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The pseudoparticle approach is a numerical technique to compute path integrals without discretizing
spacetime. The basic idea is to integrate over those field configurations, which can be represented by a
sum of a fixed number of localized building blocks (pseudoparticles). In a couple of previous papers we
have successfully applied the pseudoparticle approach to pure SU(2) Yang-Mills theory. In this work I
discuss how to incorporate fermionic fields in the pseudoparticle approach. To test the method, I compute
the phase diagram of the 1� 1-dimensional Gross-Neveu model in the large-N limit.
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I. INTRODUCTION

Recently, there have been a couple of papers proposing
continuum models for SU(2) Yang-Mills theory with a
small number of physically relevant degrees of freedom.
There are ensembles of merons and regular gauge instan-
tons [1,2], there is the pseudoparticle approach [3–5], and
there is a model with calorons with nontrivial holonomy
[6,7]. The basic idea is to restrict the Yang-Mills path
integral to those gauge field configurations, which can be
represented by a linear superposition of a small number of
localized building blocks, e.g. instantons, merons, akyrons,
or calorons. These models have been quite successful when
dealing with problems related to confinement: the potential
between two static charges is linear for large separations,
there is a confinement deconfinement phase transition, and
various quantities, e.g. the topological susceptibility or the
critical temperature, are of the right order of magnitude
compared to lattice results.

Until now, these models have been applied to SU(2)
Yang-Mills theory only. In this paper I discuss how to
include fermionic fields in the pseudoparticle approach.

The paper is organized as follows. In Sec. II I regularize
the fermionic path integral by considering only those field
configurations, which can be represented by a linear su-
perposition of a fixed number of localized building blocks.
I point out problems arising in a naive pseudoparticle
regularization and propose a solution to these problems
in form of a slightly different regularization scheme. I also
discuss possible relations to finite mode regularization [8–
10]. In Sec. III I test the pseudoparticle method by applying
it to a simple interacting fermionic theory, the 1�
1-dimensional Gross-Neveu model in the large-N limit
[11]. With suitably chosen pseudoparticles and after a
coupling constant renormalization the pseudoparticle re-
sults are in excellent agreement with analytical results,
both for homogeneous chiral condensate [12,13] and for
spatially inhomogeneous chiral condensate [14,15]. In
Sec. IV, I give a summary and a brief outlook regarding
the application of the pseudoparticle approach to QCD.

II. FERMIONIC FIELDS IN THE
PSEUDOPARTICLE APPROACH

A. Basic principle

In previous papers [3–5] we have discussed in detail
how to apply the pseudoparticle approach to bosonic fields,
in particular to the SU(2) gauge field. In this section I
propose a method to incorporate fermionic fields.

The starting point is the action and partition function of
any theory with quadratic fermion interaction:

 S� ; � ;�� �
Z
dx� � Q��� �L����; (1)

 Z �
Z
D D � D�e�S� ; � ;��; (2)

where Q is the Dirac operator and � denotes any type and
number of bosonic fields, e.g. the chiral condensate in the
Gross-Neveu model (cf. Sec. III A) or the non-Abelian
gauge field in QCD.

To keep close to the spirit of the pseudoparticle ap-
proach, I regularize the fermionic path integral by consid-
ering only those field configurations which can be
represented by a linear superposition of a fixed number
of localized building blocks:

  �x� �
X
j

njGj�x�|���{z���}
j�th pseudo particle

; (3)

where �j are Grassmann valued spinors and Gj are func-
tions, which are localized in space as well as in time, i.e.
pseudoparticles. The functional integration over the fermi-
onic field configurations is defined via

 

Z
D D � . . . �

Z �Y
j

d�jd ��j

�
. . . : (4)

Moreover, I consider a d� 1-dimensional periodic space-
time region of temporal extension L0 and spatial extension
�L1�

d. Note that fermionic fields have to fulfill antiperiodic
boundary conditions in time direction (cf. e.g. [16]). This
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implies antiperiodicity for the pseudoparticles Gj, i.e.

 Gj�x0 � L0;x� � �Gj�x0;x�: (5)

After integrating out the fermions one obtains

 Seffective��� �
Z
dd�1xL��� � ln�det�hGjjQjGj0 i��; (6)

 Z /
Z
D�e�Seffective���; (7)

where hGjjQjGj0 i is a finite matrix.
Note that using eigenfunctions of the Dirac operator as

‘‘pseudoparticles’’ Gj yields the well-known finite mode
regularization [8–10].

If det�Q� is real and positive, det�Q� �
��������������������
det�QyQ�

p
. This

suggests another pseudoparticle regularization:

 Seffective��� �
Z
dd�1xL��� �

1

2
ln�det�hGjjQyQjGj0 i��:

(8)

As I will point out in the following, this
‘‘QyQ-regularization’’ has significant advantages over
the naive ‘‘Q-regularization’’ (6).

B. The Q-regularization versus theQyQ-regularization

To keep the following arguments as simple as possible,
consider all pseudoparticles Gj to be orthonormal, i.e.
hGjjGj0 i � �jj0 . Note that assuming orthonormality is not
a restriction. Given any set of linearly independent pseu-
doparticles Fj one can easily define suitable linear combi-
nations Gj � MjkFk, which are orthonormal. Up to an
additive constant, which is irrelevant for the partition
function, the result for the pseudoparticle regularized ef-
fective action is the same both for pseudoparticles Fj and
for pseudoparticles Gj:
 

ln�det�hGjjQjGj0 i�� � ln�det��My�kjhFkjQjFk0 iMj0k0 ��

� ln�det�hFjjQjFj0 i��� ln�det�MyM��|����������{z����������}
�constant

:

(9)

1. The Problem of the Q-regularization

In the following I argue that the Q-regularization (6) is
not suited to produce physically meaningful results.

The problem of the Q-regularization is the following:
applying the Dirac operatorQ to one of the pseudoparticles
Gj0 in general yields a function, which is (partially) outside
the pseudoparticle function space spanfGng, i.e.

 QGj0 �x� �
X
k

aj0kGk�x� � hj0Hj0 �x�; (10)

with Hj0 normalized and Hj0 ? spanfGng. If j
P
kaj0kGkj �

jhj0 j, the situation is uncritical. However, as soon as jhj0 j is
of the same order of magnitude or even larger than
j
P
kaj0kGkj problems arise: when computing the matrix

elements hGjjQjGj0 i in (6), a significant part of QGj0 ,
hj0Hj0 , is simply ignored, just because Hj0 is perpendicular
to the pseudoparticle function space spanfGng.

If Q is Hermitian, the problem can be made even more
transparent by diagonalizing the matrix hGjjQjGj0 i:

 �Uy�jkhGkjQjGk0 iUk0j0 � h ~GjjQj ~Gj0 i

� �diag��1; �2; . . .��jj0 ; (11)

where U is a unitary matrix and �j are the eigenvalues of
hGjjQjGj0 i. Because of det�UyU� � 1,

 det�hGjjQjGj0 i� �
Y
j

�j: (12)

Now the problem is obvious: according to

 �j � h ~GjjQj ~Gji; (13)

~Gj contributes to the pseudoparticle regularized determi-
nant of Q as an eigenmode with eigenvalue �j. However,
applying Q to ~Gj may yield a function, which is (partially)
outside the pseudoparticle function space spanfGng, i.e.

 Q ~Gj�x� � �j
~Gj�x� � hjHj�x�: (14)

If jhjj * j�jj, ~Gj is far from being an eigenfunction of Q,
and �j is, of course, not related to any of the eigenvalues
of Q.

The most extreme case is �j � 0 and hj � 0. ~Gj is then
an ‘‘unphysical pseudoparticle zero mode’’: although ~Gj is
not a zero mode of Q, and although Q might not even have
a zero mode, ~Gj contributes to the pseudoparticle regular-
ized determinant of Q with eigenvalue �j � 0. Con-
sequently, the effective action (6) blows up to infinity. On
the other hand, if one would use additional pseudoparticles
with nonvanishing overlap to Q ~Gj, ~Gj would not enter the
determinant as zero mode anymore.

Even if there are no unphysical pseudoparticle zero
modes, there might still be unphysical low lying pseudo-
particle modes, i.e. modes with jhjj * j�jj, which also
spoil numerical results.

The following example shows that such unphysical low
lying pseudoparticle modes are quite common. The ex-
ample in Sec. II C and the Q-regularized pseudoparticle
Gross-Neveu results from Sec. III C demonstrate that these
modes usually give rise to wrong and useless results.

A simple example.—Consider the anti-Hermitian
operator @x, 0 	 x < L 2 f7; 8g, antiperiodic boundary
conditions.

The eigenfunctions of @x are plane waves, and the
corresponding eigenvalues are given by
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 �r �
2�ir
L

; r � . . . ;�
3

2
;�

1

2
;�

1

2
;�

3

2
; . . . : (15)

Alternatively, I compute the ‘‘pseudoparticle eigenval-
ues’’ �j and jhjj defined in (14), using overlapping ‘‘hat
functions’’ as pseudoparticles. To be more precise, I apply
antiperiodic B-spline basis functions of degree 2, i.e.

 Gj�x� � B�2�j;antiperiodic�x�; (16)

j � 0; . . . ; L� 1 (cf. Appendix A).
In Table I I compare the ‘‘true eigenvalues’’ �r with the

pseudoparticle eigenvalues �j. I also show jhjj, the norm
of the overlap of @x ~Gj to the function space perpendicular
to spanfGng. As has been discussed, the pseudoparticle
eigenvalues are quite similar to certain true eigenvalues
as long as j�jj � jhjj. However, as soon as they are of the
same order of magnitude, unphysical low lying pseudopar-
ticle modes or, in the case of odd L, unphysical pseudo-
particle zero modes appear.

Note that such unphysical pseudoparticle zero modes are
not specific for B-spline pseudoparticles. For odd L and
any choice of localized, real-valued, and uniformly distrib-
uted pseudoparticles Gj, i.e.

 Gj�x� � F�x� j� � F�x� j� L�; (17)

j � 0; . . . ; L� 1, with F
 � F and F � 0 for x 	 0 and
x � L, one can easily show that

 

~G zero mode�x� �
X
j

��1�jGj�x� (18)

is perpendicular to spanfGng. Therefore, ~Gzero mode is an
unphysical pseudoparticle zero mode of @x.

2. The advantage of the QyQ-regularization

The matrix elements hGjjQyQjGj0 i in the
QyQ-regularized effective action (8) do not suffer from
the problem discussed in the previous section. The reason
is the following: both the left-hand sides hGjjQy and the
right-hand sides QjGj0 i might be outside the pseudopar-
ticle function space spanfGng, but they form the same
function space spanfQGng, in which their overlap is
computed.

For example, it is easy to show that any pseudoparticle
zero mode of QyQ is necessarily a ‘‘true zero’’ mode
of QyQ: if Gzero mode is a pseudoparticle zero mode of
QyQ, then hGzero modejQyQjGzero modei � 0; this implies
QjGzero modei � 0 and QyQjGzero modei � 0.

3. Another way to motivate the QyQ-regularization

It is easy to show that using complete but possibly
different orthonormal sets of functions fFng and fGng on
the left-hand side and on the right-hand side of any opera-
tor Q to calculate its determinant yields the determinant
with exception of a phase factor, i.e.

 j det�Q�j � j det�hFjjQjGj0 i�j: (19)

As I have already stressed, the problem of the
Q-regularization (6) is that QGj0 is (partially) perpendicu-
lar to spanfGng. On the other hand, when considering
operators, where det�Q� is real and positive, one is only
interested in the absolute value of the determinant.
Therefore, according to (19) I propose to consider matrix
elements with different pseudoparticles on the left-hand
side and on the right-hand side:

(i) Right-hand side: any choice of pseudoparticles Gj0 .
(ii) Left-hand side: pseudoparticles Fj with spanfFng �

spanfQGng.
This assures that Q applied to any pseudoparticle Gj0

yields an element of the left-hand side function space. In
other words, the best choice for the left-hand side is to use
basis functions Fj with spanfFng � spanfQGng, because
other perpendicular/partially perpendicular basis functions
have no/not enough overlap to QGj0 , and this in turn leads
to unphysical pseudoparticle zero modes/low lying modes.

One can show that

 j det�hFjjQjGj0 i�j �
���������������������������������������
det�hGjjQyQjGj0 i�

q
; (20)

i.e. this line of reasoning also leads to the
QyQ-regularization (8).

C. The QyQ-regularization and its relation to finite
mode regularization

In the following I point out that there are certain rela-
tions between the QyQ-regularization of the pseudopar-
ticle approach and finite mode regularization [8–10].

Let  n be orthonormalized eigenfunctions and �n the
corresponding eigenvalues of QyQ, i.e.

 QyQ n � �n n: (21)

Of course, �n is real and �n � 0, because of

 �n � h njQ
yQj ni � jQj nij

2 � 0: (22)

In the following I consider the eigenvalues ordered accord-
ing to their absolute value, i.e. j�0j< j�1j< . . . More-

TABLE I. True eigenvalues �r, pseudoparticle eigenvalues �j,
and jhjj.

L � 7 L � 8

r �r �j jhjj r �r �j jhjj

1=2 0:449i �0:449i 0.004 1=2 0:393i �0:393i 0.002
3=2 1:346i �1:344i 0.135 3=2 1:178i �1:177i 0.083
5=2 2:244i �2:065i 1.063 5=2 1:963i �1:909i 0.599
7=2 3:142i 0.000 3.162 7=2 2:749i �1:610i 2.441
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over, I differentiate between ‘‘low lying eigenvalues’’
�0; . . . ; �M�1 and ‘‘large eigenvalues’’ �M; . . . :

(i) Large eigenvalues.—In applications of the pseudo-
particle approach, bosonic fields � have typical
maximum values (cf. e.g. [4]). The reason is both
the pseudoparticle regularization and the exponential
damping factor e�S in the partition function.
The same is true for the ‘‘potential’’ V��� in the
Dirac operatorQ � ��@� � V���. Therefore, plane
waves �eikx with large wave numbers k are approxi-
mate eigenfunctions of QyQ (‘‘the derivative domi-
nates the potential’’). Both the eigenfunctions
 n  �eikx and the corresponding eigenvalues �n 
ik, n � M; . . . , are nearly independent of the bo-
sonic fields �.

(ii) Low lying eigenvalues.—Low lying eigenvalues �n
and the corresponding eigenfunctions  n, n �
0; . . . ;M� 1, may exhibit a strong �-dependence.
Because the bosonic fields� have typical maximum
values, there is only a finite number of low lying
eigenvalues.

Finite mode regularization of det�QyQ� amounts to
considering only a finite number of low lying eigenvalues,
i.e.

 det�QyQ�“ � ”
YN�1

j�0

�j: (23)

Of course, this equation is not an equality in the usual
sense. The hope is rather that physical observables can be
computed correctly via the partition function, when using
(23) in the effective action, and when performing a suitable
renormalization.

To exhibit the relation between the QyQ-regularization
of the pseudoparticle approach and finite mode regulariza-
tion, it is convenient to diagonalize the matrix
hGjjQyQjGj0 i:

 �Uy�jkhGkjQyQjGk0 iUk0j0 � h ~GjjQyQj ~Gj0 i

� �diag��1; �2; . . .��jj0 ; (24)

where U is a unitary matrix and �j are the eigenvalues of
hGjjQyQjGj0 i. Because of det�UyU� � 1,

 det�hGjjQyQjGj0 i� �
Y
j

�j: (25)

In the following I assume that the pseudoparticles Gj

have been chosen such that the low lying eigenfunctions
 n, n � 0; . . . ;M� 1, can be approximated. Then

 

~G j   j (26)

and

 �j � h ~GjjQyQj ~Gji  �j; (27)

j � 0; . . . ;M� 1. That is, the low lying, �-dependent

pseudoparticle eigenfunctions ~Gj and the pseudoparticle
eigenvalues �j are nearly identical to the true eigenfunc-
tions  j and eigenvalues �j. Therefore, the contribution of
these pseudoparticle eigenmodes to the pseudoparticle
regularized determinant of QyQ is identical to the contri-
bution of the corresponding true eigenmodes in finite mode
regularization [cf. (23) and (25)].

All other pseudoparticle eigenfunctions are essentially
linear combinations of the remaining true eigenfunctions:

 

~G j 
X1
n�M

cjn n;
X1
n�M

jcjnj2 � 1; (28)

j � M; . . . (there is no contribution from  0; . . . ;  M�1,
because the pseudoparticle eigenmodes are orthonormal
due to the Hermiticity of hGjjQyQjGj0 i). The correspond-
ing pseudoparticle eigenvalues �j are given by

 �j � h ~GjjQyQj ~Gji 
X1
n�M

jcjnj2�n � �M; (29)

j � M; . . . , where (22) and (28) have been used. There are
two important points:

(i) ~Gj and �j, j � M; . . . , are approximately indepen-
dent of �. That is, although the difference between
these pseudoparticle eigenvalues �j and the true
eigenvalues �j, j � M; . . . , might be large, the pseu-
doparticle effective action merely differs by an ad-
ditive constant, when compared to finite mode
regularization. Such an additive constant is, of
course, irrelevant for the partition function.

(ii) �j � �M, j � M; . . . , i.e. �j is large. Therefore,
possibly present weak �-dependencies of cjn or �j
or weak contributions from low lying eigenmodes
 n, n � 0; . . . ;M� 1, do not have a strong impact
on �j. Assuming that there are not too many of
these large pseudoparticle eigenmodes, their
�-dependence is essentially negligible in the pseu-
doparticle regularized determinant of QyQ.

It is also instructive to discuss the shortcoming of the
Q-regularization in this context. For Hermitian Q the
above arguments and equations are quite similar: just re-
place QyQ by Q in (21) to (28) with exception of (22),
which is of course not valid. (29) must be replaced by

 �j � h ~GjjQj ~Gji 
X1
n�M

jcjnj2�n: (30)

The big difference compared to the QyQ-regularization is
that the true eigenvalues �j are, in general, not positive.
Therefore, the corresponding pseudoparticle eigenvalues
�j, j � M; . . . , are not necessarily large: due to intricate
cancellations between positive and negative �j, there may
very well be small pseudoparticle eigenvalues �j, which
are strongly affected by small changes of cjn or �j, because
of a change of �.
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Another simple example.—In this example I compare
the QyQ-regularization, the Q-regularization, and finite
mode regularization. To this end, I compute

 ln�det�@x � ���; (31)

� real, 0 	 x < L � 7, antiperiodic boundary conditions.

(i) Finite mode regularization.—The eigenfunctions of
@x � � are plane waves and the corresponding ei-
genvalues are given by
 

�r �
2�ir
L
� �;

r � . . . ;�
3

2
;�

1

2
;�

1

2
;�

3

2
; . . . :

(32)

According to (23) the result is

 ln�det�@x � ��� �
XN�1

n�0

ln
��

2��n� 1=2�

L

�
2
� �2

�
;

(33)

when using the 2N ‘‘lowest lying eigenmodes’’. For
N � 3 and N � 4 it is shown as a function of � in
Fig. 1.

(ii) QyQ-regularization and Q-regularization.— I use
orthonormalized B-spline pseudoparticles of degree
2 as pseudoparticles Gj. The QyQ-result,

 

1

2
ln�det�hGjj�@x � ��

y�@x � ��jGj0 i��; (34)

and the Q-result,

 ln�det�hGjj�@x � ��jGj0 i��; (35)

are shown as functions of � in Fig. 1.
The results obtained with QyQ-regularization and with

finite mode regularization are nearly identical with the
exception of a shift along the vertical axis. This shift is

due to the different number of degrees of freedom: 7 for the
pseudoparticle regularization, 6 and 8 for finite mode
regularization. The Q-regularized result, on the other
hand, has a completely different shape, especially for small
values of �. As explained above, the reason is the presence
of unphysical low lying pseudoparticle modes. At � � 0
an unphysical pseudoparticle zero mode causes a
singularity.

Computing approximate eigenfunctions via the
pseudoparticle approach

The pseudoparticle approach can also be used to com-
pute approximate eigenfunctions of QyQ (if Q is
Hermitian, one can also use Q instead of QyQ):

(i) Let Gj be a set of orthonormalized pseudoparticles.
(ii) Compute the matrix hGjjQyQjGj0 i and diagonalize

it according to (24).
(iii) Compute jhjj, defined by

 QyQ ~Gj�x� � �j
~Gj�x� � hjHj�x�; (36)

with Hj normalized and Hj ? spanfGng.
(iv) If j�jj � jhjj, the pseudoparticle eigenfunction ~Gj

is close to a true eigenfunction of QyQ and the
corresponding pseudoparticle eigenvalue �j is
close to a true eigenvalue.

(v) If j�jj  jhjj or if j�jj< jhjj, the pseudoparticle
eigenfunction ~Gj is not close to a true eigenfunction
of QyQ.

The simple example continued.—I continue the example
of Sec. II B 1 by computing the pseudoparticle eigenfunc-
tions ~Gj of the anti-Hermitian operator @x for L � 7.

In Fig. 2 I compare both the real parts and the imaginary
parts of the pseudoparticle eigenfunctions and the true

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1

ln
(d

et
(∂

x 
+ 

σ)
)

σ

ln(det(∂x + σ))   −   L = 7

finite mode regularization, N = 3 and N = 4
Q†Q-regularization

Q-regularization

FIG. 1 (color online). L � 7. ln�det�@x � ��� as function of �
computed via finite mode regularization, QyQ-regularization,
and Q-regularization.
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 0  1  2  3  4  5  6  7

real part (pseudoparticle and analytical)
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 0.2

 0.4
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real part (pseudoparticle and analytical)
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r = 1 / 2 r = 3 / 2
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FIG. 2 (color online). L � 7. Real parts and imaginary parts of
the pseudoparticle eigenfunctions and the true eigenfunctions of
@x as functions of x.
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eigenfunctions �1=
����
L
p
�e�rx with �r given by (15). As long

as j�jj � jhjj (r � 1=2 and r � 3=2; cf. Table I) pseudo-
particle results and analytical results are essentially iden-
tical. However, if j�jj< jhjj (r � 7=2), ~Gj is not close to a
true eigenfunction of @x anymore.

III. THE 1� 1-DIMENSIONAL GROSS-NEVEU
MODEL IN THE PSEUDOPARTICLE APPROACH

In the following, I test the pseudoparticle approach by
considering a simple interacting fermionic theory, the 1�
1-dimensional Gross-Neveu model in the large-N limit. I
compute the phase diagram both for homogeneous and for
spatially inhomogeneous chiral condensate.

A. The 1� 1-dimensional Gross-Neveu model in
Euclidean spacetime

The Gross-Neveu model [11] is a four fermion interact-
ing theory with N degenerate flavors. The action and
partition function are given by
 

S �
Z
d2x

�XN
n�1

� �n���0�@0 ��� � �1@1� 
�n�

�
g2

2

�XN
n�1

� �n� �n�
�

2
�
; (37)

 Z �
Z �YN

n�1

D �n�D � �n�
�
e�S; (38)

where N is the number of flavors, � is the chemical
potential, and g is the coupling constant. The Dirac matri-
ces fulfill f��; �	g � 2��	, e.g. �0 � �1 and �1 � �3.

To get rid of the four fermion interaction, one usually
introduces a real scalar field �:

 S0 �
Z
d2x

�
1

2g2 �
2

�
XN
n�1

� �n���0�@0 ��� � �1@1 � ��|����������������������{z����������������������}
�Q�Dirac operator�

 �n�
�
; (39)

 Z /
Z �YN

n�1

D �n�D � �n�
�Z

D�e�S
0
: (40)

Integrating out the fermions yields

 Seffective � N
�

1

2�

Z
d2x�2 � ln�det�Q��

�
; (41)

 Z /
Z
D�e�Seffective ; (42)

where � � Ng2.
From now on I consider the large-N limit, i.e. N ! 1

and � � constant. Note that due to Seffective / N, only a

single field configuration contributes to the partition func-
tion (42). It can be determined by minimizing Seffective with
respect to �.

Moreover, one can show that in the large-N limit

 � � �g2
XN
n�1

� �n� �n�; (43)

i.e. the scalar field � is proportional to the chiral
condensate.

B. B-spline pseudoparticles

For the following computations I use a large number of
overlapping ‘‘hat functions’’ as pseudoparticles: I apply
products of antiperiodic and periodic B-spline basis func-
tions of degree 2, i.e.

 Gj0;j1
�x0; x1� � B�2�j0;antiperiodic�x0�B

�2�
j1;periodic�x1� (44)

j0 � 0; . . . ; L0 � 1, j1 � 0; . . . ; L1 � 1 (cf. Appendix A),
where L0 � L1 is the extension of the periodic spacetime
region (L0 and L1 are chosen to be integers). Figure 3
shows the ‘‘B-spline pseudoparticle’’ G00.

Why use B-spline pseudoparticles?

(i) The intention of this section is to test whether the
pseudoparticle approach as presented in the previous
section is suited to dealing with fermionic fields.
Therefore, one needs pseudoparticles which form a
‘‘sensible set of field configurations,’’ i.e. pseudo-
particles which are able to approximate any not too
heavily oscillating field configuration. For B-spline
pseudoparticles, i.e. for a piecewise polynomial ba-
sis, this is certainly the case. Note that the intention
of this work is not to determine a small number of
physically important fermionic field configurations;
this will be part of an upcoming paper, where the
pseudoparticle approach will be applied to QCD.
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FIG. 3 (color online). B-spline pseudoparticle G0;0 as a func-
tion of �x0; x1�.

MARC WAGNER PHYSICAL REVIEW D 76, 076002 (2007)

076002-6



(ii) Since B-spline pseudoparticles are piecewise
polynomial functions, the matrix elements
hGj0;j1

jQyQjGj00;j
0
1
i can be calculated analytically.

(iii) B-spline pseudoparticles of degree 2 with uniform
knot vectors tj � j are localized within a spacetime
region of extension 3� 3. Therefore, when using a
large number of pseudoparticles the matrix
hGj0;j1

jQyQjGj00;j
0
1
i is sparse, which is beneficial

from a numerical point of view.

C. Homogeneous chiral condensate

In this section I consider a homogeneous chiral conden-
sate, i.e. � � constant.

The QyQ-regularized pseudoparticle effective action is
given by

 

Seffective

N
�

1

2�

Z
d2x�2 �

1

2
ln�det�hGj0;j1

jQyQjGj00;j
0
1
i��:

(45)

To determine the chiral condensate � for given tempera-
ture T � 1=L0 and chemical potential �, one has to mini-
mize this expression with respect to �.

Of course, numerical results strongly depend on the
number of pseudoparticles applied. To extract physically
meaningful results, a coupling constant renormalization is
necessary, i.e. � must be chosen in accordance with the
number of degrees of freedom. A possible way of doing
that is to perform finite temperature computations with
temporal extension L0 � 8 much smaller than spatial ex-
tension L1 � 144 at � � 0:0 for different values of �. The
resulting � as a function of � is shown in Fig. 4(a). For all
further computations I fix the coupling constant � at that
value, where the chiral condensate � just vanishes: � �
1:153. The scale is now set, i.e. 1=L0 � 1=8 corresponds to
the critical temperature of chiral symmetry breaking at
� � 0:0.

I can now compute the chiral condensate � at ‘‘arbi-
trary’’ temperature T � 1=L0 (L0 integer) and chemical
potential �, to determine the phase diagram of the Gross-
Neveu model. As usual, I express T and � in terms of �0,
which is the T � 0:0 and � � 0:0 value of the chiral
condensate � (to determine �0 I have performed a ‘‘zero
temperature computation’’ with large temporal extension
L0 � 48). The resulting pseudoparticle phase diagram is in
excellent agreement with analytical results [12,13]
(cf. Fig. 4(b)].

Another possibility to adjust the temperature T=�0 is to
change the coupling constant �, while the extension of the
spacetime region L0 � L1 is kept constant. This is similar
to what is usually done in lattice calculations. The scale is
then set via �0, which is �-dependent. Using this method
the resulting pseudoparticle phase diagram is also in ex-
cellent agreement with analytical results.

In Sec. II B I have pointed out that the Q-regularization
is not suited to produce physically meaningful results. To

demonstrate that this is indeed the case, I perform similar
computations with the Q-regularized version of the effec-
tive action,

 

Seffective

N
�

1

2�

Z
d2x�2 � ln�det�hGj0;j1

jQjGj00;j
0
1
i��:

(46)

For odd L0 unphysical pseudoparticle zero modes render
the results completely useless: there is no chirally sym-
metric phase and, therefore, no sensible phase diagram. For
even L0 there are no unphysical pseudoparticle zero
modes, but still unphysical low lying pseudoparticle
modes. The resulting phase diagram is not in quantitative
agreement with analytical results [12,13] (cf. Figure 5).

D. Spatially inhomogeneous chiral condensate

In this section I consider a spatially inhomogeneous
chiral condensate, i.e. � � ��x1�. This gives rise to a
new so-called crystal phase. In this phase the chiral con-
densate is given by
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pseudoparticle phase diagram for homogeneous chiral conden-
sate together with the exact phase boundary.
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 ��x1� � A
2 sn�Ax; 
�cn�Ax; 
�
dn�Ax; 
�

; (47)

where sn, cn, and dn are Jacobi elliptic functions and A and

 are functions of T and � [15].

1. The right phase boundary of the crystal phase

In addition to the fermionic fields I also represent the
chiral condensate in terms of B-spline pseudoparticles:

 ��x1� �
XL1=3�1

n�0

�nB
�2�
n;periodic�x1�; (48)

with uniform knot vector tj � 3j and L1 a multiple of 3
(cf. Appendix). Note that I consider 3 times as many
degrees of freedom in the x1-direction for the fermionic
fields than for the chiral condensate. The reason is the
following: in general, even low lying eigenfunctions of
QyQ exhibit more oscillations than the chiral condensate
�; on the other hand, the fermionic pseudoparticles must
be able to approximate these low lying eigenfunctions, in
order to produce correct results, therefore the representa-
tion of the fermionic fields must be finer than the repre-
sentation of the chiral condensate.

In accordance with Sec. III C I choose � � 1:153 and
L1 � 144. I determine the right phase boundary of the
crystal phase by computing the eigenvalues of the
Hessian matrix of the QyQ-regularized effective action
(45) with respect to �n at � � 0, i.e.

 Hnn0 �
@
@�n

@
@�n0

Seffective

����������0
: (49)

Negative eigenvalues indicate inhomogeneous perturba-
tions of the chiral condensate � � 0, which decrease the
effective action. This in turn is a clear sign of a crystal
phase. Of course, the argument does not work the other
way round: if there are no negative eigenvalues, the chiral
condensate is not necessarily vanishing; � � 0 may as

well be a local minimum of the effective action; however,
a recent investigation of the Gross-Neveu model on the
lattice strongly suggests that this is not the case [17].

A minor source of error when computing the right phase
boundary is the finite extension of the space dimension.
The problem is that the period of the analytically obtained
chiral condensate (47) might not ‘‘fit in the periodic
x1-direction.’’ If the period of the chiral condensate is a
multiple of the spatial extension L1, everything works fine.
However, if it is roughly halfway between two multiples,
results differ a little bit (cf. Fig. 6, where the lowest
eigenvalue of H is shown as a function of �=�0 [L0 �
36, i.e. T=�0 � 0:126]; for a space dimension of infinite
extension the graph would be smooth, instead of exhibiting
certain periodic oscillations). Note that the same behavior
has been observed on the lattice [17].

To get rid of these finite size effects, I fit a parabola such
that it just touches the curve of the lowest eigenvalues from
below (cf. Fig. 6). The root of this parabola is then taken as
the corresponding ��=�0�-value of the right phase bound-
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ary. The resulting right phase boundary is shown in Fig. 7
together with the analytical result [15]. Up to �=�0  1:5
there is excellent agreement. For larger values of �=�0

cutoff effects give rise to certain deviations: the analyti-
cally obtained chiral condensate (47) oscillates heavily
and, therefore, cannot be represented by L1=3 � 48 B-
spline pseudoparticles anymore. Of course, applying a
larger number of pseudoparticles in the x1-direction allows
to extract correct results for larger values of �=�0.

2. The left phase boundary of the crystal phase

Proceeding in the same way to determine the left phase
boundary does not yield correct results. One merely ob-
tains the phase boundary of the phase diagram for homo-
geneous chiral condensate (cf. Fig. 4(b)). The reason is that
minima of the effective action for � � constant � 0 are
also minima of the effective action for varying � (however,
not necessarily global minima), i.e. the Hessian matrix at
such values for � is positive definite. To get the correct
phase boundary, one has to perform a minimization of the
pseudoparticle effective action (45) with respect to �n.
Again this is in agreement with what has been observed
on the lattice [17].

The resulting left phase boundary is shown in Fig. 7. It is
in excellent agreement with the analytical result [15].

3. The chiral condensate

Another check of the pseudoparticle approach is to
compare the chiral condensate obtained by minimizing
the QyQ-regularized effective action (45) with the analyti-
cally obtained chiral condensate (47). An example is
shown in Fig. 8 (�=�0 � 0:704, T=�0 � 0:19). There is
excellent agreement between pseudoparticle and analytical
results.

It is also interesting to compute the chiral condensate for
different values of �=�0 along a line of constant T=�0.
Results are shown in Fig. 9 as functions of x1 for T=�0 �
0:141. In agreement with [14,15], the chiral condensate
changes from a sinelike behavior inside the crystal phase
(cf. Fig. 9(b)) to a kink-antikink structure, when approach-
ing the left phase boundary (cf. Fig. 9(a)).

IV. CONCLUSIONS AND OUTLOOK

In this paper I have presented a method to incorporate
fermions in the pseudoparticle approach.

I have pointed out that a naive pseudoparticle regulari-
zation, the Q-regularization, is not suited for producing
useful numerical results. The problem of this regulariza-
tion is that applying the Dirac operator to the pseudopar-
ticles yields functions which are partially outside the
pseudoparticle function space. This gives rise to unphys-
ical low lying modes or, in extreme cases, unphysical
pseudoparticle zero modes, which spoil the determinant
in the effective action.

A slightly different regularization scheme, the
QyQ-regularization, does not suffer from this problem.
To test this pseudoparticle regularization, I have computed
the phase diagram of the 1� 1-dimensional Gross-Neveu
model in the large-N limit, both for homogeneous and for
spatially inhomogeneous chiral condensate. The pseudo-
particle results are in quantitative agreement with analyti-
cal results. I have given a couple of arguments indicating
certain relations between theQyQ-regularization and finite
mode regularization, which might explain these excellent
results.

The next step is to apply the pseudoparticle approach to
QCD. Of course, instead of using a large number of over-
lapping hat functions as pseudoparticles, as has been done
in this paper, the goal will rather be to use a small number
of physically relevant fermionic pseudoparticles, probably
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pseudoparticles having significant overlap to low lying
eigenfunctions of the QCD Dirac operator.

Current research includes a study of chiral symmetry
breaking in QCD in the pseudoparticle approach. We do
this by computing the low lying eigenvalues of the Dirac
operator at different temperatures and relating the results to
the chiral condensate via the Banks-Casher relation. Of
course, the goal is to obtain a model which exhibits chiral
symmetry breaking and a confinement deconfinement
phase transition at the same time. Such a model could be
useful for computing observables which are difficult to
access in lattice calculations, e.g. pion masses or decay
constants with realistically light quark masses.
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APPENDIX: B-SPLINE BASIS FUNCTIONS

B-spline basis functions are piecewise polynomial func-
tions of degree k, which are Ck�1-continuous:

 B�0�j �x� �
�

1 if tj 	 x < tj�1

0 otherwise
; (A1)

 B�k�j �x� �
x� tj
tj�k � tj

B�k�1�
j �x� �

tj�k�1 � x

tj�k�1 � tj�1
B�k�1�
j�1 �x�;

(A2)

with suitably chosen knot vector . . .< tj < tj�1 < . . . , e.g.
tj � j (cf. e.g. [18,19]).

For 0 	 x < L, L integer, antiperiodic and periodic B-
spline basis functions with uniform knot vector tj � j are
given by

 B�k�j;antiperiodic�x� � B�k�j �x� � B
�k�
j�L�x�; (A3)

 B�k�j;periodic�x� � B�k�j �x� � B
�k�
j�L�x�; (A4)

j � 0; . . . ; L� 1. For L � 6 and k � 2 they are shown in
Fig. 10.
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