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At redshifts z * 30 neutral hydrogen gas absorbs cosmic microwave background radiation at the 21 cm
spin-flip frequency. In principle this is observable and a high-precision probe of cosmology. We calculate
the linear-theory angular-power spectrum of this signal and cross correlation between redshifts on scales
much larger than the linewidth. In addition to the well-known redshift distortion and density perturbation
sources, a full linear analysis gives additional contributions to the power spectrum. On small scales there
is a percent-level linear effect due to perturbations in the 21 cm optical depth, and perturbed recombi-
nation modifies the gas temperature perturbation evolution (and hence spin temperature and 21 cm power
spectrum). On large scales there are several post-Newtonian and velocity effects; although negligible on
small scales, these additional terms can be significant at l & 100 and can be nonzero even when there is no
background signal. We also discuss the linear effect of reionization rescattering, which damps the entire
spectrum and gives a very small polarization signal on large scales. On small scales we also model the
significant nonlinear effects of evolution and gravitational lensing. We include full results for numerical
calculation and also various approximate analytic results for the power spectrum and evolution of small-
scale perturbations.
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I. INTRODUCTION

The cosmic microwave background (CMB) anisotropies
have proved to be a valuable source of information about
the initial conditions and evolution of the universe. Most
current observations measure the CMB temperature and
polarization assuming an exactly blackbody spectrum.
However, by looking at the anisotropies as a function of
frequency vastly more information can be obtained. In
addition to the signal from secondary scattering in clusters,
in principle there is also line absorption from sources along
the line of sight. One of the most interesting of these is line
absorption due to the 21 cm spin-flip transition in neutral
hydrogen, giving a low frequency probe of the gas distri-
bution at redshifts 300 * z * 30 [1–3]. This is sensitive to
perturbations on all scales down to the Baryon Jeans’ scale,
which is orders of magnitude smaller than the photon-
damping scale that limits what can be learned directly
from the CMB temperature. The 21 cm absorption signal
therefore potentially contains a huge amount of informa-
tion about small-scale cosmological perturbations. Since
the absorption signal from redshift z is observed at wave-
length � � �1� z�21:106 cm [�1� z�� � 1420:4 MHz],
the signal can also be studied as a function of observed
frequency to give tomographic information about the per-
turbations [2,4]. Unfortunately, observations at many-
meter wavelengths are very challenging (see e.g.
Refs. [3,5]), but make a useful target for next-but-one
generation experiments.

The origin of the dark-age absorption signal is as fol-
lows. After recombination there is still a small fraction of

free electrons. Compton scattering transfers energy be-
tween CMB photons and the electrons (and hence the
gas), and hence keeps the gas temperature close to the
CMB temperature until a redshift of z� 300. At lower
redshifts, the coupling becomes ineffective and the gas
starts to cool adiabatically. Atomic collisions in the gas
drive the atomic energy levels of the gas towards equilib-
rium with the gas temperature. The spin temperature de-
fines the relative abundance of triplet and singlet hydrogen
states, and is driven by collisions towards the gas tempera-
ture. Since the gas cools faster than the CMB, the spin
temperature is below the CMB temperature, and 21 cm
CMB photons will have net absorption by the gas. At
redshifts z & 300 an absorption signal may therefore be
observable. At redshifts z & 30 atomic collisions become
very rare, and the spin temperature is driven back towards
the CMB temperature by interaction with the numerous
CMB photons. The absorption signal from the dark ages is
therefore limited to 30 & z & 300. At lower redshifts
sources of Lyman-� photons and nonlinear effects become
important, and again the spin temperature can depart from
the CMB temperature, giving a signal in absorption or
emission.

In this paper we focus on the absorption signal from z *

30 where the physics is well understood and much cleaner
than the large uncertainties currently surrounding model-
ing at lower redshifts. We calculate the linear-theory
angular-power spectrum of the 21 cm absorption as a
function of redshift, including superhorizon scales where
post-Newtonian effects may be important. We focus on the
angular-power spectrum Cl�z; z

0� as this is what is directly
observable. Many aspects of the physics may be much
clearer with a reconstruction of the 3D power spectrum*URL: http://cosmologist.info
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[6], but converting the observations into such a spectrum is
in general nontrivial especially on large scales, and also
dependent on assumptions about the cosmology. Since the
perturbations should be nearly linear at high redshifts, the
statistics should be close to Gaussian, and the angular-
power spectra should encapsulate most of the statistical
information in the observation. Our work extends that of
Refs. [2,3,7–10] by including linear terms due to gravita-
tional redshifting, all velocity affects, ionization fraction
perturbations, self-absorption, and reionization rescatter-
ing. Corrections due to these extra terms are generally
quite small, though percent-level effects will be very im-
portant if high-redshift 21 cm is ever going to fulfill its
potential for constraining cosmology. We also estimate the
effect of nonlinear evolution, which can be important on
small scales even at high redshift, and calculate the effect
due to gravitational lensing. Although we do not directly
consider z & 30 here, many of our results could easily be
adapted to lower redshifts given a model of the Lyman-�
sources and nonlinear clustering.

The CMB temperature anisotropy, sourced at z� 103,
sees superhorizon perturbations at l & 100. For a 21 cm
signal at z� 50 the horizon scale is about 10 times larger,
corresponding to an angular scale l & 10. One might there-
fore expect post-Newtonian effects to dominate at l < 10.
However the small-scale 21 cm anisotropy is sourced by
hydrogen density (and spin temperature and redshift dis-
tortion) fluctuations, which grow rapidly towards smaller
scales. The large-scale signal is therefore dominated by
fluctuations coming from much smaller scales. Since these
smaller scales are uncorrelated on large scales, this gives
an approximately white-noise 21 cm power spectrum on
large angular scales. This white-noise signal dominates
that from superhorizon scales, so the post-Newtonian cor-
rections are generally below cosmic variance. In addition
there are velocity effects, the most important of which is
the dipole in the radiation field seen by each hydrogen
atom due to its motion with respect to the CMB. This can
give non-negligible quantitative corrections to the angular-
power spectrum at l & 100.

On small scales Thomson scattering of 21 cm by the
background reionization damps the entire spectrum and
also induces a very small polarization signal. There are
also additional 21 cm perturbation sources due to pertur-
bations in the 21 cm optical depth; for example, an over-
density will have a slightly higher optical depth than the
background, leading to a few-percent suppression in the
absorption signal. Additional effects arise indirectly; in
particular, inclusion of ionization fraction perturbations is
important for the evolution of gas temperature fluctuations,
and can modify the spectrum at all angular scales by a
couple of percent.

The approach we adopt is to evolve the Boltzmann
equation for the photon distribution function sourced by
absorption of 21 cm radiation by neutral hydrogen. We

restrict our attention to a spatially flat close-to-Friedmann-
Robertson-Walker cold-dark-matter (CDM) universe. Our
results apply equally well with adiabatic or isocurvature
scalar-mode initial conditions, though we only calculate
the adiabatic mode spectra explicitly. We note in passing
that 21 cm observations are potentially an excellent way to
probe isocurvature modes, especially the compensated
CDM-baryon mode that cannot be constrained from the
CMB temperature [10,11]. We do not consider the tensor
contribution to the intensity power spectrum as the effect is
expected to be well below cosmic variance, though we do
calculate the tiny tensor-induced polarization signal. We
assume no significant particle decay or annihilations, and
assume no variation of constants or non-Gaussianity,
though these can be well constrained from their effect on
the 21 cm signal if included [12–17].

We start by deriving the Boltzmann equation for the
distribution function in linearized general relativity. The
main linear-theory result relating the observable anisotropy
on the sky to sources on the absorption surface is given in
Eq. (18). On small scales the majority of the terms are
negligible, and we give a result accurate on small scales in
Eq. (22). This contains the usual density and spin-
temperature fluctuation and redshift-distortion sources,
but with additional few-percent terms due to the nonzero
21 cm optical depth that are often neglected. In Sec. III we
then derive results for the angular-power spectrum in terms
of linear-theory transfer functions. To actually calculate
the power spectrum we need to calculate the sources, so in
Sec. IV we give results for calculating the background and
perturbed densities and temperatures. In Sec. V we de-
scribe the qualitative shape of the power spectrum, and
give approximate semianalytic results for the large- and
small-scale power spectrum. We then quantify the impor-
tance of the various effects in Sec. VI where we calculate
the 21 cm intensity power spectrum numerically. The very
small large-scale polarization signal is calculated in
Sec. VII. Since the 21 cm power spectrum probes small
scales, nonlinear evolution can in fact be important at the
many-percent level even at redshift z� 50. We give an
approximate estimate of the effect in Sec. VIII, and also
give an accurate result for the lensed power spectrum in
Sec. IX. A full nonlinear analysis is beyond the scope of
this paper, but we briefly discuss other sources of nonlinear
power in Sec. X. We finally conclude in Sec. XI. In a series
of appendices, we give approximate results for the evolu-
tion of small-scale baryon perturbations, general-gauge
results for numerical calculation, equations for the evolu-
tion of the ionization fraction perturbations, useful results
for integrating spherical Bessel functions, and third-order
perturbation theory results for the nonlinear CDM density
and velocity power spectra.

The Boltzmann approach to calculating the line emis-
sion angular-power spectrum that we consider here is
related to the angular-power spectrum of source number
counts; we discuss this in a companion paper [18].
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II. BOLTZMANN EQUATION

At high redshift, perturbations should be close to linear,
and we assume there are no sources of Lyman-� photons.
During the dark ages the atomic collision time is compa-
rable to the CMB photon interaction time, and for accurate
results the full distribution of spin and velocity states must
be accounted for [19]. To simplify our analysis we neglect
this complication, focussing on new effects that arise from
a full linear perturbation analysis when the spin tempera-
ture is independent of atomic velocity. The spin tempera-
ture during the dark ages in then governed by 21 cm
interaction with CMB photons and atomic collisions.
Since the collision rates are not known very accurately,
and the ionization fraction after recombination is some-
what uncertain, the precision of our calculation is currently
limited anyway. We also assume the background CMB
temperature is exactly blackbody, neglecting any effects
due to non-21 cm distortions, and assume that atomic
angular momenta are isotropically distributed.

We employ linearized standard general relativity, work-
ing in the conformal Newtonian gauge with metric

 ds2 � a2�����1� 2 �d�2 � �1� 2���ijdx
idxj�: (1)

Except when quoting a few results relevant for calculation
of numerical answers, we use natural units with c � 1. We
take a velocity field ua to be along @� so that u� �
a�1�1�  ���0 and u� � a�1�  ���0. This velocity field
is the zeroth element of an orthonormal tetrad which we
take to be �X0�

a � ua and Xi 	 a�1�1���@i.
Decomposing a photon wave vector ka � dxa=d� into a
direction ea and frequency k 
 u 	 �=a, we have

 

dx
d�
� �1���  �e;

d�
d�
� a�2��1�  �; (2)

where the three-vector e comprises the spatial components
of the propagation direction on the spatial triad Xi.

The number density of neutral hydrogen atoms is nHI �
n0 � n1, where the density in the ground state (degener-
acy 1) is n0, and the density in the upper triplet state
(degeneracy 3) is n1. We assume the spin temperature Ts
is dependent only on time and position, defined by
n1=n0 � 3e�T?=Ts where T? 	 hp�21=kB � 0:068 K and
�21 is the constant 21 cm frequency. In the rest frame of
the gas the net number of 21 cm photons emitted per unit
volume in proper time d	g within energy dE within solid
angle d� is
 

dn21 �
1

4

��n1 � 3n0�N � � n1�

� A10��E� E21�d	gdEd�; (3)

where E21 corresponds to the 21 cm frequency and N � is
the photon phase space density controlling stimulated
emission. The line profile ��E� E21� is defined so that

R
dE��E� E21� � 1. The spontaneous emission rate

A10 � 2
��3
21h

2
p=�3c4m2

e� � 2:869� 10�15 s�1 [20],
corresponding to a spontaneous decay time of �107 years
and CMB photon interaction time�T?=�T�A10� (about 104

years at z � 30). The form of the equation follows from
considering detailed balance in equilibrium, in which there
is no net production of photons at any temperature.

We shall only make an accurate calculation on scales
larger than the linewidth. In this approximation we model
the source emission as monochromatic, so that ��E�
E21� � ��E� E21�. The thermal linewidth corresponds
to scales with wave number of a few hundred Mpc�1

[4,19]. This unavoidability suppresses observed power on
very small scales regardless of the observational band-
width. On these scales power is also suppressed due to
significant baryon pressure at earlier times, as discussed
below. Observational bandwidth can be accounted for sim-
ply by integrating our final result over a frequency window
function.

We model the radiation field as a CMB blackbody
N P � �exp�hp�=kBT�� � 1��1 plus a term due to 21 cm
emission N f. At the temperatures of interest where T? 
T�, a good approximation is N P�� � �21� � T�=T? so
that N � � T�=T? �N f�� � �21�. Usually the photon
temperature T� is taken to be isotropic, but here we are
interested in corrections and so allow for its angular varia-
tion (e.g. due to the dipole in the rest frame of the atom).
The gas-frame temperature is given by

 T�g�� �e;x; �� � �T�����1���e;x; �� � e 
 v�x; ���; (4)

where � is the temperature perturbation and v the gas
(baryon) velocity relative to ua on the Xi triad.
Anisotropy in the radiation field may result in an aniso-
tropic distribution of the atomic triplet states, which would
significantly complicate our analysis. This will not be an
issue if atomic collisions isotropize the distribution rapidly
compared to the photon interaction time. However, during
the dark ages the collision and photon interaction times are
actually similar, so this may not be a safe assumption.
Nonetheless, because the interaction is parity invariant,
odd multipoles of the radiation field will not affect the
triplet distribution; in particular, the dominant dipole term
leaves an isotropic distribution unchanged. Higher-order
CMB anisotropies will drive an anisotropy in the triplet
distribution, however their relative amplitude is �10�4 so
their contribution is very small. Also the scattering time for
a photon from the anisotropic part of the distribution will
be longer than the collision time, so the distribution should
in any case be randomized effectively. Similar comments
apply to the effect of polarized radiation, so our approxi-
mation of an isotropic triplet distribution should be
accurate.

If the gas 4-velocity is uag the rest-frame energy is given
by E�g� � kauag � ��1� e 
 v�=a, and an interval d� along
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the photon path corresponds to a proper time d	g � uagdxa � kau
a
gd�. The Boltzmann equation for the evolution of the

distribution function f (number density of photons fd�E2dE=c3 � 2N fd��2d�=c3) due to 21 cm interaction is then
 

df
d�

��������H
�
c3E21

4
E2
21

3nHIA10

3� eT?=Ts

�
�1� eT?=Ts�

�
T�g��
T?
�
h3
p

2
f
�
� 1

�
��kau

a
g � E21�

�
3c3 �nHIA10

16
E21

�
1� �HI �

�T��1��� e 
 v� �Ts � �HI�

�Ts
�
h3
p

2

T?
�Ts
f��HI � �Ts�

�f� fg
�

� ����1� e 
 v�=a� E21�; (5)

where nHI is the number density of neutral hydrogen and we used the good approximation T?  Ts. We defined fractional
perturbations in a quantity X as �X 	 ��X�= �X and denoted background quantities by an overbar. Since the baryon pressure
is very low, and the ionization fraction in the dark ages is small, we may take �HI � �H � �b, though the baryon
perturbation �b can differ significantly from the CDM perturbation �c.

Although we do not model 21 cm emission from reionization in detail here, we do include rescattering of emission from
higher redshift by the background electron density as this affects the power spectrum from the dark ages. For the moment
we neglect polarization and discuss this later. The Thomson scattering contribution to the Boltzmann equation is then

 

df
d�

��������Thomson
� E�g�ne�T

�
3

16


Z
d ~�~e0

~f�E�g�; ~e0��1� �~e 
 ~e0�2� � f�E; e�
�

� E�g�ne�T

�
3

16


Z
d�e0f�E; e0��1� �e 
 e0�2� � e 
 v�@� �f� f�E; e�

�

�
� �ne�T
a

�
F� �@� �fe 
 v�

f2

10
� f

�
; (6)

where F and f2 are the monopole and quadrupole parts of
f. In the first line here, the tildes denote quantities in the
gas frame evaluated on the Lorentz-boosted tetrad ~X�.

The background equation does not depend on the
Thomson scattering term. Defining

 � s 	
3c3 �nHIA10

16
E2
21

� �Ts � �T�
�Ts

�
; (7)

the background equation becomes

 

@ �f
@�
� a �s���=a� E21� � _�	 �f; (8)

where the background optical depth to 21 cm is defined by

 �	��; �� 	
Z �

0
d�0

3ac3 �nHIA10

16
E2
21

h3
pT?
2 �Ts

���=a� E21�

�

�
3�2

21hpcA10 �nHI
32
kB �TsH

�
�
���� ��� 	 	����� ���:

(9)

Here � � a����E21, ��x� is the Heaviside function, and A
denotes the observation point; a subscript � denotes the
quantity is evaluated at time �� [and additionally position
xA � n̂��A � ��� for perturbed quantities along a line of
sight n̂]. The optical depth 	� is quite small, typically 1%–
4% over the epoch of most interest (see Fig. 2 below). The
time derivative is given by

 

_�	 	 a �	s���=a� E21� � 	����� ���; (10)

which defines the optical depth source �	s��� in analogy
with �s.

The background solution is then given by the integral of
Eq. (8),

 

�f��; �� �
1� e� �	

	�

�
a �s
E21H

�
�
	 �f���

1� e� �	

1� e�	�
; (11)

where H is the conformal Hubble parameter and �f��� is
the value of �f��; �� at �> ��. To first order in 	� one can
use �f��; �� � �f������� ���, however the full form given
above must be used to get results correct to higher order in
	�. Predictions for the 21 cm power spectrum are often
quoted in terms of the brightness temperature today, given
by Tb � Eobsh

3
pf=2kB. The isotropic brightness today due

to background emission is therefore

 

�T b��A; �� � �1� e
�	��

�Ts � �T�
1� z

���������
: (12)

During the dark ages, the spin temperature is below the
CMB temperature, so �Tb is negative corresponding to net
absorption.

To calculate the perturbation to the distribution function
we define the monopole source

 �s 	 �HI �
�T�

�Ts � �T�
��Ts ��T��: (13)

ANTONY LEWIS AND ANTHONY CHALLINOR PHYSICAL REVIEW D 76, 083005 (2007)

083005-4



The total perturbed Boltzmann equation then becomes
 

df
d�
� E21

�
�s

�
1� �s �

�T�
�Ts � �T�

fe 
 �v� � v� ���g
�

� �	s�f��HI ��Ts�
�f� fg�

�
����1� e 
 v�=a� E21�

�
� �ne�T
a

�
F� �@� �fe 
 v�

f2

10
� f

�
: (14)

Here �� denotes the gauge-invariant temperature anisot-
ropy sources with l � 2, and v� is the velocity (i.e. dipole)
of the photon distribution.

To solve the perturbed Boltzmann equation, we use the
time component of the geodesic equation, which reduces to
an equation for the evolution of the comoving energy along
the line of sight:

 

d�
d�
� ��

d 
d�
� �� _�� _ �; (15)

where overdots denote conformal-time partial derivatives.
We parametrize the distribution function in the Newtonian
gauge as f��;x; �; e�, in which case the Boltzmann equa-
tion becomes

 

@f
@�
� e 
 rf� �@� �f

�
_�� _ �

d 
d�

�
� a �s

�
1��s �  � e 
 v�

�T�
�Ts � �T�

fe 
 �v� � v� ���g
�
���=a� E21�

� ��HI � �Ts �  � e 
 v� _�	 �f� _�	f� e 
 v� _�	�@� �f� �@�
_�f�

� _	c

�
�@� �fe 
 v�

f2

10
� f� F

�
; (16)

where 	c is the Thomson scattering optical depth. Noting that �@� �H�1
� @�� , we have from Eq. (11)

 �@� �f��; �� � �f;ln����
1� e� �	

1� e�	�
�

�f���

H �

_�	e� �	

1� e�	�
; (17)

which defines an additional time-independent quantity �f;ln����. Substituting into the Boltzmann equation and integrating
formally along the background line of sight gives the final result:
 

�f��A;xA; �; n̂� � e�	c �f���
�

�s �  � n̂ 
 v�
�T�

�Ts � �T�
fn̂ 
 �v� � v� ���g

�
	�e�	�

H ��1� e�	��

�
�

d 
d�
� � _�� _ � � n̂ 


dv
d�

��
�
� e�	c �f;ln�����e

	c A �  � � n̂ 
 v��

� �f;ln����
Z �A

��
d�e�	c� _�� _ � � e�	c �f���

�
	�e�	�

1� e�	�
� 1

�
��HI � �Ts �  � n̂ 
 v��

�
Z �A

��
d� _	ce�	c

�
�f0 � �f;ln�����n̂ 
 v�  � �

f2

10

�
; (18)

where n̂ � �ejA and � < aAE21 (i.e. observed energy
strictly less than E21), and �f0 is the monopole perturba-
tion. We have assumed that the CMB anisotropies can be
well observed at higher frequencies, and the first-order
perturbation from last scattering subtracted off the 21 cm
map. The 21 cm brightness fluctuation calculated here is
then that of the difference map without the blackbody
contribution. We have also assumed there is no overlap
between reionization and the 21 cm absorption.

The first term in Eq. (18) is the usual monopole source,
with additional terms  � n̂ 
 v reflecting the additional
emission due to the difference between proper time in the
gas frame and the interval d� along the line of sight. Then
there is the effect from the CMB dipole seen in the gas
frame, v� � v, plus higher multipole contributions to the
temperature seen by the source, ��. The remaining terms
on the first line of Eq. (18) describe the local effect of

gravitational and Doppler redshifting on the relation be-
tween an observed redshift interval �z and the �� along
the line of sight. The main such redshift-distortion effect
comes from the radial gradient contribution to n̂ 
 �dv=d��.
The term multiplying �f;ln���� is just H��, where �� is
the perturbation to the conformal time for a fixed (gas-
frame) redshift surface; it has the usual Doppler, Sachs-
Wolfe, and integrated Sachs-Wolfe contributions familiar
from CMB studies. The first term on the third line de-
scribes the perturbation to the 21 cm optical depth: for
small 	� the term is proportional to 	�=2, corresponding to
21 cm photons on average seeing half of the perturbation
along their line of sight.

To understand the way in which reionization enters
Eq. (18), consider reionization approximated by a delta-
function visibility function at time �re with optical depth
	c. Dropping self-scattering terms (taking 	� ! 0), we
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then have

 

�f��A;xA;�; n̂� � e�	c �f���
�

�s� � n̂ 
 v�
�T�

�Ts� �T�
fn̂ 
 �v�� v����g�

1

H

�
�

d 
d�
�� _�� _ �� n̂ 


dv
d�

��
�

� e�	c �f;ln����
�
 A� �� n̂ 
 v��

Z �A

��
d�� _�� _ �

�

��1� e�	c� �f;ln����
�
 A� re� n̂ 
 vre�

Z �A

�re

d�� _�� _ �
�
��1� e�	c�

�
�f0����

1

10
f2��;e�

�
re
: (19)

The first two sets of terms are the �f without reionization
muliplied by the fraction, e�	c , of 21 cm photons that are
not rescattered. The third set contains the effective �� for
those photons that do rescatter (i.e. only the common part
that is accrued after reionization) weighted by the fraction,
1� e�	c , that scatter. Finally, the fourth terms arise from
in-scattering at reionization and represents an average of
the source functions on the electrons’ 21 cm surface. For
perturbation modes with k��re � ��� � 1, the dominant
contribution to the 21 cm monopole at reionization is
�f0���jre � �f;ln���� jre since the source terms on the elec-
trons’ 21 cm surface average to zero. Using this in Eq. (19),
we see that for such modes reionization damps the 21 cm
anisotropies by e�	c . For modes with k��re � ���  1,
reionization has essentially no effect since scattering out of
the line of sight is balanced by in-scattering. However, the
contribution from such modes (which were necessarily
outside the horizon at ��) to the 21 cm anisotropy at any
multipole l is now small since there is considerably more
power in modes with larger k (see Sec. V). The net effect is
that reionization should suppress the 21 cm anisotropies by
e�	c on all scales, unlike the CMB where there is no
suppression at large l.

On small scales (well inside the horizon) most of the
terms are completely negligible. Defining r	 	
	�e

�	�=�1� e�	�� Eq. (18) is approximated by

 

�f��A;xA; �; n̂� � e�	c �f���
�

�s �
r	
H �

n̂ 

@v
@�
� �r	 � 1�

� ��HI ��Ts�

�
�

(20)

 � e�	c �f���
�

�s �
1

H
n̂ 


@v
@�

�
�
; (21)

where � 	 �A � � is the conformal distance along the
line of sight. The result in the first line should be very

accurate on small scales. In the second line, we made the
approximation that 	� � 0, r	 � 1 to recover the standard
approximation that is only accurate to O�	�� (percent
level). Neglecting small photon perturbations, Eq. (20)
can also be written as an expression for the brightness
perturbation today

 

�Tb��A;xA; �; n̂� �
e�	c

1� z�

�
	�e�	�� �Ts � �T��

�

�
�HI ��Ts �

1

H �
n̂ 


@v
@�

�

� �1� e�	�� �Ts�Ts

�
�
: (22)

To consider the impact of the additional terms on large
scales we next derive an expression for the power spectrum
for numerical calculation.

III. ANGULAR-POWER SPECTRUM

For numerical work, one can expand into multipoles and
harmonics. We use

 

�f��;x; �; e� �
X
l�0

Z d3k

�2
�3=2
��i�l�2l� 1�

� Fl��; �;k�Pl�k̂ 
 e�eik
x

� 4

X
lm

Z d3k

�2
�3=2
��i�lFl��; �;k�

� Y�lm�k̂�Ylm�e�e
ik
x; (23)

 v i��;x� �
Z d3k

�2
�3=2
��i�vi��;k�k̂eik
x; (24)

for the ith species, and similarly for the temperature multi-
poles, giving
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Fl��A; �;k� � e�	c
�

�f���
�

�s �  �
r	 _�

H
� �r	 � 1���HI ��Ts �  �

�
�
� �f;ln���� �

�
jl�k���

� e�	c
�
r	 �f���

H
� _v�Hv� k � � �f;ln����v� �f���

�T�
�Ts � �T�

�v� � v�
�
�
j0l�k���

� r	e�	c �f���
kv�
H

j00l �k��� �
Z �A

��
d� _	ce�	c

�
�F0 � �f;ln���� �jl�k�� � �f;ln����vj0l�k��

�
F2

4
f3j00l �k�� � jl�k��g

�
� �f;ln����

Z �A

��
d�e�	c� _�� _ �jl�k��

� e�	c �f���
�T�

�Ts � �T�

X1
l0�2

�2l0 � 1��l0il
0
Pl0
�
�
i
k

d

d��

�
jl�k��� (25)

for l � 1, where a prime denotes a derivative with respect
to the argument. The �l are the angular moments of the
Fourier expansion of the CMB temperature anisotropy and
are defined analogously to Fl. The last term is small, of the
order of the l � 2 CMB temperature fluctuation. Note that
_v�Hv� k is zero in the absence of Thomson scatter-

ing or baryon pressure effects. Equation (25) can be inte-
grated over a given frequency window function
(determined by the observation) to determine the actual
observed power. If desired one can integrate by parts so
that the result depends only on jl and derivatives of the
window function and sources. We perform our numerical
calculations this way in the synchronous gauge: the equa-
tions in a general gauge are given in Appendix B.

The angular-power spectrum is given by

 Cl�z; z0� � 4

Z

d lnkP ��k�Fl�k; z�Fl�k; z0�; (26)

where P � is the power spectrum of the primordial curva-
ture perturbation � and Fl�k; z� is the distribution function
multipole transfer function to redshift z � aAE21=�� 1;
i.e. Fl�k; z� � Fl��A; E21=�1� z�;k� for unit initial curva-
ture perturbation.

To calculate the sources for the line-of-sight integral, we
need to compute the perturbations in the spin and gas
temperatures, and, for reionization, the evolution of the
low multipoles of the distribution function. We consider
these next.

IV. EVOLUTION

The evolution of the spin temperature is determined
from the evolution equation for the states of a fixed number
of atoms NHI � N0 � N1 in the gas rest frame. If we
crudely assume that recombinations are to the singlet and
triplet state in the ratio 1:3, we have
 

@N0

@	
��N0�C01� 3A10N �0��N1�C10�A10�1�N �0��

�
@xe
@	

NHI�Ne
4

; (27)

where 	 is the gas proper time, N �0 the monopole part of

N � in the gas rest-frame integrated over the line profile
(evaluated in Appendix C), and the ionization fraction is
xe 	 ne=nH 	 ne=�nHI � ne� (we are neglecting molecu-
lar hydrogen and assume all helium is neutral). Here the
collision term is C10 � �HH10 nHI � �

eH
10 ne � �

pH
10 np and

C01 � 3C10e�T?=Tg , where Tg is the gas temperature. The
rates �i10 for hydrogen-hydrogen, hydrogen-electron, and
hydrogen-proton collisional coupling are taken from
Refs. [3,21] (fit using a cubic splines and 5th order poly-
nomial in the logs), and not known to an accuracy of better
than a few percent. As shown in Fig. 1, the hydrogen-
hydrogen term dominates because of the small dark-age
ionization fraction (xe � 2� 10�4), and proton-hydrogen
rates are suppressed relative to electron-hydrogen rates by
a factor of ��me=mp�

1=2 due to the lower proton velocity,
except at low redshifts where the proton cross section is
significantly higher [21]. We include the small correction
from electron-hydrogen collisions, but neglect the proton-
hydrogen term.

At redshift z� 70 the total collisional and photon inter-
action rates are about equal, C10 � T�A10=T?, with C10 �

10�11 s�1 (corresponding to a collisional coupling time
�4000 yr). At lower redshifts the gas becomes diffuse and
collisions become less effective at coupling the spin tem-
perature to the gas temperature. Defining �s 	 1=Ts (etc.),
the evolution of the spin temperature is determined by
 

@�s
@	
�

�s
1� xe

@xe
@	
� 4���g � �s�C10

� �?�1� �s�T� � Tb0��A10�; (28)

where T� � Tb0 � T�N �0 is the (perturbed) monopole
brightness temperature. For scales large compared to the
narrow line profile, we have
 

T� � Tb0 � T� �
1

2
	̂��Ts � T��

� �T��1� �T�� �
	�
2
� �Ts � �T��

�

�
1� �s �  �

1

H

�
_��

1

3
r 
 v

��
(29)
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to first order in the small optical depth 	� 	 	�� (see
Appendix C). The quantity

 	̂ � 	
9�2

21hpcA10nHI
32
kBTsrau

a
g

(30)

is the perturbed optical depth to 21 cm, where rauag is the
volume expansion rate of the gas. Note that Ts	̂� is inde-
pendent of the (perturbed) spin temperature. Since 	� is
small, and the relevant nonperturbative equation in 	�
cannot be easily solved, we make this first-order approxi-
mation below. In the epoch before reionization the spin
temperature and ionization fraction only vary on Hubble
time scales. The coupling time is short compared to the
Hubble time, so the spin temperature is determined to very
good accuracy by equilibrium, with the left-hand side of
Eq. (28) being zero,

 Ts � T�

�C10T?=T� � A10

C10T?=Tg � A10

�

�
1

2
Ts	̂�A10

�
1

C10T?=Tg � A10
�

1

C10T?=T� � A10

�
:

(31)

The spin temperature varies between T� and Tg depending
on whether the radiation or collision terms dominate; see
Fig. 1. The second term in Eq. (31) due to the finite 21 cm
optical depth is generally very small, giving a correction to
the spin temperature of less than half a percent, and to
T� � Ts of at most about 1%. The small effect on the
brightness is shown in Fig. 2. This is smaller than the
correction due to our assumption of a single velocity-
independent spin temperature [19].

The perturbations to the spin temperature are determined
by
 

�Ts � �T� � �R� � Rg��C10 � C10�Rg�Tg � R��T��

�
1

2
	�A10C10

�Tg � �T�
T?

RgR�

�
�HI �  

�
1

H

�
_��

1

3
r 
 v

�
� �C10

� 2�T��C10R� � 1� � 2R��C10

�
�T�

�Tg � �T�
��Tg � �T��

�
; (32)

where R�1
i 	 �C10 � A10

�Ti=T?� and
 

�C10 � �HC10 �

�
d ln�HH10

d lnTg
�1� �xe��HH10

�
d ln�eH10

d lnTg
�xe�

eH
10

�
�nH�Tg

� ��eH10 � �
HH
10 � �xe �nH�xe :
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FIG. 2 (color online). The background 21 cm brightness Tb,
optical depth 	�, and �l�l� 1�Cl=2
�1=2 at l � 104 as a function
of source redshift. The dashed line shows the result for Tb
neglecting the second term in Eq. (31) due to the effect of
absorption on the ambient blackbody spectrum.
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FIG. 1 (color online). Evolution of the interaction times for H-
H, H-e, H-p, and H-photon spin-coupling processes, and how
this influences the spin temperature Ts relative to the background
CMB and gas temperatures. At high temperatures the H-H
collision time is short and collisions couple Ts to the gas
temperature Tg; at lower redshifts the gas is diffuse and CMB
photon interactions drive Ts to the CMB temperature T�. This
figure assumes purely linear evolution and no Lyman-� cou-
pling; in reality nonlinear effects are likely to change the result at
z & 30.
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The background ionization fraction �xe is taken from
RECFAST [22]. The effect of the optical depth term in
Eq. (32) is only about 1% on the angular-power spectrum.

Assuming purely Compton cooling, the background gas
temperature evolves according to [22,23]

 

_�T g � 2H �Tg � �
8a�T �� �xe

3mec�1� fHe � �xe�
� �Tg � �T��; (33)

where �T is the Thomson scattering cross section, fHe �
nHe=nH, and we have ignored the very small effect of
21 cm radiation. The perturbations evolve with
 

_�Tg � 2 _��
2

3
kv�

8a�T �� �xe
3mec�1� fHe � �xe�

��
1�

�T�
�Tg

�

�

�
4�T� �  �

�xe

1� �xe=�1� fHe�

�

�
�T�
�Tg
��Tg � �T��

�
; (34)

where we neglected helium fraction perturbations. Note
that, although the direct contribution of �xe in Eq. (32) is
small, the indirect effect on the evolution of �Tg can be
significant. The equations for approximately calculating
�xe are given in Appendix D. An overdensity has positive
�Tg but recombines more fully than the background and
hence has negative �xe ; the additional effect of the ioniza-
tion fraction perturbation is therefore to reduce the cou-
pling to the CMB and hence slightly decrease the spin
temperature. Typical transfer functions for the perturba-
tions are shown in Fig. 4 in the synchronous gauge that we
use for numerical work. The Newtonian-gauge functions
differ on superhorizon scales (k & 10�3 Mpc�1 at z �
50). For example, the CDM transfer function flattens to �
6=5 on large scales.

Assuming an ideal gas, the gas pressure perturbation
�p= �g � c2

s�g is given by

 

c2
s�g �

kB �Tg
�
��g ��Tg�

�
kB �Tg
mp
��1� �xe��1� YHe�

� YHemp=mHe���g � �Tg�; (35)

where � is the mean particle mass and YHe is the mass
fraction in helium. This result must be used on scales
where the baryon pressure is important [9]. Note that on
these scales there may also be additional effects due to
CDM decoupling [24] that we neglect here. The evolution
of the gas and spin-temperature perturbations is shown in
Fig. 3 for two different scales, along with the relative
evolution of the baryon and CDM perturbations. Again,
these are in the synchronous gauge but they are very

similar to the Newtonian-gauge perturbations since both
wavelengths are subhorizon for the redshift range plotted.

To evaluate the sources for reionization Thomson scat-
tering we need to evolve the multipole equation,
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FIG. 4 (color online). Transfer function for monopole source
at redshift z � 50 given unit initial curvature perturbation,
compared to other relevant perturbations. The perturbations are
numerically evaluated in the synchronous gauge. The
Newtonian-gauge fluctuations equal those in the synchronous
gauge well inside the horizon (k� 10�3 Mpc�1). On large
scales, the Newtonian-gauge �b flattens out at � 6=5 times
the primordial curvature perturbation, as shown by the dotted
curve. The spin-temperature perturbation is negative at z � 50
(see Fig. 3).
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FIG. 3 (color online). Evolution of the fractional baryon, mat-
ter, and spin-temperature perturbations as a fraction of the CDM
density perturbation. The left figure is for a k � 0:1 Mpc�1

mode, the right figure shows the effect of baryon pressure at k �
500 Mpc�1. The dotted lines show the equivalent results neglect-
ing ionization fraction perturbations. In both cases the baryon
perturbation is significantly less than the CDM perturbation at all
relevant redshifts. There is no reionization.

21 cm ANGULAR-POWER SPECTRUM FROM THE DARK AGES PHYSICAL REVIEW D 76, 083005 (2007)

083005-9



 

_Fl�
k

2l� 1
��l� 1�Fl�1 � lFl�1� � �l0�@� �f _��
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� a �s
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�Ts � �T�

�
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�T�
�Ts � �T�

�l

�
���=a� E21�

� _	c

�
��l0 � 1�Fl �

�l1
3
v�@� �f� �l2

F2

10

�
� _�	�Fl � �l0��HI � �Ts �  �

�f� � �l1
v
3
�@���

_�f� � _�	�@� �f�: (36)

Neglecting the self-absorption terms involving _�	 this is
straightforward to propagate numerically after integration
over a window function in frequency to remove the delta-
functions, as discussed further in Appendix B. Other per-
turbed quantities and the photon temperature and polariza-
tion multipoles evolve according to standard results as
implemented in the numerical codes CMBFAST and CAMB

[25–28].

V. APPROXIMATE RESULTS

The general form of the equal-redshift angular-power
spectra can easily be understood. On superhorizon scales,
the potential � is close to scale invariant and constant, so
(from the Poisson equation in the comoving gauge) �c �
k2=H 2�. Hence, on entering the horizon (k�H ) the
matter perturbations are of order of the potential, �c ��.
During radiation domination photon pressure prevents
gravitational collapse: the perturbations only grow loga-
rithmically. As a result the spectrum of �c is approxi-
mately scale invariant on subhorizon scales at matter-
radiation equality, though superhorizon scales still have
�c � k

2=H 2�. During matter domination, the potential
remains constant and �c grows at the same rate indepen-
dent of k on all scales where baryon pressure can be
neglected. The result is that an initially scale-invariant
potential gives comoving-gauge CDM perturbations with
an amplitude scaling as k2 on large scales and growing
logarithmically with k on small scales. The Newtonian-
gauge CDM perturbation equals that in the comoving
gauge well inside the horizon, but on larger scales the
Newtonian gauge �c � �2� in matter domination.

For superhorizon modes, the dominant 21 cm sources in
the Newtonian gauge are

 �f��A;xA; �; n̂� � �f�����s �  � � �f;ln���� ; (37)

where we have ignored reionization and the effect of non-
zero 21 cm optical depth. The source �s scales with the
hydrogen perturbation �HI. After recombination almost all
the atoms are neutral and �HI � �b. On scales above the
baryon sound horizon at recombination, the baryons fall
into the CDM potential wells on a Hubble time scale, so �b
evolves to follow �c. Note that, although �b qualitatively
follows �c well after recombination, the difference can be
tens of percent on all subhorizon scales at high redshift. On
very small scales growth of �b is suppressed once the

perturbation reaches pressure support. The Newtonian-
gauge 21 cm sources thus have a scale-invariant amplitude
on superhorizon scales, scale as k2 for subhorizon modes
that entered the horizon after matter-radiation equality, are
growing logarithmically on small scales, and are sup-
pressed on very small scales where c2

sk2=H 2 * 1 at re-
combination. This behavior can be seen in Fig. 4.

On small scales the fractional source fluctuation is of the
order of the CDM density perturbation, �s � �k=H �

2�,
and the velocity is given by v� �H =k��c. For small
scales with k�H , the line-of-sight result in Eq. (25) is
therefore dominated by the monopole and redshift distor-
tion effects, giving the usual approximation for the 21 cm
source when we neglect self-absorption effects (take 	� �
0):

 Fl��A;xA; �; k� � e�	c �f���
�

�sjl�k��� �
kv

H
j00l �k���

�
:

(38)

The fractional angular-power spectrum for one redshift
shell is then

 

Cl�z; z� � 4
e�2	�z�
Z

d lnkfP�s
�k; z��jl�k��z���

2

� 2P v�s
�k; z�jl�k��z��j

00
l �k��z��

� P vv�k; z��j
00
l �k��z���

2g; (39)

where P�s
, P v, and P v�s

are the power spectra of �s,
kv=H , and their cross correlation.1 For k� several oscil-
lations larger than l, and smooth power spectra, we can
replace the products of the rapidly oscillation Bessel func-
tions with their approximate smooth averages from
Appendix E.

One might expect the low-l 21 cm fluctuations to be
dominated by the superhorizon scale, post-Newtonian fluc-
tuations at scale k � l=�. This is not correct since small-
scale fluctuations, with amplitude growing rapidly with
scale as k2, couple to l < k� through the oscillatory tails
of the spherical Bessel functions. The net effect is that, for
all l and a single source plane, the dominant contribution is
from modes that are inside the horizon. At low l, the Cl
integral of Eq. (26) is therefore dominated by much smaller
scales, with k� l=�. In this limit the Bessel functions can

1We define power spectra so that h��x�2i �
R

d lnkP �k�.
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be approximated with the asymptotic result jl�k�� �
cos�k�� �l� 1�
=2�=�k��. Since the power spectrum is
quite smooth, we can then average over oscillations using
hjjl�k��j2i � 1=�2�k��2�. We can similarly remove oscil-
lating terms in the second derivative term. Hence on large
scales, keeping only the monopole source and redshift
distortions and assuming a narrow redshift window, the
dimensionless fractional power spectrum is

 Cl�z; z� � 4
e�2	c
Z

d lnk
P s�k; z�

2k2��z�2
; (40)

where P s�k; z� is the power spectrum of �s � kv=H at
redshift z [conformal distance ��z�]. Since this is indepen-
dent of l it corresponds to a white-noise spectrum. The
intrinsic fluctuations on a scale k � l=� are hidden beneath
random variations in the large-scale distribution of much
smaller perturbations. This is a generic feature of the 21 cm
angular-power spectrum that is also true after the dark ages
[6].

Scales inside the horizon at matter-radiation equality
have an approximately scale-invariant spectrum (grow log-
arithmically with k). This causes the 21 cm power spec-
trum to flatten out. First consider the case where the
window function is sharp, ��=� 1=l, so the source is
from a single redshift. For monopole and velocity sources
with power-law spectra, the result for Cl from Eq. (39) can
be obtained analytically using a result for integrating prod-
ucts of spherical Bessel functions quoted in Appendix E. In
particular, taking the power spectrum to be approximately
constant on small scales, we can approximate the dimen-
sionless fractional power spectrum as
 

l�l� 1�

2

Cl�z; z� � e

�2	c

�
P�s
�
l=2��z�; z�

�
2

3
P v�s

�3
l=4��z�; z�

�
1

5
P v�15
l=16��z�; z�

�
: (41)

The numerical factors are consistent with the angular
average of Eq. (21). Since the small-scale spectrum ac-
tually grows logarithmically, the power spectra in Eq. (41)
are approximated by their values at the mean position
of the corresponding window function. The Bessel
functions are skewed to k > l=� so that the mean of a
�jl�r��2=r window is at r � l�l� 1�
=�2l� 1� � 
l=2.
The velocity and cross-power window functions probe
even smaller scales �15
l=16 and �3
l=4, respectively.
Equation (41) is accurate at the 10% level from the end of
the baryon oscillations to the baryon damping scale at l�
106. The power is overestimated because the underlying
power spectra are only growing logarithmically rather than
linearly. In the (crude) approximation that �s ��b � �c
so that kv=H � kvc=H ���s, and taking P �k� to be
constant, we have

 

l�l� 1�

2

Cl�z; z� �

28

15
e�2	cP�s

�k; z�: (42)

Though not very accurate this result shows the importance
of redshift distortions: it is �28=15� 1:87 times larger
than the equivalent approximate result neglecting them.

On scales where the wavelength is much smaller than the
redshift bin width, l * �=��, redshift-distortion effects
average out and we can instead use the Limber approxi-
mation:

 

Cl�z; z� � e�2	c
2
2

l3
Z ��

0
�d�W���2

� P�s
�k � l=��z�;�0 � ��z��; (43)

where �� is the far end of the window functionW���. Since
the source power spectrum is nearly scale invariant, Cl
therefore scales approximately as 1=l3. In other words l2Cl
is approximately constant with an additional 1=l suppres-
sion due to line-of-sight averaging through the window. If
W is a Gaussian of width �, the line-of-sight averaging
causes the overall amplitude to scale approximately as
1=�. The Limber approximation can in fact be used for
numerical calculation on scales with l� �=�� where it
becomes accurate.

On very small scales where modes are inside the baryon
sound horizon at recombination, kcs������ * 1, the
baryon pressure becomes important and �H differs signifi-
cantly from �c even at late times. We discuss approximate
analytic solutions for the evolution of �b in Appendix A. In
the small-scale limit where k2c2

s �H 2, the pressure and
gravitational forces approximately balance, and �b=�c �
H 2=�k2c2

s�. Since �c is roughly scale invariant, and ne-
glecting the effect of the baryon pressure on the CDM
evolution, this implies l2Cl / 1=l4, giving a characteristic
sharp falloff in power on very small scales (there is an
additional power of 1=l for window-function line-of-sight
averaging). Note the observations on such small scales are
unlikely to be possible at high redshift over most of the sky
due to scattering by turbulent galactic and solar-system
plasma [29]. The nonzero linewidth also becomes impor-
tant on these scales, so our results in the approximation of a
monochromatic source will overestimate the power.

VI. NUMERICAL RESULTS

For our numerical results we assume a standard con-
cordance flat adiabatic CDM (�ch2 � 0:104) model with
a constant primordial spectral index (ns � 0:95) and
optical depth to Thomson scattering 	 � 0:09. We take
baryon density �bh

2 � 0:022, Hubble parameter
73 km s�1 Mpc�1, and initial curvature perturbation power
on 0:05 Mpc�1 scales As � 2:04� 10�9. We neglect the
neutrino masses, which do not have a large effect for
source planes at high enough redshift that the neutrinos
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are still relativistic. We take our window function to be a
Gaussian of width �� in frequency over the observed
brightness.

Figure 5 shows the effect on the angular-power spectrum
of allowing for self-absorption and ionization fraction
perturbations. The finite nonzero optical depth lowers the
amplitude both because the background signal is lower and
because the optical depth from an overdensity is higher
than from the background; each effect is about 	�=2�
1:5% in amplitude, giving an overall suppression of �6%
in power. Ionization fraction perturbations increase the
power by about 2% on all scales: overdensities recombine
more fully and hence have less Compton coupling to the
CMB and hence lower spin temperature. These effects are
important on all scales and should be included in any
accurate calculation, though note that they are comparable
to other effects that we have neglected because of the
simple velocity-independent spin-temperature approxima-
tion (see Ref. [19]).

On small scales the post-Newtonian and extra velocity
terms can be neglected to good accuracy. On large scales
they can be more important. In Fig. 6 we show the con-
tribution of the autovariance of various terms to the total
large-scale power spectrum at a given redshift. As ex-
pected, the dominant contributions are still from the mono-
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FIG. 6 (color online). Autopower spectra for the various terms in the large-scale 21 cm power spectrum. Left: narrow window
function at z � 50 with �� � 0:01 MHz (Tb � �26 mK); Right: broad window function at z � 40 with �� � 5 MHz (Tb �
�15 mK, �z � 6). Terms are calculated in the synchronous gauge, and ‘‘extra’’ includes all effects not included in other curves;
standard redshift distortions are defined here by the second term in Eq. (38). The late-time curve is the ISW contribution from line-of-
sight redshifting. The reionization curve is the result from sources at reionization, the other curves include the main e�2	c damping
effect. The standard calculation includes only monopole and redshift-distortion terms; the difference from the full result is �1% at
l & 50 growing to a few percent at low l for the narrow window function. For the broad window function that averages down small-
scale power extra terms change the total by * 1% at l < 100 (growing to �40% at low l). Note that the total spectrum is not just the
sum of the other autocorrelation terms since it also includes all cross terms.
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FIG. 5 (color online). The effect of perturbations to the optical
depth and ionization fraction on the 21 cm power spectrum at
z � 50 with a sharp window function. The solid line shows our
main result, the dash-dotted line is the larger result using the a
zeroth-order expansion in 	�, the dashed line is the lower result if
the effect of ionization fraction perturbations on the gas tem-
perature evolution is neglected. The fractional change in the
spectrum is roughly the same on all scales where baryon pressure
is negligible.
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pole source fluctuations and redshift distortions.2 Except
on very large scales the next most important term is from
the CMB dipole in the rest frame of the gas, which gives
percent-level contribution at l < 50 for the redshift shown
here, but is negligible on much smaller scales.3 At (l <
100) the contribution from the potential and other velocity
terms is also not entirely negligible. The contributions
from the CMB temperature anisotropy above the dipole,
and reionization rescattering sources, are completely neg-
ligible on all scales. At lower redshifts the background
signal becomes smaller, and the relative importance of
the terms changes. The background signal depends on
�Ts � �T�, but some of the perturbation sources depend
only on the 21 cm optical depth and are nonzero even
when the spin temperature is equal to the CMB tempera-
ture. As an extreme example, Fig. 7 shows the relatively
large contribution from the photon-baryon dipole at z � 20
on large scales if there were no additional sources from
nonlinear structures.

Note that just because something does not show up in a
narrow frequency window autopower spectrum at a given
redshift does not mean that it is necessarily negligible. The
correlation between source planes at a given l falls off very
rapidly once the plane separation is greater than character-

istic perturbation size �=l. Extra information may there-
fore be available in the cross-power spectra, particularly
about small large-scale signals that are correlated between
redshift bins. The effect of different frequency window
functions is shown in Fig. 8. Here the baryon oscillations
only show up when the window is wide enough to damp
down the large smaller-scale fluctuations so that the power
on baryon oscillation scales is not dominated by contribu-
tions from smaller scales. When narrow frequency win-
dows are used this information is hidden in the cross-
correlation structure of the different source planes.

The white-noise signal on large scales can be reduced by
averaging over many redshift slices. Figure 6 shows the
relative importance of the various terms on large scales
when a broad redshift window function is used. Redshift
distortions from scales smaller than the bin width are sup-
pressed, and the large-scale white-noise monopole signal is
reduced because of the line-of-sight averaging of small-
scale power. The relative importance of the additional
terms is therefore larger. This raises the question of
whether the large-scale 21 cm signal can be useful, for
example, to learn about large-scale power or as a source for
the integrated Sachs-Wolfe effect (ISW). There are two
main problems. First, a very broad window function is
required to make the extra terms comparable to the mono-
pole source, and residual monopole and redshift-distortion
signals will generally dominate. Second, since the dark-age
redshift shells are * 3=4 of the comoving distance to the
last scattering surface, large-angle correlations, such as
those due to Sachs-Wolfe potential redshifting, will be
strongly correlated between redshift slices and correlated
with the large-scale CMB. As an averaged source plane for
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FIG. 8 (color online). The 21 cm power spectrum at z � 50 for
�� � f1; 0:1; 0:01; 0g MHz (bottom to top). Large widths sup-
press the redshift-distortion contribution and allow the baryon
oscillations to be seen. All show characteristic damping due to
line-of-sight averaging over the bin width at l * �=��, and the
effect of baryon pressure at l * 5� 106.
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FIG. 7 (color online). The large-scale 21 cm power spectrum
at z � 20 and z � 30 (�� � 0:01 MHz) if there were no
Lyman-� sources, shock heating, minihaloes, or other nonlinear
effects. Solid lines are the full linear result, dashed lines include
only monopole and redshift-distortion sources. The difference is
dominated by the baryon-photon velocity term.

2Note that at the percent level it is important to use the baryon
rather than CDM velocity when calculating the redshift
distortions.

3Note that although the CMB dipole signal has only a small
effect on the dark-age 21 cm power spectrum, it may make a
larger contribution to the correlation with other sources, for
example the cross correlation with the CMB temperature during
reionization (cf. Ref. [30]).
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the ISW the 21 cm signal therefore has at least as much
large-scale ‘‘noise’’ from other sources as the CMB and
hence offers little extra information.

Decorrelation with source plane separation is a powerful
way to try and separate intrinsic and foreground signals
due to the much smoother signal (as a function of fre-
quency) expected from most foregrounds [7,31]. Detection
of small nonforeground cross correlations is therefore par-
ticularly challenging.

VII. POLARIZATION

A quadrupole anisotropy in the 21 cm signal at reioni-
zation can generate polarization by Thomson scattering
[32]. The signal is expected to be very small, but perhaps
worth considering as polarization may be very useful to
help with foreground cleaning of scalar modes. In princi-
ple, the tensor mode signal can also be used as a cross-
check on CMB temperature and polarization constraints on
models of inflation.

Following standard methods [33,34], it is straightfor-
ward to modify our scalar equations to include polarization
in order to calculate the E-mode (gradientlike) spectrum
generated at reionization. For our idealized analysis we
neglect any effects due to magnetic fields, anisotropy of the

hydrogen triplet state distribution, and inhomogeneity of
reionization. Typical numerical results are shown in Fig. 9.

Gravitational waves (tensor modes) are known to be
subdominant to the scalar modes, but can also source
anisotropies by their anisotropic shearing. There are two
mechanisms. First, the metric shear can directly change the
21 cm photon frequency along the line of sight, which
distorts the emission shell in much the same way as the
redshift distortions and line-of-sight effects do for the scale
modes. Second, the CMB temperature at absorption will be
anisotropic due to gravitational waves between the ab-
sorber and the last scattering surface: this causes an an-
isotropy in the 21 cm absorption. At reionization, the
quadrupole component of these anisotropies source both
E and B polarization. The signal is a small fraction of the
blackbody tensor signal because the optical depth for
21 cm emission is only �0:02. Note that since there is
no intrinsic 21 cm polarization before reionization, the
lensing-induced 21 cm B-modes are much smaller.

VIII. NONLINEAR EVOLUTION

Although the dark-age perturbations are quite small,
nonlinear effects can still be important. This is clear from
Fig. 4, where the perturbation amplitude on Jeans’ scales at
z � 50 corresponds to density perturbations of order 10%.
We shall estimate the effect of nonlinear evolution using
Newtonian perturbation theory in the approximation that
vorticity and decaying modes are unimportant. The result
should be quite accurate for the dark matter density as
perturbation theory gives good results in the mildly non-
linear regime. Assuming an initially Gaussian field, one
might expect the nonlinear contribution to the power spec-
trum to be of order j�cj

4, corresponding to a correction of
about 1%. However, on very small scales, there are many
larger scale k-modes that contribute to the local density,
giving a total effect from all mode couplings that is sig-
nificantly larger than the simple estimate.

For our approximate analysis, we focus on the CDM
perturbations during matter domination, neglecting any
effect due to the baryons. The first nonlinear contribution
to the power spectrum comes from two terms, P 22 coming
from the square of the second-order perturbation, and P 13

coming from the cross term between the first- and third-
order perturbations. We give the results for the CDM
density, velocity, and cross-correlation power spectra in
Appendix F; see Fig. 10 for typical numerical results.

To calculate the effect of nonlinear evolution on the
21 cm power spectrum, one should really evolve the full
coupled baryon, temperature, and CDM equations to third
order. This is beyond the scope of this paper. Here we
instead make the approximation that the 21 cm monopole
source and baryon velocity power spectra have the same
fractional contribution from nonlinear evolution as do the
CDM power spectra. Using Eq. (39), we then get the results
shown in Fig. 11. Nonlinear effects are important at the
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FIG. 9 (color online). The 21 cm polarization power spectra
from z � 50 with �� � 0:01 MHz. Thick lines show the adia-
batic scalar-mode signal, thin lines from r 	 AT=As � 0:1 scale-
invariant tensor modes. For comparison, the intrinsic CMB
polarization signals (labeled blackbody) are also plotted: the
scalar EE blackbody curve is the lensed E-mode polarization
from scalar modes and the scalar BB blackbody curve is the lens-
induced B-mode power; the tensor blackbody curves are the
CMB polarization power spectra from gravity waves. For both
intrinsic CMB and 21 cm fluctuations, E-mode polarization is
shown with solid or dashed lines and B-modes with dash-dotted
lines. There are no 21 cm scalar B-modes within our approx-
imations. Reionization is assumed to be fairly sharp with optical
depth 	 � 0:09 (zre � 12).
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few-percent level on small scales even at redshift z� 50.
At redshift z� 30 there is a�10% correction to the power
spectrum at l� 105. A more accurate analysis at redshift
z� 30 may need to account for gas shock heating, mini-
halos, or even rare first sources (see e.g. Ref. [3] and
references therein).

IX. LENSING

The line emission spectrum is not affected by lensing at
first order. However, perturbations along the line of sight
can produce a non-negligible higher-order effect. The ef-
fect on the two- and three-dimensional power spectra has
been analyzed in detail in Ref. [40]. Lensing acts rather
like a convolution of the angular-power spectrum with the
deflection-angle power spectrum. Since the 21 cm power
spectrum is rather smooth, the effect is significantly
smaller than on the CMB. Nonetheless the baryon wiggles
can be smoothed at well above the cosmic variance level.
Here we note a simple, nonperturbative approach to calcu-
lating the effect on the angular-power spectrum. This is
based on the lensed correlation function method often
applied to the CMB temperature and polarization [41–43].

Since the lensing field is nearly linear, the effect is well
described in terms of the lensing deflection-angle power
spectrum C�l �z; z

0�. In linear theory this is given in terms of
the primordial power spectrum PR�k� and transfer func-
tions T��k;�� for the Weyl potential, � 	 ���  �=2, by
(see e.g. Ref. [43])
 

C�l �z;z
0��16
l�l�1�

Z dk
k
PR�k�

�

�Z ��z�

0
d�T��k;�0���jl�k��

�
��z���
��z��

��

�

�Z ��z0�

0
d�0T��k;�0��0�jl�k�0�

�
��z0���0

��z0��0

��
;

(44)

where ��z� is the conformal distance to the window at
redshift z. We assume the window function is narrow
compared to the distance so that the lensed sources can
be approximated as a single source plane. For nearby bins
the terms in square brackets are approximately equal.

In terms of C�l �z; z
0� and the unlensed spectrum Cl�z; z0�,

the lensed power spectrum is given to very good accuracy
by [43]
 

~Cl0 �z; z0� �
X
l

2l� 1

2
Cl�z; z0�

Z 1

�1
d cos�dl

0

00���

� e�l�l�1��2���=2
Xl
n��l

In�l�l� 1�

� Cgl;2���=2�dln�n���; (45)

where In is a modified Bessel function, dlmn are reduced
Wigner functions, �2��� 	 Cgl�0� � Cgl���, and

 Cgl;2��� 	
X
l

2l� 1

4

C�l �z; z

0�dl�11���;

Cgl��� 	
X
l

2l� 1

4

C�l �z; z

0�dl11���:

(46)

The sum over n is dominated by the lowest terms with
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FIG. 11 (color online). The linear 21 cm angular-power spec-
trum at z � 30 and z � 50 (solid lines), and the approximate
higher-order correction from nonlinear evolution (dashed lines).
Window functions are taken to be sharp (�� � 0).
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jnj � 0. For a �� � 1 MHz window at z � 50, the
lensing-induced smoothing of the baryon oscillations can
be nearly a percent, but elsewhere the effect on the angular-
power spectrum is generally very small because it is
smooth on the scale of the width of the deflection-angle
power spectrum (�l� 100). Figure 12 shows the signifi-
cant smoothing effect on the cross-correlation power spec-
trum on the scale of the baryon oscillations.

In addition to the small effect on the power spectrum
calculated here and in Ref. [40], lensing also makes the
distribution non-Gaussian. Combined with tomographic
information this can be used for lensing reconstruction
[44– 46].

X. OTHER NONLINEAR EFFECTS

On small scales much larger than the linewidth, the
nonlinear angular distribution can be obtained from inte-
grating Eq. (14). In the Newtonian approximation, neglect-
ing self-absorption and lensing, and dropping small n̂ 
 v
terms that are unimportant on small scales, we have the
approximate nonlinear result,

 f�n̂; z� � e�	c
X
�0

�1��s� �s
1� �n̂ 
 @v=@��=H

���������0
; (47)

where �0 are displaced positions satisfying �0 � ��z� �
n̂ 
 v��0�=H . In the linear approximation we used
�s��0� � �s���, however this will not be a good approxi-
mation if the Doppler displacement is comparable to the
scale of the perturbation. The root-mean square velocity is
around 3� 10�4 at redshift 50, corresponding to a dis-
placement of �0:3 Mpc, and hence suggesting that non-
linear Doppler displacement effects may become large at
k� 10 Mpc�1. However, the small-scale power spectrum
will be unchanged under small bulk radial displacements:

the spectrum at wave number k is only really sensitive to
the difference in the radial displacement over a distance
comparable to 1=k. Since the velocity power spectrum falls
with scale, the effect is much smaller than indicated by the
above estimate. The displacement on scale k is given by
��� n̂ 
 v=H � �c=k, and thus k�� will only become
large on scales where �c does. Coupling to smaller scales
will give an effective velocity dispersion similar to a scale-
dependent thermal line broadening, and will tend to reduce
the power. Since the velocity power falls with k this is
never a large effect. The total nonlinear effect is therefore
likely to be comparable to the estimated contribution from
just the nonlinear evolution.

A perturbative analysis using third-order Newtonian
perturbation theory is given in Ref. [47]. Since higher-
order corrections to �s��0� are large on small scales, but
the correction to the power spectrum is small due to the
large coherence length of the displacement, a perturbative
treatment will involve delicate cancellations between dif-
ferent independently large terms. A more physical non-
perturbative method using the correlation functions (which
are insensitive to large-scale bulk displacements) is given
in Ref. [38]. A detailed investigation of the effect on the
small-scale 21 cm power spectrum is beyond the scope of
this paper.

XI. CONCLUSIONS

The 21 cm signal from the dark ages is potentially a
powerful probe of cosmology. We have derived full linear-
theory results for the angular-power spectra, and confirmed
that, for most purposes, standard approximations including
only monopole sources and redshift distortions are accu-
rate at the percent level. However, additional velocity and
potential terms can be non-negligible on very large scales,
and optical depth and ionization fraction perturbations
have a significant percent-level effect on all scales.
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FIG. 12 (color online). The 21 cm power spectrum for bins at z � 50 and z � 52 (�� � 0:1 MHz), with lensing (thin lines) and
without lensing (thick lines). The left figure shows Cl�z; z�, the right figure shows the small but non-negligible cross correlation.
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Nonlinear evolution can be a many-percent effect on small
scales even at high redshift, and gravitational lensing can
also be important, though this is easily modeled.

In this paper we have focussed on theoretical issues. The
observational problems are formidable, requiring many
square kilometers of collection area, low radio noise,
and, for high redshifts, getting outside the atmosphere to
avoid the opaque ionosphere; see Refs. [3,5,7,48] for fur-
ther discussion. The additional hurdles to measure the
distinctive polarization signal that we calculated, which
is below the intrinsic blackbody signal, are quite possibly
insurmountable.

The 21 cm spectrum is much more sensitive to the
residual ionization fraction after recombination than the
CMB temperature: the ionization fraction governs the
evolution of the matter temperature which in turn affects
the background brightness and the evolution of the pertur-
bations. Current modeling of recombination is probably
insufficiently detailed to be able to compute the 21 cm
power spectrum to an accuracy of more than a couple of
percent as there are a wealth of subtle effects that need to
be modeled to calculate hydrogen recombination accu-
rately [49]. As an example of current uncertainties, using
the result of Ref. [50] rather than RECFAST [22] for the
postrecombination ionization fraction changes the 21 cm
brightness temperature at the two-percent level. If future
observations are to achieve the �O�10�5� accuracy on
cosmological parameters that is possible in principle, a
very detailed analysis will be required of the full electron,
atomic state, and velocity distributions, with all interac-
tions, extending the work of Ref. [19]. Furthermore, even
at redshift of 50 the Jeans’-scale density perturbations are
already O�0:1� and nonlinear corrections are important at
the many percent level. We estimated this effect with an
approximate second-order CDM perturbation theory cal-
culation, however accurate results will require a detailed
study of the full baryon-CDM evolution at second and third
order or beyond.

Although we have concentrated on the power spectrum
from the dark ages, much of our formalism can be adapted
straightforwardly to the reionization epoch given models
for the background evolution and additional sources. Our
numerical code is publicly available [51].
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APPENDIX A: BARYON PERTURBATION
EVOLUTION

After recombination, Compton scattering has no signifi-
cant effect on the baryon density evolution and the frac-
tional synchronous gauge baryon perturbation �b obeys
the equation

 

@2�b

@�2 �H
@�b

@�
� k2c2

s�b � 4
Ga2
X
i

��i � 3�pi�

�
3

2
H 2�m; (A1)

where �b � c��m � c�c � b�b and the second line
assumes matter domination. We make the approximation
that c � b so the baryons have no effect on the CDM
evolution and we can use the usual result in matter domi-
nation that �m��� � �c��� � �c�����

2=�2
�. On small

scales before recombination the baryons are tightly
coupled to the photons and silk damping erases perturba-
tions so that at recombination (�� ��) we have �b���� �
0 and _�b���� � 0. On scales where baryon pressure is
irrelevant, kcs=H  1 at all times, the solution after
recombination is

 �b=�c � 1� 3
�
��
�

�
2
� 2

�
��
�

�
3
: (A2)

On a smaller scale, the baryon pressure is important via the
k2c2

s term in Eq. (A1). The sound speed decays approxi-
mately as 1=� while Compton scattering couples the gas
temperature to the CMB temperature. Once coupling be-
comes ineffective at �� �a, the gas cools adiabatically
and cs decays as 1=�2. We can solve analytically for the
evolution of the baryon perturbation for both limiting
behaviors of the sound speed. For �� <�< �a, the result
is

 �b=�c �
6

x2 � 6

�
1�

�
��
�

�
5=2
�

cos�
�������������������
x2 � 1=4

q
ln��=����

�
5

2
�������������������
x2 � 1=4

p sin�
�������������������
x2 � 1=4

q
ln��=����

��
;

(A3)

where we defined x 	 kcs������ and assumed x > 1=2.
The analytic continuation of this result to x � 0 agrees
with Eq. (A2). A similar result is given in Ref. [52], which
also discusses the generalization to non-negligible baryon
fraction. On large scales where modes are outside the
baryon sound horizon at recombination (x 1), the per-
turbations fall into the CDM potential wells in the order of
a Hubble time and �b ! �c. On small scales the baryon
pressure causes the perturbations to oscillate once they
reach pressure support. The relative amplitude of the os-
cillations about the midpoint decays as ���=��5=2, so by
the time of adiabatic cooling we may neglect this term to
�10% accuracy. The adiabatic cooling equation is a forced
harmonic oscillator equation in 1=� with a solution in-
volving sine and cosine integrals that can be written (for
�> �a) as [53]

 �b � A cos�u� � B sin�u� ��c

�
1� u2

Z 1
0

dt
te�ut

t2 � 1

�
;

(A4)
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where u 	 x�a=� � kcs���� and constants A and B are
defined by the initial conditions. The term in square brack-
ets monotonically decreases from one as k (and hence u)
increases, and describes the main effect of the pressure.
Smoothly matching to Eq. (A3) (with the oscillation
dropped) assuming a sharp transition at �a, the result can
be written as
 

�b=�c � 1� u2
Z x�u

0

cost
t� u

dt�
u2

6� x2

�
cos�u� x�

�
4� x2

x
sin�u� x�

�
: (A5)

As a function of k this solution reproduces the qualitative
falloff in power show in Fig. 4, though the decaying nature
of the solution is well hidden in Eq. (A5). The small-scale
asymptotic form for k! 1 (u, x� 1) is

 �b=�c �
6

u2 � 12
u2

x5
sin�x� u� � 
 
 
 (A6)

 �
6

�kcs�����
2

�
1�O

�
1

x
�4
a

�4

��
: (A7)

As expected the transfer function falls off as
�H 2=�k2c2

s�j� on small scales with suppressed oscilla-
tions. This power-law falloff will only hold on scales where
baryon diffusion can be neglected; on ultrasmall scales the
spectrum will be exponentially damped. Baryon pressure
becomes important at kpressure � 1=�cs�������, diffusion

damping will become important at kdiffusion �

kpressure��=�coll�
1=2
min where �coll is the atomic collision

time, which is always much smaller than � (see Fig. 1).
At redshifts of 30 to 100 residual Compton coupling

actually gives cs scaling as ��1:9 to ��1:6, and approximat-
ing the transition in cooling behavior as sharp may be
expected to be a poor approximation on scales such that
kcs��a��a � 1. In this limit, the following approximation
can be used:

 �b���=�c��� �
6

�3

Z �

��

�0

k
������������������������
cs���cs��0�

p
� sin

�Z �

�0
kcs��

00�d�00
�
d�0: (A8)

This is derived from the WKB solutions of the homoge-
neous equation with Green’s method. It is an exact solution
for all k when the gas is adiabatically cooling, but only
holds for kcs������ � 1 when Compton heating is still
important. It can be shown that this result agrees with
Eqs. (A3) and (A5) in the limit x� 1 (and for a sharp
transition to adiabatic cooling).

APPENDIX B: GENERAL GAUGE AND
NUMERICAL CALCULATION

We perform numerical calculations in the synchronous
gauge. For convenience we give the equations in a general
gauge here. The multipole equations in the 1� 3 conven-
tions of Refs. [54,55] are
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_�f� � _�	�@� �f�: (B1)

In the Newtonian gauge the acceleration A � � , the
scale factor perturbation h � ��, and the shear � � 0.
In the synchronous gauge A � 0, h � hs=6, and the shear
� � � _hs � 6 _�s�=2k, where hs and �s are the usual syn-
chronous gauge quantities. Equation (B1) is valid in a
general gauge but the individual terms are not gauge
invariant. In particular, under a change of velocity field,
ua � ua � wa, the multipoles transform as

 F0 � F0 �
w
k
� _�f�H �@� �f� (B2)

 F1 � F1 �
1
3w�@�

�f (B3)

 Fl � Fl �l > 1�: (B4)

For completeness, the other variables in Eq. (B1) transform
as

 

_h � _h�
1

k
� _wH � w _H � �

1

3
kw; (B5)

 � � �� w; (B6)

 A � A�
_w
k
�

Hw
k

; (B7)

 �s � �s �
_�s
�s

w
k
; (B8)

 v � v� w: (B9)
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With these relations, one can establish the gauge independence of Eq. (B1).
The line-of-sight solution is

 

Fl � e�	�
Z

d�e�	c� �	
�
�fa �s��s � A� � a �	s��HI ��Ts � A�

�fg���=a� E21� � _h�@� �f� _	cF0�jl�k��

�

�
k�
3
�@� �f� _	c

F2

4

�
�3j00l �k�� � jl�k��� � a

�
� �s � �	s �f�@������=a� E21��v

� �s
�T�

�Ts � �T�
�v� v�����=a� E21�

�
j0l�k�� � �kA� _	cv��@� �fj0l�k��

� a �s���=a� E21�
�T�

�Ts � �T�

X1
l0�2

�2l0 � 1��l0il
0
Pl0
�
�
i
k

d

d��

�
jl�k��

�
(B10)

(for l > 1), the spin-temperature perturbation is

 �Ts � �T� � �R� � Rg��C10 � C10�Rg�Tg � R��T��

�
1

2
	�A10C10

�Tg � �T�
T?

RgR�

�
�HI �

_h

H

�
kv

3H
� A� �C10

� 2�T��C10R� � 1�

� 2R��C10 �
�T�

�Tg � �T�
��Tg � �T� �

�
;

(B11)

and the gas temperature perturbations evolve with
 

_�Tg � �
2

3
kv� 2 _h�

8a�T �� �xe
3mec�1� fHe � �xe�

��
1�

�T�
�Tg

�

�

�
4�T� � A�

�xe

1� �xe=�1� fHe�

�

�
�T�
�Tg
��Tg � �T��

�
; (B12)

where we again neglected helium fraction perturbations.
Equation (35) in the main text holds in any gauge.

We choose to work in the synchronous gauge, evaluating
the line-of-sight solution integrated over a frequency win-
dow function. We use the synchronous gauge because this
is stable for isocurvature mode evolution, and because
conventional calculations invariably use the baryon (or
CDM) power spectrum in the synchronous gauge as output
by CMBFAST or CAMB. Since both v� vc and 	� are small
on scales where our calculation is applicable (much larger
than the linewidth), in the synchronous gauge (vc � 0)
terms involving 	�v can be dropped to good accuracy.

We define a window function Wf��� so that we observeR
d�Wf���f. Then integrating over energies, assuming the

window function is much broader than the linewidth, we
use the functions

 G��� 	
Z

d�e �	�	�Wf���a �s���=a� E21�

�
1� e�	�

	�
a2 �sWf���� (B13)

 G	��� 	
Z

d�e �	�	�Wf���a �	s �f���=a� E21�

�

�
1�

	�e
�	�

1� e�	�

�
G��� (B14)

 V��� 	
Z

d�e �	�	�Wf����@� �f

� �e�	�
a2 �s
H

Wf���� �
Z �

d�0a��0�
@
@�0

�

�
1� e�	�0

	�0
a��0� �s��

0�

H ��0�

�
Wf���0 �; (B15)

where Wf��� � �Wf�z�E21=�2 � Wf�a�=E21. For 21 cm
we assume we measure some averaged brightness tempera-
ture

 

�T b �
Z

d�WT���Tb���: (B16)

Then

 

�T b �
Z

daWT�a�
ch3

p

2kB
�f; (B17)

whereWT�a� is a window over dimensionless frequency, so

 Wf��� �
ch3

p

2kB
aWT�a�: (B18)

APPENDIX C: EVALUATION OF N �0

The contribution from radiative transitions in the 21 cm
line to the evolution of the spin temperature is
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@�s
@	
� ��

�
1�

N1

N0

��
�1�N �0�A10 � 3

N0

N1
A10N �0

�

� 4��A10

�
1�

�s
��

N �0

�
: (C1)

Here, recall N �0 is the isotropic part (in the gas rest frame)
of the photon occupation number integrated over the line
profile. The occupation number has contributions from the
background and perturbed CMB and the 21-cm line radia-
tion, i.e.

 N � �
kB �T�
E
�1��� �

h3
p

2
� �f� �f�; (C2)

making the Rayleigh-Jeans’ approximation for the CMB.
Evaluating

 N �0 �
1

4


Z
d ~Ed ~�N � ~E; ~e��� ~E� E21�

�
1

4


Z
dEd�

E
~E
N �E; e��� ~E� E21� (C3)

for the CMB, we find

 N �CMB�
�0 �

�T�
T�
�1� �T��: (C4)

The 21 cm part takes more work. First, consider the
contribution from �f; since �f is first order, we only
require its monopole in the conformal Newtonian gauge.
As we are integrating over the line profile, at any time �we
are including only 21-cm radiation that was ‘‘produced’’ at
earlier times within a narrow time window ���
�E=�HE21� where �E is the linewidth. We therefore
generalize Eq. (18) for � very close to �� under the
assumption that the perturbations have (comoving) wave-
length � ��. Extracting the monopole, we find

 

h3
p

2
�f0��;x; �� �

� �Ts� �T�
T�

�
�

�
1

H

�
_��

1

3
r
 v

�
�	e� �	

���s� ��1� e
� �	�� ��HI

��Ts� �

� �1��1� �	�e� �	�

�
: (C5)

The divergence of the gas velocity arises here from the
monopole of the redshift-space distortion:

 

1

4


Z
d�ee 
 �e 
 rv� �

1

3
r 
 v: (C6)

Integrating over the line profile, we obtain the following
contribution to N �0 from 21 cm perturbations:

 

N ��f�
�0 �

� �Ts � �T�
T�

��
��s �  �

�
1�

1� e�	�

	�

�

� ��HI � �Ts �  �
�
1� e�	� � 2

1� e�	�

	�

�

�
1

H

�
_��

1

3
r 
 v

��
1� e�	�

	�
� e�	�

��
: (C7)

We also need the contribution from �f. Correct to linear
order in v, this is simply

 N � �f�
�0 �

� �Ts � �T�
T�

��
1�

1� e�	�

	�

�
; (C8)

nonlinear corrections in v may be important if E21jvj *

�E. Combining all results, and expanding to first order in
	�, we obtain our desired result:
 

N �0 �
�T�
T�
�1� �T�� �

	�
2

� �Ts � �T�
T�

��
1� �s �  

�
1

H

�
_��

1

3
r 
 v

��
: (C9)

In this approximation, the perturbed Rayleigh-Jeans’
brightness temperature, T�N �0, that we use in the main
text is
 

T� � Tb0 � �T��1��T�� �
	�
2
� �Ts� �T��

�

�
1��s� �

1

H

�
_��

1

3
r 
 v

��
: (C10)

As we might have anticipated, this can be expressed in
terms of the (perturbed) optical depth 	̂� of Eq. (30), and
the monopole of the CMB temperature T� as Tb0 �

	̂��Ts � T��=2.

APPENDIX D: IONIZATION FRACTION
PERTURBATIONS

For our approximate analysis of ionization fraction per-
turbations, we start the perturbation evolution after helium
has recombined, so we take nHI � �1� xe�nH and ne �
xenH where nH is the total number density of ionized and
unionized hydrogen. We then use the effective equation of
RECFAST [22]

 _x e � �aCr�x2
enH�� ��1� xe�e�EH2s=kBTg�; (D1)

where EH2s is the energy of the transition from the ground
to the 2s state and

 Cr 	
1�K�nH�1� xe�

1�K��� ��nH�1� xe�
: (D2)

The recombination and photoionization coefficients are
related by
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 � � �
�mekBTg

2
h2

�
3=2
e�E2s=kBTg ; (D3)

where E2s is the ionization energy from the 2s state, and �
is also a function of the temperature fit by

 � � F
a��Tg=104 K�b

1� c�Tg=104 K�d
m3 s�1: (D4)

Here F is a fudge factor taken to be 1.14 and a� � 4:309�
10�19, b � �0:6166, c � 0:6703, d � 0:5300. The con-
stant two photon 2s–1s decay rate is � � 8:224 58 s�1.
Dependence on the expansion rate enters through the cos-
mological redshifting term K, given in the background by
K � a�3

H2p=�8
H �.
A perturbed version of Eq. (D1) may be inappropriate

due to the effect of perturbation velocities on the escape
probabilities that went into deriving the result. However,
the detailed perturbation evolution during recombination
does not affect the 21 cm absorption signal as long as the
residual perturbations after recombination are correct, at

which point recombination is limited solely by the low rate
of electron capture to an excited state. A full analysis is
beyond the scope of this paper, so we proceed from the
perturbed version of Eq. (D1) and argue this is sufficient:

 

_�xe �
_xe
xe
��Cr � �� ��xe � A�

� aCr

�
�2�xe � �H��xenH

�

�
�xe �

�
3

2
�

E2s

kBTg

��
1

xe
� 1

�
�Tg

�
�e�EH2s=kBTg

�
:

(D5)

We generalize K to a perturbed universe as K �

3�3
H2p=�8
rau

a
g� to account for the local baryon expan-

sion rate; this should be correct on scales sufficiently large
compared to the mean Lyman-� photon interaction length
(which is very short). The perturbed terms are then

 �Cr � �
�KnHf��H ��K ����1�K�nH�1� xe����1� xe� � xe�xeg

�1�K�nH�1� xe���1�K�����nH�1� xe��
(D6)

 �� � �� �

�
3

2
�

E2s

kBTg

�
�Tg (D7)

 �� �
b� c�Tg=104K�d�b� d�

1� c�Tg=104K�d
�Tg (D8)

 �K � �
_h

H
�

kv

3H
� A: (D9)

In the synchronous gauge the dominant term on large
scales is initially due to fluctuations in the expansion
rate, �K �

_�b=3H : �xe is the same sign as �c because
overdensities expand less fast and hence have a higher
ionization fraction than the average (�K appears to have
been ignored in e.g. Refs. [56,57]). At later times when
xe  1 the main effect is from perturbations in the hydro-
gen density and temperature; this leads to �xe being the
opposite sign to �c at late times because overdensities
recombine more efficiently. Note that at late times some
terms in Eq. (D5) are invalid because �TgEi=kBTg becomes
of order unity, however the error is harmless because the
entire term is exponentially suppressed: at late times the
evolution is given approximately by

 _x e � �a�x
2
enH (D10)

 

_� xe � �a�xenH��� ��xe � �H�: (D11)

It is not necessary to model the early evolution correctly to
get approximately the correct late-time answer. Indeed the

late-time evolution neglecting velocity effects should be
quite accurate as recombination is limited by the low
electron capture probability. However, the overall ioniza-
tion fraction evolution is limited by the precision of the
RECFAST model, in which a single fudge factor accounts for
deviations of an effective three level atom model from the
full result.

Using the equations given here, the effect on the 21 cm
power spectrum of neglecting �xe is O�2%� at z� 50,
almost entirely due to the indirect effect on the evolution
of the temperature perturbation. Note that, at the Jeans’
scale, ionization fraction perturbations also have a linear
effect on the baryon density evolution due to the modified
evolution of the gas temperature perturbation (and hence
the baryon pressure perturbation).

APPENDIX E: SPHERICAL BESSEL FUNCTION
INTEGRALS AND APPROXIMATIONS

Integrals of products of spherical Bessel functions can
be done analytically using the result [58]

 Z 1
0

drjl�r�jl0 �r�r�n

�

��n� 1���l�l

0�1�n
2 �

2n�2��l�l
0�2�n

2 ���l�l
0�3�n

2 ���l
0�l�2�n

2 �
: (E1)

In particular, using this result in combination with the
spherical Bessel equation, we have
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 l�l� 1�
Z 1
�1

d lnr�jl�r��2 �
1

2
(E2)

 l�l� 1�
Z 1
�1

d lnrjl�r�j00l �r� � �
1

6
(E3)

 l�l� 1�
Z 1
�1

d lnr�j00l �r��
2 �

1

10
�

4

15�l� 2��l� 3�
�

1

10
;

(E4)

where the approximation holds for high l of most interest in
this paper.

At high l the Bessel functions oscillate very rapidly
compared to the scale of variation in the power spectra.
Direct numerical integration becomes slow, but quite ac-
curate results can be obtained by averaging over the oscil-
lations. Defining � 	 l� 1=2, for r2=�2 * 1� ��2=3 we
can use the approximation [58]

 jl�r� �
sin�

����������������
r2 � �2
p

� arccos��=r�=�� 
=4�

r�1� �2=r2�1=4
: (E5)

Neglecting oscillatory parts that closely average to zero,
we then have for l� 1

 h�jl�r��2i �
1

2r
����������������
r2 � �2
p (E6)

 h�j00l �r��
2i �

�r2 � �2�3=2

2r5
(E7)

 hj00l �r�jl�r�i � �

����������������
r2 � �2
p

2r3 : (E8)

APPENDIX F: NONLINEAR CDM POWER
SPECTRA

At a given redshift, the two leading corrections to the
power spectrum are given in terms of the linear-theory
matter power spectrum at that redshift, P �k� 	
k3P�k�=�2
2�, by [35,36,38,59]
 

P 13�k� �
Z 1

0
drI13�k; r�

	
P �k�
504

Z 1
�1

d lnrP �kr�
�

12

r4 �
158

r2 � 100� 42r2

�
3

r5
�r2 � 1�3�7r2 � 2� ln

��������1� r
1� r

��������
�

(F1)

and
 

P 22�k� �
Z 1

0
dr
Z 1

�1
dxI22�k; r; x�

	
1

196

Z 1
�1

d lnrP �kr�

�
Z 1

�1
dxP �k�1� r2 � 2rx�1=2�

�
�3r� 7x� 10rx2�2

r2�1� r2 � 2rx�7=2
: (F2)

For the small scales of interest to us here, the dominant
contribution comes from q & k, with significant mode
coupling to all scales where the spectrum is growing
logarithmically. This can become numerically difficult
because for r 1 the two terms P22 and P13 become large
but almost cancel. For r < rs we therefore use an approxi-
mate series expansion, switching to the full result at r > rs.
The expression for the correction to the matter power
spectrum can then be written

 P 13�k� � P 22�k� �
�

8126

2205
�

22

21

d lnP

d lnk
�

1

10

��
d lnP

d lnk

�
2
�

d2 lnP

d�lnk�2

��
P �k�

Z lnrs

�1
d lnrP �kr� �

Z 1
rs

drI13�k; r�

�

�
2
Z �

rs
dr
Z 1

�1
dx�

Z 1��

�
dr
Z 1

�1
dx�

Z 1��

1��
dr
Z �1�r2��2�=2r

�1
dx�

Z 1
1��

dr
Z 1

�1
dx
�
I22�k; r; x�;

(F3)

where rs < � � 1=2 (numerically it is better to chose ��
1=2). For a scale-invariant primordial spectrum the small-
scale power spectrum is P �kr� � P �k��1� ln�r�= ln�r0��

2,
where r0 corresponds to the much larger scale k0 where
logarithmic growth starts. The main nonlinear contribution
to the power spectrum can then be approximated from the
first term in Eq. (F3) as �� ln�r0��P �k��

2 � ln�k=k0��
�P �k��2. On the Jeans’ scale at z � 50, this implies a frac-
tional second-order contribution to the power spectrum of
�O�10�P �k�: on small scales nonlinear effects are more
important than one might naively think [37]. See Fig. 10
for typical numerical results.

The 21 cm angular-power spectrum on small scales is
also sensitive to redshift distortions, for which we need to
estimate the second-order velocity power spectrum and the
cross correlation with the density. The results are similar to
those for the density with
 

P vv
13 �k� �

P �k�
168

Z 1
�1

d lnrP �kr�
�

12

r4 �
82

r2 � 4� 6r2

�
3

r5
�r2 � 1�3�r2 � 2� ln

��������1� r
1� r

��������
�
; (F4)

and
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Z 1
�1
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dxP �k�1� r2 � 2rx�1=2�

�
�r� 7x� 6rx2�2

r2�1� r2 � 2rx�7=2
; (F5)

where P vv is the power spectrum of kv=H . The series
result for use at high l is

 P vv
13 �k� � P vv

22 �k� �
�
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1
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��
d lnP
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d2 lnP

d�lnk�2

��
P �k�

Z lnrs

�1
d lnrP �kr�:

(F6)

Similarly the cross-correlation power spectrum is given by

 P v�
13 �k� � �

P �k�
504

Z 1
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d lnrP �kr�
�
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r4 �
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(F7)

and
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; (F8)

with the series result
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