Once more about the $K\overline{K}$ molecule approach to the light scalars

N. N. Achasov^{[*](#page-0-0)} and A. V. Kiselev^{[†](#page-0-1)}

Laboratory of Theoretical Physics, Sobolev Institute for Mathematics, 630090 Novosibirsk, Russia (Received 17 January 2007; revised manuscript received 3 August 2007; published 18 October 2007)

We show that the recent paper [Eur. Phys. J. A **24**, 437 (2005)], claiming that the radiative decays $\phi \to a_0(980)\gamma$ and $\phi \to f_0(980)\gamma$ should be of the same order of magnitude regardless of whether the $a_0(980)$ and $f_0(980)$ are compact four-quark states or extended *KK* molecule states, is misleading.

DOI: [10.1103/PhysRevD.76.077501](http://dx.doi.org/10.1103/PhysRevD.76.077501) PACS numbers: 12.39. - x, 13.40.Hq, 13.66.Bc

Recently Ref. [[1\]](#page-2-0) has claimed that the radiative decays of the ϕ meson to the scalar $a_0(980)$ and $f_0(980)$ "should be of the same order of magnitude for a molecular state and for a compact state'' We show below that this claim is misleading. The authors of Ref. [\[1\]](#page-2-0) think that their amplitude of the $\phi \rightarrow K^+K^- \rightarrow \gamma S$ transition (where $S = a_0$ or f_0) is caused by the nonrelativistic kaons in the $K\bar{K}$ molecule *S*. However, we will show below that this is incorrect.

Equation ([1](#page-2-0)4) in Ref. [1], describing the $\phi \rightarrow \gamma S$ amplitude, is

$$
J_{ik} = 2J_{ik}^{(a)} + J_{ik}^{(c)} + J_{ik}^{(d)}
$$

= $-\delta_{ik} \frac{i}{4\pi^2} (a - b)I(a, b; \Gamma) + \cdots,$ (1)

where the subscripts *ik* are the spatial Lorentz indices referring to the ϕ and the photon, $2J_{ik}^{(a)}$ corresponds to the sum of the diagrams of Fig. [1\(a\)](#page-0-2) and [1\(b\)](#page-0-2), $J_{ik}^{(c)}$ corre-sponds to the diagram of Fig. [1\(c\),](#page-0-2) and $J_{ik}^{(d)}$ corresponds to the diagram of Fig. $1(d)$ (which is added because "gauge" invariance calls for a correction term induced by this additional flow of charge'' [\[1\]](#page-2-0) in an extended molecule case), $a = m_{\phi}^2/m_K^2$, $b = m_S^2/m_K^2$. "Terms that do not contribute to the process of interest are not shown explicitly'' [[1\]](#page-2-0). Note that Fig. [1](#page-0-3) of our paper corresponds to Fig. 1 of Ref. [\[1](#page-2-0)].

Assuming the nonrelativistic kinematics of kaons in the loop, the authors of Ref. [\[1\]](#page-2-0) obtain the individual integrals,

$$
2J_{ik}^{(a)} = -\frac{i}{m^3} \int \frac{d^3k}{(2\pi)^3} \times \frac{k_ik_j\Gamma(|\mathbf{k} - \mathbf{q}/2|)}{[E_V - \frac{k^2}{m} + i0][E_S - \frac{(\mathbf{k} - \mathbf{q}/2)^2}{m} + i0]},
$$

$$
J_{ik}^{(c)} = -\frac{i}{2m^2} \delta_{ik} \int \frac{d^3k}{(2\pi)^3} \frac{\Gamma(k)}{E_S - \frac{k^2}{m} + i0},
$$

$$
J_{ik}^{(d)} = -\frac{i}{2m^2} \int \frac{d^3k}{(2\pi)^3} \frac{k_ik_j}{E_V - \frac{k^2}{m} + i0} \frac{1}{k} \frac{\partial \Gamma(k)}{\partial k},
$$
 (2)

where $E_V = m_V - 2m > 0$, $E_S = m_S - 2m < 0$, $m =$ m_K , $V = \phi$, **q** is a photon momentum, **k** is a kaon momentum in a molecule, $k = |\mathbf{k}|$, $\Gamma(\mathbf{k}) = \frac{\beta^2}{(\mathbf{k}^2 + \beta^2)}$, $1/\beta$ is a potential range [[2](#page-2-1)]. The range of β is typically $m_{\rho} \approx 0.8$ GeV, because the ρ -meson exchange in the *t*-channel ''is responsible for the formation of scalars'' [\[1\]](#page-2-0). The authors of Ref. [\[1](#page-2-0)] calculate $(a - b)I(a, b; \Gamma)$ at $q = 0$:

$$
(a - b)I(a, b; \Gamma) = 2(a - b)I^{(a)}(a, b; \Gamma)
$$

$$
+ (a - b)I^{(c)}(a, b; \Gamma)
$$

$$
+ (a - b)I^{(d)}(a, b; \Gamma), \qquad (3)
$$

where

$$
2(a - b)I^{(a)}(a, b; \Gamma) = i4\pi^2 \frac{1}{3} 2J_{ii}^{(a)} = \int \frac{1}{3m^3} \frac{k^2 \Gamma(k)}{[E_V - \frac{k^2}{m} + i0][E_S - \frac{k^2}{m} + i0]} \frac{d^3 k}{2\pi},
$$

\n
$$
(a - b)I^{(c)}(a, b; \Gamma) = i4\pi^2 \frac{1}{3} J_{ii}^{(c)} = \int \frac{1}{2m^2} \frac{\Gamma(k)}{E_S - \frac{k^2}{m} + i0} \frac{d^3 k}{2\pi},
$$
\n(4)

and

$$
(a - b)I^{(d)}(a, b; \Gamma) = i4\pi^2 \frac{1}{3} J_{ii}^{(d)}
$$

=
$$
\int \frac{1}{6m^2} \frac{k^2}{E_V - \frac{k^2}{m} + i0} \frac{1}{k} \frac{\partial \Gamma(k)}{\partial k} \frac{d^3 k}{2\pi}.
$$
 (5)

[*a](#page-0-5)chasov@math.nsc.ru

[†](#page-0-5) kiselev@math.nsc.ru

FIG. 1. Diagrams contributing to the radiative decay amplitude [\(1\)](#page-0-4).

To reveal what kaon momenta are essential in the real part of the $\phi \rightarrow K^+K^- \rightarrow \gamma S$ amplitude, we introduce a cutoff k_0 in Eqs. ([4](#page-0-6)) and ([5\)](#page-0-7) ($|\mathbf{k}| = k \leq k_0$) and calculate the auxiliary integral,

$$
(a - b) \text{Re} I(a, b; \Gamma; k_0) = 2(a - b) \text{Re} I^{(a)}(a, b; \Gamma; k_0)
$$

+ $(a - b) \text{Re} I^{(c)}(a, b; \Gamma; k_0)$
+ $(a - b) \text{Re} I^{(d)}(a, b; \Gamma; k_0)$ (6)

for $\beta = 0.2$ GeV, 0.3 GeV, and 0.8 GeV [[1](#page-2-0),[3](#page-2-2)]. When $k_0 \rightarrow$ ∞ the integral $I(a, b; \Gamma; k_0) \rightarrow I(a, b; \Gamma; \infty) \equiv I(a, b; \Gamma)$. We use $m_S = 980$ MeV, $m_K = 495$ MeV [[1\]](#page-2-0). In Fig. [2](#page-1-0) is depicted the $\text{Re}I(a, b; \Gamma; k_0)$ dependence on a cutoff k_0 for different β .

As is obvious from Fig. [2,](#page-1-0) the contribution of the nonrelativistic kaons ($k_0 < 0.3$ GeV) into Re $I(a, b; \Gamma)$ is small in all instances. What is more, the ultrarelativistic kaons $(k_0 > 2 \text{ GeV})$ determine the real part of the $\phi \rightarrow$ $K^+K^- \rightarrow \gamma S$ amplitude in the typical case of $\beta =$ 0*:*8 GeV, see Fig. [2\(b\)](#page-1-1) [\[4](#page-2-3)]. So the authors of Ref. [\[1](#page-2-0)] use a nonrelativistic description beyond its region of applica-bility [[5\]](#page-2-4).

The authors of Ref. [\[1](#page-2-0)] in fact evaluate the (d) -contribution by integrating Eq. (5) (5) by parts. This gives a contribution $(a - b) \text{Re}\tilde{I}^{(d)}(a, b; \Gamma; k_0)$ which when summed with the $2(a - b) \text{Re} I^{(a)}(a, b; \Gamma; k_0)$ and $(a - b)$ **Re***I*^(c)(*a*, *b*; Γ ; *k*₀) contributions gives (*a* – $b)$ Re $\tilde{I}(a, b; \Gamma; k_0)$ shown in Fig. [3.](#page-1-2)

As is seen from Fig. [3](#page-1-2), the integral $(a$ $b)$ Re $\tilde{I}(a, b; \Gamma; k_0)$ converges in the nonrelativistic region $(k_0 < 0.3$ GeV). The authors call this operation "a trick" [\[1\]](#page-2-0) believing that the rapid convergence of $(a$ b) $\text{Re}\tilde{I}(a, b; \Gamma; k_0)$ justifies their nonrelativistic approximation. But only $(a - b)$ Re*I* $(a, b; \Gamma; k_0)$ represents the momentum (or space) distribution of kaons and, in particular, the distribution of the charge flow in the $K\bar{K}$ -molecule and shows that the decays occur at small distances for the annihilation of the ultrarelativistic kaons and antikaons $(k_0 > 2 \text{ GeV})$ in the typical case, see Fig. $2(b)$. The differ-

FIG. 3. $(a - b) \text{Re}\tilde{I}(a, b; \Gamma; k_0), k_0 \le 2 \text{ GeV}, \tilde{I}(a, b; \Gamma; \infty) \equiv$ $I(a, b; \Gamma; \infty) \equiv I(a, b; \Gamma)$. The solid line for $\beta = 0.8$ GeV, the dashed line for $\beta = 0.3$ GeV, and the dotted line for $\beta =$ 0*:*2 GeV.

ence between $\text{Re}I(a, b; \Gamma; k_0)$ and $(a$ $b)$ Re $\tilde{I}(a, b; \Gamma; k_0)$ equals the slow convergent integral of the total derivative,

$$
(a - b) \text{Re} I(a, b; \Gamma; k_0) - (a - b) \text{Re} \tilde{I}(a, b; \Gamma; k_0)
$$

=
$$
\frac{1}{3m^2} \int_0^{k_0} d\left(\frac{k^3 \Gamma(k)}{E_V - \frac{k^2}{m} + i0}\right),
$$
 (7)

which vanishes at $k_0 \rightarrow \infty$. As for the finite k_0 , discarding this contribution leads to a loss of physical significance.

So, the real part of the K^+K^- loop is caused by the kaon high virtualities, that is, by a compact four-quark system, which points to the four-quark nature of the $a_0(980)$ and $f_0(980)$ mesons [\[6](#page-2-5)].

We thank C. Hanhart and Yu. S. Kalashnikova for instructive discussions. This work was supported in part by the Presidential Grant No. NSh-5362.2006.2 for Leading Scientific Schools and by the RFFI Grant No. 07-02-00093 from Russian Foundation for Basic Research. A. V. K. thanks very much the Dynasty Foundation and ICFPM for support, too.

FIG. 2. $(a - b)$ Re*I* $(a, b; \Gamma; k_0)$ [the definition in the text, see Eq. ([6\)](#page-1-3)]. The solid line for $\beta = 0.8$ GeV, the dashed line for $\beta =$ 0.3 GeV, the dotted line for $\beta = 0.2$ GeV. (a) $k_0 \le 2$ GeV, (b) $k_0 \ge 2$ GeV. The limit values of $(a - b)$ Re*I* $(a, b; \Gamma; \infty) \equiv (a - b)^2$ *b*) $\text{Re}I(a, b; \Gamma)$ are 0.16 for $\beta = 0.8$ GeV, 0.116 for $\beta = 0.3$ GeV, and 0.079 for $\beta = 0.2$ GeV.

- [1] Yu. S. Kalashnikova, A. E. Kudryavtsev, A. V. Nefediev, C. Hanhart, and J. Haidenbauer, Eur. Phys. J. A **24**, 437 (2005).
- [2] The wave function $\sim (1/r)(\exp\{-\alpha r\} - \exp\{-\beta r\}),$ where $\alpha = \sqrt{m(2m - m_S)} \approx 0.07$ GeV. The average momentum square in the molecule $\langle k^2 \rangle = \alpha \beta$.
- [3] As it follows from Ref. [\[2\]](#page-2-1), this set of β corresponds to the set of the nonrelativistic average momentum square of a *K* meson in the molecule, $\langle k^2 \rangle / m_K^2$: 0.056, 0.084, and 0.224.
- [4] Notice that $\left| \text{Re}I(a, b; \Gamma)/\text{Im}I(a, b; \Gamma) \right|^2 \ll 1$ at $\beta \leq$ 0.2 GeV, so that $|I(a, b; \Gamma)|$ is dominated by $Im I(a, b; \Gamma)$ which is caused certainly by real intermediate nonrelativistic kaons. But $(a - b)$ Im*I* $(a, b; \Gamma)$ can explain not greater than 20% of branching ratios of decays under consideration even for the pointlike interaction and leads to an over-narrow resonance structure to fit data $[6,7]$ $[6,7]$ $[6,7]$.
- [5] Notice that there is another sloppily built place in Ref. [[1\]](#page-2-0). The authors of Ref. [[1](#page-2-0)] calculate $A(\phi(p) \rightarrow \gamma(q)S(p'))$ at $q = 0$, $p^2 = m_\phi^2$, and $(p')^2 = m_S^2$ ($m_S - 2m < 0$), that is, at $p \neq p' + q$. The point is that a question of principle for them is an interpretation of $1/(E_s - \frac{k^2}{m} + i0)$ as a nonrelativistic two-particle $(K\bar{K})$ Green function. But gauge invariance forces the authors of Ref. $[1]$ $[1]$ to replace m_S by the invariant mass $[m_{\text{inv}}^2 = (p')^2]$ of decay products in the

physical region $p = p' + q$, the actual interval of which is quite large [[6](#page-2-5),[8\]](#page-2-7). The typical values lie in the range -100 MeV $< m_{\text{inv}} - 2m < 30$ MeV which includes the considerable positive region ≤ 30 MeV. So the idea about a nonrelativistic two-particle $(K\bar{K})$ Green function with the bound energy $m_S - 2m = -10$ MeV has no grounds. For the sake of definiteness, we notice that actually the amplitude under consideration is $e^+e^- \rightarrow \gamma^*(E) \rightarrow$ $\phi(E) \rightarrow \gamma(q)S(p') \rightarrow \gamma(q)\pi(p_1)\pi(p_2)[\pi(p_1)\eta(p_2)],$ which should be of the order of $O(q)$ at $q = p - p' =$ $p - p_1 - p_2 \rightarrow 0$ for gauge invariance [\[9](#page-2-8)]. So, m_{ϕ} should be replaced above by the total energy of beams *E*.

- [6] N. N. Achasov and V. V. Gubin, Phys. Rev. D **63**, 094007 (2001); Yad. Fiz. **65**, 1566 (2002) [Phys. At. Nucl. **65**, 1528 (2002)]; N. N. Achasov, Nucl. Phys. **A728**, 425 (2003); Yad. Fiz. **67**, 1552 (2004) [Phys. At. Nucl. **67**, 1529 (2004)].
- [7] N. N. Achasov and V. N. Ivanchenko, Nucl. Phys. **B315**, 465 (1989).
- [8] N. N. Achasov and A. V. Kiselev, Phys. Rev. D **68**, 014006 (2003); Yad. Fiz. **67**, 653 (2004) [Phys. At. Nucl. **67**, 633 (2004)]; Phys. Rev. D **73**, 054029 (2006).
- [9] N. N. Achasov, Yad. Fiz. **70**, 896 (2007) [Phys. At. Nucl. **70**, 862 (2007)].