as the integration
variable r approaches the horizon. Since DLS is the lower
bound of that integral, I2 must diverge logarithmically as
DLS tends to the horizon. The divergence of I2 has no effect
in Schwarzschild, since it appears multiplied by the black
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FIG. 6. (a) Drift of the center of the caustic from the optical
axis as a function of the source distance; from the bottom up, the
curves are for k � 2, 3, 4, respectively. (b) Semiamplitudes of
the caustics with k � 2, 3, 4 (from bottom to top) as a function of
the source distance. Both plots are done for a � 0:1 and equa-
torial observer �O � 0.

FIG. 7. A 3-dimensional view (in Boyer-Lindquist coordi-
nates) of the whole caustic tube for k � 3, a � 0:1 and equato-
rial observer �O � 0. The sphere is the horizon of the black
hole.
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hole spin, but as soon as a � 0, the logarithmic divergence
is transferred to the azimuthal shift �O ��S, so that
photons emitted by a source very close to the horizon
must perform several loops before exiting. The latter argu-
ment is completely independent of our perturbative expan-
sion in the black hole spin, proving that the logarithmic
divergence is not an artifact of our perturbative framework.
Moreover, the divergence of I2 is not even a product of the
strong deflection limit, since it is still there whatever the
values of the constants of motion J and Q. Therefore, it
seems plausible to us that even the primary caustic tube
(with k � 1), which is not included in our treatment,
should show a similar behavior, winding an infinite number
of times before entering the horizon. This seems not to be
observed in the numerical analysis by Rauch and
Blandford [3], where the primary caustic tube always
appears to perform a finite number of loops before plung-
ing into the horizon, except for the extremal case a � 0:5.
It is anyhow difficult to believe that the divergence is
compensated by any of the remaining terms in Eq. (76)
for intermediate values of a.

Our formulas (115) and (116) represent the transverse
section of the caustic tube at fixed DLS. One might be
interested in a different transverse section, e.g. the section
at fixed �S. This is particularly interesting to study the
approach of the caustic tube to the horizon, when the drift
is large and DLS is very close to 1. In this approximation,
we can find the following expression for any fixed value of
�S

 �S � ��1�k�O 
 Rk�DLS � 1�
����������������
1��2

O

q
�1� �2�3=2;

(120)
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where �� � �S ���k�DLS � 1� is the difference be-

tween the chosen value of �S and the asymptotic drift of
the caustic center. This expression is strictly valid for large
values of ��, but since the caustic drift sensibly increases
only when DLS is very close to 1, it is sufficient that ��>
0:1 in order to validate this expansion. Figure 8 shows the
transverse sections of a caustic tube obtained at different
values of ��. As the drift is increased, the caustic becomes
thinner and thinner while it approaches the horizon.

C. Gravitational lensing near caustics

The higher order images of ordinary sources like stars or
X-ray binaries are usually very faint, except for the event of
a caustic crossing. Therefore, although in principle it is
possible to analyze the lens equation in the general case, it
is much more interesting to study the gravitational lensing
of a source in the neighborhood of a caustic. This case is
certainly the most relevant for observations and is worth a
complete and detailed analysis.

1. Position of the images

The position of a source near a caustic can be expanded
in the following way

 �S � ��1�k�o 	 ��S; (122)

 �S � �1� k��� ��k 	 ��S; (123)

with ��S and ��S being of the same order of the caustic
extension Rk, thus weighing as a2 in the perturbative
expansion.

Correspondingly, the solutions of the lens equation will
be very close to the critical points. We can thus use the
following expansion for  

  � k�	  �1�k 	 � ; (124)

with � being of order a2.
Using these expansions in Eq. (105), � can be obtained

as a function of the source position and �
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FIG. 8. Transverse sections of the caustic tube for k � 3, a � 0:1 and �O � 0 obtained at �� � 0:2, 0.3, 0.4, 0.5, 0.6, 0.7 going
from the right to the left. The abscissa is the Boyer-Lindquist radial coordinate, whereas the ordinate is the pseudo-Euclidean
coordinate z � r cos#.
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whereas � is determined by the equation
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	 Rk � 0;

(126)

in which S � 
1 is inherited by the sign ambiguity of the
� ; �� parametrization (see [22] for more details about the
resolution of the sign ambiguity). Note that the lens equa-
tion formally remains the same as in the DLS � 1 case,
though the position and the extension of the caustic have
changed. The � equation (126) can be easily put in the form
of a fourth degree polynomial equation. It admits two
solutions if the source is outside the caustic and four
solutions if the source is inside the caustic. The solutions
so obtained satisfy the original equation (126) with one
definite choice of the sign S, which is then univocally
determined for each image.

Once we have the position of the image in the � ; ��
space, it is straightforward to write the position of the
image in the observer sky. To this purpose, it is important
to note that � is known through Eq. (126) to zero order
only. So, the position of the image on the observer sky is
consistently determined to zero order as

 DOL	1 � �
3
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3
p

2
��1	 �k� (127)
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1� �2

q
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with �k given by Eq. (71). The image appears on the critical
ring of order k at a position angle arcsin� and half-sky
determined by the signS.

2. Brightness of a lensed image

In typical gravitational lensing studies, the change in the
apparent brightness of the source is simply given by the
geometrical magnification, defined as the ratio of the ele-
mentary angular area of the image and the angular area of
the source as it would be seen without any gravitational
lensing.

When the source is far from the lens, this definition
makes sense, since the background metric is asymptoti-
cally flat and we can speak of a source without the lens by
simply reinterpreting the source coordinates as coordinates
in the asymptotic Minkowski metric. This procedure loses
any meaning when the source is deeply within the gravi-

tational field of the black hole. Moreover, the frequency of
the emitted photon does not coincide with the frequency
detected by the observer because of gravitational redshift.
Conservation of the photon number warrants that the quan-
tity I=�3 is conserved on a bundle of light rays, with I
being the specific intensity, defined as the energy dE cross-
ing a surface element dA pointing an angular area d� in
the time interval dt and frequency interval d�.

In order to build a simulated lensed image of a source
close to a black hole, one just needs to find the position of
the image for any point belonging to the source and deter-
mine the specific intensity observed at that point. The
position of the higher order images for any given source
position can be read from Eqs. (127) and (128), whereas
the specific intensity measured by the observer is related to
the specific intensity emitted by the source through the
relativistic relation

 Io �
�3
o

�3
e
Ie; (129)

where the redshift factor can be calculated as usual as

 

�o
�e
�

p0

u�p�
; (130)

with p� � g�� _x� being the momentum of the photon and
u� being the 4-velocity of the emitting particle. In sta-
tionary spherically symmetric and in Boyer-Lindquist co-
ordinates for the Kerr metric, @t is a Killing vector and thus
p0 is a conserved quantity (we have put it to 1 by a choice
of the affine parameter).

So, for any point of the source we can find the location of
the corresponding high order images and if any model
provides us the specific intensity of the source at that point,
we can calculate the specific intensity as seen by the
observer.

In the case in which the source is transparent, it can be
conveniently characterized by its volume emissivity
j��x�; p̂��, defined as the energy dE in the frequency
interval d�e emitted by the proper spacetime volume�������
�g
p

d4x centered on x� in a solid angle d� centered on
the direction given by the vector p̂�.

If we want the specific intensity measured by the ob-
server in the sky direction �	1; 	2�, we just have to trace
back the null geodesic reaching the observer with such a
direction and sum up the contributions given by all source
elements along this geodesic. We thus have [36]
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where dlprop is the geodesic line element as measured in the
emitter frame.

IV. CONCLUSIONS

Year after year, our knowledge on the environment
surrounding the supermassive black holes is growing at
a higher and higher rate, thanks to the surprising
development of the technology related to high resolution
observations. Angular resolutions of the order of the micro-
arcsecond are now reachable in the radio band and sooner
or later will be reached in the sub-mm and X-ray band. At
the same time, the interferometric observations in the
infrared at the Keck telescopes and at VLT are unveiling
a very rich stellar environment around the Galactic center,
which is drawing more and more interest. High resolution
observations are the premise for the discovery of possible
signatures of general relativity effects from supermassive
black holes, which would open a new era in the under-
standing of gravitational physics.

Within this context, the comprehension of the propaga-
tion of photons in a strong field environment is of capital
importance. Many numerical codes partially exploiting the
analytical solutions of Kerr geodesics are available and
have been used to build simulated images of the black
holes. At the same time, analytical studies have been
developed in conjunction to conquer precious insight about
the mathematical structure of the lens mapping in this very
special gravitational lensing framework.

The strong deflection limit allows us to study gravita-
tional lensing in the extreme situation of photons traveling
very close to the unstable circular orbit around the black
hole. Such photons give rise to an infinite sequence of
additional images, which contribute to the total flux re-
ceived by the observer by a non-negligible amount (see
Ref. [6] for an estimate of their relevance). Therefore, the
study of such images is far from being a mere academic
exercise, but acquires a striking importance by the fact that
these images carry invaluable information about the strong
gravitational fields around the black hole. Whereas com-
plete numerical studies of these images are difficult be-
cause of the extreme accuracy required to follow photons
traveling around the unstable circular orbit, analytical
studies benefit from the great simplification introduced
by the strong deflection limit. Therefore, higher order
images represent a unique window where we can confront
simple analytical results from general relativity with
observations.

In this paper we have removed the traditional limitation
of the strong deflection limit to sources very far from the
black hole. We have thus analytically explored extreme
gravitational lensing of sources close to a black hole for the
first time. There is no limitation to the validity of our

results, which are applicable even to sources just outside
the horizon.

In the spherically symmetric case, we have shown that
the same formulas for the deflection of the photon can be
applied both to sources outside the photon sphere and to
sources inside the photon sphere, whose images appear
inside the so-called shadow border. We have specified
our formulas to the Schwarzschild case in order to test
the validity of the strong deflection limit throughout the
range of source distances.

For the Kerr black hole, the only modification comes in
the resolution of the radial integrals in the geodesics equa-
tions. This results in a modification of the size and shape of
the critical curves. We have obtained a complete analytical
description of the caustic tube from infinite distances up to
the horizon, showing that the caustic tube winds indefi-
nitely around the black hole because of a logarithmic
divergence in the azimuthal geodesic equation. We have
also updated the gravitational lensing of sources near a
caustic.

The formulas contained in this paper can be applied to
physically motivated models of sources around a super-
massive black hole, where they can be used to calculate the
shape and the brightness of the higher order images. We
leave this interesting task to future work, contenting our-
selves with the complete analytical derivation of all rele-
vant formulas here.
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APPENDIX A: DIFFERENT PERTURBATIVE
PARAMETERS FOR THE STRONG DEFLECTION

LIMIT

Recently Iyer and Petters [31] have rewritten Darwin’s
formula for the deflection angle of a Schwarzschild black
hole in the strong deflection limit in terms of a new
parameter b0, defined as

 b0 � 1�
um
u
: (A1)

Recalling the definition of Darwin’s perturbative parameter
� (19), we get the simple relation

 b0 �
�

1	 �
: (A2)

Of course, if we stop at the lowest order in the expan-
sion, the deflection angle can be indifferently expressed in
the equivalent forms

 
 � � log�	 log
216�2�
���
3
p
�2� � �	O��� (A3)

 � � logb0 	 log
216�2�
���
3
p
�2� � �	O�b0�: (A4)
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Both formulas are correct to lowest order, the differences
being stored in the higher order terms in the perturbative
expansions. Iyer and Petters have found that the higher
order discrepancy between these two formulas and the
exact deflection angle is significantly smaller for the b0

formula than for Darwin’s one [31]. Of course, by specify-
ing an invertible function f
��� such that f
�0� � 0 and
f0
�0� � 0, one can always define 
 � f
��� as a new
perturbative parameter. By a suitable choice of f
 one
can make the higher order corrections vanish up to an
arbitrary order n. However, this normally corresponds to
a more and more complex form of f
, which spoils the
advantages of the perturbative expansion. The choice of the
perturbative parameter is arbitrary within the mentioned
constraints on f
, but is normally driven by some physical
quantities that can be easily expressed in terms of the
perturbative parameter.

In the case of gravitational lensing in the strong deflec-
tion limit, this point can be made clearer once we construct
the formulas for the position of the images in the two
perturbative frameworks. If we use the b0 formula in the
lens equation, we trivially obtain b0n � �n for the nth
image, with �n always given by the expression (54). The
difference between the two frameworks actually emerges
from the expression of the angular position in the observer
sky 	 in terms of the new parameter, which reads

 	 �
u
DOL

� 	m�1	 �� �
	m

1� b0
: (A5)

If we plug b0n � �n directly into Eq. (A5) we have a new
formula for the position of the images

 	n �
	m

1� �n
; (A6)

which can be compared to the classical formula by Darwin

 	n � 	m�1	 �n�: (A7)

In both formulas �n is given by Eq. (54) and is just a
function of the source position, with no memory of the
perturbative framework used.

If �n is small, the two formulas are very close each other,
the difference being order �2

n and thus completely negli-
gible. If an �2

n accuracy is necessary, both formulas must be
complemented by their respective higher order terms. Then
the difference will be in the third order and so on.

On the other hand, in intermediate situations, in which
�n is not small, Eq. (A6) does significantly better than
Eq. (A7) and can be used to extend the range of validity
of the first order expansion of the strong deflection limit,
without resorting to the second order terms.

APPENDIX B: ADDITIONAL TERMS IN THE
RADIAL INTEGRALS

As anticipated in Sec. III A, the dependence on the
source and observer distances entirely comes from the
resolution of the radial integrals (98) and (99). These
integrals can be performed using the general tools of
Sec. II and then expanded to second order in the black
hole spin a. Actually, the integral I2 is already multiplied
by a in Eq. (76), so that it is sufficient to stop at the first
order in its expansion. The results are

 I1 � �a1 log�	 b1 	 c1�DLS� 	 c1�DOL� (B1)

 I2 � �a2 log�	 b2 	 c2�DLS� 	 c2�DOL�; (B2)

with the coefficients a1, b1, a2, and b2 being unchanged
with respect to the appendix of Ref. [22]. To the second
order in a, the function c1 reads

 

c1�r� �
a1

2
log

�
�2	

���
3
p
�

�����
3r
p
�

������������
3	 r
p�����

3r
p
	

������������
3	 r
p

�
	

8a�̂
���
r
p

3
���
3
p ������������

3	 r
p

�2r� 3�
	 a2
27�2r� 3�2

���
r
p
�3	 r�3=2��1

� f2�2r� 3��3	 r�
2�2r� 3��
���
r
p
�

������������
3	 r
p

�2�1� �̂2� 	 14r	 10r�̂2 � 9�1� �̂2� 	 8r�2
o� � 216r�̂2g: (B3)

To the first order in a, the function c2 is
 

c2�r� �
a2

2
log
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3
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���
r
p ������������

3	 r
p

�2r� 3���1 � 
2�2r� 3��
���
r
p
�

������������
3	 r
p

�2 	 18r� 9�: (B4)

It can be easily checked that both functions vanish as their arguments go to infinity. Moreover, if r! 3=2, the
divergence in ci is compensated by the vanishing of �. As r < 3=2, it is also easy to see that we must have �2 < 0,
analogously to the spherically symmetric case. The second logarithm in c2 diverges at r � 1. The implications of this
divergence are discussed in Sec. III B.
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