Erratum: *CP* violation in hadronic τ decays [Phys. Rev. D 75, 074007 (2007)]

Alakabha Datta, Ken Kiers, David London, Patrick J. O'Donnell, and Alejandro Szynkman (Received 24 August 2007; published 23 October 2007)

DOI: 10.1103/PhysRevD.76.079902

PACS numbers: 13.30.Eg, 13.35.Dx, 11.30.Er, 99.10.Cd

In Ref. [1] we examined *CP* violation in hadronic τ decays, focusing on the modes $\tau \to V \pi \nu_{\tau}$, with $V = \omega$, ρ , a_1 . Our numerical calculations examined the ω and a_1 cases. We also made comments regarding the ρ case. The hadronic current for the decay $\tau(l) \to V(q_1)\pi(q_2)\nu_{\tau}(l')$ may be written as

$$J^{\mu} = \langle V(q_1)\pi(q_2)|H^{\mu}|0\rangle$$

= $F_1(Q^2)(Q^2\epsilon_1^{\mu} - \epsilon_1 \cdot q_2Q^{\mu}) + F_2(Q^2)\epsilon_1 \cdot q_2\left(q_1^{\mu} - q_2^{\mu} - Q^{\mu}\frac{Q \cdot (q_1 - q_2)}{Q^2}\right) + iF_3(Q^2)\varepsilon^{\mu\alpha\beta\gamma}\epsilon_{1\alpha}q_{1\beta}q_{2\gamma}$
+ $F_4(Q^2)\epsilon_1 \cdot q_2Q^{\mu}.$ (1)

In Ref. [1] we claimed that, for the case $V = \rho$, this current was expected to be dominated by the F_3 term. Thus, we expected that this case could lead to a triple product asymmetry, but not to a polarization-dependent asymmetry. An explicit calculation in Ref. [2] indicates that the F_3 term is absent for $\tau \rightarrow \rho \pi \nu_{\tau}$, which would imply that the triple product asymmetry for this case would be zero (although the polarization-dependent asymmetry could be non-negligible).

- [1] A. Datta, K. Kiers, D. London, P.J. O'Donnell, and A. Szynkman, Phys. Rev. D 75, 074007 (2007).
- [2] H. Davoudiasl and M. B. Wise, Phys. Rev. D 53, 2523 (1996).