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We carry out two searches for periodic gravitational waves using the most sensitive few hours of data
from the second LIGO science run. Both searches exploit fully coherent matched filtering and cover wide
areas of parameter space, an innovation over previous analyses which requires considerable algorithm
development and computational power. The first search is targeted at isolated, previously unknown
neutron stars, covers the entire sky in the frequency band 160–728.8 Hz, and assumes a frequency
derivative of less than 4� 10�10 Hz=s. The second search targets the accreting neutron star in the low-
mass x-ray binary Scorpius X-1 and covers the frequency bands 464– 484 Hz and 604–624 Hz as well as
the two relevant binary orbit parameters. Because of the high computational cost of these searches we
limit the analyses to the most sensitive 10 hours and 6 hours of data, respectively. Given the limited
sensitivity and duration of the analyzed data set, we do not attempt deep follow-up studies. Rather we
concentrate on demonstrating the data analysis method on a real data set and present our results as upper
limits over large volumes of the parameter space. In order to achieve this, we look for coincidences in
parameter space between the Livingston and Hanford 4-km interferometers. For isolated neutron stars our
95% confidence level upper limits on the gravitational wave strain amplitude range from 6:6� 10�23 to
1� 10�21 across the frequency band; for Scorpius X-1 they range from 1:7� 10�22 to 1:3� 10�21 across
the two 20-Hz frequency bands. The upper limits presented in this paper are the first broadband wide
parameter space upper limits on periodic gravitational waves from coherent search techniques. The
methods developed here lay the foundations for upcoming hierarchical searches of more sensitive data
which may detect astrophysical signals.

DOI: 10.1103/PhysRevD.76.082001 PACS numbers: 04.80.Nn, 07.05.Kf, 95.55.Ym, 97.60.Gb

I. INTRODUCTION

Rapidly rotating neutron stars are the most likely
sources of persistent gravitational radiation in the fre-
quency band � 100 Hz–1 kHz. These objects may gener-
ate continuous gravitational waves (GW) through a variety
of mechanisms, including nonaxisymmetric distortions of
the star [1–5], velocity perturbations in the star’s fluid
[1,6,7], and free precession [8,9]. Regardless of the specific
mechanism, the emitted signal is a quasiperiodic wave
whose frequency changes slowly during the observation
time due to energy loss through gravitational wave emis-
sion, and possibly other mechanisms. At an Earth-based
detector the signal exhibits amplitude and phase modula-
tions due to the motion of the Earth with respect to the
source. The intrinsic gravitational wave amplitude is likely
to be several orders of magnitude smaller than the typical
root-mean-square value of the detector noise, hence detec-

tion can only be achieved by means of long integration
times, of the order of weeks to months.

Deep, wide parameter space searches for continuous
gravitational wave signals are computationally bound. At
fixed computational resources the optimal sensitivity is
achieved through hierarchical search schemes [10–12].
Such schemes alternate incoherent and coherent search
stages in order to first efficiently identify statistically sig-
nificant candidates and then follow them up with more
sensitive, albeit computationally intensive, methods.
Hierarchical search schemes have been investigated only
theoretically, under the simplified assumption of Gaussian
and stationary instrumental noise; the computational costs
have been estimated only on the basis of rough counts of
floating point operations necessary to evaluate some de-
tection statistic, usually not the optimal, and have not taken
into account additional costs coming e.g. from data input/
output; computational savings obtainable through efficient
dedicated numerical implementations have also been ne-
glected. Furthermore, general theoretical investigations*Electronic address: http://www.ligo.org
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have not relied on the optimizations that can be introduced
on the basis of the specific area in parameter space at which
a search is aimed.

In this paper we demonstrate and characterize the co-
herent stage of a hierarchical pipeline by carrying out two
large parameter space coherent searches on data collected
by LIGO during the second science run with the Livingston
and Hanford 4-km interferometers. As we will show, this
analysis requires careful tuning of a variety of search
parameters and implementation choices, such as the tilings
of the parameter space, and the selection of the data that are
difficult to determine on purely theoretical grounds. This
paper complements the study presented in [13] where we
reported results obtained by applying an incoherent analy-
sis method [14] to data taken during the same science run.
Furthermore, here we place upper limits on regions of the
parameter space that have never been explored before. We
do this by combining the output of the coherent searches
via a coincidence scheme.

The coherent search described in this paper has been the
test-bench for the core science analysis that the
Einstein@home [15] project is carrying out now. The
development of analysis techniques such as the one de-
scribed here, together with the computing power of
Einstein@home in the context of a hierarchical search
scheme, will allow the deepest searches for continuous
gravitational waves.

In this paper the same basic pipeline is applied to and
tuned for two different searches: (i) for signals from iso-
lated sources over the whole sky and the frequency band
160 Hz–728.8 Hz, and (ii) for a signal from the low-mass
x-ray binary Scorpius X-1 (Sco X-1) over orbital parame-
ters and in the frequency bands 464–484 Hz and 604–
624 Hz. It is the first time that a coherent analysis is carried
out over such a wide frequency band and coincidence
techniques are used among the registered candidates
from different detectors; the only other example of a some-
what similar analysis is an all-sky search over two days of
data from the Explorer resonant detector and that was over
a 0.76 Hz band around 922 Hz [16–18]. This is absolutely
the first wide parameter space search for a rotating neutron
star in a binary system.

The main scope of the paper is to illustrate an analysis
method by applying it to two different wide parameter
spaces. In fact, based on the typical noise performance of
the detectors during the run, which is shown in Fig. 1, and
the amount of data that we were able to process in �
1 month with our computational resources (totalling about
800 CPUs over several Beowulf clusters) we do not expect
to detect gravitational waves. For isolated neutron stars we
estimate (see Sec. III for details) that statistically the
strongest signal that we expect from an isolated source is
& 4� 10�24 which is a factor * 20 smaller than the
dimmest signal that we would have been able to observe
with the present search. For Scorpius X-1, the signal is

expected to have a strength of at most�3� 10�26 and our
search is a factor �5000 less sensitive. The results of the
analyses confirm these expectations and we report upper
limits for both searches.

The paper is organized as follows. In Sec. II we describe
the instrument configuration during the second science run
and the details of the data taking. In Sec. III we review the
current astrophysical understanding of neutron stars as
gravitational wave sources, including a somewhat novel
statistical argument that the strength of the strongest such
signal that we can expect to receive does not exceed
hmax

0 � 4� 10�24. We also detail and motivate the choice
of parameter spaces explored in this paper. In Sec. IV we
review the signal model and discuss the search area con-
sidered here. In Sec. V we describe the analysis pipeline. In
Sec. VI we present and discuss the results of the analyses.
In Sec. VII we recapitulate the most relevant results in the
wider context and provide pointers for future work.

II. INSTRUMENTS AND THE SECOND SCIENCE
RUN

Three detectors at two independent sites comprise the
Laser Interferometer Gravitational Wave Observatory, or
LIGO. Detector commissioning has progressed since the
fall of 1999, interleaved with periods in which the observ-
atory ran nearly continuously for weeks or months, the so-
called ‘‘science runs.’’ The first science run (S1) was made
in concert with the gravitational wave detector GEO600;
results from the analysis of those data were presented in
[19–22], while the instrument status was detailed in [23].
Significant improvements in the strain sensitivity of the
LIGO interferometers (an order of magnitude over a broad-
band) culminated in the second science run (S2), which
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FIG. 1 (color online). Typical one-sided amplitude spectral
densities of detector noise during the second science run, for
the three LIGO instruments. The solid black line is the design
sensitivity for the two 4-km instruments L1 and H1.
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took place from February 14 to April 14, 2003. Details of
the S2 run, including detector improvements between S1
and S2 can be found in [24], Sec. IV of [25], and Sec. II of
[13,26].

Each LIGO detector is a recycled Michelson interfer-
ometer with Fabry-Perot arms, whose lengths are defined
by suspended mirrors that double as test masses. Two
detectors reside in the same vacuum in Hanford, WA,
one (denoted H1) with 4-km armlength and one with 2-
km armlength (H2), while a single 4-km counterpart (L1)
exists in Livingston Parish, LA. Differential motions are
sensed interferometrically, and the resultant sensitivity is
broadband (40 Hz–7 kHz), with spectral disturbances such
as 60 Hz powerline harmonics evident in the noise spec-
trum (see Fig. 1). Optical resonance, or ‘‘lock,’’ in a given
detector is maintained by servo loops; lock may be inter-
rupted by, for example, seismic transients or poorly con-
ditioned servos. S2 duty cycles, accounting for periods in
which lock was broken and/or detectors were known to be
functioning not at the required level, were 74% for H1,
58% for H2, and 37% for L1. The two analyses described
in this paper used a small subset of the data from the two
most sensitive instruments during S2, L1, and H1; the
choice of the segments considered for the analysis is de-
tailed in Sec. V C.

The strain signal at the interferometer output is recon-
structed from the error signal of the feedback loop which is
used to control the differential length of the arms of the
instrument. Such a process—known as calibration—in-
volves the injection of continuous, constant amplitude
sinusoidal excitations into the end test mass control sys-
tems, which are then monitored at the measurement error
point. The calibration process introduces uncertainties in
the amplitude of the recorded signal that were estimated to
be & 11% during S2 [27]. In addition, during the run
artificial pulsar-like signals were injected into the data
stream by physically moving the mirrors of the Fabry-
Perot cavity. Such ‘‘hardware injections’’ were used to
validate the data analysis pipeline and details are presented
in Appendix C.

III. ASTROPHYSICAL SOURCES

We review the physical mechanisms of periodic gravi-
tational wave emission and the target populations of the
two searches described in this paper. We also compare the
sensitivity of these searches to likely source strengths.

A. Emission mechanisms

In the LIGO frequency band there are three predicted
mechanisms for producing periodic gravitational waves,
all of which involve neutron stars or similar compact
objects: (1) nonaxisymmetric distortions of the solid part
of the star [1–5], (2) unstable r-modes in the fluid part of
the star [1,6,7], and (3) free precession of the whole star
[8,9].

We begin with nonaxisymmetric distortions. These
could not exist in a perfect fluid star, but in realistic neutron
stars such distortions could be supported either by elastic
stresses or by magnetic fields. The deformation is often
expressed in terms of the ellipticity

 � �
Ixx � Iyy

Izz
; (1)

which is (up to a numerical factor of order unity) them � 2
quadrupole moment divided by the principal moment of
inertia. A nonaxisymmetric neutron star rotating with fre-
quency � emits periodic gravitational waves with ampli-
tude

 h0 �
4�2G

c4

Izzf
2

d
�; (2)

where G is Newton’s gravitational constant, c is the speed
of light, Izz is the principal moment of inertia of the object,
f (equal to 2�) is the gravitational wave frequency, and d is
the distance to the object. Equation (2) gives the strain
amplitude of a gravitational wave from an optimally ori-
ented source [see Eq. (25) below].

The ellipticity of neutron stars is highly uncertain. The
maximum ellipticity that can be supported by a neutron
star’s crust is estimated to be [2]

 �max � 5� 10�7

�
�

10�2

�
; (3)

where � is the breaking strain of the solid crust. The
numerical coefficient in Eq. (3) is small mainly because
the shear modulus of the inner crust (which constitutes
most of the crust’s mass) is small, in the sense that it is
about 10�3 times the pressure. Equation (3) uses a fiducial
breaking strain of 10�2 since that is roughly the upper limit
for the best terrestrial alloys. However, � could be as high
as 10�1 for a perfect crystal with no defects [28], or several
orders of magnitude smaller for an amorphous solid or a
crystal with many defects.

Some exotic alternatives to standard neutron stars fea-
ture solid cores, which could support considerably larger
ellipticities [5]. The most speculative and highest-
ellipticity model is that of a solid strange-quark star, for
which

 �max � 4� 10�4

�
�

10�2

�
: (4)

This much higher value of �max is mostly due to the higher
shear modulus, which for some strange star models can be
almost as large as the pressure. Another (still speculative
but more robust) model is the hybrid star, which consists of
a normal neutron star outside a solid core of mixed quark
and baryon matter, which may extend from the center to
nearly the bottom of the crust. For hybrid stars,
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 �max � 9� 10�6

�
�

10�2

�
; (5)

although this is highly dependent on the poorly known
range of densities occupied by the quark-baryon mixture.
Stars with charged meson condensates could also have
solid cores with overall ellipticities similar to those of
hybrid stars.

Regardless of the maximum ellipticity supportable by
shear stresses, there is the separate problem of how to reach
the maximum. The crust of a young neutron star probably
cracks as the neutron star spins down, but it is unclear how
long it takes for gravity to smooth out the neutron star’s
shape. Accreting neutron stars in binaries have a natural
way of reaching and maintaining the maximum deforma-
tion, since the accretion flow, guided by the neutron star’s
magnetic field, naturally produces ‘‘hot spots’’ on the
surface, which can imprint themselves as lateral tempera-
ture variations throughout the crust. Through the tempera-
ture dependence of electron capture, these variations can
lead to ‘‘hills’’ in hotter areas which extend down to the
dense inner crust, and with a reasonable temperature varia-
tion the ellipticity might reach the maximum elastic value
[1]. The accreted material can also be held up in mountains
on the surface by the magnetic field itself: The matter is a
good conductor, and thus it crosses field lines relatively
slowly and can pile up in mountains larger than those
supportable by elasticity alone [4]. Depending on the field
configuration, accretion rate, and temperature, the elliptic-
ity from this mechanism could be up to 10�5 even for
ordinary neutron stars.

Strong internal magnetic fields are another possible
cause of ellipticity [3]. Differential rotation immediately
after the core collapse in which a neutron star is formed can
lead to an internal magnetic field with a large toroidal part.
Dissipation tends to drive the symmetry axis of a toroidal
field toward the star’s equator, which is the orientation that
maximizes the ellipticity. The resulting ellipticity is

 � �

8><>:
1:6� 10�6

�
B

1015 G

�
B< 1015 G;

1:6� 10�6

�
B

1015 G

�
2

B> 1015 G;
(6)

where B is the root-mean-square value of the toroidal part
of the field averaged over the interior of the star. Note that
this mechanism requires that the external field be much
smaller than the internal field, since such strong external
fields will spin a star out of the LIGO frequency band on a
very short time scale.

An alternative way of generating asymmetry is the
r-modes, fluid oscillations dominated by the Coriolis
restoring force. These modes may be unstable to
growth through gravitational radiation reaction [the
Chandrasekhar-Friedman-Schutz (CFS) instability] under
astrophysically realistic conditions. Rather than go into the
many details of the physics and astrophysics, we refer the

reader to a recent review [29] of the literature and summa-
rize here only what is directly relevant to our search: The
r-modes have been proposed as a source of gravitational
waves from newborn neutron stars [6] and from rapidly
accreting neutron stars [1,7]. The CFS instability of the
r-modes in newborn neutron stars is probably not a good
candidate for detection because the emission is very short-
lived, low amplitude, or both. Accreting neutron stars (or
quark stars) are a better prospect for a detection of r-mode
gravitational radiation because the emission may be long-
lived with a duty cycle near unity [30,31].

Finally we consider free precession, i.e. the wobble of a
neutron star whose symmetry axis does not coincide with
its rotation axis. A large-amplitude wobble would produce
[8]

 h0 � 10�27

�
�w

0:1

��
1 kpc

d

��
�

500 Hz

�
2
; (7)

where �w is the wobble amplitude in radians. Such wobble
may be longer lived than previously thought [9], but the
amplitude is still small enough that such radiation is a
target for second generation interferometers such as
Advanced LIGO.

In light of our current understanding of emission mecha-
nisms, the most likely sources of detectable gravitational
waves are isolated neutron stars (through deformations)
and accreting neutron stars in binaries (through deforma-
tions or r-modes).

B. Isolated neutron stars

The target population of this search is isolated rotating
compact stars that have not been observed electromagneti-
cally. Current models of stellar evolution suggest that our
Galaxy contains of order 109 neutron stars, while only of
order 105 are active pulsars. Up to now only about 1500
have been observed [32]; there are numerous reasons for
this, including selection effects and the fact that many have
faint emission. Therefore the target population is a large
fraction of the neutron stars in the Galaxy.

1. Maximum expected signal amplitude at the earth

Despite this large target population and the variety of
GW emission mechanisms that have been considered, one
can make a robust argument, based on energetics and
statistics, that the amplitude of the strongest gravitational
wave pulsar that one could reasonably hope to detect on
Earth is bounded by h0 & 4� 10�24. The argument is a
modification of an observation due to Blandford (which
was unpublished, but credited to him in Thorne’s review in
[33]).

The argument begins by assuming, very optimistically,
that all neutron stars in the Galaxy are born at a very high
spin rate and then spin down principally due to gravita-
tional wave emission. For simplicity we shall also assume
that all neutron stars follow the same spin-down law _����
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or equivalently _f�f�, although this turns out to be unnec-
essary to the conclusion. It is helpful to express the spin-
down law in terms of the spin-down time scale

 �gw�f� �
f

j4 _f�f�j
: (8)

For a neutron star with constant ellipticity, �gw�f� is the
time for the gravitational wave frequency to drift down to f
from some initial, much higher spin frequency. This time
scale is independent of ellipticity and emission mecha-
nism, so long as the emission is quadrupolar. (It is similar
to the characteristic age f=j2 _fj used in pulsar astronomy,
except that the 2 is replaced by 4 as appropriate for
quadrupole rather than dipole radiation.) A source’s gravi-
tational wave amplitude h0 is then related to �gw�f� by

 h0�f� � d�1

���������������������
5GIzz

8c3�gw�f�

s
: (9)

Here we are assuming that the star is not accreting, so that
the angular momentum loss to GWs causes the star to slow
down. The case of accreting neutron stars is dealt with
separately, below.

We now consider the distribution of neutron stars in
space and frequency. Let N�f��f be the number of
Galactic neutron stars in the frequency range 	f�
�f=2; f
 �f=2�. We assume that the birthrate has been
roughly constant over a long enough time scale that this
distribution has settled into a statistical steady state:
dN�f�=dt � 0 above the minimum frequency fmin of our
search. (This is not true for millisecond pulsars; see below.)
Then N�f� _f is just the neutron star birthrate 1=�b, where �b

may be as short as 30 years. For simplicity, we model the
spatial distribution of neutron stars in our Galaxy as that of
a uniform cylindrical disk, with radius RG � 10 kpc and
height H � 600 pc. Then the spatial density n�f� of neu-
tron stars near the Earth, in the frequency range 	f�
�f=2; f
 �f=2�, is just n�f��f � ��R2

GH�
�1N�f��f.

Let N̂�f; d� be that portion of N�f� due to neutron stars
whose distance from Earth is less than d. For H=2 & d &

RG, we have

 

dN̂�f; d�
d�d�

� 2�dHn�f� (10)

 � 2N�f�
d

R2
G

(11)

(and it drops off rapidly for d * RG). Changing variables
from d to h0 using Eqs. (8) and (9), we have

 

dN̂�f; h0�

dh0

�
5GIzz
c3�bR2

G

f�1h�3
0 : (12)

Note that the dependence on the poorly known �gw�f� has

dropped out of this equation. This was the essence of
Blandford’s observation.

Now consider a search for GW pulsars in the frequency
range 	fmin; fmax�. Integrating the distribution in Eq. (12)
over this band, we obtain the distribution of sources as a
function of h0:

 

dNband

dh0
�

5GIzz

c3�bR
2
G

h�3
0 ln

�
fmax

fmin

�
: (13)

The amplitude hmax
0 of the strongest source is implicitly

given by

 

Z 1
hmax

0

dNband

dh0
dh0 �

1

2
: (14)

That is, even given our optimistic assumptions about the
neutron star population, there is only a 50% chance of
seeing a source as strong as hmax

0 . The integral in
Eq. (14) is trivial; it yields

 hmax
0 �

�
5GIzz

c3�bR
2
G

ln
�
fmax

fmin

��
1=2
: (15)

Inserting 	ln�fmax=fmin��
1=2 � 1 (appropriate for a typical

broadband search, as conducted here), and adopting as
fiducial values Izz � 1045 g cm2, RG � 10 kpc , and �b �
30 yr, we arrive at

 hmax
0 � 4� 10�24: (16)

This is what we aimed to show.
We now address the robustness of some assumptions in

the argument. First, the assumption of a universal spin-
down function �gw�f� was unnecessary, since �gw�f� dis-
appeared from Eq. (12) and the subsequent equations that
led to hmax

0 . Had we divided neutron stars into different
classes labeled by i and assigned each a spin-down law
�igw�f� and birthrate 1=�ib, each would have contributed its
own term to dN̂=dh0 which would have been independent
of �igw and the result for hmax

0 would have been the same.
Second, in using Eq. (10), we have in effect assumed that

the strongest source is in the distance range H=2 & d &

RG. We cannot evade the upper limit by assuming that the
neutron stars have extremely long spin-down times (so that
d < H=2) or extremely short ones (so that the brightest is
outside our Galaxy, d > RG). If the brightest sources are at
d < H=2 (as happens if these sources have long spin-down
times, �gw * �b�2RG=H�2), then our estimate of hmax

0 only
decreases, because at short distances the spatial distribu-
tion of neutron stars becomes approximately spherically
symmetric instead of planar and the right-hand sides of
Eqs. (10) and (12) are multiplied by a factor 2r=H < 1. On
the other hand, if �gw�f� (in the LIGO range) is much
shorter than �b, then the probability that such an object
exists inside our Galaxy is � 1. For example, a neutron
star with �gw�f� � 3 yr located at r � 10 kpc would have
h0 � 4:14� 10�24, but the probability of currently having
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a neutron star with this (or shorter) �gw is only �gw=�b &

1=10.
Third, we have implicitly assumed that each neutron star

spins down only once. In fact, it is clear that some stars in
binaries are ‘‘recycled’’ to higher spins by accretion, and
then spin down again. This effectively increases the neu-
tron star birth rate (since for our purposes the recycled stars
are born twice), but since the fraction of stars recycled is
very small the increase in the effective birth rate is also
small.

2. Expected sensitivity of the S2 search

Typical noise levels of LIGO during the S2 run were
approximately 	Sh�f��1=2 � 3� 10�22 Hz�1=2, where Sh
is the strain noise power spectral density, as shown in
Fig. 1. Even for a known GW pulsar with an average sky
position, inclination angle, polarization, and frequency, the
amplitude of the signal that we could detect in Gaussian
stationary noise with a false alarm rate of 1% and a false
dismissal rate of 10% is [19]

 hh0�f�i � 11:4

������������
Sh�f�
Tobs

s
; (17)

where Tobs is the integration time and the angled brackets
indicate an average source. In all-sky searches for pulsars
with unknown parameters, the amplitude h0 must be sev-
eral times greater than this to rise convincingly above the
background. Therefore, in Tobs � 10 hours of S2 data,
signals with amplitude h0 below about 10�22 would not
be detectable. This is a factor � 25 greater than the value
of hmax

0 shown in (16), so our S2 analysis is unlikely to be
sensitive enough to reveal previously unknown pulsars.

The sensitivity of our search is further restricted by the
template bank, which does not include the effects of signal
spin-down for reasons of computational cost. Phase mis-
match between the signal and matched filter causes the
detection statistic (see Sec. VA) to decrease rapidly for
GW frequency derivatives _f that exceed

 max	 _f� �
1

2
T�2

obs � 4� 10�10

�
Tobs

10 h

�
�2

Hz s�1: (18)

Assuming that all of the spin-down of a neutron star is due
to gravitational waves (from a mass quadrupole deforma-
tion), our search is restricted to pulsars with ellipticity �
less than

 �sd �

�
5c5 max	 _f�

32�4GIzzf5

�
1=2
: (19)

This limit, derived from combining the quadrupole formula
for GW luminosity

 

dE
dt
�

1

10

G

c5
�2�f�6I2

zz�2 (20)

with the kinetic energy of rotation

 E � 1
2�

2f2Izz; (21)

(assuming f � 2�) takes the numerical value

 �sd � 9:6� 10�6

�
1045 g cm2

Izz

�
1=2
�
300 Hz

f

�
5=2

(22)

for our maximum _f.
The curves in Fig. 2 are obtained by combining Eqs. (2)

and (17)1 and solving for the distance d for different values
of the ellipticity, using an average value for the noise in the
detectors during the S2 run. The curves show the average
distance, in the sense of the definition (17), at which a
source may be detected.

The black region shows that a GW pulsar with � � 10�6

could be detected by this search only if it were very close,
less than�5 parsecs away. The light gray region shows the
distance at which a GW pulsar with � � 10�5 could be
detected if templates with sufficiently large spin-down
values were searched. However, this search can detect
such pulsars only below 300 Hz, because above 300 Hz a
GW pulsar with � � 10�5 spins down too fast to be
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FIG. 2 (color online). Effective average range (defined in the
text) of our search as a function of frequency for three elliptic-
ities: 10�6 (maximum for a normal neutron star), 10�5 (maxi-
mum for a more optimistic object), and �sd, the spin-down limit
defined in the text. Note that for sources above 300 Hz the reach
of the search is limited by the maximum spin-down value of a
signal that may be detected without loss of sensitivity.

1Note that the value of h0 derived from Eq. (17) yields a value
of the detection statistic 2F for an average source as seen with a
detector at S2 sensitivity and over an observation time of
10 hours, of about 21, which is extremely close to the value of
20 which is used in this analysis as the threshold for registering
candidate events. Thus combining Eqs. (2) and (17) determines
the smallest amplitude that our search pipeline could detect
(corresponding to a signal just at the threshold), provided ap-
propriate follow-up studies of the registered events ensued.
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detected with the no-spin-down templates used. The thick
line indicates the distance limit for the (frequency-
dependent) maximum value of epsilon that could be de-
tected with the templates used in this search. At certain
frequencies below 300 Hz, a GW pulsar could be seen
somewhat farther away than 30 pc, but only if it has � >
10�5. Although �sd and the corresponding curve were
derived assuming a quadrupolar deformation as the emis-
sion mechanism, the results would be similar for other
mechanisms. Equation (21) includes an implicit factor
f2=�2��2, which results in �sd and the corresponding range
(for a fixed GW frequency f) being multiplied by f=�2��,
which is 1=2 for free precession and about 2=3 for
r-modes. Even for a source with optimum inclination angle
and polarization, the range increases only by a factor � 2.
The distance to the nearest known pulsar in the LIGO
frequency band, PSR J0437� 4715, is about 140 pc. The
other nearest neutron stars are at comparable distances
[32,34] including RX J1856:5� 3754, which may be the
nearest of all and was found to have a pulsation period out
of the LIGO band after this article was submitted [35].
Therefore our search would be sensitive only to previously
unknown objects.

While we have argued that a detection would be very
unlikely, it should be recalled that Eq. (16) was based on a
statistical argument. It is always possible that there is a
GW-bright neutron star that is much closer to us than
would be expected from a random distribution of super-
novae (for example due to recent star formation in the
Gould belt as considered in [36]). It is also possible that
a ‘‘blind’’ search of the sort performed here could discover
some previously unknown class of compact objects not
born in supernovae.

More importantly, future searches for previously undis-
covered rotating neutron stars using the methods presented
here will be much more sensitive. The goal of initial LIGO
is to take a year of data at design sensitivity. With respect to
S2, this is a factor 10 improvement in the amplitude strain
noise at most frequencies. The greater length of the data set
will also increase the sensitivity to pulsars by a factor of a
few (the precise value depends on the combination of
coherent and incoherent analysis methods used). The net
result is that initial LIGO will have h0 reduced from the S2
value by a factor of 30 or more to a value comparable to
hmax

0 � 4� 10�24 of Eq. (16).

C. Accreting neutron stars

1. Maximum expected signal amplitude at earth

The robust upper limit in Eq. (16) refers only to non-
accreting neutron stars, since energy conservation plays a
crucial role. If accretion replenishes the star’s angular
momentum, a different but equally robust argument (i.e.,
practically independent of the details of the emission
mechanism) can be made regarding the maximum strain

hmax
0 at the Earth. In this case hmax

0 is set by the x-ray
luminosity of the brightest x-ray source.

The basic idea is that if the energy (or angular momen-
tum) lost to GWs is replenished by accretion, then the
strongest GW emitters are those accreting at the highest
rate, near the Eddington limit. Such systems exist: the low-
mass x-ray binaries (LMXBs), so-called since the accreted
material is tidally stripped from a low-mass companion
star. The accreted gas hitting the surface of the neutron star
is heated to 108 K and emits x-rays. As noted several times
over the years [1,37,38], if one assumes that spin-down
from GW emission is in equilibrium with accretion torque,
then the GW amplitude h0 is directly related to the x-ray
luminosity:

 h0 � 5� 10�27

�
300 Hz

�

�
1=2
�

Fx

10�8 erg cm�2 s�1

�
1=2
;

(23)

where Fx is the x-ray flux. In the 1970s when this connec-
tion was first proposed, there was no observational support
for the idea that the LMXBs are strong GW emitters. But
the spin frequencies of many LMXBs are now known, and
most are observed to cluster in a fairly narrow range of spin
frequencies 270 Hz & � & 620 Hz [39]. Since most neu-
tron stars will have accreted enough matter to spin them up
to near their theoretical maximum spin frequencies, esti-
mated at �1400 Hz, the observed spin distribution is hard
to explain without some competing mechanism, such as
gravitational radiation, to halt the spin-up. Since the gravi-
tational torque scales as �5, gravitational radiation is also a
natural explanation for why the spin frequencies occupy a
rather narrow window: a factor 32 difference in accretion
rate leads to only a factor 2 difference in equilibrium spin
rate [1].

If the above argument holds, then the accreting neutron
star brightest in x-rays is also the brightest in gravitational
waves. Sco X-1, which was the first extrasolar x-ray source
discovered, is the strongest persistent x-ray source in the
sky. Assuming equilibrium between GWs and accretion,
the gravitational wave strain of Sco X-1 at the Earth is

 h0 � 3� 10�26

�
540 Hz

f

�
1=2
; (24)

which should be detectable by second generation interfer-
ometers. The gravitational wave strains from other accret-
ing neutron stars are expected to be lower.

2. Expected sensitivity of S2 search for Sco X-1

The orbital parameters of Sco X-1 are poorly con-
strained by present (mainly optical) observations and large
uncertainties affect the determination of the rotation fre-
quency of the source (details are provided in Sec. IV B 2).
The immediate implication for a coherent search for gravi-
tational waves from such a neutron star is that a very large
number of discrete templates are required to cover the
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relevant parameter space, which in turn dramatically in-
creases the computational costs [40]. The optimal sensi-
tivity that can be achieved with a coherent search is
therefore set primarily by the length of the data set that
one can afford to process (with fixed computational resour-
ces) and the spectral density of the detector noise. As we
discuss in Sec. IV B 2, the maximum span of the observa-
tion time set by the computational burden of the Sco X-1
pipeline (approximately one week on � 100 CPUs) limits
the observation span to 6 hours.

The overall sensitivity of the search that we are describ-
ing is determined by each stage of the pipeline, which we
describe in detail in Sec. V B. Assuming that the noise in
the instrument can be described as a Gaussian and sta-
tionary process (an assumption which, however, breaks
down in some frequency regions and/or for portions of
the observation time), we can statistically model the effects
of each step of the analysis and estimate the sensitivity of
the search. The results of such modelling through the use of
Monte Carlo simulations are shown in Fig. 3 where we give
the expected upper limit sensitivity of the search. We
contrast this with the hypothetical case in which the
Sco X-1 parameters are known perfectly making it a single
filter target for the whole duration of the S2 run. The
dramatic difference (of at least an order of magnitude)

between the estimated sensitivity curves of these two
scenarios is primarily due to the large parameter space
we have to search. This has two consequences, which
contribute to degrading the sensitivity of the analysis:
(i) we are computationally limited by the vast number of
templates that we must search and therefore must reduce
the observation to a subsection of the S2 data, and
(ii) sampling a large number of independent locations
increases the probability that noise alone will produce a
high value of the detection statistic.

We note that the S2 Sco X-1 analysis is a factor of �
5000 less sensitive than the characteristic amplitude given
in Eq. (24). In the hypothetical case in which Sco X-1 is a
single filter target and we are able to analyze the entirety of
S2 data, then we are still a factor �100 away. However, as
mentioned in the introduction, the search reported in this
paper will be one of the stages of a more sensitive ‘‘hier-
archical pipeline’’ that will allow us to achieve quasiopti-
mal sensitivity with fixed computational resources.

IV. SIGNAL MODEL

A. The signal at the detector

We consider a rotating neutron star with equatorial
coordinates � (right ascension) and � (declination).
Gravitational waves propagate in the direction k̂ and the
star spins around an axis whose direction, assumed to be
constant, is identified by the unit vector ŝ.

The strain h�t� recorded at the interferometer output at
detector time t is

 h�t� � h0	
1
2�1
 cos2	�F
�t;�; �;  � cos��t�


 cos	F��t;�; �;  � sin��t��; (25)

where  is the polarization angle, defined as tan � 	k̂ 
�ŝ� ẑ��=	�ŝ  k̂��ẑ  k̂� � �ŝ  ẑ��, ẑ is the direction to the
north celestial pole, and cos	 � k̂  ŝ. Gravitational wave
laser interferometers are all-sky monitors with a response
that depends on the source location in the sky and the wave
polarization: this is encoded in the (time-dependent) an-
tenna beam patterns F
;��t;�; �;  �. The term ��t� in
Eq. (25) represents the phase of the received gravitational
signal.

The analysis challenge to detect weak quasiperiodic
continuous gravitational waves stems from the Doppler
shift of the gravitational phase ��t� due to the relative
motion between the detector and the source. It is conve-
nient to introduce the following times: t, the time measured
at the detector; T, the solar-system-barycenter (SSB) co-
ordinate time; and tp, the proper time in the rest frame of
the pulsar.2
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FIG. 3. Here we show the expected upper limit sensitivity of
the S2 Sco X-1 search. The upper black curve represents the
expected sensitivity of the S2 analysis based on an optimally
selected 6-hour data set (chosen specifically for our search
band). The gray curve (second from the top) shows the sensi-
tivity in the hypothetical case in which all of the Sco X-1 system
parameters are known exactly making Sco X-1 a single filter
target and the entire S2 data set is analyzed. Both curves are
based on a 95% confidence upper limit. The remaining curves
represent

����������������������
Sh�f�=Tobs

p
for L1 (black) and H1 (gray); Sh�f� is the

typical noise spectral density that characterizes the L1 and H1
data, and Tobs is the actual observation time (taking into account
the duty cycle, which is different for L1 and H1) for each
instrument.

2Notice that our notation for the three different times is
different from the established conventions adopted in the radio
pulsar community, e.g. [41].
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The timing model that links the detector time t to the
coordinate time T at the SSB is

 T � t

~r  n̂
c

�E� � �S�; (26)

where ~r is a (time-dependent) vector from the SSB to the
detector at the time of the observations, n̂ is a unit vector
towards the pulsar (it identifies the source position in the
sky) and �E� and �S� are the solar system Einstein and
Shapiro time delays, respectively [41]. For an isolated
neutron star tp and T are equivalent up to an additive
constant. If the source is in a binary system, as it is the
case for Sco X-1, significant additional accelerations are
involved, and a further transformation is required to relate
the proper time tp to the detector time t. Following [41], we
have

 T � T0 � tp 
 �R 
�E 
 �S; (27)

where �R, the Roemer time delay, is analogous to the solar
system term �~r  n̂�=c; �E and �S are the orbital Einstein
and Shapiro time delay, analogous to �E� and �S�; and T0

is an arbitrary (constant) reference epoch. For the case of
Sco X-1, we consider a circular orbit for the analysis
(cf. Sec. IV B 2 for more details) and therefore set �E �
0. Furthermore, the binary is nonrelativistic and from the
source parameters we estimate �S < 3 
s which is negli-
gible. For a circular orbit, the Roemer time delay is simply
given by

 �R �
ap

c
sin�u
!�; (28)

where ap is the radius of the neutron star orbit projected on
the line of sight, ! the argument of the periapsis and u the
so-called eccentric anomaly; for the case of a circular orbit
u � 2��tp � tp;0�=P, where P is the period of the binary
and tp;0 is a constant reference time, conventionally re-
ferred to as the ‘‘time of periapse passage.’’

In this paper we consider gravitational waves whose
intrinsic frequency drift is negligible over the integration
time of the searches (details are provided in the next
section), both for the blind analysis of unknown isolated
neutron stars and Sco X-1. The phase model is simplest in
this case and given by

 ��tp� � 2�f0tp 
�0; (29)

where �0 is an overall constant phase term and f0 is the
frequency of the gravitational wave at the reference time.

B. Parameter space of the search

Both searches require exploring a three-dimensional
parameter space, consisting of two ‘‘position parameters’’
and the unknown frequency of the signal. For the all-sky
blind analysis aimed at unknown isolated neutron stars one
needs to Doppler correct the phase of the signal for any
given point in the sky, based on the angular resolution of

the instrument over the observation time, and so a search is
performed on the sky coordinates � and �. For the Sco X-1
analysis, the sky location of the system is known; however,
the system is in a binary orbit with poorly measured orbital
elements; thus, one needs to search over a range of orbital
parameter values. The frequency search parameter is for
both searches the f0 defined by Eq. (29), where the refer-
ence time has been chosen to be the time-stamp of the first
sample of each data set. The frequency band over which
the two analyses are carried out is also different, and the
choice is determined by astrophysical and practical rea-
sons. As explained in Sec. V C, the data set in H1 does not
coincide in time with the L1 data set for either of the
analyses. Consequently a signal with a nonzero frequency
derivative would appear at a different frequency template
in each data set. However, for the maximum spin-down
rates considered in this search, and given the time lag
between the two data sets, the maximum difference be-
tween the search frequencies happens for the isolated
objects search and amounts to 0.5 mHz. We will see that
the frequency coincidence window is much larger than this
and that when we discuss spectral features in the noise of
the data and locate them based on template-triggers at a
frequency f0, the spectral resolution is never finer than
0.5 mHz. So for the practical purposes of the present
discussion we can neglect this difference and will often
refer to f0 generically as the signal’s frequency.

1. Isolated neutron stars

The analysis for isolated neutron stars covers the entire
sky and the frequency range 160–728.8 Hz. The low
frequency end of the band was chosen because the depth
of our search degrades significantly below 160 Hz, see
Fig. 2. The choice of the high frequency limit at 728.8 is
primarily determined by the computational burden of the
analysis, which scales as the square of the maximum
frequency that is searched for.

In order to keep the computational costs at a reasonable
level (< 1 month on & 800 CPUs), no explicit search over
spin-down parameters was carried out. The length of the
data set that is analyzed is approximately 10 hours, thus no
loss of sensitivity is incurred for sources with spin-down
rates smaller than 4� 10�10 Hz s�1; see Eq. (18). This is a
fairly high spin-down rate compared to those measured in
isolated radio pulsars; however, it does constrain the sen-
sitivity for sources above 300 Hz, as can be seen from
Fig. 2.

2. Sco X-1

Sco X-1 is a neutron star in a 18.9 h orbit around a low-
mass ��0:42M�� companion at a distance d �
2:8� 0:3 kpc from Earth. Table I contains a summary of
the parameters and the associated uncertainties that are
relevant for gravitational wave observations. In this section
we summarize the area in parameter space over which the
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analysis is carried out. More details are given in
Appendix A.

We will assume the observation time to be 6 hours. This
is approximately what was adopted for the analysis pre-
sented in this paper and we shall justify this choice at the
end of the section.

The position of Sco X-1 (i.e. the barycenter of the binary
system) is known to high accuracy and we ‘‘point’’ (in
software) at that region of the sky. Of the three parameters
that describe the circular orbit of a star in a binary system,
the orbital period (P), the projection of the semimajor axis
of the orbit ap (which for e � 0 corresponds to the pro-
jected radius of the orbit), and the location of the star on the
orbit at some given reference time, which we define as the
orbital phase reference time �T, P can be regarded as known
over 6-hour integration time and the search therefore re-
quires a discrete grid of filters in the �ap; �T� space. Notice
that we assume that Sco X-1 is in a circular orbit and
analyze the data under this assumption. A zero eccentricity
is what one expects for a semidetached binary system and
is consistent with the best fits of the orbital parameters
[42]. Limitations of this assumption are discussed in
Appendix A. However, we quantify (for a smaller set of
the parameter space) the efficiency of the pipeline in
searching for gravitational waves emitted by a binary
with non zero eccentricity; in other words, we quote upper
limits for different values of the eccentricity that are ob-
tained with nonoptimal search templates.

For the frequency of the gravitational radiation, f0, we
confine the analysis to the two 20 Hz wide bands (464–
484 Hz and 604–624 Hz) that bound the range of the drift
of �, according to currently acceptable models for the kHz
QPOs.

The total computational time for the analysis can be split
into two parts: (i) the search time Tsearch needed to search
the data and, if no signal is detected, (ii) the upper limit
time Tinj required to repeatedly inject and search for arti-
ficially generated signals for the purposes of setting the
upper limits. Let Tspan be the span of the data set which is
analyzed, that is the difference between the time stamps of
the first and last data point in the time series. Let Tobs be the

effective duration of the data set containing nonzero data
points. The definitions imply Tobs � Tspan, and for data
with no gaps Tobs � Tspan. For a search confined to a period
(sufficiently) shorter than the orbital period of the source,
the two computational times are

 Tsearch � 90 hrs�
�

�f
40 Hz

��
� �T

598 s

��
0:1



�
3=2
�

100

Ncpu

�

�
1

2

X
L1;H1

�Tspan

6 hrs

�
7
�
Tobs

Tspan

�
; (30)

 Tinj� 55 hrs�
�
Ntrials

5000

��Nh0

20

��
100

Ncpu

�
1

2

X
L1;H1

�Tspan

6 hrs

��
Tobs

Tspan

�
;

(31)

where �f is the search frequency band, � �T the search
range for the time of periapse passage, 
 is the template
bank mismatch, and Ncpu is the number of �2 GHz CPUs
available [43]. The quantities Ntrials andNh0

are the number
of artificial signals injected per value of h0 and the number
of different values of h0 injected, respectively. Note the
steep dependency of the search time Tsearch on the maxi-
mum observation time span Tspan. The contributing factors
to this scaling are the increasing number of orbital and
frequency filters, Norb and Nfreq, respectively, with obser-
vation time span, where Norb / T

5
span and Nfreq / Tobs.

There is also a linear scaling of computational time with
Tspan (corrected by the factor Tobs=Tspan that takes into
account only the nonzero data points) due to increased
data volume being analyzed. From Eqs. (30) and (31) it
is therefore clear that if one wants to complete the full
analysis over a period & 1 week the choice Tspan � 6 h is
appropriate.

V. ANALYSIS OF THE DATA

The inner core of the analysis is built on the frequency-
domain matched-filter approach that we applied to the data
collected during the first science run to place an upper limit
on gravitational radiation from PSR J1939
 2134 [19].

TABLE I. The parameters of the low-mass x-ray binary Scorpius X-1. The quoted measure-
ment errors are all 1� �. We refer the reader to the text for details and references.

right ascension � 16 h 19 m 55.0850 s
declination � �15�38024:900

proper motion (east-west direction) 
x �0:006 88� 0:000 07 arcsec yr�1

proper motion (north-south direction) 
y 0:012 02� 0:000 16 arcsec yr�1

distance d 2:8� 0:3 kpc
orbital period P 68 023:84� 0:08 sec
time of periapse passage �T 731 163 327� 299 sec
projected semimajor axis ap 1:44� 0:18 sec
eccentricity e <3� 10�3

QPOs frequency separation 237 �5 Hz � ��QPO � 307� 5 Hz
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However, this analysis is considerably more complex with
respect to [19] because (i) the search is carried out over a
large number of templates (either over sky position or
source orbital parameters), (ii) coincidences are looked
for in the output of the searches on two interferometers
in order to reduce the false alarm probability and thereby
improve the overall sensitivity of the search, and (iii) the
upper limit is derived from the maximum joint significance
of coincident templates.

A. The detection statistic

The optimal detection statistic (in the maximum like-
lihood sense) to search coherently for quasimonochromatic
signals is the so-called F -statistic3 introduced in [44]. This
statistic can be extended in a straightforward manner to the
case of a signal from a pulsar in a binary system.

In the absence of signal, 2F is distributed according to a
(central) �2 distribution with 4 degrees of freedom and the
relevant probability density function is given by

 p0�2F � �
2F

4
e��2F =2�: (32)

We define the false alarm probability of 2F as

 P0�2F � �
Z 1

2F
p0�2F

0�d�2F 0�: (33)

In the presence of a signal, 2F follows a noncentral �2

distribution with 4 degrees of freedom and noncentrality
parameter �2; the associated probability density function is

 p1�2F � �
1

2
e��2F
�

2�=2

��������
2F

�2

s
I1�

�������������
2F�2

q
�; (34)

where I1 is the modified Bessel function of the first kind of
order one and

 �2 �
2

Sh�f�

Z Tobs

0
h2�t�dt: (35)

The expected value of 2F is 4
 �2. From Eq. (35) it is
clear that the detection statistic is proportional to the
square of the amplitude of the gravitational wave signal,
h2

0, given by Eq. (2).

B. Pipeline

The search pipeline is schematically illustrated in Fig. 4.
A template bank is set up for each search covering the
parameter space under inspection. For both analyses the
template bank is three dimensional: it covers right ascen-
sion and declination for the unknown isolated pulsar
search, and the orbital phase reference time and the pro-

jection of the orbital semimajor axis for the Sco X-1
analysis. In addition, in both cases we search for the
unknown gravitational wave frequency.

The data stream is treated in exactly the same way for
each search: the full search frequency band is divided into
smaller (� 1 Hz) sub-bands,4 the F -statistic is computed
at every point in the template bank, and lists of candidate
templates are produced. Search template values are re-
corded when the detection statistic exceeds the value
2F � 20, and we will refer to them as registered tem-
plates. Note that we will also refer to these templates as
‘‘events,’’ by analogy with the time-domain matched filter-
ing analysis.

In the search conducted in [19], we searched a single
template in four detectors. Here we search a total of 5�
1012 templates in each detector for the isolated pulsars and
3� 1010 templates overall in two detectors for Sco X-1. In
order to reduce the number of recorded templates, only the
maximum of the detection statistic over a frequency inter-
val at fixed values of the remaining template parameters is
stored. The frequency interval over which this maximiza-
tion is performed is based on the maximum expected width
of the detection statistic for an actual signal.

Compute F stat.

Store results above
threshold

over bank of filters
and frequency range.

Compute F stat.

Store results above
threshold

over bank of filters
and frequency range.

Consistent

space ?
parameter

candidates in
NO

Coincident
candidates candidates

Rejected

H1 data

YES

L1 data

FIG. 4 (color online). Workflow of the pipeline.

3We would like to stress that this statistic is completely
unrelated to the F-statistic described in statistical textbooks to
test the null hypothesis for two variances drawn from distribu-
tions with the same mean.

4Each of the sub-bands corresponds to the frequency region
which the loudest candidate over the sky or the orbital parame-
ters is maximized over and should be of comparable width with
respect to typical noise floor variations. The precise bandwidth
size is dictated by convenience in the computational setup of the
analyses, reflecting a different distribution of the computational
load among the various nodes of the computer clusters used.
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For each recorded template from one detector, the list of
recorded templates from the other detector is scanned for
template(s) which are close enough so that an astrophysical
signal could have been detected in both templates. The
criteria used to define ‘‘closeness’’ are different for the two
searches and will be described in Secs. V F 1 and V F 2.
This procedure yields a third list of templates that are what
we refer to as the coincident templates. These are template
values for which the F -statistic is above threshold and
such that they could be ascribed to the same physical signal
in both data streams. The coincident templates are then
ranked according to their joint significance.

The most significant coincident template is identified in
each �1 Hz sub-band; we also refer to this as the loudest
event for that frequency sub-band. An upper limit on the
value of h0 from a population of isolated sources or of
Sco X-1 systems is placed in each frequency sub-band
based on its loudest coincident event. Following [19],
this is done by injecting in the real data a set of fake signals
at the same level of significance as the loudest measured
event and by searching the data with the same pipeline as
was used in the analysis. The upper limit procedure is
described in Sec. V G.

C. Selection of the data set

The data input to the search is in the form of short time
baseline Fourier transforms (SFTs) of chunks of the data.
At fixed observation time the computational cost of a
search increases linearly with the number of short
Fourier transforms employed. Hence, the longer the time
baseline of the SFT, the less computationally intensive the
search. There are two constraints to making the SFT time
baseline long: (i) the noise is estimated on the SFT time
scale and thus it should be reasonably stationary on such
time scale; and (ii) the signal-to-noise ratio of a putative
source will be significantly degraded if the Doppler modu-
lation during the SFT time baseline is of the order of
1=TSFT. For the S2 data set and a search extending to about
750 Hz we chose 30 minutes as the time baseline for the
SFTs of the search for signals from isolated sources. The
Sco X-1 search was carried out using 60 s long SFTs due to
the more significant acceleration produced by the orbital
motion.

As described in [19] the SFT data is normalized by the
noise spectral amplitude. This quantity is estimated for
each SFT from the actual data near to the frequency bin
of interest. In [19] we used a simple average over frequen-
cies around the target search frequency. That approach
worked well because in the vicinity of the target frequency
there were no spectral disturbances. But clearly we cannot
count on this being the case while searching over several
hundred Hz. We have thus adopted a spectral running
median estimate method [45–47]. In the isolated pulsar
search we have chosen a very conservative window size of
50 1800 s-baseline-SFT bins (27.8 mHz) corresponding to

a little under twice the number of terms used in the demod-
ulation routine that computes the detection statistic
through the integrals (108) and (109) of [44]. We estimate
the noise at every bin as the median computed on 25

25
 1 values, corresponding to the 25 preceding bins, the
bin itself, and the 25 following bins. If an outlier in the data
were due to a signal, our spectral estimate would be
insensitive to it, and thus we would be preserving it in
the normalized data. A window size of 50 60 s-baseline-
SFT frequency bins (0.833 Hz) was also used for the upper
frequency band of the Sco X-1 search, 604–624 Hz.
Because of the presence of some large spectral features
in the lower band, 464– 484 Hz, a window size of 25 60 s-
baseline-SFT bins (0.417 Hz) was used in an attempt to
better track the noise floor. Noise disturbances are evident
in Fig. 7, where we show (with frequency resolution
1=60 Hz) the average noise spectral density of the data
set used in the analysis. Notice that the lower frequency
band presents numerous spectral features, especially in H1;
moreover, a strong and broad (approximately 2 Hz) excess
noise in both detectors is evident around 480 Hz, which
corresponds to a harmonic of the 60 Hz powerline.

The reconstruction of the strain from the output of the
interferometer is referred to as the calibration. Details
regarding the calibration for the S2 run can be found in
[27]. Both analyses presented here use a calibration per-
formed in the frequency domain on SFTs of the detector
output. The SFT-strain h�f� is computed by constructing a
response function R�f; t� that acts on the interferometer
output q�f�: h�f� � R�f; t�q�f�. Due mainly to changes in
the amount of light stored in the Fabry-Perot cavities of the
interferometers, the response function, R�f; t�, varies in
time. These variations are measured using sinusoidal ex-
citations injected into the instrument. Throughout S2,
changes in the response were computed every 60 seconds.
The SFTs used were 30 minutes long for the isolated pulsar
analysis and an averaging procedure was used to estimate
the response function for each SFT. For the binary search,
which uses 60 s SFTs, a linear interpolation was used, since
the start times of the SFTs do not necessarily correspond to
those at which the changes in the response were measured.

The observation time chosen for the two searches is
significantly less than the total observation time of S2,
due to computational cost constraints: about 10 hours and
6 hours for the isolated pulsar and Sco X-1 searches,
respectively. We picked the most sensitive data stretches
covering the chosen observation times; the criteria used to
select the data sets are described below, and the differences
reflect the different nature of the searches.

1. Data selection for the isolated neutron star search

Since the blind search for isolated neutron stars is an all-
sky search, the most sensitive data are chosen based only
on the noise performance of the detectors. The sensitivity is
evaluated as an average of the sensitivity at different
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frequencies in the highest sensitivity band of the instru-
ment. In particular, the noise is computed in six sub-bands
that span the lowest 300 Hz range to be analyzed. The sub-
bands are 1 Hz wide, with lowest frequencies, respectively,
at 162 Hz, 219 Hz, 282 Hz, 338 Hz, 398 Hz, and 470 Hz.
These sub-bands were chosen in regions free of spectral
disturbances and the average power in these frequency
regions can be taken as a measure of the noise floor there.
Even though the search band extends up to 730 Hz, we
have chosen these reference sub-bands to lie below 500 Hz,
because this is the most sensitive frequency range of our
instruments. We construct sets of 20 SFTs (10 hours of
data), with the constraint that the data employed in each set
does not span more than 13 hours. This constraint stems
from computational requirements: the spacing used for the
template grid in the sky shrinks very fast with increasing
spanned observation time. If the data contains no gaps then
each 10-hour set differs from the previous only by a single
SFT. For H1 we are able to construct 892 such sets, for L1
only 8, reflecting the rather different duty factor in the two
instruments. This is obvious from the plots of Fig. 5: For
H1 we were able to cover with sets of 20 SFTs the entire
run in a fairly uniform way. For L1 it was possible to find
sets of nearly contiguous SFTs only in the first and second
quarter of the run. We finally compute the average over the
different frequency sub-bands and we pick the set for
which this number is the smallest. Figure 5 shows this
average over the frequency bands and the cross points to
the lowest-noise SFT set.

The data sets chosen were for H1 20 30-minute SFTs
starting at GPS time 733 803 157 that span 10 hours, and

for L1 20 30-minute SFTs starting at GPS time
732 489 168 spanning 12.75 hours. The plots of Fig. 6
show the average power spectral density of this data set
for the two detectors separately (top two plots) and the
average of the same data over 1.2 Hz wide sub-bands and
over the two detectors (bottom plot).

2. Data selection for the Sco X-1 search

We choose to analyze in each detector the most sensitive
S2 data set which does not span more than 6 hours, which
we have set based on computational cost constraints. To
rank the sensitivity of a data set we use the figure of merit

 Q �

�������������������������
5hShi

	A
 B�Tobs

s
: (36)

Note that Q, Sh, A, and B depend on the time Tstart

corresponding to the first data point of a given data seg-
ment that we may wish to analyze, on the total span of the
observation (including data gaps) Tspan and on the effective
time containing nonzero data points Tobs. hShi is the noise
spectral density averaged over the frequency search bands
and the data set. The two quantities A and B are the
integrals of the amplitude modulation factors and take
into account the change of sensitivity of the instruments
for the Sco X-1 location in the sky as a function of the time
at which the observation takes place (explicit expressions
for A and B are given in [44]). In our calculation of Q we
take into account the presence of data gaps over Tspan, and
we average over the unknown angles 	 and  . From
Eq. (35) it is straightforward to recognize that Q2 is simply
related to the noncentrality parameter �2 for a signal
amplitude h0 by
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FIG. 5 (color online). The average of the noise over various
1 Hz sub-bands as described in the text for different sets of 20
SFTs from data of the L1 detector (top plot) and H1 detector
(bottom plot). The x-axis labels the order number of the first SFT
in each set. SFT #1 is the first SFT of the run. Neighboring sets
only differ by one SFT. The cross indicates the data set chosen
for the search for signals from isolated objects.

FIG. 6. The average amplitude spectral density
�����������
Sh�f�

p
of the

data of the two detectors used for the isolated pulsars analysis.
The bottom plot is the average over 1.2 Hz wide sub-bands of the
average of the top two plots. The frequency resolution of the top
two plots is 1

1800 Hz. The frequency resolution of the bottom
plots is 2160 times coarser.
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The parameter Q is therefore a faithful measure of the
sensitivity of a given data set for the Sco X-1 search: it
combines the effects of the variation with time of the
detectors’ noise level, duty cycle, and the (angle averaged)
sensitivity to the specified sky position. Note that for
Tspan & 1 day, the location of the source is a strong factor
in the choice of the optimal data set; for longer observation
times the quantity A
 B becomes constant. By tuning the
choice of the data set to exactly the Sco X-1 sky position,
we have achieved a gain in sensitivity * 2 compared to
selecting the data set only based on the noise level.

We compute the figure of merit Q for all possible
choices of data segments with Tspan � 6 hours; the values
ofQ for the whole S2 are shown in Fig. 8. The data sets that
we select for the analysis span 21 611 s with 359 SFTs for
H1, and 190 SFTs spanning 18 755 s for L1. Notice that
Tspan is different for the two detectors (which has an impact
on the choice of the orbital template banks for the two
instruments), and that the L1 and H1 data sets are not
coincident in time; based on the relatively short observa-
tion time and therefore coarse frequency resolution of the
search the maximum spin-up/spin-down of the source due
to accretion would change the signal frequency by only
�0:1 frequency bins, which is negligible.

D. Template banks

In this section we describe the construction of the tem-
plate (or filter) banks used in the searches. More details can
be found in Appendix B. The optimal strategy for laying a
filter bank is through a metric approach (cf. [10,48]), and
this is used for the orbital parameter grid employed in the
Sco X-1 analysis. By contrast, the search for signals from
isolated objects uses a suboptimal grid (in terms of com-
putational efficiency, but not for the purpose of recovering
signal-to-noise ratio) to cover the sky; a full metric ap-
proach was not developed for this search at the time that
this analysis was performed.

1. Isolated neutron stars

Two independent grids are employed: one for sky posi-
tion and one for frequency. The grid in frequency is uni-
form with a spacing �f0 � 3:472� 10�6 Hz which is
about a factor of 8 smaller than the inverse of the obser-
vation time. To cover the sky we choose an isotropic grid
with equatorial spacing of 0.02 rad. Such a grid covers the
celestial sphere with just under 31 500 patches of approxi-
mately equal surface area. The number of templates in
right ascension � at any given declination � is proportional
to cos�. At fixed � the spacing in � is constant, and equal

FIG. 8. The sensitivity of the LIGO interferometers during S2
for a search targeted for Sco X-1. The plots show the evolution of
the sensitivity quality factor Q, Eq. (36), as a function of
observation start time; each point corresponds to a maximum
observation time span of 6 hours. Because of intermittent loss of
lock during the S2 run each 6-hour span can contain significantly
less than 6 hours of data. Note that H1’s sensitivity appears more
consistent than that of L1. This is due to the lower variation in
the H1 noise during the run and the 74% duty cycle compared to
L1’s 37%. The periodic structures, more visible in the H1 curve,
are caused by the daily variation of the detectors’ antenna pattern
due to the Earth’s spin. The crosses indicate the start times
corresponding to the best sensitivity and therefore chosen for
the analysis.
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FIG. 7. The amplitude spectral density
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p
of the optimally

chosen data sets for L1 and H1 and for both frequency bands
averaged over each 60 sec SFT. The solid black and dashed gray
lines correspond to H1 and L1, respectively. Note that the lower
band contains a feature common to both detectors, a 60 Hz
powerline harmonic at 480 Hz with a width of �2 Hz. The H1
data set also contains a variety of other features in the lower
band, some equally as large as the powerline harmonic. The
upper band is comparatively clean with no visible features.
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to 0.02 rad. For illustration purposes Fig. 9 shows an under-
sampled grid of this type.

The grid is chosen based on the maximum expected
degradation in the detection statistic due to the mismatch
between the actual position of a putative source and the
template grid, of a few percent. Extensive Monte Carlo
simulations were performed to verify the performance of
the filter bank. Note that the grid adopted for the search
‘‘covers’’ H1 data parameter space with more redundancy
than for L1. The main reason for this difference is the fact
that the spanned observation time of the data set used for
the L1 detector is longer than that for H1; in fact, the
resolution in sky position is highly dependent on the time
spanned by the observations. More details are given in
Appendix B.

2. Sco X-1

The analysis for Sco X-1 requires a search over the
orbital parameters ap and �T and the gravitational wave
frequency f0. In order to optimally cover this space we
consider the metric approach introduced in [48] in the
context of binary inspirals and applied to pulsar searches
in [10,40]. By using the metric we take advantage of the
correlations between the frequency and the orbital parame-
ters—so that a mismatch in orbital parameters can be
compensated by a mismatch in frequency—and we there-
fore reduce the number of orbital templates required to
cover the parameter space. We set the total mismatch
between signal and template to be 10%. By optimally
splitting the mismatch amongst the dimensions of the
parameter space, the frequency resolution is set to �f �

1=�5Tspan� corresponding to 9:285 051� 10�6 Hz for H1
and 1:066 382� 10�5 Hz for L1.

The spacing of the filters in the two-dimensional space
of the orbital templates is determined primarily by Tspan —
the number of orbital templates in the regime Tspan <P
scales as T5

span —and the grid orientation is determined by
the location of the source in its orbit during the observa-
tion. These effects are clearly visible in Fig. 10; although
the observation spans differ by only�15% between L1 and
H1, the density of filters for H1 is twice that for L1. The
source location within the orbit differs by � 2:22 radians
between the L1 and H1 observation periods and correla-
tions between the two orbital parameters are therefore
different between the two detectors resulting in template
banks that are clearly nonaligned. One further step to
optimize the search is to generate separate orbital template
banks for each 1 Hz frequency sub-band, because the grid
density increases as �fmax

0 �2, where fmax
0 is the maximum

search frequency. This approach allows an overall gain �
30% in computational speed in comparison to using a
single template bank with a maximum frequency parame-
ter fmax

0 � 624 Hz for the whole analysis.
The number of orbital templates used for each 1 Hz sub-

band ranges from 3391 to 3688 in the 464–484 Hz band
and from 5738 to 6107 in the 604–624 Hz band for the L1
analysis. The number of frequency filters per 1 Hz band is
93 775; therefore, the number of trials used to cover the
parameter space is in the range 3:2� 108–5:7� 108. The
corresponding numbers for the H1 analysis are 6681–7236,
11 309–12 032, and 108 055, respectively, corresponding
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FIG. 9. The sky grid that we have used is of the kind shown
here, 25 times more dense. The angular distance between points
at the equator in this plot is 0.1 radians. The figure is a projection
of the grid on the Northern hemisphere. Distance along the radial
direction is proportional to the cosine of the declination.
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FIG. 10. Here we show a small section ( � 1=50th) of the total
orbital parameter space. The crosses and circles represent tem-
plate locations used to search the L1 and H1 data sets, respec-
tively. This particular template bank was generated for a
maximum search frequency of 465 Hz. Note that the templates
are not uniformly spaced in the �ap; �T� parameter space, although
they appear nearly so in the limited region shown here.
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to a total number of trials for each 1 Hz sub-band in the
range 7:2� 108–1:3� 109.

E. The single detector search

As described in Sec. V B and Fig. 4 the data from each
detector is searched over the entire parameter space, by
computing the F -statistic for each template in frequency
and either position in the sky (for the all-sky search) or
orbital parameters (for the Sco X-1 search). In both cases
results are stored only for those templates that yield a value
of the detection statistic that exceeds the threshold 2F thr �
20. This choice is based on limitations on the size of the
output files of the search.

Our template banks are highly correlated; thus in order
to decrease the number of frequency templates that we
store, we treat as correlated the template frequencies which
are sufficiently ‘‘close to each other’’ and we do not
register them as separate templates. The frequency interval
that defines how close frequencies have to be in order to be
ascribed to the same template is estimated based on the full
width at half maximum of the F �f0� curve for a represen-
tative sample of the parameter space and for random mis-
matches between signal and template, as would occur in an
actual search in the presence of a signal. The resulting
frequency intervals are a few times 10�4 Hz.

The following information is stored for each template
above threshold: the frequency f0 at which the value of F
is maximum, the values of � and � for the template, the
total width in search frequency bins of the points associ-
ated with the maximum, the mean value and the standard
deviation of F over all those points and the value of 2F at
the maximum. The same information is stored in the case
of the Sco X-1 search, with the orbital parameters ap and �T
instead of the sky position parameters � and �.

The computational load for the searches is divided
among independent machines, each searching a small fre-
quency region over the entire parameter space. For the
isolated pulsar search each CPU analyzes a 60 mHz search
band. The processing time for both data streams and the
entire sky is typically about 6 hours on a 2 GHz class
computer.5 The typical size of the output, after compres-
sion, from a single detector search is around 3 MBytes. For
the Sco X-1 search, typically an individual machine
searches 0.1 Hz. The equivalent run time on a 60 mHz
search band on the entire Sco X-1 orbital parameter space
is approximately 9 hours. Although the Sco X-1 orbital
templates are fewer than the sky position templates, the
two searches are comparable in computational time be-
cause the Sco X-1 search uses a greater number of (shorter)

SFTs. For the particular data sets selected for this analysis
it should be noted that with H1’s shorter spanned observa-
tion time and fewer SFTs, the computational load is pri-
marily due to the L1 search. The output from the search in
total, including both detectors and all search bands, com-
prises � 1 GByte of results, corresponding to around
700 kBytes per 60 mHz band for the entire orbital parame-
ter space.

Figures 11 and 12 show the distribution of 2F values of
the registered templates for sub-bands in reasonably clean
spectral regions in both instruments (around 247.1 Hz and
619.5 Hz, respectively) in the top two plots, and in less
clean regions in the H1 data (around 329.6 Hz and
465.5 Hz, respectively) in the bottom two plots. In the
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FIG. 11 (color online). The circles show the distribution of 2F
values for the templates registered after the single detector all-
sky search. The solid line shows the expected distribution for
Gaussian stationary white noise. The top two plots refer to the
band 247.06–247.12 Hz. The bottom two plots show the same
distributions for the 329.56–329.62 Hz band. The expected
distribution is dominated for high values of 2F by an exponen-
tial term, as is evident from the linear behavior on a semilog
scale. In the clean 247 Hz band, the theoretical and the experi-
mental distributions agree very well.

5Since the time when this search was carried out, the software
has been significantly improved. At the beginning of 2007 the
average computing time per template of an Einstein@home host
performing a coherent search of this type is 0:37 
s� NSFT ,
where NSFT is the number of SFTs employed to construct the
detection statistic
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top two plots, the distributions of 2F values closely follow
the expected p0�2F � distribution, Eq. (33). This is not
surprising in regions free of evident disturbances, as al-
ready shown in [19]. Note that the highest 2F values in the
clean bands (top two plots) are higher in Fig. 12 than in
Fig. 11. This is due to the fact that the 0.1 Hz Sco X-1
search has more templates than the 0.06 Hz all-sky isolated
search.

F. Coincidence analysis

The next stage of the analysis compares the two lists of
values of 2F that lie above the threshold 2F thr � 20
compiled for each detector. We require that given a tem-
plate in, say, L1, there exists a template in H1 such that
their locations in parameter space are consistent with a

physical signal having triggered them both. If this is the
case, the relevant values of the detection statistic are stored
(the two filters are regarded as ‘‘in coincidence’’), other-
wise they are ‘‘rejected’’ and removed from the lists. This
procedure is identical for both searches, but the consis-
tency criteria are different due to the different signals that
are searched for. This strategy is effective at reducing the
false alarm rate if the noise in the two data streams is
uncorrelated. In practice, the data are also populated by a
forest of lines present both in L1 and H1, such as 16 Hz
harmonics from the data acquisition system and 60 Hz
powerline harmonics, and this procedure does not elimi-
nate them. However, it does eliminate the non-Gaussian
uncorrelated outliers which also are in the data. We find
that the typical sensitivity improvement in h0 resulting
from the coincidence stage is comparable for both searches
and in the range 10%–20%, depending on the frequency
sub-band.

An additional criterion to identify coincident templates
could be based on comparing the values of 2F produced by
the two filters; however, as 2F is already maximized over
the nuisance parameters  and 	, and the integration time
of the analyses is shorter than 1 day, it is in practice
difficult to introduce an ‘‘amplitude consistency cut’’ that
is simultaneously stringent and safe. For this reason we
have not included this requirement in the coincidence stage
of this search (see, however, the discussion in Sec. VI A).

The coincident templates are then sorted in order of
descending joint significance. If we indicate with 2F L1

and 2FH1 the values of the detection statistic for a pair of
templates in coincidence, we define their joint significance
as

 s�2F L1; 2FH1� � 1� P0�2F L1�P0�2FH1�; (38)

where P0�2F �, defined in Eq. (33), is the single detector
false alarm probability for 2F , under the assumption that
the noise is Gaussian and stationary. We consider the loud-
est coincident template pair as that yielding the largest
value of joint significance. In practice, in the numerical
implementation we rank events according to
�flog	P0�F L1�� 
 log	P0�F H1��g with log	P0�F �� �
log�1
F � �F .

In the remainder of the section we provide details on the
specific implementation of the coincidence stage for the
two analyses.

1. Isolated neutron stars

For the isolated search the coincidence windows are
1 mHz in frequency f0 and 0.028 rad angular distance in
position on the celestial sphere. These coincidence window
values were derived from the results of the Monte Carlo
simulations described in Sec. V E. More specifically
0.028 rad represents a mismatch between sky positions of
at most 1 grid point. The value of 1 mHz is derived from the
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FIG. 12 (color online). The circles show the distributions of
2F values derived from the single detector Sco X-1 searches.
The top two plots show the distributions for a clean sub-band in
both detectors, 619.0–620.0 Hz. The solid curve represents the
theoretical expected distribution. The two bottom plots show the
same distributions for the sub-band 465– 466 Hz. In this band the
H1 results are dominated by large values of 2F .
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results of Monte Carlo simulations by requiring a null false
dismissal rate on the simulated sample.

As described in Sec. V D, the all-sky isolated search, if
performed on Gaussian white stationary noise, would yield
single-interferometer loudest templates in 1.2 Hz sub-
bands with mean 2F values of 45.7 for L1 and 41.7 for
H1. The difference in these mean values is due to the
different data sets used for the two searches (the time
spanned by the L1 data set is longer than that of the H1
data set) and by the different location of the detectors on
Earth and to the nonuniform antenna pattern of the detec-
tors. In this search, after having excluded outliers with
2F > 100, we measure mean values of the loudest tem-
plates of 52.2 for L1 and 46.6 for H1.6 This corresponds to
an increased level of spectral contamination in the real data
with respect to Gaussian stationary noise. This is not
surprising at all—even a simple visual inspection of the
spectra reveals that they are contaminated by several
‘‘lines’’ (also see the discussion in Sec. VI D in [13]).

After the coincidence step the mean value of 2F for the
loudest event is 39.5 for the L1 data and 32.2 for H1. If one
compares these values with the mean values before coin-
cidence, 52.2 for L1 and 46.6 for H1, one recognizes that
the coincidence step yields an improvement in h0 sensitiv-
ity of 15% and 20% for L1 and H1, respectively, [remem-
ber from Eq. (35) that 2F / h2

0]. In Gaussian stationary
noise the expected improvement is 11% and 17% for L1
and H1, respectively. Thus, and again not surprisingly, the
coincidence step plays a greater role on real data, which is
affected by uncorrelated non-Gaussian disturbances.

Figures 13 and 14 show the values of the detection
statistic for the loudest events before and after coincidence,

respectively. Figure 15 shows the distributions of 2F for
the loudest coincident templates. Figure 16 shows the
distribution of loudest coincident templates over the entire
sky for all the 1.2 Hz sub-bands. A higher concentration of
templates is apparent at the poles. This is to be expected
since the poles are the regions from where a monochro-
matic signal would be received by our detectors at a nearly
constant frequency. In other words, spectral artifacts at
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FIG. 13 (color online). These plots show loudest 2F values in
the single detector searches in each 1.2 Hz sub-band.
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FIG. 14 (color online). These plots show two different views
of the values of the detection statistic 2F of the loudest coin-
cident template-couples (one for every 1.2 Hz sub-band) from
the isolated pulsar search. The mean value between the threshold
and 2F � 100 is 39.5 for the L1 data and 32.2 for the H1 data.
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FIG. 15 (color online). These plots show the distributions of
the values plotted in Fig. 14. The mean value of these distribu-
tions depends on the volume of the parameter space that the
search extends over. In this case it is the whole sky in 1.2 Hz
frequency sub-bands.

6The 2F > 100 cut has been made only when computing the
mean values reported above in order to eliminate large outliers
that would have dominated the mean; see Figs. 14 and 15.
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fixed frequency are consistent with sources close to the
poles, during our observation time.

2. Sco X-1

In the Sco X-1 analysis we identify coincident templates
in L1 and H1 by using the metric on the relevant parameter
space; see Sec. V D 2. A real signal, if present and of
sufficient amplitude, will trigger templates in both detec-
tors. These templates will be in close proximity in parame-
ter space but not necessarily identical. The procedure starts
by taking each template above threshold from the L1
detector and first testing for orbital parameter consistency
with templates from the H1 detector. We do this using a
property inherent to the orbital template bank, which is
schematically illustrated in Fig. 17. We know that a signal
will return at least 90% of its optimal detection statistic

when processed using the ‘‘closest’’ template (in the ab-
sence of noise), where the distance between templates is
defined by the metric. We can therefore identify a rectan-
gular region around the L1 filter in the two-dimensional
plane of orbital parameters. This region is easily calculated
from the metric used to place the templates, and we would
expect the true signal parameters to lie within it. We can
now repeat this process for each H1 template and construct,
based on the metric associated with H1, the region covered
by the H1 filters (i.e. the filters that are associated with a
value of 2F above threshold). The test now becomes a
simple matter of checking for any overlap between the
region covered by the L1 filter under scrutiny and the H1
filters. Overlap implies a possible consistent signal location
(in orbital parameters) capable of triggering a filter in L1
and H1. In this analysis there are on average 12 orbital
templates in H1 that are ‘‘consistent’’ with each template in
L1. The process that we have just described is then re-
peated for all the L1 filters.

So far we have considered only the orbital parameters.
The second stage to identify filters in ‘‘coincidence’’ is to
test for frequency consistency amongst those filters that
have survived the previous test. The use of the projected
metric described in Sec. V D 2 exploits the correlations
between the orbital templates and the gravitational wave
frequency to reduce the overall number of filters. Doing so
allows greater differences between the true and detected
source orbital parameters and greater differences between
the true and detected gravitational wave frequency. Using
Monte Carlo simulations we measured the maximum sepa-
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FIG. 16. These figures show the location in the sky of the
loudest coincident template in each 1.2 Hz sub-band. The circles
show the templates found with the L1 search and the diamonds
show the coincident templates found with the H1 search.

Y

X

FIG. 17. Here we represent a small region of orbital parameter
space. The crosses represent orbital templates used in the L1
search and the circles represent those used in the H1 search. Note
that the template orientation and spacing are not the same in each
template bank. The bold� represents the location of a candidate
event in the L1 detector, and the dashed rectangle surrounding it
represents the area within which a signal must lie if this template
is the closest to the signal. The filled circles represent those
templates in the H1 detector that are possible coincident candi-
dates. They are identified due to the overlap between their
respective dashed rectangular regions and the L1 candidate event
dashed region. In the S2 search there are on average 12 orbital
templates in H1 that are consistent with each template in L1.
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ration between a signal’s true and detected frequency. This
separation is largely determined by the spanned observa-
tion time. For the data sets chosen, the maximum separa-
tion for L1 was found to be 2:158� 10�4 Hz and for H1
was 1:773� 10�4 Hz. This corresponds to a maximum
separation of 3:931� 10�4 Hz between a candidate in
L1 and H1 in order to be consistent with a common signal.
This is the frequency coincidence window that we have
chosen. Note that it is equivalent to �40 frequency bins in
the H1 search.

If a pair of candidate events is found to be consistent in
both orbital parameter space and frequency space then they
are classed as a coincident event. Note that a single candi-
date event in the L1 detector can have many possible
coincident pairs in the H1 detector (and vice versa).

The power of the coincidence analysis is shown in
Fig. 18 where the effect of the coincidence constraint is
seen to reduce the values of our loudest events. Before
coincidence the average value of 2F for the loudest events
(excluding three 1 Hz sub-bands that contain major spec-
tral disturbances: 465–466 Hz and 479– 481 Hz) was 40.8
for L1 and 45.4 for H1. After coincidence this becomes
28.6 for L1 and 33.5 for H1 which corresponds to an
improvement in h0 sensitivity of �16%. This is broadly
consistent with the results obtained for the isolated neutron
star analysis. In Fig. 19 we show the location of the
coincident templates in the orbital parameter plane that
produce the loudest event in each of the 40 1-Hz sub-bands.

G. Upper limits

We place an upper limit on the amplitude of the gravi-
tational wave signal (from either a population of isolated
neutron stars or from Sco X-1) in every �1 Hz sub-band
on which the search was performed; the upper limit is
based on the loudest coincident event found in that band
during the search. The procedure employed is conceptually
identical to the one used in [19] to set an upper limit on the
emission from J1939
 2134, given the measured values of

the F statistic for that targeted search. In this section we
describe the Monte Carlo procedure; further details are
provided in Appendix D.

Let s��f0� indicate the measured value of the joint
significance, see Eq. (38), of the loudest coincident event
in the sub-band beginning at frequency f0. For every sub-
band a set of N (typically several thousands, see
Appendix D for more details) injections of fake signals
in the real data is performed at fixed amplitude h0. Each
injection is searched for in the data and, if detected as a
coincident event, its significance is computed. A confi-
dence level C�h0� is assigned to this set of injections

 C�h0� � n�h0�=N (39)

with n�h0� being the number of trials out of N in which the
measured joint significance of the injected signal is greater
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FIG. 18. Here we show the effect that the coincidence analysis has on the loudest measured detection statistic in each 1 Hz sub-band
within the Sco X-1 parameter space. The solid black curves represent the loudest coincident 2F values. The dashed gray curves
represent the 2F values before the coincidence analysis. Note that in clean sub-bands there is a reduction of �1:4 in the loudest 2F
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FIG. 19. The locations in orbital parameter space of the loud-
est events found in each 1 Hz sub-band. The crosses represent
events found in L1 and the circles represent events found in H1.
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than or equal to s�. Equation (39) defines the h0 upper limit
value as a function of the confidence C.

For every injection in a set at fixed h0 the remaining
parameters are chosen randomly from within the bounda-
ries of the relevant search parameter space. The errors in
the estimate of the upper limit are directly computed from
the Monte Carlo results. Our approach typically yields
uncertainties in the values of the upper limit of
�1%–3%. An additional and larger uncertainty arises
from the instrument calibration, which varies with time
and depends on the detector and the frequency band. Over
the entire parameter space, we estimate that for the data
sets used in the analyses presented here, the uncertainties
amount to 11% and 9% for the isolated neutron star and
Sco X-1 analysis, respectively. These estimates are
conservative.

The tables in [49] detail all the upper limit results. The
uncertainties associated with the upper limit Monte Carlo
procedure are reported separately from the calibration un-
certainties and typically they are smaller than the latter.

VI. RESULTS

In this section we present the results of the analysis
performed using the pipeline shown in Fig. 4 and described
in Sec. V. We first discuss the results regarding the all-sky
search for isolated neutron stars and then turn to upper
limits on radiation from Sco X-1.

A. Isolated neutron stars

Figure 20 shows the 95% upper limits on h0 for every
1.2 Hz wide sub-band over the whole sky. The values of the

frequency refer to the lower extremum of each sub-band.
(The upper limit values, along with their estimated uncer-
tainties, may also be found in tabular form in [49].) The
circles around the upper limit dots mark points in the 90th
percentile in joint significance. About 2=3 of these points
are also in the 90th percentile for h95%

0 .
About one quarter of the 90th percentile significance

points lie in sub-bands influenced by spectral disturbances
(points with circles on shaded bands in Fig. 20). Most of
the remaining points can be immediately attributed to
nonastrophysical sources because the ratio of the
F -statistic values in the two detectors is either too large
or too small to be consistent with being due to the same
signal. These points are indicated in Fig. 20 by a square.
There remain 6 points which are in the 90th percentile in
significance and cannot be excluded based on the ratios of
the F -statistic values. They appear at the frequencies
160.0 Hz, 466.79 Hz, 546.03 Hz, 564.02 Hz, 626.80 Hz,
and 700.51 Hz. The 160.0 Hz frequency coincides with the
10th harmonic of 16.0 Hz, a key operating frequency of the
data acquisition system. We are thus confident that the
origin of this outlier is instrumental. The points at
466.79 Hz, 626.80 Hz, and 700.51 Hz are due to lines
only in the L1 instrument which have disappeared in
science runs subsequent to S2. This check suggests that
the outliers are of instrumental origin. The 546.03 Hz and
564.02 Hz points are due to lines which clearly appear only
in H1. However, the lines are present in the S2 run and in
later science runs. The amplitude of both lines decreases
with increasing sensitivity of the instrument, dropping by a
factor of 10 (in noise power) as the sensitivity increases by
a factor greater than 5. This indicates a behavior which is
not consistent with the model of the signal that we are
searching for here and suggests that these lines are of
instrumental origin. Figure 21 shows the average power
spectral density in both detectors in the frequency regions
where these outliers are located.

Unlike what is described in [13] no frequency band is
excluded from the upper limit analysis due to it being
contaminated by known noise artifacts. This results in
extremely loud events in some sub-bands: those containing
the 60 Hz powerline harmonics, the L1 calibration line (at
167 Hz), the violin modes of the suspension wires of the
test mass (in the 340–350 Hz region) and the various
oscillator harmonics at multiples of 36 Hz together with
the beating of the 0.74 Hz pendulum mode of a test mass
against the oscillator line (in the 220–335 Hz region). In
the case of the 179.4 Hz sub-band containing the 180 Hz
powerline harmonic, the spectral disturbance is so strong
that the upper limit Monte Carlo does not converge to an
upper limit h95%

0 value. The sub-bands marked by shaded
vertical stripes indicate frequencies where known spectral
artifacts are present.

The upper limit values presented here are in broad
agreement with what is expected and we consider this a
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FIG. 20 (color online). Upper limits based on the loudest
template over the whole sky in 1.2 Hz sub-bands. The vertical
stripes mark the sub-bands containing known spectral disturban-
ces. The circles mark the 90th percentile most significant results.
The squares indicate that the values of the detection statistic in
the two detectors are not consistent with what one would expect
from an astrophysical signal.
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FIG. 21. The average power spectral density in the two detectors in the frequency regions around the five not immediately explained
outliers from the search for isolated pulsars. The width of these disturbances is sufficiently small that they could not be discarded as of
nonastrophysical origin based on this. A peak in power spectral density is clearly visible only in one of the detectors, but the measured
values of the detection statistics are not inconsistent with an astrophysical signal, albeit a rare one. As explained in Sec. VI A we very
strongly suspect these excesses of power are not due to a continuous wave source because of their inconsistent amplitudes in science
runs subsequent to S2.
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further validation of the analysis pipeline. We have run the
pipeline presented here on Gaussian stationary noise and
empirically derived a formula for the expected h95%

0 as a
function of the noise level in the detectors:

 h95%
0 � 29:5

�������������
hShi

10 hrs

s
; (40)

with hShi being the average noise level over 1.2 Hz and
over the observation time in every detector and then aver-
aged over the detectors: this quantity is shown in Fig. 6. We
would like to stress that Eq. (40) refers to this particular
analysis and pipeline. The expected upper limits for
Gaussian stationary noise are plotted against the measured
ones in Fig. 22. It is clear that in regions where the data is

not Gaussian and stationary Eq. (40) does not predict
correctly the values that we measure and the discrepancy
between the prediction and the measured value depends on
the details of the spectral disturbance and of the method
used for estimating the noise. This is particularly evident
close to spectral disturbances, where clearly the noise is
not white Gaussian and often not stationary and the pre-
dictions can even be larger than the actually measured
upper limit value (see the points below 1 in the lower
plot of Fig. 22). However, the ratio of the measured upper
limits to the expected one never exceeds 4.4 and the 90th
percentile level in this ratio is 1.7.

B. Sco X-1

The upper limits on gravitational waves from Sco X-1
are summarized in Fig. 23 (more details are provided in
[49]): we show h95%

0 over 1 Hz sub-bands in the range 464–
484 Hz and 604–624 Hz, assuming that the source is in an
exactly circular orbit. We would like to stress that these
limits apply to a source whose orbital parameters lie in the
region reported in Table I, corresponding to 1� � errors.
The typical value of h95%

0 is � 2� 10�22 over the whole
analyzed 40 Hz band, with the exception of a band� 2 Hz
around 480 Hz which corresponds to one of the strong
harmonics of the 60 Hz powerline, cf. Fig. 7. In this region
the upper limit is h95%

0 � 10�21. Such values are consistent
with the sensitivity estimates shown in Fig. 3, which were
derived under the assumption of Gaussian and stationary
noise and include a number of approximations to quantify
the effects of each stage of the pipeline considered in this
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FIG. 22 (color online). Top plot: the circles are the upper limits
based on the loudest template over the whole sky in 1.2 Hz sub-
bands. The solid line is the expected upper limit under the
assumption that the noise in the detectors is Gaussian and sta-
tionary. Bottom plot: ratio of the measured upper limit values to
the expected upper limit values. The circles indicate the 90th
percentile values of the measured to expected upper limit ratio.
The crosses mark the upper limit values for which the ratio of the
detection statistic values in the two detectors is not consistent
with what we would expect from a signal. In both plots the
shaded regions indicate frequency bands affected by known
spectral disturbances.
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FIG. 23. The upper limits on the amplitude of gravitational
wave radiation from Sco X-1. The plot shows the limits on h0 at
95% confidence (solid line) as a function of frequency. We report
one limit for every 1 Hz sub-band and the Sco X-1 orbit is
assumed to be exactly circular. The shaded region shows the
combined errors on h95%

0 due to the injection process (typically
in the range �2� 5� 10�24) and instrument calibration. The
latter, estimated at the level � 9%, dominates the uncertainties.
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search. Through the statistical modelling of the pipeline we
are able to express the expected h95%

0 upper limit as

 h95%
0 �f� � 28

���������������
hSh�f�i
6 hrs

s
; (41)

where hSh�f�i is the noise level over the 1 Hz sub-bands
averaged over the observation time, the frequency band,
and the detectors.

In Fig. 24 we show the value of hC0 as a function of C for
selected frequency sub-bands. We have considered both
‘‘quiet’’ and ‘‘noisy’’ spectral intervals, but have restricted
this analysis to only four 1 Hz frequency sub-bands due to
computational burdens. Figure 24 shows that h99%

0 and
h50%

0 are a factor � 2 larger and smaller, respectively,
than h95%

0 .
So far we have restricted the discussion of the upper

limits to the case of an exactly circular orbit. This is the
model that we have assumed in building the templates used
in the analysis. As we have mentioned in Sec. IV B 2, the
orbital fits of the optical data are consistent with e � 0,
which is in agreement with the theoretical expectations
inferred from evolutionary models. However, present ob-
servations do not constrain the eccentricity to e & 10�4,
which would introduce systematic losses of signal-to-noise
ratio smaller than� 0:1, the value of the mismatch adopted
for this search. It is therefore important to explore the
consequences of a (unlikely but possible) nonzero eccen-
tricity of the Sco X-1 orbit on the results reported so far.
The pipeline that we have developed allows us to quantify
this effect in a fairly straightforward way: the Monte Carlo
software injections used to set upper limits are performed
again by drawing signals from a population of binaries
where now the eccentricity is set to a (constant) value e �

0. The orbital parameters and the frequency are chosen
randomly exactly as in the case for a circular orbit. We
detect the signals from eccentric orbits with the search
pipeline constructed with a bank of filters for a perfectly
circular orbital model. In this way we can quote consis-
tently an upper limit on h0 for e � 0. We repeated this
procedure for selected values of the eccentricity, e � 10�4,
5� 10�4, 10�3, and 5� 10�3. The dependence of the
value of the upper limit on h0 as a function of the con-
fidence level for four representative frequency sub-bands is
shown in Fig. 24 and the upper limits over the whole 40 Hz
region (at fixed confidence level) are summarized in
Fig. 25 and in [49]. Notice that in this case we choose
different values of the confidence level depending on the
eccentricity of the orbit of the putative source population
used for the injection. This stems directly from the fact that
the detection efficiency of the search pipeline is progres-
sively reduced as the model of the injected signals differs
more and more from that of the detection templates. In
other words we suffer from systematic losses of signal-to-
noise ratio due to the fact that the templates are not
properly matched to the signal: for e * 10�3 the fitting

factor of a filter generated by modelling Sco X-1 as a
circular orbit binary is <0:9. Indeed, regardless of the
strength of the injected signals, the pipeline is unable to
detect at least 95% of them, see Fig. 24. We find that for
e � 10�3 and 5� 10�3 the pipeline has a maximum de-

FIG. 24. Examples of how the confidence level in the upper
limit on h0 from Sco X-1 scales with the amplitude of injected
signals. Here we show 4 plots each corresponding to a different
1 Hz sub-band. The sub-bands 464–465 Hz, 469– 470 Hz, and
614–615 Hz show the confidence level across the range of
typical injected h0 values (10�22–4� 10�22). The sub-band
479–480 Hz contains a large spectral disturbance and the
injections are appropriately increased in amplitude in order to
achieve the required confidence level. The 5 curves in each plot
represent the confidence level associated with different values of
orbital eccentricity. The circles represent e � 0, the plusses
represent e � 10�4, the crosses represent e � 5� 10�4, the
squares represent e � 10�3, and the triangles represent e � 5�
10�3. Note that for the 6-hour observation, the pipeline is as
sensitive to signals with values of e < 10�4 as it is to circular
orbits. For signals with e � 10�3 the pipeline has a maximum
detection efficiency of�90%–95%. For e � 5� 10�3 the maxi-
mum detection efficiency reaches only �50%–70%.
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tection efficiency in the ranges �90%–95% and
�50%–70%, respectively. As a consequence, for e �
10�3 we report h88%

0 , and for e � 5� 10�3 we consider
h50%

0 , because across each of the 1 Hz sub-bands we have
achieved at worst an 88% and 50% confidence level,
respectively (see Fig. 25). On the other hand, for e � 5�

10�4 the systematic loss of signal-to-noise ratio is small or
even negligible, and we can quote upper limits at 95%
confidence level. We find that, as expected, the values of
h95%

0 for e � 0 and e � 10�4 are essentially identical. For
e � 5� 10�4, h95%

0 is about 50% bigger than in the case
e � 0.

Considering the limited sensitivity of the present analy-
sis (see Figs. 3, 23, and 25) with respect to the astrophys-
ical predictions, Eq. (24), we have not followed up (e.g.
using a longer integration time Tspan) regions of the pa-
rameter space that yielded particularly large values of F .
Such a follow-up would be computationally very intensive
and the fact that we are targeting a continuous gravitational
wave emitter allows us to go back to the same parameter
space in the future, exploiting higher sensitivity, better
quality data, and a more sensitive search algorithm. This
work is already in progress. It is, however, important to
establish that the results that we have obtained do not show
any obvious unexplained feature and are qualitatively con-
sistent with the expectation that no signal is present in the
data set at the sensitivity level of the search. In Fig. 26 we
show the distribution of the parameters that characterize
the filters in coincidence in L1 and H1 for a representative
frequency band, 614–614.2 Hz. Because of the high cor-
relation of the templates used in the analysis, one would
expect a cluster in parameter space of filters in coinci-
dence, were a real signal present. Considering the coinci-
dent filters in the three-dimensional search space �f0; ap; �T�
and projecting them onto the plane �ap; �T�, no particular
structure is evident, with coincident templates evenly dis-
tributed across the plane. This is also broadly consistent
with the distributions of coincident templates that we have
obtained by performing Monte Carlo simulations of the
entire search pipeline on stationary and Gaussian noise.
There is, however, some structure in the plane �ap; �T� that
is determined by narrow spectral disturbances and ac-
counts for the large outliers in the values of the detection
statistic at the end of the analysis pipeline. In order to
explore this, it is useful to project the same three-
dimensional parameter space onto either the �f0; ap� or
�f0; �T� plane. Structures are now clearly visible consisting
of ‘‘stripes’’ of events at approximately (but not exactly)
constant frequency. These are caused by small narrow
spectral features present in the data that produce relatively
large values of the F -statistic for a number of orbital
templates. Because of the short coherent integration time,
such disturbances are not averaged out by the demodula-
tion process and are registered in the single detector search.
We find that they are very common in the output of the
single detector search; the coincidence stage of the analysis
allows those stripes of events that exist in both detectors at
approximately the same frequency to survive the entire
pipeline.

We have so far reported the results of the analysis as
upper limits on the signal amplitude h0. We can now recast

FIG. 25. The upper limits on h0 as a function of frequency for
different orbital eccentricities for the Sco X-1 search. Notice that
for sake of clarity, we have adopted a different scale on the
vertical axis than that used in Fig. 23; as a consequence the upper
limits in the frequency region 479–481 Hz are not shown
because they are off scale. Because of the systematic loss of
signal-to-noise ratio due to signal-template mismatch for pop-
ulations of signals from sources in eccentric orbits, the con-
fidence level C at which the upper limit hC0 is computed is
different depending on the value of eccentricity e; see text for
a detailed justification. We report h95%

0 for e � 10�4, h95%
0 for

e � 5� 10�4, h88%
0 for e � 10�3, and h50%

0 for e � 5� 10�3.
The shaded areas represent the combined errors due to the
injection process and the instrument calibration.
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them as upper limits on the ellipticity � of the neutron star,
taking the distance of Sco X-1 as d � 2:8 kpc; see Table I.
Using

 � ’ 0:237
�
h0

10�24

��
d

1 kpc

��
1 Hz

f

�
2
�

1045 g cm2

Izz

�
; (42)

and the canonical value for the principal moment of inertia
Izz � 1045 g cm2 we obtain:

 �95% � 4:0� 10�4–3:6� 10�3 for e � 10�4; (43)

over the frequency band. The previous result can be gen-
eralized to the case of a more pronounced nonzero eccen-
tricity; e.g. we obtain

 �88% � 5:1� 10�4–3:7� 10�3 for e � 10�3: (44)

Despite being far from astrophysically interesting,
Eqs. (43) and (44) represent the first direct measurements
of the ellipticity of the neutron star in Sco X-1 in the
relevant frequency band.

VII. CONCLUSIONS

We have presented here results from two wide parameter
space searches for continuous gravitational wave signals.
A subset of data from the second science run of the LIGO
instruments was analyzed, the data chosen to maximize the
sensitivity of the search. Two different astrophysical
searches were performed: an all-sky search aimed at sig-
nals from isolated neutron stars and an orbital parameter
search aimed at signals from the neutron star in the binary
system Sco X-1. Both searches also cover a wide range of
possible emission frequencies: a 568.8-Hz band for the
isolated pulsars search and two 20-Hz bands for the
Sco X-1 search.

The sensitivity of these analyses makes the detection of
a signal extremely unlikely. As a consequence the main
goal of the paper is to demonstrate an analysis method
using real data, with a pipeline considerably more complex
than any other coherent searches previously performed.
More importantly, this coherent search will be deployed
in a hierarchical analysis scheme. The first step of a hier-
archical analysis sets the ultimate sensitivity of the search:
candidates that do not survive the first threshold are lost. It
is thus crucial to employ the most sensitive possible tech-
nique in this first step. The coherent search described in
this paper provides an implementation of such a first step.

Overall, hierarchical approaches are expected to achieve
optimal sensitivity at constrained computational resources.
We will employ such approaches for deep searches on long
duration and high sensitivity data such as those that are
now being recorded by the instruments. With 1 year of data
at the design sensitivity of the detectors, the improvements
that we can expect by means of hierarchical schemes that
utilize this type of coherent analysis as one of the steps is of
order 10 with respect to what was presented here.
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FIG. 26. The locations of coincident templates within a repre-
sentative subsection of the Sco X-1 parameter space. These plots
contain events found in the frequency band 614.0–614.2 Hz and
are representative of a ‘‘clean’’ search band. We show only
events from the H1 detector for clarity (L1 coincident events
lie in approximately the same locations). We show 3 two-
dimensional projections through the three-dimensional search
space. The first plot shows the projected orbital semimajor axis,
ap, versus the orbital phase reference time, �T, and shows no
obvious structure. The second and third plots show ap and �T,
respectively, versus f0. Here we do see structure caused by small
narrow lines present in the data that the demodulation process
has failed to smooth out over the relatively short 6-hour obser-
vation time.
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The most constraining 95% confidence level h0 upper
limit from the all-sky search is 6:6� 10�23 in the band
245.2–246.4 Hz, reflecting the highest sensitivity of the
instruments at these frequencies. This is still a factor of
�16 higher than the strongest signal that we expect based
on the optimistic (but not unreasonable) assumptions of the
statistical argument presented in Sec. III B 1.

The 95% confidence level upper limits from the Sco X-1
search, assuming a noneccentric orbit, are h0 �
2� 10�22; the most stringent 95% confidence level upper
limits from the Sco X-1 search, assuming a noneccentric
orbit, are h0 � 1:7� 10�22 in the 464–484 Hz band and
h0 � 2:2� 10�22 in the 604–624 Hz frequency band. The
Sco X-1 results presented here are the first direct gravita-
tional wave upper limits placed on the system.

Coherent all-sky searches for continuous signals from
isolated stars have been performed in the past, but over
much smaller parameter space. In [18] an all-sky 0.76 Hz
band search was performed around 921.38 Hz, including
spin-down parameters in the range �2:36� 10�8 Hz s�1

to 
2:36� 10�8 Hz s�1. Three data sets, each 48-hours
long, were coherently analyzed and a 90% confidence level
upper limit was placed at the level of 1:0� 10�22 based on
the cleanest of the data sets.

In the context of a hierarchical search aimed at detecting
a signal, data cleaning procedures to remove noise artifacts
are likely to be employed. This is in contrast to the ap-
proach used in the analysis reported in this paper where no
cleaning at all was considered. Here we wanted to inves-
tigate the effect of noisy data segments with a variety of
artifacts on the output of a search pipeline; we have pur-
posely kept the ‘‘bad’’ data in the presentation of the results
for illustration purposes. This is relevant to future searches
because the upfront ‘‘cleaning’’ of known noise artifacts
does not guarantee that longer observation times will not
uncover unknown periodicities. These must then be either
identified as of instrumental origin, as done here, or fol-
lowed up.

Longer observation times mean a higher resolution in
parameter space and higher computational costs. It is thus
important to lay the template banks in a way that takes
advantage of the correlations in parameter space. The
Sco X-1 search presented here already does this. In future
work the metric approach will be used also for template
placement for the searches for signals from isolated
sources. However, longer observation times and targeting
different LMXB systems will require more sophisticated
template placement strategies than the one presented here
for Sco X-1. For example the parameter space may grow to
include the orbital period, the eccentricity and the spin
period derivatives. For any specific source the number of
search parameters will be defined by the precision to which
these source parameters have been measured via electro-
magnetic observations.

Redundant template grids produce redundant events.
This increases the false alarm rate and in practice reduces

the sensitivity of the search; in fact the threshold on signal-
to-noise ratio that defines the candidates to follow up
depends by how many follow-ups one can afford with
given computational resources. It is therefore important
for future work to develop techniques to recognize non-
independent candidates in parameter space, rank them, and
keep the information on only the most significant. In this
paper we have made the first moves in this direction with
the algorithm that identifies as a single candidate values of
the F statistic which are ‘‘near’’ to each other in search
frequency. The concept must be generalized to the multi-
dimensional space of the search parameters, and ultimately
connected to the global properties of the detection statistic
over the parameter space.
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APPENDIX A: SCORPIUS X-1

In this appendix we summarize the observational results
that constrain the Sco X-1 parameters and provide justifi-
cation for the choices made regarding the search area, see
IV B 2. We refer to Table I for a summary of the parameters
of the source and the relevant errors.

In the analysis we assume the position of the source to be
known and we demodulate the data stream for that particu-
lar sky location. In fact, the most accurate determination of
the Sco X-1 sky position comes from Very Long Baseline
Array observations [50,51] and is reported in Table I. The
overall error on the source location is �0:5 arcsec, which
is significantly smaller than the �100 arcsec sky resolu-
tion associated with a 6-hour GW search. Hence we as-
sume the position of Sco X-1 (i.e. the barycenter of the
binary system) to be exactly known and we point (in
software) at that region of the sky.
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We turn now to the case of the orbital parameters. In the
case of a circular binary (e � 0), three are the parameters
that describe the orbit and describe the evolution of the
Doppler phase shift introduced by the binary motion: the
orbital period (P), the projection of the semimajor axis of
the orbit ap, and what we have defined as the orbital phase
reference time �T, the time at which the star crosses the
ascending node as measured by an observer at the SSB.
This is equivalent to setting the argument of periapse (the
angle between the ascending node and the direction of
periapsis) to zero.
P is by far the most accurately determined parameter

[52]; for a coherent search over 6 hours it can be consid-
ered known because the loss of signal-to-noise ratio (SNR)
introduced by matching two templates with any value of P
in the range of Table I is negligible. P becomes a search
parameter, requiring multiple filters, only for coherent
integration times * 106 s. Much larger uncertainties char-
acterize ap and �T. The large uncertainty on ap is primarily
due to the poor determination of the orbital velocity (40�
5 km s�1 [53]). The uncertainty on the orbital phase refer-
ence time is due to the difficulty in locating the Sco X-1
low-mass companion on the orbit. The search therefore
requires a discrete grid of filters in the �ap; �T� space.

For the phase model adopted in this analysis we assume
that Sco X-1 is in a circular orbit: this is consistent with
astrophysical models of semidetached binary systems and
with the best fits of the orbital parameters [42]. However,
orbital fits for models with e � 0 were clearly dominated
by the noise introduced by the geometry of the Roche lobe
[42]. Over an integration time of �6 h, the eccentricity
needs to be smaller than �10�4 in order for the detection
statistic F to be affected less than 1%; for e � 10�3, losses
of the order of 10% are expected and are consistent with
the results presented in Sec VI B. Unfortunately, current
observations are not able to constrain e to such levels of
accuracy.

The last parameter we need to search for is the frequency
of the gravitational radiation f. The rotation frequency � of
Sco X-1 is inferred from the difference of the frequency of
the kHz quasiperiodic oscillations (QPOs). Unfortunately
this frequency difference is not constant, and over a 4-day
observation [54] has shown a very pronounced drift be-
tween 237� 5 Hz to 307� 5 Hz, where the errors should
be interpreted as the 1� values [55]. This drifting of QPO
frequency separation was found to be positively correlated
to the inferred mass accretion rate. It is also important to
stress that there is a still unresolved controversy as to
whether the adopted model that links the rotation fre-
quency to the difference of the frequency of the kHz
QPOs is indeed the correct one, and if it is valid for all
the observed LMXBs. Moreover, the gravitational wave
frequency f is related to � in a different way, depending on
the model that is considered: f � 2� if one considers
nonaxisymmetric distortions and f � �4=3�� if one con-

siders unstable r-modes. It is therefore clear that a search
for gravitational waves from Sco X-1 should assume that
the frequency is essentially unknown and the whole LIGO
sensitivity band (say from � 100 Hz to � 1 kHz) should
be considered. Because of the heavy computational bur-
den, such a search requires a different approach (a hier-
archical analysis scheme, which is under development).
For the analysis presented in this paper, we have decided to
confine the search to GWs emitted by nonaxisymmetric
distortions (f � 2�) and to constrain the frequency band to
the two 20 Hz wide bands (464–484 Hz and 604–624 Hz)
that bound the range of the drift of �.

APPENDIX B: TEMPLATE BANKS

In Sec. V D we have described the filter banks used in
the analysis. Here we provide details about the way in
which they were generated.

1. Isolated neutron stars

The three-dimensional parameter space is represented
by right ascension and declination ��; �� that identify the
source position in the sky and the signal’s emission fre-
quency. We construct a filter bank with a 10% maximum
mismatch. For simplicity, we employ a uniform grid in
frequency, with resolution � 1=Tspan, and sky area, as
described in Sec. V D 1: the resulting spacing in frequency
is �f0 � 3:472� 10�6 Hz and an isotropic grid in sky
coordinates with equatorial spacing of 0.02 rad, for a total
of just under 31 500 filters to cover the entire sky. The
number of templates in right ascension � at any given
declination � is proportional to cos�.

The grid is chosen based on the maximum expected
degradation in the detection statistic due to the mismatch
between the actual position of a putative source and the
template grid. This effect is measured by Monte Carlo
simulations. The simulations consist of series of searches
of signals at random locations in the sky with position
templates uniformly randomly displaced from the signal’s
source position by between 0 and half a grid step in both
the � and the � direction. We base the selection of the grid
size on the properties of the signals and the simulations are
therefore performed in the absence of noise (e.g. see [56]).
The grid spacing is chosen in such a way that the expected
loss in signal-to-noise ratio due to the signal-template
mismatch is a few percent. The results are summarized in
Figs. 27 and 28 that refer, respectively, to the L1 and H1
data sets used in the search.

The smaller the maximum mismatch between a signal
and a template the more correlated are the filters in the
bank. We have estimated the effective number of indepen-
dent templates from the 2F average loudest event found in
single-interferometer searches such as the one described
here, in pure Gaussian and stationary noise in 1.2 Hz sub-
bands: 45.7 for L1 and 41.7 for H1. These translate into an
effective number of independent templates which is a
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factor of �4 and �26 smaller for L1 and H1, respectively,
than the actual number of templates in the sky grid that we
are using for the search. The number of independent tem-
plates was estimated as 1=P0�F

��, where F � is the mea-
sured loudest value of the detection statistic and P0 is the
false alarm probability defined in Eq. (33). This is consis-
tent with our Monte Carlo simulations (Figs. 27 and 28)
where we can see that, with the same grid, 50% of the sky is

covered in H1 with a mismatch that is always smaller than
0.5% whereas in L1 50% of the sky is covered with a
mismatch which is about twice as large. This means that
the grid covers H1 data parameter space with more redun-
dancy than it covers L1. The main reason for the difference
in coverage is the fact that the spanned observation time of
the data set used for the L1 detector is longer than that for
H1, and the resolution in sky position is highly dependent
on the spanned observation time of the data set.

2. Sco X-1

In the case of Sco X-1 we search over two orbital
parameters and the gravitational wave frequency. In order
to optimally7 cover the parameter space, we consider the
metric approach introduced in [48] in the context of binary
inspirals and applied to pulsar searches in [10,40]. We
define the mismatch 
 between a signal, described by
the parameter vector ~ � ff0; ap; �Tg, and a template de-

scribed by ~
 � ~ as8

 
� ~;� ~� � 1�
P � ~;� ~�

P � ~; ~0�

� g��� ~��
��� 
O��3�; (B1)

where the power spectrum P is given by

 P � ~;� ~� �
��������
Z Tspan

0
e�i���t; ~;� ~�dt

��������2
; (B2)

���t; ~;� ~� � ��t; ~� ���t; ~
� ~� is the difference
between the signal and template phase and �, � � 0, 1, 2
label the search parameters (we follow the convention that
the index 0 labels frequency). The metric on the parameter
space is given by [10]

 g�� � h@���@���i � h@���ih@���i; (B3)

where @��� � @��=@�� and is evaluated at � ~ � 0,
h. . .i stands for the time average over Tspan, and the gravi-
tational wave phase is defined in Eq. (29). Treating the
frequency as a continuous variable (we discuss later in this
section the consequences of the fact that the frequency is in
practice discrete) and ‘‘projecting out’’ the search fre-
quency dimension of the metric yields a two-dimensional
reduced metric only on the orbital parameters,
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FIG. 28 (color online). Fraction of trials injected in H1 where
the ratio 1:0�F obs=F optimal is smaller than the value on the
x axis. Here in this plot F obs is the F -statistic at the point
nearest to the signals’ source location. In 99% of the trials the
mismatch is smaller than 2%.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cumulative probability distribution of 1− MisMatch: Nearest grid point
%

 o
f t

he
 tr

ia
ls

 o
f l

os
s 

<
 x

−
va

lu
e 

(#
 o

f s
am

pl
es

 =
10

00
00

)

1−F
obs

/F
optimal

FIG. 27 (color online). Fraction of trials injected in L1 where
the ratio 1:0�F obs=F optimal is smaller than the value on the
x axis. Here in this plot F obs is the F -statistic at the grid point
nearest to the signals’ source location. In 99% of the trials the
mismatch is smaller than 4%.

7Although we use the metric approach to lay templates in the
parameter space, we use a simple square grid which is non-
optimal. Using a hexagonal grid would reduce the number of
templates by �30%.

8Note that we use the power spectrum P to define the mis-
match 
 and therefore the metric g��, but we use the F -statistic
in the actual search. As the F -statistic is an optimally weighted
sum of squared values of optimally weighted and summed PFTs,
we would expect that the template bank is also as effective used
with the F -statistic as for the power spectrum. This was tested
with extensive software signal injections.
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 �jk � gjk �
g0jgk0

g00
; j; k � 1; 2: (B4)

By using the metric �jk, we take advantage of the correla-
tions between the frequency and the orbital parameters—
so that a mismatch in orbital parameters can be compen-
sated by a mismatch in frequency—and we therefore
reduce the number of orbital templates required to cover
the parameter space. In the actual analysis, we carry out a
coordinate transformation from ap and �T to two ‘‘search
coordinates’’ in order to obtain constant spacing and ori-
entation of the filters over the whole parameter space,
which simplifies the numerical implementation of the grid.

The frequency, however, is sampled discretely and there-
fore cannot compensate exactly a mismatch in orbital
parameters: it produces a mismatch 
f only in f between
a template and a signal. In order to choose the appropriate
frequency spacing �f we consider the g00 component of
the metric g��—we treat de facto f as a one-dimensional
uncorrelated dimension in the parameter space—and ob-
tain

 �f �
2
���������
3
f

p
�Tspan

: (B5)

The optimal method for dividing up the total mismatch in
detection statistic is to split them up equally amongst the
dimensions of a parameter space. Therefore, to achieve the
required maximal overall mismatch of 10%, we use a 6.6%
mismatch in orbital templates and a 3.3% mismatch in
frequency. This sets the frequency resolution to �f �
1=�5Tspan�. The grid in the two-dimensional space of the
orbital templates is then computed using �jk, Eq. (B4). In
practice, the filter spacing is determined primarily by Tspan

and the grid orientation is determined by the location of the
source in its orbit during the observation, see Fig. 10;

As the grid density in the two-dimensional parameter
space �armp; �T� scales as �fmax

0 �2, where fmax
0 is the maxi-

mum search frequency, we generated a different orbital
template bank for each 1 Hz frequency sub-band, in order
to minimize the computational burden. This reduced by �
30% the CPU time that would have been required had we
used a single template bank with a maximum frequency
parameter fmax

0 � 624 Hz for the whole analysis. In sum-
mary, the number of orbital templates used for each 1 Hz
sub-band ranges from 3391 (6681) to 3688 (7236) in the
464– 484 Hz band and from 5738 (11309) to 6107 (12032)
in the 604–624 Hz band for the L1 (H1) analysis.

APPENDIX C: HARDWARE INJECTIONS

Signals can be injected into the instrument via the
actuator, by physically moving the mirrors of a Fabry-
Perot cavity to mimic a gravitational wave signal.
Hardware injections are designed to give an end-to-end
validation of the data analysis pipeline, including some, but
not all, components of the calibration. Toward the end of
the S2 run, two simulated isolated pulsar signals were
injected into the data. We denote the two pulsars P1 and
P2 and give their parameters in Table II.

The data sets were prepared using the final S2 calibra-
tion version [27], and consist of 17 30-minute SFTs for H1
and 14 30-minute SFTs for L1. We performed a targeted
search to look for the pulsar signals.

The results are shown in Table II. The agreement be-
tween measured and expected 8NS is good. The measured
SNRs, however, are systematically somewhat larger than
expected. This is probably due to a small systematic error
in the calibration. The differences between the expected
SNR values shown here, and those quoted in [24], arise
primarily from differences in the lengths of observation
times used to make the estimate. In [24], a nominal obser-
vation time of 12 hours was used. This is the length of time
during which the hardware injections were performed.
Here we have used the actual science observation time
which is shorter, reflecting science quality data and cali-

TABLE II. Parameters of the two hardware injected pulsars. See Eqs. (25) and (26) for the
definition of the parameters. T0 is the reference time for the initial phase, in GPS seconds in the
SSB frame.

P1 P2

f0 (Hz) 1279.123 457 1288.901 235
_f (Hz=s) 0 �10�8

� (rad) 5.147 162 2.345 679
� (rad) 0.376 696 1.234 568
 (rad) 0 0
cos	 0 0
�0 0 0
T0 (sec) 733 967 667.126 112 31 733 967 751.522 490 38
h0 2� 10�21 2� 10�21

SNR H1 (exp./meas.) 17=18 34=35
SNR L1 (exp./meas.) 20=22 21=22
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bration quality flags based on which we discard data as not
reliable enough to be included in an astrophysical search.

APPENDIX D: UPPER LIMITS

In Sec. V G we have described the method used to set
upper limits in each of the �1 Hz sub-bands in which the
whole frequency bands of the two searches were divided.
In this appendix we provide more technical details, on the
Monte Carlo approach that we used to determine the value
of the gravitational amplitude that we report as upper limit,
and the errors that affect such an estimate.

We recall that, given the value of the joint significance of
the loudest coincident event, the upper limit on the ampli-
tude hC0 at confidence level C�h0� is determined by means
of Monte Carlo simulations. In these, a set of N signals all
with the same amplitude h0 is injected in the very same
data set used in the analysis and searched for with the same
analysis pipeline. For each set of injected signals, and a
confidence level C�h0� is assigned according to Eq. (39),
which in turns defines the h0 upper limit value as a function
of the confidence level C.

The details of the Monte Carlo are as follows. For every
set of injected signals at fixed h0, the remaining parameters
are chosen randomly from within the boundaries of the
parameter space. These include the orbital parameters
(orbital semimajor axis and orbital phase reference time)
for the Sco X-1 search, the sky position for the all-sky
search, and the frequency f0 and the nuisance parameters
 , cos	, and �0 for both searches. Uniform distributions
are used for f0 in the sub-band,  between 0 and 2�, cos	
between �1 and 1, and �0 between 0 and 2�. For the all-
sky search the population of injected signals is uniformly
distributed on the celestial sphere, that is to say that � is
uniformly distributed between 0 and 2� and cos� uni-
formly distributed between �1 and 1, with � between
��=2 and �=2. For the Sco X-1 search the signal popu-
lation is uniformly distributed across the two-dimensional
orbital parameter space (the parameters of which are given
in Table I). The semimajor axis is selected from within the
range 1.26 to 1.62 seconds and the orbital phase reference
time is selected from within the GPS time range of
731 163 028 and 731 163 626. The sky position and orbital
period are held fixed at values corresponding to the center
of their respective ranges (as it was done for the search).
For each set of injections the orbital eccentricity is held
fixed at one of the following discrete values: e � 0:0, 10�4,
5� 10�4, 10�3, 5� 10�3.

A search over the entire parameter space is not per-
formed to search for every injection—it is computationally
prohibitive. Rather, the detection statistic is computed at
the nearest template grid point with respect to the injected
signal parameters. The nearest template is chosen consis-
tently with the criteria used for laying out the template
bank. For the Sco X-1 search the closest grid point is
defined by the metric governing the orbital parameter

space. For the isolated pulsar search a Euclidean measure
is used. In the actual search noise might conspire to pro-
duce a higher value of the detection statistic at a template
grid point which is not the nearest to the actual signal’s
parameters. This means that our Monte Carlo may slightly
underestimate the detection efficiency of the actual search,
leading to an over-conservative (thus still correct) upper
limit. However, since our template bank has been chosen
so that at most a few percent of the detection statistic may
not be recovered at the nearest grid point due to signal-
template mismatch, we do not expect this effect to be
severe. Furthermore, a detection/coincidence scheme
based on the global properties of the detection statistic
[57] (far from the signal’s true parameters) remains to be
understood.

A set of injections at fixed h0 comprises at least 6000
trials for the isolated pulsar search and 5000 trials for the
Sco X-1 search.

To determine the number of injections, several sets of
10 000 isolated pulsar injections have been analyzed. The
injections were performed at a fixed strain (h0 � 1:2�
10�22) in a small band around 409 Hz, with sky locations
and nuisance parameters distributed as described above.
Figure 29 shows the results of this analysis. We plot the
standard deviation on the confidence level as a function of
the number of injections for 7 sets of injections and com-
pare it with the expected values. The plots show that above
5000 injections the standard deviation on the confidence
level is less than 0.2% and in agreement with the expecta-
tions even for small total number of injections.
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FIG. 29. A total of 7 sets of 10 000 injections was performed in
a small band around 409 Hz at a strain h0 � 1:2� 10�22. For
each set the confidence level was estimated for different numbers
of injections. The plot shows the standard deviation based on the
7 estimates as a function of the number of injections. The dashed
line shows the expected value of the standard deviation based on
the binomial distribution with a single-trial probability of 95.6,
which corresponds to the measured mean confidence level at
10 000 injections.
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For the isolated pulsar search the following approach has
been adopted to estimate the uncertainties related to a
frequentist upper limit based on signal injections [19].
The finite sample size of the population of signals that
we construct by a Monte Carlo method results in fluctua-
tions in the value of the confidence level C which we
measure at fixed gravitational wave amplitude hinjected

0 .
Figure 30 shows a distribution of �hinjected

0 ; C� values for
various sets of injections around the target 95% confidence
level value in a reasonably clean sub-band of the data.
Close to the target confidence level the relationship
C�hinjected

0 � is well described by a linear relationship. In
order to estimate this relation we perform between 6 and 15
sets of injections. Each set is composed of at least 3200
injections and yields a value for �hinjected

0 ; C�. The linear
relation is then estimated from these �hinjected

0 ; C� points
with a standard best fit technique. We define h95%

0 as the
value of hinjected

0 yielding C � 95% according to the fitted
linear relation. From the fit we estimate the �1� �h0; C�
curves and from the intercepts of these with C � 95% the
uncertainties on h95%

0 , which we expect to be a few percent.
In the Sco X-1 search each set of 5000 injections is

divided into 10 subsets, each containing 500 injections.
The confidence level Ci�h

injected
0 � is calculated for each

subset of injections where the index i � 1; . . . ; 10 labels
each subset. Values of h0;i�C � 95%� are obtained by
interpolation between the two values of Ci�h

injected
0 � closest

to 95% within a given subset. The final value of h95%
0 is

calculated as the mean of h0;i�C � 95%� and the uncer-
tainty in this quantity is taken as the standard error in the

mean, ��h95%
0 � �

��������������������������
�2=�10� 1�

p
, with �2 the variance of

the h0;i�C � 95%� sample. This approach has typically

yielded uncertainties in the values of the upper limit of
�1%� 3%.

The former uncertainties on the upper limit value of h0

arise only from the Monte Carlo procedure. As we discuss
in Sec. V G, an additional and larger error is associated to
the instrument calibration.
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