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(Received 3 May 2007; published 3 October 2007)

The mass matrices of the charged leptons and neutrinos, previously derived in a minimal S3-invariant
extension of the standard model, were reparametrized in terms of their eigenvalues. We obtained explicit,
analytical expressions for all entries in the neutrino mixing matrix, VPMNS, the neutrino mixing angles, and
the Majorana phases as functions of the masses of charged leptons and neutrinos in excellent agreement
with the latest experimental values. The resulting VPMNS matrix is very close to the tribimaximal form of
the neutrino mixing matrix. We also derived explicit, analytical expressions for the matrices of the
Yukawa couplings and computed the branching ratios of some selected flavor-changing neutral current
processes as functions of the masses of the charged leptons and the neutral Higgs bosons. We find that the
S3 � Z2 flavor symmetry and the strong mass hierarchy of the charged leptons strongly suppress the
FCNC processes in the leptonic sector well below the present experimental upper bounds by many orders
of magnitude.
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I. INTRODUCTION

The recent discovery of flavor oscillations of solar,
atmospheric, reactor, and accelerator neutrinos have irre-
futably established that neutrinos have nonvanishing
masses and mix among themselves much like the quarks,
thereby providing the first conclusive evidence of new
physics beyond the standard model [1,2]. Neutrino oscil-
lation observations and experiments, made in the past eight
years, have allowed the determination of the differences of
the neutrino masses squared and the flavor mixing angles
in the leptonic sector. The solar [3–6], atmospheric [7,8],
and reactor [9,10] experiments produced the following
results:

 7:1� 10�5 �eV�2 � �2m12 � 8:9� 10�5 �eV�2; (1)

 0:24 � sin2�12 � 0:40; (2)

 1:4� 10�3 �eV�2 � �2m13 � 3:3� 10�3 �eV�2; (3)

 0:34 � sin2�23 � 0:68; (4)

at 90% confidence level [11,12]. For a recent review on the
phenomenology of massive neutrinos, see [13]. The
CHOOZ experiment [14] determined an upper bound for
the flavor mixing angle between the first and the third
generation:

 sin 2�13 � 0:046: (5)

However, neutrino oscillation data are insensitive to the
absolute value of neutrino masses and also to the funda-

mental issue of whether neutrinos are Dirac or Majorana
particles. Hence, the importance of the upper bounds on
neutrino masses provided by the searches that probe the
neutrino mass values at rest: beta decay experiments [15],
neutrinoless double beta decay [16], and precision cosmol-
ogy [17–19].

In the standard model, the Higgs and Yukawa sectors,
which are responsible for the generation of the masses of
quarks and charged leptons, do not give mass to the neu-
trinos. Furthermore, the Yukawa sector of the standard
model already has too many parameters whose values
can only be determined from experiment. These two facts
point to the necessity and convenience of extending the
standard model in order to make a unified and systematic
treatment of the observed hierarchies of masses and mix-
ings of all fermions, as well as the presence or absence of
CP violating phases in the mixing matrices. At the same
time, we would also like to reduce drastically the number
of free parameters in the theory. These two seemingly
contradictory demands can be met by means of a flavor
symmetry under which the families transform in a non-
trivial fashion.

Recently, we introduced a minimal S3-invariant exten-
sion of the standard model [20] in which we argued that
such a flavor symmetry unbroken at the Fermi scale, is the
permutational symmetry of three objects S3. In this model,
we imposed S3 as a fundamental symmetry in the matter
sector. This assumption led us necessarily to extend the
concept of flavor and generations to the Higgs sector.
Hence, going to the irreducible representations of S3, we
added to the Higgs SU�2�L doublet in the S3-singlet rep-
resentation two more Higgs SU�2�L doublets, which can
only belong to the two components of the S3-doublet
representation. In this way, all the matter fields in the
minimal S3-invariant extension of the standard model—
Higgs, quark, and lepton fields, including the right-handed
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neutrino fields—belong to the three-dimensional represen-
tation 1 � 2 of the permutational group S3. The leptonic
sector of the model was further constrained by an Abelian
Z2 symmetry. We found that the S3 � Z2 symmetry pre-
dicts the tribimaximal mixing and an inverted mass hier-
archy of the left-handed neutrinos in good agreement with
experiment [20]. More recently, we reparametrized the
mass matrices of the charged leptons and neutrinos, pre-
viously derived in [20], in terms of their eigenvalues and
derived explicit analytical expressions for the entries in the
neutrino mixing matrix, VPMNS, and the neutrino mixing
angles and Majorana phases as functions of the masses of
charged leptons and neutrinos, in excellent agreement with
the latest experimental values [21].

The group S3 [22–31] and the product groups S3 � S3

[31–34] and S3 � S3 � S3 [35,36] have been considered
by many authors to explain successfully the hierarchical
structure of quark masses and mixings in the standard
model. However, in these works, the S3, S3 � S3 and S3 �
S3 � S3 symmetries are explicitly broken at the Fermi
scale to give mass to the lighter quarks and charged lep-
tons, while neutrinos are left massless. Some other inter-
esting models based on the S3, S4, A4, and D5 flavor
symmetry groups, unbroken at the Fermi scale, have also
been proposed [37– 44], but in those models, equality of
the number of fields and the irreducible representations is
not obtained. The generic properties of mass textures of
quarks and leptons derived in the standard model and in
supersymmetric models with a Higgs sector with nontrivial
flavors and an S3 flavor symmetry have been discussed in
[45,46]. Recent flavor symmetry models are reviewed in
[47–50], see also the references therein.

In this paper, we consider the flavor-changing neutral
current (FCNC) processes in the minimal S3-invariant
extension of the standard model [20]. After a short review
of some relevant results on lepton masses and mixings, we
derive exact, explicit expressions for the matrices of the
Yukawa couplings in the leptonic sector expressed as
functions of the masses of the charged leptons and neutral
Higgs bosons. With the help of the Yukawa matrices we
compute the branching ratios of some selected FCNC
processes as functions of the masses of charged leptons
and neutral Higgs bosons. We find that the interplay of the
S3 � Z2 flavor symmetry and the strong mass hierarchy of
charged leptons strongly suppresses the FCNC processes in
the leptonic sector well below the experimental upper
bounds by many orders of magnitude.

II. THE MINIMAL S3-INVARIANT EXTENSION OF
THE STANDARD MODEL

In the standard model analogous fermions in different
generations have identical couplings to all gauge bosons of
the strong, weak, and electromagnetic interactions. Prior to
the introduction of the Higgs boson and mass terms, the

Lagrangian is chiral and invariant with respect to permu-
tations of the left and right fermionic fields.

The six possible permutations of three objects
�f1; f2; f3� are elements of the permutational group S3.
This is the discrete, non-Abelian group with the smallest
number of elements. The three-dimensional real represen-
tation is not an irreducible representation of S3. It can be
decomposed into the direct sum of a doublet fD and a
singlet fs, where
 

fs �
1��
3
p �f1 � f2 � f3�;

fTD � �
1��
2
p �f1 � f2�;

1��
6
p �f1 � f2 � 2f3��:

(6)

The direct product of two doublets pD
T � �pD1; pD2� and

qD
T � �qD1; qD2� may be decomposed into the direct sum

of two singlets rs and rs0 , and one doublet rD
T where

 r s � pD1qD1 � pD2qD2; rs0 � pD1qD2 � pD2qD1;

(7)

 r D
T � �rD1; rD2�

� �pD1qD2 � pD2qD1; pD1qD1 � pD2qD2�: (8)

The antisymmetric singlet rs0 is not invariant under S3.
Since the standard model has only one Higgs SU�2�L

doublet, which can only be an S3 singlet, it can only give
mass to the quark or charged lepton in the S3 singlet
representation, one in each family, without breaking the
S3 symmetry.

Hence, in order to impose S3 as a fundamental symme-
try, unbroken at the Fermi scale, we are led to extend the
Higgs sector of the theory. The quark, lepton, and Higgs
fields are
 

QT � �uL; dL�; uR; dR;

LT � ��L; eL�; eR; �R and H;
(9)

in an obvious notation. All of these fields have three
species, and we assume that each one forms a reducible
representation 1S � 2. The doublets carry capital indices I
and J, which run from 1 to 2, and the singlets are denoted
by Q3, u3R, d3R, L3, e3R, �3R, and HS. Note that the sub-
script 3 denotes the singlet representation and not the third
generation. The most general renormalizable Yukawa in-
teractions of this model are given by

 L Y � LYD �LYU �LYE �LY� ; (10)

where
 

LYD � �Y
d
1

�QIHSdIR � Y
d
3

�Q3HSd3R

� Yd2 	 �QI�IJH1dJR � �QI�IJH2dJR


� Yd4 �Q3HIdIR � Yd5 �QIHId3R � H:c:; (11)
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 L YU � �Y
u
1

�QI�i�2�H
�
SuIR � Y

u
3

�Q3�i�2�H
�
Su3R

� Yu2 	 �QI�IJ�i�2�H�1uJR � � �QI�IJ�i�2�H�2uJR


� Yu4 �Q3�i�2�H
�
I uIR � Y

u
5

�QI�i�2�H
�
I u3R � H:c:;

(12)

 

LYE � �Y
e
1

�LIHSeIR � Ye3 �L3HSe3R

� Ye2	 �LI�IJH1eJR � �LI�IJH2eJR


� Ye4 �L3HIeIR � Ye5 �LIHIe3R � H:c:; (13)

 L Y� � �Y
�
1

�LI�i�2�H
�
S�IR � Y

�
3

�L3�i�2�H
�
S�3R

� Y�2 	 �LI�IJ�i�2�H�1�JR � �LI�IJ�i�2�H�2�JR


� Y�4 �L3�i�2�H�I �IR � Y
�
5

�LI�i�2�H�I �3R � H:c:;

(14)

and

 � �
0 1
1 0

� �
and � �

1 0
0 �1

� �
: (15)

Furthermore, we add to the Lagrangian the Majorana mass
terms for the right-handed neutrinos

 LM � �M1�TIRC�IR �M3�T3RC�3R: (16)

Because of the presence of three Higgs fields, the Higgs
potential VH�HS;HD� is more complicated than that of the
standard model. This potential was analyzed by Pakvasa
and Sugawara [23] who found that in addition to the S3

symmetry, it has a permutational symmetry S02: H1 $ H2,
which is not a subgroup of the flavor group S3. In this
communication, we will assume that the vacuum respects
the accidental S02 symmetry of the Higgs potential and that

 hH1i � hH2i: (17)

With these assumptions, the Yukawa interactions,
Eqs. (11)–(14) yield mass matrices, for all fermions in
the theory, of the general form [20]

 M �

�1 ��2 �2 �5

�2 �1 ��2 �5

�4 �4 �3

0
@

1
A: (18)

The Majorana mass for the left-handed neutrinos �L is
generated by the seesaw mechanism. The corresponding
mass matrix is given by

 M � �M�D
~M�1�M�D

�T; (19)

where ~M � diag�M1;M1;M3�.
In principle, all entries in the mass matrices can be

complex since there is no restriction coming from the
flavor symmetry S3. The mass matrices are diagonalized
by bi-unitary transformations as
 

Uyd�u;e�LMd�u;e�Ud�u;e�R � diag�md�u;e�; ms�c;��; mb�t;���;

UT
�M�U� � diag�m�1

; m�2
; m�3

�: (20)

The entries in the diagonal matrices may be complex, so
the physical masses are their absolute values.

The mixing matrices are, by definition,

 VCKM � UyuLUdL; VPMNS � UyeLU�K; (21)

where K is the diagonal matrix of the Majorana phase
factors.

III. THE MASS MATRICES IN THE LEPTONIC
SECTOR AND Z2 SYMMETRY

A further reduction of the number of parameters in the
leptonic sector may be achieved by means of an Abelian Z2

symmetry. A possible set of charge assignments of Z2,
compatible with the experimental data on masses and
mixings in the leptonic sector, is given in Table I.

These Z2 assignments forbid the following Yukawa
couplings

 Ye1 � Ye3 � Y�1 � Y�5 � 0: (22)

Therefore, the corresponding entries in the mass matrices
vanish, i.e., �e

1 � �e
3 � 0 and ��

1 � ��
5 � 0.

A. The mass matrix of the charged leptons

The mass matrix of the charged leptons takes the form

 Me � m�

~�2 ~�2 ~�5

~�2 � ~�2 ~�5

~�4 ~�4 0

0
@

1
A: (23)

The unitary matrix UeL that enters in the definition of the
mixing matrix, VPMNS, is calculated from

 UyeLMeM
y
e UeL � diag�m2

e; m
2
�;m

2
��; (24)

where me, m�, and m� are the masses of the charged
leptons, and

 

MeM
y
e

m2
�

�
2j ~�2j

2 � j ~�5j
2 j ~�5j

2 2j ~�2jj ~�4je
�i�e

j ~�5j
2 2j ~�2j

2 � j ~�5j
2 0

2j ~�2jj ~�4je
i�e 0 2j ~�4j

2

0
B@

1
CA: (25)

Notice that this matrix has only one nonignorable phase factor.
The parameters j ~�2j, j ~�4j, and j ~�5jmay readily be expressed in terms of the charged lepton masses. From the invariants

of MeM
y
e , we get the set of equations
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 Tr �MeM
y
e � � m2

e �m2
� �m2

�

� m2
�	4j ~�2j

2 � 2�j ~�4j
2 � j ~�5j

2�
; (26)

 	�MeM
y
e � � m2

��m
2
e �m

2
�� �m

2
em

2
�

� 4m4
�	j ~�2j

4 � j ~�2j
2�j ~�4j

2 � j ~�5j
2�

� j ~�4j
2j ~�5j

2
; (27)

 det�MeM
y
e � � m2

em2
�m2

� � 4m6
�j ~�2j

2j ~�4j
2j ~�5j

2; (28)

where 	�MeM
y
e � �

1
2 	�Tr�MeM

y
e ��2 � Tr�MeM

y
e �2
.

Solving these equations for j ~�2j
2, j ~�4j

2, and j ~�5j
2, we

obtain

 j ~�2j
2 �

~m2
�

2

1� x4

1� x2 � 
; (29)

and
 

j ~�4;5j
2 �

1

4

�
1� ~m2

�
�1� x2�2

1� x2 � 4

�

�
1

4

��
1� ~m2

�
�1� x2�2

1� x2

�
2
� 8 ~m2

e
1� x2

1� x4

� 8

�
1� ~m2

�
�1� x2�2

1� x2

�
x2

1� 2
�1�x2�
~m2
��1�x4�

�1� x2�2

�1� x4�2

�
� 16
2

�
1=2
: (30)

In these expressions, x � me=m�, ~m� � m�=m� and 
 is
the smallest solution of the equation

 


3 �
1

2

�
1� 2y� 6

z
y

�

2

�
1

4

�
y� y2 � 4

z
y
� 7z� 12

z2

y2

�

�

1

8
yz�

1

2

z2

y2

�
3

4

z2

y
�
z3

y3 � 0; (31)

where y � �m2
e �m2

��=m2
� and z � m2

�m2
e=m4

�.
A good, order of magnitude, estimate for 
 is obtained

from (31)

 
  �
m2
�m

2
e

2m2
��m

2
� � �m

2
� �m

2
e��
: (32)

Once MeM
y
e has been reparametrized in terms of the

charged lepton masses, it is straightforward to compute
Me and UeL also as functions of the charged lepton masses
[21]. The resulting expression for Me, written to order
�m�me=m

2
��

2 and x4 � �me=m��
4 is

 Me  m�

1��
2
p

~m���������
1�x2
p 1��

2
p

~m���������
1�x2
p 1��

2
p

����������������
1�x2� ~m2

�

1�x2

q

1��
2
p

~m���������
1�x2
p � 1��

2
p

~m���������
1�x2
p 1��

2
p

����������������
1�x2� ~m2

�

1�x2

q
~me�1�x2�����������������
1�x2� ~m2

�

p ei�e ~me�1�x2�����������������
1�x2� ~m2

�

p ei�e 0

0
BBBBB@

1
CCCCCA:

(33)

This approximation is numerically exact up to order 10�9

in units of the � mass. Notice that this matrix has no free
parameters other than the Dirac phase �e.

The unitary matrix UeL that diagonalizes MeM
y
e and

enters in the definition of the neutrino mixing matrix
VPMNS may be written as

 UeL �

1 0 0
0 1 0
0 0 ei�e

0
@

1
A O11 �O12 O13

�O21 O22 O23

�O31 �O32 O33

0
@

1
A; (34)

where the orthogonal matrix OeL in the right-hand side of
Eq. (34), written to the same order of magnitude as Me, is

 O eL 

1��
2
p x

�1�2 ~m2
��4x2� ~m4

��2 ~m2
e����������������������������������������������������

1� ~m2
��5x2� ~m4

�� ~m6
�� ~m2

e�12x4
p � 1��

2
p

�1�2 ~m2
�� ~m4

��2 ~m2
e�����������������������������������������������

1�4 ~m2
��x2�6 ~m4

��4 ~m6
��5 ~m2

e

p 1��
2
p

� 1��
2
p x

�1�4x2� ~m4
��2 ~m2

e����������������������������������������������������
1� ~m2

��5x2� ~m4
�� ~m6

�� ~m2
e�12x4

p 1��
2
p

�1�2 ~m2
�� ~m4

������������������������������������������������
1�4 ~m2

��x2�6 ~m4
��4 ~m6

��5 ~m2
e

p 1��
2
p

�

�������������������������
1�2x2� ~m2

�� ~m2
e

p
�1� ~m2

��x2�2 ~m2
e����������������������������������������������������

1� ~m2
��5x2� ~m4

�� ~m6
�� ~m2

e�12x4
p �x

�1�x2� ~m2
��2 ~m2

e�
�������������������������
1�2x2� ~m2

�� ~m2
e

p
����������������������������������������������
1�4 ~m2

��x2�6 ~m4
��4 ~m6

��5 ~m2
e

p
��������
1�x2
p

~me ~m�����������������
1�x2� ~m2

�

p

0
BBBBBB@

1
CCCCCCA
; (35)

where, as before, ~m� � m�=m�, ~me � me=m�, and x �
me=m�.

B. The mass matrix of the neutrinos

According to the Z2 selection rule, Eq. (22), the mass
matrix of the Dirac neutrinos takes the form

 M �D
�

��
2 ��

2 0
��

2 ���
2 0

��
4 ��

4 ��
3

0
@

1
A: (36)

Then, the mass matrix for the left-handed Majorana neu-
trinos, M�, obtained from the seesaw mechanism, M� �

M�D
~M�1�M�D

�T , is

TABLE I. Z2 assignment in the leptonic sector.

� �

HS, �3R HI, L3, LI , e3R, eIR, �IR
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 M � �
2���2�

2 0 2��2�
�
4

0 2���2�
2 0

2��2�
�
4 0 2���4�

2 � ���3�
2

0
B@

1
CA; (37)

where ��2 � ��
�
2�=M

1=2
1 , ��4 � ��

�
4�=M

1=2
1 , and ��3 �

���
3�=M

1=2
3 ; M1 and M3 are the masses of the right-handed

neutrinos appearing in (16).
The non-Hermitian, complex, symmetric neutrino mass

matrix, M�, may be brought to a diagonal form by a bi-
unitary transformation, as

 UT
�M�U� � diag�jm�1

jei�1 ; jm�2
jei�2 ; jm�3

jei���; (38)

whereU� is the matrix that diagonalizes the matrix My�M�.
In order to compute U�, we notice that My�M� has the

same texture zeroes as M�

 My�M� �
jAj2 � jBj2 0 A?B� B?D

0 jAj2 0
AB? � BD? 0 jBj2 � jDj2

0
B@

1
CA; (39)

where A � 2���2�
2, B � 2��2�

�
4 , and D � 2���4�

2 � ���3�
2.

Furthermore, notice that the entries in the upper right
corner and lower left corner are complex conjugates of

each other, all other entries are real. Therefore, the matrix
U�L that diagonalizes My�M�, takes the form

 U� �

1 0 0
0 1 0
0 0 ei��

0
@

1
A cos� sin� 0

0 0 1
� sin� cos� 0

0
@

1
A: (40)

If we require that the defining Eq. (38) be satisfied as an
identity, we get the following set of equations:
 

2���2�
2 � m�3

;

2���2�
2 � m�1

cos2��m�2
sin2�;

2��2�
�
4 � sin� cos��m�2

�m�1
�e�i�� ;

2���4�
2 � ���3�

2 � �m�1
sin2��m�2

cos2��e�2i�� :

(41)

Solving these equations for sin� and cos�, we find

 sin 2� �
m�3
�m�1

m�2
�m�1

; cos2� �
m�2
�m�3

m�2
�m�1

: (42)

Hence, the matricesM� andU�, reparametrized in terms of
the complex neutrino masses, take the form [21]

 M� �

m�3
0

���������������������������������������������������
�m�3

�m�1
��m�2

�m�3
�

q
e�i��

0 m�3
0���������������������������������������������������

�m�3
�m�1

��m�2
�m�3

�
q

e�i�� 0 �m�1
�m�2

�m�3
�e�2i��

0
BBB@

1
CCCA (43)

and

 U� �

1 0 0
0 1 0
0 0 ei��

0
@

1
A

���������������
m�2
�m�3

m�2
�m�1

r ���������������
m�3
�m�1

m�2
�m�1

r
0

0 0 1

�

���������������
m�3
�m�1

m�2
�m�1

r ���������������
m�2
�m�3

m�2
�m�1

r
0

0
BBBB@

1
CCCCA:

(44)

The unitarity of U� constrains sin� to be real and thus
j sin�j � 1, this condition fixes the phases �1 and �2 as

 jm�1
j sin�1 � jm�2

j sin�2 � jm�3
j sin��: (45)

The only free parameters in these matrices, are the phase
��, implicit in m�1

, m�2
, and m�3

, and the Dirac phase ��.

C. The neutrino mixing matrix

The neutrino mixing matrix VPMNS is the product
UyeLU�K, where K is the diagonal matrix of the
Majorana phase factors, defined by

 diag �m�1
; m�2

; m�3
� � Ky diag�jm�1

j; jm�2
j; jm�3

j�Ky:

(46)

Except for an overall phase factor ei�1 , which can be
ignored, K is

 K � diag�1; ei; ei
�; (47)

where  � 1=2��1 ��2� and 
 � 1=2��1 ���� are the
Majorana phases.

Therefore, the theoretical mixing matrix Vth
PMNS, is given

by

 Vth
PMNS �

O11 cos��O31 sin�ei� O11 sin��O31 cos�ei� �O21

�O12 cos��O32 sin�ei� �O12 sin��O32 cos�ei� O22

O13 cos��O33 sin�ei� O13 sin��O33 cos�ei� O23

0
B@

1
CA� K; (48)

where cos� and sin� are given in Eq. (42), Oij are given in Eqs. (34) and (35), and � � �� � �e.
To find the relation of our results with the neutrino mixing angles we make use of the equality of the absolute values of

the elements of Vth
PMNS and VPDG

PMNS [51], that is
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 jV th
PMNSj � jV

PDG
PMNSj: (49)

This relation allows us to derive expressions for the mixing
angles in terms of the charged lepton and neutrino masses

 j sin�13j � O21; j sin�23j �
O22����������������������

O2
22 �O

2
23

q (50)

and

 j tan�12j
2 � cot2�

O2
11

1
cot2��O

2
31 � 2O31O11

1
cot� cos�

O2
11cot2��O2

31 � 2O31O11 cot� cos�
:

(51)

The magnitudes of the reactor and atmospheric mixing
angles, �13 and �23, are determined by the masses of the
charged leptons only. Keeping terms up to order (m2

e=m2
�)

and �m�=m��
4, we get

 sin�13 
1���
2
p x

�1� 4x2 � ~m4
���������������������������������������������

1� ~m2
� � 5x2 � ~m4

�

q ;

sin�23 
1���
2
p

1� 2 ~m2
� � ~m4

�����������������������������������������������
1� 4 ~m2

� � x2 � 6 ~m4
�

q :

(52)

Substitution of the small numerical values ~m� � 5:94�
10�2, x � me=m� � 4:84� 10�3, and ~m� � m�=m� �
5:95� 10�2 for the leptonic mass ratios ~m� and x in the
right-hand side of (52) yields the numerical values of
sin�13 and sin�23

 sin�13 � 0:0034; sin�23 �
1��
2
p � 8:4� 10�6: (53)

From these numbers, it is evident that the theoretical values
of sin�13 and sin�23 are very close to the corresponding
tribimaximal mixing values sin�tri

13 � 0 and sin�tri
23 � 1=

���
2
p

[52].
The dependence of tan�12 on the Dirac phase �, see (51),

is very weak, since O31 � 1 but O11 � 1=
���
2
p
�me=m��.

Hence, we may neglect it when comparing (51) with the
data on neutrino mixings.

The dependence of tan�12 on the phase �� and the
physical masses of the neutrinos enters through the ratio
of the neutrino mass differences under the square root sign,
it can be made explicit with the help of the unitarity

constraint on U�, Eq. (45),

 

m�2
�m�3

m�3
�m�1

�
�jm�2

j2�jm�3
j2sin2���

1=2�jm�3
jjcos��j

�jm�1
j2�jm�3

j2sin2���
1=2�jm�3

jjcos��j
:

(54)

Similarly, the Majorana phases are given by

 sin2 � sin��1 ��2�

�
jm�3
j sin��

jm�1
jjm�2

j
�
����������������������������������������������
jm�2
j2 � jm�3

j2sin2��

q

�
����������������������������������������������
jm�1
j2 � jm�3

j2sin2��

q
�; (55)

 sin2
 � sin��1 ����

�
sin��

jm�1
j
�jm�3

j
������������������������
1� sin2��

q

�
����������������������������������������������
jm�1
j2 � jm�3

j2sin2��

q
�: (56)

A more complete and detailed discussion of the Majorana
phases in the neutrino mixing matrix VPMNS obtained in our
model is given by J. Kubo [53].

D. Neutrino masses and mixings

In the present model, sin2�13 and sin2�23 are determined
only by the masses of the charged leptons in very good
agreement with the experimental values [11,12,54],

 �sin2�13�
th � 1:1� 10�5; �sin2�13�

exp � 0:046;

and

 �sin2�23�
th � 0:499; �sin2�23�

exp � 0:5�0:06
�0:05:

In this model, the experimental restriction j�m2
12j<

j�m2
13j implies an inverted neutrino mass spectrum,

jm�3
j< jm�1

j< jm�2
j [20].

As can be seen from Eqs. (51) and (54), the solar mixing
angle is sensitive to the neutrino mass differences and the
phase �� but is only very weakly sensitive to the charged
lepton masses. If we neglect the small terms proportional
to O11 and O2

11 in (51), we get

 tan 2�12 �
��m2

12 � �m2
13 � jm�3

j2cos2���
1=2 � jm�3

jj cos��j

��m2
13 � jm�3

j2cos2���
1=2 � jm�3

jj cos��j
: (57)

From this expression, we may readily derive expressions for the neutrino masses in terms of tan�12 and �� and the
differences of the squared masses

 jm�3
j �

������������
�m2

13

q
2 cos�� tan�12

1� tan4�12 � r2������������������������
1� tan2�12

p �����������������������������������
1� tan2�12 � r

2
p ; (58)
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in a similar way, we obtain

 jm�1
j�

������������
�m2

13

q
2cos��t12

	�1�t412�
2�4cos2��t

2
12�1�t

2
12�

2�2r2�1�t412�2cos2��t
2
12�1�t

2
12���r

4
�1=2���������������
1�t212

q �����������������������
1�t212�r

2
q

jm�2
j�

������������
�m2

13

q
2cos��t12

�
	�1�t412�

2�4cos2��t212�1�t
2
12�

2�2r2�1�t412�2cos2��t212�1�t
2
12��2�t

2
12���r

4�1�4cos2��t212�1�t
2
12��


�1=2���������������
1�t212

q �����������������������
1�t212�r

2
q ;

(59)

where t12 � tan�12, and r2 � �m2
12=�m2

13  3� 10�2. As r2 � 1, Eq. (58) reduces to

 jm�3
j 

1

2 cos��

������������
�m2

13

q
tan�12

�1� tan2�12�: (60)

From these expressions, and setting r2 � 0, the sum of the neutrino masses is

 jm�1
j � jm�2

j � jm�3
j 

������������
�m2

13

q
2 cos�� tan�12

�1� 2
������������������������������������������������������������������������������
1� 2tan2�12�2cos2�� � 1� � tan4�12

q
� tan2�12�: (61)

The most restrictive cosmological upper bound for this
sum is [17]

 

X
jm�j � 0:17 eV: (62)

From this upper bound and the experimentally determined

values of tan�12 and �m2
ij, we may derive a lower bound

for cos��,

 cos�� � 0:55; (63)

or 0 � �� � 57�. The neutrino masses jm�i j assume their
minimal values when cos�� � 1. When cos�� takes val-
ues in the range 0:55 � cos� � 1, the neutrino masses
change very slowly with cos��, see Fig. 1. In the absence
of experimental information we will assume that �� van-
ishes. Hence, setting �� � 0 in our formula, we find

 jm�2
j  0:056 eV; jm�1

j  0:055 eV;

jm�3
j  0:022 eV;

(64)

where we used the values �m2
13 � 2:6� 10�3 eV2,

�m2
21 � 7:9� 10�5 eV2, and tan�12 � 0:667, taken

from [13].

E. VPMNS and the tribimaximal form

Once the numerical values of the neutrino masses are
determined, we may readily verify that the theoretical
mixing matrix, VPMNS, is very close to the tribimaximal
form of the mixing matrix,

 V th
PMNS �

��
2
3

q ��
1
3

q
0

�
��
1
6

q ��
1
3

q
�

��
1
2

q

�
��
1
6

q ��
1
3

q ��
1
2

q

0
BBBB@

1
CCCCA� �V tri

PMNS; (65)

where �V tri
PMNS � V th

PMNS � V
tri
PMNS. From Eqs. (35), (40),

(42), (48), (52), and (64), the correction term to the tribi-
maximal form of the mixing matrix comes out as

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

Σ 
m

ν[
eV

]

φν(rad)

upper bound on Σ mν
Σ mν(φ )

FIG. 1. The dashed line represents the sum of the neutrino
masses,

P3
i�1 jm�i j, as function of ��. The horizontal straight

line is the cosmological upper bound on
P
jm�i j [17].
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 �V tri
PMNS

1:94� 10�2 �2:84� 10�2 �3:4� 10�3

2:21� 10�2 1:5� 10�2 �8:2� 10�6

1:8� 10�2 1:24� 10�2 3:1� 10�10

0
B@

1
CA:

(66)

IV. FLAVOR-CHANGING NEUTRAL CURRENTS
(FCNC)

Models with more than one Higgs SU�2� doublet have
tree-level flavor-changing neutral currents. In the minimal
S3-invariant extension of the standard model considered
here, there is one Higgs SU�2� doublet per generation
coupling to all fermions. The flavor-changing Yukawa
couplings may be written in a flavor labeled, symmetry
adapted weak basis as

 L FCNC
Y � � �EaLY

ES
ab EbR � �UaLY

US
ab UbR � �DaLY

DS
ab DbR�H

0
S

� � �EaLY
E1
abEbR � �UaLY

U1
ab UbR

� �DaLY
D1
ab DbR�H

0
1 � �

�EaLY
E2
abEbR

� �UaLY
U2
ab UbR � �DaLYD2

ab DbR�H
0
2 � H:c:;

(67)

where the entries in the column matrices E0s, U0s, and D0s
are the left and right fermion fields and Y�e;u;d�sab , Y�e;u;d�1;2ab
are 3� 3 matrices of the Yukawa couplings of the fermion
fields to the neutral Higgs fields H0

s and H0
I in the

S3-singlet and doublet representations, respectively.
In this basis, the Yukawa couplings of the Higgs fields to

each family of fermions may be written in terms of matri-
ces M�e;u;d�

Y , which give rise to the corresponding mass
matrices M�e;u;d� when the gauge symmetry is spontane-
ously broken. From this relation we may calculate the
flavor-changing Yukawa couplings in terms of the fermion
masses and the vacuum expectation values of the neutral
Higgs fields. For example, the matrix Me

Y is written in
terms of the matrices of the Yukawa couplings of the
charged leptons as

 M e
Y � YE1

w H
0
1 � Y

E2
w H

0
2 ; (68)

in this expression, the index w means that the Yukawa
matrices are defined in the weak basis,

 YE1
w �

m�

v1

0 1��
2
p

~m���������
1�x2
p 1��

2
p

����������������
1�x2� ~m2

�

1�x2

q
1��
2
p

~m���������
1�x2
p 0 0

~me�1�x2�����������������
1�x2� ~m2

�

p ei�e 0 0

0
BBBB@

1
CCCCA

(69)

and

 YE2
w �

m�

v2

1��
2
p

~m���������
1�x2
p 0 0

0 � 1��
2
p

~m���������
1�x2
p 1��

2
p

����������������
1�x2� ~m2

�

1�x2

q

0 ~me�1�x2�����������������
1�x2� ~m2

�

p ei�e 0

0
BBBB@

1
CCCCA:

(70)

The Yukawa couplings of immediate physical interest in
the computation of the flavor-changing neutral currents are
those defined in the mass basis, according to ~YEIm �
UyeLY

EI
w UeR, where UeL and UeR are the matrices that

diagonalize the charged lepton mass matrix defined in
Eqs. (20) and (34). We obtain

 

~Y E1
m 

m�

v1

2 ~me �1
2 ~me

1
2x

� ~m�
1
2 ~m� �1

2
1
2 ~m�x2 �1

2 ~m�
1
2

0
B@

1
CA
m

; (71)

and

 

~Y E2
m 

m�

v2

� ~me
1
2 ~me �1

2x
~m�

1
2 ~m�

1
2

�1
2 ~m�x2 1

2 ~m�
1
2

0
B@

1
CA
m

; (72)

where ~m� � 5:94� 10�2, ~me � 2:876� 10�4, and x �
me=m� � 4:84� 10�3. All the nondiagonal elements are
responsible for tree-level FCNC processes. The actual
values of the Yukawa couplings in Eqs. (71) and (72) still
depend on the VEV’s of the Higgs fields v1 and v2, and,
hence, on the Higgs potential. If the S02 symmetry in the
Higgs sector is preserved [23], hH0

1i � hH
0
2i � v. To make

an order of magnitude estimate of the coefficient in the
Yukawa matrices, m�=v, we may further assume that the
VEV’s for all the Higgs fields are comparable, that is,
hH0

s i � hH
0
1i � hH

0
2i �

��
2
p��

3
p MW

g2
, then, m�=v ����

3
p
=
���
2
p
g2m�=MW and we may estimate the numerical

values of the Yukawa couplings from the numerical values
of the lepton masses. For instance, the amplitude of the
flavor violating process �� ! ��e�e�, is proportional to
~YE�� ~YEee [55]. Then, the leptonic branching ratio,

 Br ��! �e�e�� �
���! �e�e��

���! e� ��� � ���! �� ���
(73)

and

 ���! �e�e�� 
m5
�

3� 210�3

�Y1;2
��Y

1;2
ee �2

M4
H1;2

; (74)

which is the dominant term, and the well-known expres-
sions for ���! e� ��� and ���! �� ��� [51], give

 Br ��! �e�e�� 
9

4

�mem�

m2
�

�
2
�
m�

MH1;2

�
4
; (75)

taking for MH1;2
� 120 GeV, we obtain

 Br ��! �e�e��  3:15� 10�17;
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well below the experimental upper bound for this process,
which is 2:7� 10�7 [56]. Similar computations give the
following estimates

 Br ��! e�� 
3
8�

�m�

MH

�
4
; (76)

 Br ��! ��� 
3

128�

�m�

m�

�
2
�
m�

MH

�
4
; (77)

 Br ��! 3�� 
9

64

�m�

MH

�
4
; (78)

 Br ��! 3e�  18
�mem�

m2
�

�
2
�
m�

MH

�
4
; (79)

and

 Br ��! e�� 
27
64�

�
me

m�

�
4
�
m�

MH

�
4
: (80)

We see that FCNC processes in the leptonic sector are
strongly suppressed by the small values of the mass ratios
me=m�, m�=m�, and m�=MH. The numerical estimates of
the branching ratios and the corresponding experimental
upper bounds are shown in Table II. It may be seen that, in
all cases considered, the numerical values for the branch-
ing ratios of the FCNC in the leptonic sector are well below
the corresponding experimental upper bounds. The matri-
ces of the quark Yukawa couplings may be computed in a
similar way. Numerical values for the Yukawa couplings
for u and d-type quarks are given in our previous paper
[20]. There it was found that, due to the strong hierarchy in
the quark masses and the corresponding small or very
small mass ratios, the numerical values of all the Yukawa
couplings in the quark sector are small or very small. Kubo,
Okada, and Sakamaki [61] have investigated the breaking
of the gauge symmetry in the present S3-invariant exten-
sion of the standard model with the S3-invariant Higgs
potential VH�HS;H2� analyzed by Pakvasa and Sugawara
[23]. They found that it is possible that all physical Higgs
bosons, except one neutral one, could become sufficiently
heavy (MH � 10 TeV) to suppress all the flavor-changing
neutral current processes in the quark sector of the theory
without having a problem with triviality.

V. CONCLUSIONS

By introducing three Higgs fields that are SU�2�L dou-
blets in the theory, we extended the concept of flavor and
generations to the Higgs sector and formulated a minimal
S3-invariant extension of the standard model [20]. A well-
defined structure of the Yukawa couplings is obtained,
which permits the calculation of mass and mixing matrices
for quarks and leptons in a unified way. A further reduction
of redundant parameters is achieved in the leptonic sector
by introducing a Z2 symmetry. The flavor symmetry group
Z2 � S3 relates the mass spectrum and mixings. This al-
lowed us to derive explicit, analytical expressions for all
entries in the neutrino mixing matrix, VPMNS, as functions
of the masses of the charged leptons and neutrinos and two
phases � and �� [21]. In this model, the tribimaximal
mixing structure of VPMNS and the magnitudes of the three
mixing angles are determined by the interplay of the flavor
S3 � Z2 symmetry, the seesaw mechanism, and the
charged lepton mass hierarchy. We also found that VPMNS

has three CP violating phases, namely, one Dirac phase
� � �� � �e and two Majorana phases,  and 
, which
are functions of the neutrino masses and the phase ��
which is independent of the Dirac phase. The numerical
values of the reactor, �13, and the atmospheric, �23, mixing
angles are determined by the masses of the charged leptons
only, in very good agreement with the experiment. The
solar mixing angle �12 is almost insensitive to the values of
the masses of the charged leptons, but its experimental
value allowed us to fix the scale and origin of the neutrino
mass spectrum, which has an inverted hierarchy, with the
values jm�2

j � 0:056 eV, jm�1
j � 0:055 eV, and jm�3

j �

0:022 eV. In the present work, we obtained explicit ex-
pressions for the matrices of the Yukawa couplings of the
lepton sector parametrized in terms of the charged lepton
masses and the VEV’s of the neutral Higgs bosons in the
S3-doublet representation. These Yukawa matrices are
closely related to the fermion mass matrices and have a
structure of small and very small entries reflecting the
observed charged lepton mass hierarchy. With the help of
the Yukawa matrices, we computed the branching ratios of
a number of FCNC processes and found that the branching
ratios of all FCNC processes considered are strongly sup-
pressed by powers of the small mass ratios me=m� and
m�=m�, and by the ratio �m�=MH1;2

�4, where MH1;2
is the

TABLE II. Leptonic FCNC processes, calculated with MH1;2
� 120 GeV.

FCNC processes Theoretical BR Experimental upper bound BR References

�! 3� 8:43� 10�14 2� 10�7 B. Aubert et al. [56]
�! �e�e� 3:15� 10�17 2:7� 10�7 B. Aubert et al. [56]
�! �� 9:24� 10�15 6:8� 10�8 B. Aubert et al. [57]
�! e� 5:22� 10�16 1:1� 10�11 B. Aubert et al. [58]
�! 3e 2:53� 10�16 1� 10�12 U. Bellgardt et al. [59]
�! e� 2:42� 10�20 1:2� 10�11 M. L. Brooks et al. [60]
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mass of the neutral Higgs bosons in the S3-doublet. Taking
forMH1;2

a very conservative value (MH1;2
 120 GeV), we

found that the numerical values of the branching ratios of
the FCNC in the leptonic sector are well below the corre-
sponding experimental upper bounds by many orders of
magnitude. We may add that although the theoretical val-
ues of the branching ratios of FCNC processes computed in
this work are much smaller than their experimental upper
bounds measured in terrestrial laboratories, they still are
larger than the vanishing or nearly vanishing values al-
lowed by the standard model, and could be important in
astrophysical processes [62]. It has already been argued

that small FCNC processes mediating nonstandard quark-
neutrino interactions could be important in the theoretical
description of the gravitational core collapse and shock
generation in the explosion stage of a supernova [63,64].
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