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We extend previous analyses of the supersymmetric loop correction to the neutral Higgs couplings to
include the coupling ��j �

�
k H

0
l . The analysis completes the previous analyses where similar corrections

were computed for the ���H0
l , �bbH0

l , �ccH0
l and for �ttH0

l couplings within the minimal supersymmetric
standard model. The effective one-loop Lagrangian is then applied to the computation of the neutral Higgs
decays. The sizes of the supersymmetric loop corrections of the neutral Higgs decay widths into ��i �

�
j

(i � 1, 2; j � 1, 2) are investigated and the supersymmetric loop correction is found to be in the range of
7� 15% in significant regions of the parameter space. By including the loop corrections of the other
decay channels �bb, �tt, ���, �cc, and �0

i �
0
j (i � 1–4; j � 1–4), the corrections to branching ratios for H0

l !
��i �

�
j can reach as high as 40%. The effects of CP phases on the branching ratio are also investigated.
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I. INTRODUCTION

The neutral Higgs couplings to different fields are of
great current interest as they enter in a variety of phe-
nomena which are testable in low energy processes [1]. It
is known that supersymmetric corrections can affect the
neutral Higgs boson decays into b �b, � �� and c �c. The decay
properties of the lightest Higgs boson in the minimal
supersymmetric standard model (MSSM) would be differ-
ent from those of the standard model Higgs boson when
these corrections are taken into consideration. Specifically
the ratio of the branching ratios to b �b and � �� of the Higgs
boson is an important piece of evidence that might distin-
guish between the lightest MSSM Higgs boson and the
standard model one at colliders. In MSSM there are also
other modes for neutral Higgs decays that do not exist in
standard model such as charginos and neutralinos.

In this paper we compute the one-loop corrected effec-
tive Lagrangian for the neutral Higgs and chargino cou-
plings. We then analyze the effects of the loop corrections
to the neutral Higgs decays H0

l ! ��j �
�
k . In the analysis

we also include the effect of CP phases arising from the
soft SUSY breaking parameters. It is well known that large
CP phases can be made compatible [2– 4] with experimen-
tal constraints on the electric dipole moments (edms) of the
electron [5], of the neutron [6], and of the Hg199 [7].
Further, if the phases are large they could affect the
Higgs sector physics. It is well known that one-loop con-
tributions to the Higgs masses from the stop, sbottom, the
chargino and neutralino sectors can lift the lightest Higgs
mass above MZ. The inclusion of the CP violating phases
brings mixings between the CP even and the CP odd Higgs
[8–13]. The CP violating phases modifies the physics of
dark matter [14], and of other phenomena [15]. (For a
review see Ref. [16].)

The current analysis of �LH0���� and neutral Higgs
decay into charginos is based on the effective Lagrangian
method where the couplings of the electroweak eigenstates
H1

1 and H2
2 with charginos are radiatively corrected using

the zero external momentum approximation. The same
technique has been used in calculating the effective
Lagrangian and decays of H0

l into quarks and leptons
[1,17,18]. It has been used also in the analysis of the
effective Lagrangian of charged Higgs with quarks [1,19]
and their decays into �tb and ��� [20] and into chargino�
neutralino [21]. The neutral Higgs decays into charginos
have been investigated before in the CP conserving case
[22,23]. In these analyses, the wave function renormaliza-
tion and the counterterms for the mass matrix elements are
calculated beside the vertex corrections of the mass eigen-
states h0, H0, and A0 with charginos. In the effective
Lagrangian technique with zero external momentum ap-
proximation, the radiative corrections of the processes
considered here originate only from the vertex contribu-
tions. Thus our analysis of the neutral Higgs decays into
charginos is a partial one. However, as mentioned before
the above analyses were carried out in the CP conserving
scenario. As far as we know, the analysis for the neutral
Higgs decays into charginos, with one-loop corrections, in
the CP violating case where the neutral Higgs sector is
modified in couplings, spectrum, and mixings, does not
exist. We evaluate the radiative corrections to the Higgs
boson masses and mixings by using the effective potential
approximation. We include the corrections from the top
and bottom quarks and squarks [11], from the chargino, the
W and the charged Higgs sector [12] and from the neutra-
lino, Z boson, and the neutral Higgs bosons [13]. It is
important to notice that the corrections to the Higgs effec-
tive potential from the different sectors mentioned above
are all one-loop corrections. The corrections of the inter-
action �LH0���� to be considered in this work are all one-
loop level ones. So the analysis presented here is a con-
sistent one-loop study.
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The outline of the rest of the paper is as follows: In
Sec. II we compute the effective Lagrangian for the
��j �

�
k H

0
l interaction. In Sec. III we give an analysis of

the decay widths of the neutral Higgs bosons into chargi-
nos using the effective Lagrangian. In Sec. IV we give a
numerical analysis of the size of the loop effects on the
partial decay width and on the branching ratios.
Conclusions are given in Sec. V.

II. LOOP CORRECTIONS TO NEUTRAL HIGGS
COUPLINGS

The tree-level Lagrangian for ��j �
�
k H

0 interaction is

 L � �jk ���j PR�
�
k H

1
1 �  jk ���j PR�

�
k H

2
2 � H:c:; (1)

where H1
1 and H2

2 are the neutral states of the two Higgs
isodoublets in MSSM, i.e.,

 �H1� �
H1

1

H2
1

� �
; �H2� �

H1
2

H2
2

� �
; (2)

and the couplings �jk and  jk are given by

 �jk � �gUk2Vj1;  jk � �gUk1Vj2; (3)

where U and V diagonalize the chargino mass matrix so
that

 U�M��V
�1 � diag�m��1

; m��2
�: (4)

The loop corrections produce shifts in the couplings of
Eq. (1) and the effective Lagrangian with loop corrected
couplings is given by
 

Leff � ��jk � ��jk� ��
�
j PR�

�
k H

1
1 � ��jk ���j PL�

�
k H

2
2

� � jk � � jk� ��
�
j PR�

�
k H

2
2 � � jk ���j PL�

�
k H

1
1

� H:c: (5)

In this work we calculate the loop correction to the
��j �

�
k H

0
l using the zero external momentum

approximation.

A. Loop analysis of ��jk and � jk
Contributions to ��jk and � jk arise from the 13 loop

diagram of Fig. 1. We note that the contributions from
diagrams which have H�W�H0 and H0Z0H0 vertices do
not contribute in the effective Lagrangian with zero exter-
nal momentum approximation since these vertices are
proportional to the external momentum. We discuss now
in detail the contribution of each of these diagrams in
Fig. 1. We begin with the loop diagram of Fig. 1(i), part
(a), which contributes to ��jk and � jk.

We calculate the corrections of the amplitude from
Fig. 1(i), part (a)

 �M � i��jk �ujPRvk � i� jk �ujPLvk: (6)

The idea is to extract, from the amplitude correction, the
expressions for ��jk and � jk from those parts that are
proportional to �ujPRvk and �ujPLvk respectively. For this
purpose we need ~b ~bH1

1 interaction which is given by

 L ~b ~bH1
1
� Hil

~b�i ~b�l H
1
1 � H:c:; (7)

where Hil is given by
 

Hil � �
gMZ���

2
p

cos�W

��
�

1

2
�

1

3
sin2�W

�
D�b1iDb1l

�
1

3
sin2�WD

�
b2iDb2l

�
cos�

�
gm2

b���
2
p
mW cos�

�D�b1iDb1l �D
�
b2iDb2l�

�
gmbAb���

2
p
mW cos�

D�b2iDb1l: (8)

The matrix elements Dq are defined as

 D�q M2
~qDq � diag�m2

~q1
; m2

~q2
�: (9)

We need also the �t�� ~b interaction which is given by

 L �t�� ~b � �g ���k ��U
�
k1D

�
b1i
� �bU�k2D

�
b2i
�PL

� �tVk2D�b1i
PR	t~b

�
i � H:c; (10)

FIG. 1. Set of diagrams contributing to radiative corrections ��jk and � jk. (i): (a) s1 � ~b�i , s2 � ~b�l , f � t; (b) s1 � ~ti, s2 � ~tl,
f � �b; (c) s1 � H�, s2 � H�, f � �0

i ; (d) s1 � H0
l , s2 � H0

m, f � ��i ; (e) v1 � Z0, v2 � Z0, f � ��i ; (f) v1 � W�, v2 � W�,
f � �0

i . (ii): (a) f1 � t, f2 � t, s � ~b�i ; (b) f1 � �b, f2 � �b, s � ~ti; (c) f1 � �0
i , f2 � �0

l , s � H�; (d) f1 � ��i , f2 � ��l , s � H0
m;

(e) f1 � ��i , f2 � ��l , v � Z0; (f) f1 � �0
i , f2 � �0

l , v � W; (g) f1 � ��, f2 � ��, s � ~��.
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where �t;b are given by

 �t �
mt���

2
p
mW sin�

; �b �
mb���

2
p
mW cos�

: (11)

For external momenta s, q, and q� s the amplitude correction from loop 1(i), part (a), is given by

 �M � �g2Hil �u�q� s��CLjlPL � CRjlPR	
Z d4‘

�2	�4
��s6 � ‘6 � �mt	�C�LkiPR � C

�
Rki
PL	v�s�



1

��s� ‘�2 �m2
t � i
	�‘2 �m2

~bl
� i
���‘� q�2 �m2

~bi
� i
	

; (12)

where CLjl and CRjl are given by

 CLjl � U�j1D
�
b1l
� �bU

�
j2D

�
b2l
; CRjl � ��tVj2D

�
b1l
:

(13)

The part in the numerator

 �CLjlPL � CRjlPR	��s6 � ‘6 � �mt	�C
�
Lki
PR � C

�
Rki
PL�

(14)

could be written as
 

�CLjlC
�
Lki
PL � CRjlC

�
Rki
PR	�s6 � ‘6 �

�mt�CRjlC
�
Lki
PR � CLjlC

�
Rki
PL	 (15)

by using the facts that ��PL � PR�
�, PLPR � 0, P2

L �
PL and P2

R � PR. The first term in Eq. (15) does not
contribute to ��jk or � jk since it does not have the
same Lorentz structure. The second term of Eq. (15) con-
tributes the part of mtCRjlC

�
Lki

to ��jk and mtCLjlC
�
Rki

to
� jk. Thus the loop corrections ��jk and � jk read

 i��jk � �g
2HilmtCRjlC

�
Lki
J;

i� jk � �g
2HilmtCLjlC

�
Rki
J;

(16)

where

 J �
Z d4‘

�2	�4
1

��s� ‘�2 �m2
t � i
	�‘

2 �m2
~bl
� i
���‘� q�2 �m2

~bi
� i
	

: (17)

Now for zero external momentum approximation we set s � q � 0, and the integral would read

 

Z d4‘

�2	�4
1

�‘2 �m2
t � i
��‘

2 �m2
~bl
� i
��‘2 �m2

~bi
� i
�

: (18)

A detailed calculation of this integral is given in the
appendix.

Using the above one finds for ��jk the contribution:
 

���1�jk � �t
g2mt

16	2

X2

i�1

X2

l�1

HilVj2D�b1l
�Uk1Db1i

� �bUk2Db2i
�


 f�m2
t ; m

2
~bl
; m2

~bi
�; (19)

where
 

f�x; y; z� �
1

�x� y��x� z��z� y�




�
zx ln

z
x
� xy ln

x
y
� yz ln

y
z

�
; (20)

and

 f�x; y; y� �
1

�y� x�2

�
x ln

y
x
� x� y

�
: (21)

Similarly one finds for the correction � jk from the same

loop the following contribution:
 

� �1�jk � �t
g2mt

16	2

X2

i�1

X2

l�1

HilV
�
k2Db1i

�U�j1D
�
b1l
� �bU

�
j2D

�
b2l
�


 f�m2
t ; m2

~bl
; m2

~bi
� (22)

Next for the loop Fig. 1(ii), part (a), we find

 ���2�jk � 0 � �2�jk � 0: (23)

For the loop of Fig. 1(i), part (b), we find
 

���3�jk � �b
g2mb

16	2

X2

i�1

X2

l�1

FliUk2D�t1i�Vj1Dt1l � �tVj2Dt2l�


 f�m2
b; m

2
~ti
; m2

~tl
�;

� �3�jk � �b
g2mb

16	2

X2

i�1

X2

l�1

FliU�j2Dt1l�V
�
k1D

�
t1i � �tV

�
k2D

�
t2i�


 f�m2
b; m

2
~ti
; m2

~tl
�;

(24)
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where Fli is given by

 Fli � �
gMZ���

2
p

cos�W

��
1

2
�

2

3
sin2�W

�
D�t1lDt1i

�
2

3
sin2�WD�t2lDt2i

�
cos��

gmt����
2
p
mW sin�

D�t1lDt2i:

(25)

For the loop of Fig. 1(ii), part (b), we find
 

���4�jk � 0

� �4�jk � ��b
g2m2

b

16	2 hb
X2

i�1

U�j2Dt1i�V
�
k1D

�
t1i � �tV

�
k2D

�
t2i�


 f�m2
b; m

2
b; m

2
~ti
�: (26)

For the loop of Fig. 1(ii), part (c), we find
 

���5�jk � 2g
X4

i�1

X4

l�1

Q0il

0
ik sin�
�lj cos�

m�0
i
m�0

l

16	2


 f�m2
�0
i
; m2

�0
l
; m2

H��;

� �5�jk � 0; (27)

where 
0 and 
 are given by

 
ji � �gX4jV
�
i1 �

g���
2
p X2jV

�
i2 �

g���
2
p tan�WX1jV

�
i2;


0ji � �gX
�
3jUi1 �

g���
2
p X�2jUi2 �

g���
2
p tan�WX

�
1jUi2:

(28)

The parameters Q0ij are defined as

 Q0ij �
1���
2
p �X�3i�X

�
2j � tan�WX

�
1j�	: (29)

The matrix elements X are defined as

 XTM�0X � diag�m�0
1
; m�0

2
; m�0

3
; m�0

4
�: (30)

For the loop of Fig. 1(i), part (c), we find

 ���6�jk �
gmW cos�

2
���
2
p �1� 2sin2�� cos2�tan2�W	



X4

i�1


0ik sin�
�ij cos�
m�0

i

16	2 f�m
2
�0
i
; m2

H� ; m
2
H��;

� �6�jk �
gmW cos�

2
���
2
p �1� 2sin2�� cos2�tan2�W	



X4

i�1


ik cos�
0�ij sin�
m�0

i

16	2 f�m
2
�0
i
; m2

H� ; m
2
H��:

(31)

For the loop of Fig. 1(i), part (d), we find

 

���7�jk � g3 mZ cos�

8
���
2
p

cos�W

X3

l�1

X3

m�1

X2

i�1

��Ym1 � iYm3 sin���3Yl1 � iYl3 sin�� � 2�Ym2 � iYm3 cos���Yl2 � iYl3 cos��

� 4Ym2�Yl1 � iYl3 sin�� tan�	�Qki�Yl1 � iYl3 sin�� � Ski�Yl2 � iYl3 cos��	


 �Qij�Ym1 � iYm3 sin�� � Sij�Ym2 � iYm3 cos��	
m��i

16	2 f�m
2
��i
; m2

H0
m
; m2

H0
l
�;

� �7�jk � g3 mZ cos�

8
���
2
p

cos�W

X3

l�1

X3

m�1

X2

i�1

��Ym1 � iYm3 sin���3Yl1 � iYl3 sin�� � 2�Ym2 � iYm3 cos���Yl2 � iYl3 cos��

� 4Ym2�Yl1 � iYl3 sin�� tan�	�Q�ik�Yl1 � iYl3 sin�� � S�ik�Yl2 � iYl3 cos��	


 �Q�ji�Ym1 � iYm3 sin�� � S�ji�Ym2 � iYm3 cos��	
m��i

16	2 f�m
2
��i
; m2

H0
m
; m2

H0
l
�;

(32)

where Qji � �
1��
2
p
g
�ij and Sji �

1��
2
p
g
 ij, and the matrix elements Y are defined as YM2

HiggsY
T � diag�m2

H0
1

; m2
H0

2

; m2
H0

3

�.

For the loop of Fig. 1(ii), part (d), we find

 

���8�jk � �g
2
X3

m�1

X2

i�1

X2

l�1

�li�Qli�Ym1 � iYm3 sin�� � Slj�Ym2 � iYm3 cos��	


 �Qki�Ym1 � iYm3 sin�� � Ski�Ym2 � iYm3 cos��	
m��i

m��l

16	2 f�m2
��i
; m2

H0
m
; m2

��l
�;

� �8�jk � 0:

(33)
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For the loop of Fig. 1(ii), part (e), we find

 

���9�jk � 0;

� �9�jk �
4g2

cos2�W

X2

l�1

X2

i�1

�liR0jlL
0
ik

m��i
m��l

16	2


 f�m2
��i
; m2

Z0
; m2

��l
�:

(34)

The parameters L0 and R0 are defined by

 L0ij � �Vi1V
�
j1 �

1
2Vi2V

�
j2 � �ijsin2�W;

R0ij � �U
�
i1Uj1 �

1
2U
�
i2Uj2 � �ijsin2�W:

(35)

For the loop of Fig. 1(i), part (e), we find

 ���10�
jk � �

���
2
p
g3mZ cos�

cos3�W



X2

i�1

L0jiR
0
ik

m��i

16	2 f�m
2
��i
; m2

Z0
; m2

Z0
�;

� �10�
jk � �

���
2
p
g3mZ cos�

cos3�W



X2

i�1

R0jiL
0
ik

m��i

16	2 f�m
2
��i
; m2

Z0
; m2

Z0
�:

(36)

For the loop of Fig. 1(ii), part (f), we find

 

���11�
jk � 0;

� �11�
jk � �4

���
2
p
g3
X4

i�1

X4

l�1

Q00ilR
�
ljLik

m�0
i
m�0

l

16	2


 f�m2
�0
i
; m2

W� ; m
2
�0
l
�;

(37)

where L, R, and Q00 are defined as

 

Lij � �
1���
2
p X�4iV

�
j2 � X

�
2iV
�
j1;

Rij �
1���
2
p X3iUj2 � X2iUj1;

gQ00 �
1

2
�X�3i�gX

�
2j � g

0X�1j� � �i$ j�	:

(38)

For the loop of Fig. 1(i), part (f), we find

 ���12�
jk � �

4g3mW cos����
2
p



X4

i�1

L�ijRik
m�0

i

16	2 f�m
2
�0
i
; m2

W� ; m
2
W��;

� �12�
jk � �

4g3mW cos����
2
p



X4

i�1

R�ijLik
m�0

i

16	2 f�m
2
�0
i
; m2

W� ; m
2
W��:

(39)

For the loop of Fig. 1(ii), part (g), we find

 ���13�
jk � 0;

� �13�
jk � �g

2h���U�j2V
�
k1

m2
�

16	2 f�m
2
�; m2

�; m2
���;

(40)

where

 �� �
m����

2
p
mW cos�

: (41)

The loop corrections for ��jk and � jk are given by

 ��jk �
X13

n�1

���n�jk ; � jk �
X13

n�1

� �n�jk : (42)

B. Loop analysis of ��jk and � jk
We do the same analysis of Fig. 2 as for Fig. 1. We write

down here the final results for both corrections from the 13
loops together. The corrections are written in the same
order of the loops in Fig. 2.

FIG. 2. Set of diagrams contributing to radiative corrections ��jk and � jk. (i): (a) s1 � ~b�i , s2 � ~b�l , f � t; (b) s1 � ~ti, s2 � ~tl,
f � �b; (c) s1 � H�, s2 � H�, f � �0

i ; (d) s1 � H0
l , s2 � H0

m, f � ��i ; (e) v1 � Z0, v2 � Z0, f � ��i ; (f) v1 � W�, v2 � W�,
f � �0

i . (ii): (a) f1 � t, f2 � t, s � ~b�i ; (b) f1 � �b, f2 � �b, s � ~ti; (c) f1 � �0
i , f2 � �0

l , s � H�; (d) f1 � ��i , f2 � ��l , s � H0
m;

(e) f1 � ��i , f2 � ��l , v � Z0; (f) f1 � �0
i , f2 � �0

l , v � W; (g) f1 � ��, f2 � ��, s � ~��.
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��jk � �t
g2mt

16	2

X2

i�1

X2

l�1

GilV�k2Db1i
�U�j1D

�
b1l
� �bU�j2D

�
b2l
�f�m2

t ; m2
~bl
; m2

~bi
�

� �tht
g2m2

t

16	2

X2

i�1

V�k2Db1i
�U�j1D

�
b1i
� �bU

�
j2D

�
b2i
�f�m2

t ; m
2
t ; m

2
~bi
�
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W�� � 0;

(43)

where G and E are given by

 

Gij �
gMZ���

2
p

cos�W

��
�

1

2
�

1

3
sin2�W

�
D�b1iDb1j �

1

3
sin2�WD�b2iDb2j

�
sin��

gmb����
2
p
mW cos�

D�b1iDb2j;

Eij �
gMZ���

2
p

cos�W

��
1

2
�

2

3
sin2�W

�
D�t1iDt1j �

2

3
sin2�WD

�
t2iDt2j

�
sin��

gm2
t���

2
p
mW sin�

�D�t1iDt1j �D
�
t2iDt2j�

�
gmtAt���

2
p
mW sin�

D�t2iDt2j;

(44)

and where S00 and R00 are given by

 S00li � �
1

sin�

�
Ml

2mW
�li �Q

00
li cos�� R00li

�
; R00li �

1

2mW
� ~m1

�X�1lX
�
1i � ~m2

�X�2lX
�
2i ��

��X�3lX
�
4i � X

�
4lX
�
3i�	: (45)

The corrections � jk are given by
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H�� �
gmW sin�

2
���
2
p �1� 2cos2�� cos2�tan2�W	



X4

i�1


0ik sin�
�ij cos�
m�0

i

16	2 f�m
2
�0
i
; m2

H� ; m
2
H�� � g

3 mZ cos�

8
���
2
p

cos�W

X3

l�1

X3

m�1

X2

i�1

�tan��Yl2 � iYl3 cos��
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i
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(46)

where S0 is given by

 S0ij �
1���
2
p �X�4j�X

�
2i � tan�WX

�
1i�	: (47)

III. NEUTRAL HIGGS DECAYS INCLUDING LOOP
EFFECTS

We summarize now the result of the analysis. Thus Leff

of Eq. (5) may be written as follows:

 L eff � H0
l ���j �

lS
jk � �5

lP
jk��

�
k � H:c:; (48)

where

 

lSjk �
1

2
���
2
p ��Yl1 � iYl3 sin����jk � ��jk �� jk�

� �Yl2 � iYl3 cos��� jk � � jk ���jk�	; (49)

and where

 

lPjk �
1

2
���
2
p ��Yl1 � iYl3 sin����jk � ��jk � � jk�

� �Yl2 � iYl3 cos��� jk � � jk � ��jk�	: (50)

Next we discuss the implications of the above result for the
decay of the neutral Higgs.

 

�ljk�H
0
l ! ��j �

�
k � �

1

4	M3
H0
l

���������������������������������������������������������������������������
��m2

��j
�m2

��k
�M2

H0
l
�2 � 4m2

��k
m2
��j
	

r




�
1

2
��jlSjkj�

2 � �jlPjk j�
2	�M2

H0
l
�m2

��k
�m2

��j
� �

1

2
��jlSjkj�

2 � �jlPjk j�
2	�2m��k

m��j
�

�
: (51)

There are many channels for H0
l decays. The important

channels for the decay of the neutral Higgs boson are �bb,
�tt, �ss, �cc, ���, ��i �

�
j , and �0

i �
0
j . There is another set of

channels that neutral Higgs can also decay into: these are
modes of decaying into the other fermions of the SM,
squarks, sleptons, other Higgs bosons, W and Z boson
pairs, one Higgs and a vector boson, �� pairs, and finally
into the gluonic decay i.e., H0

l ! gg. We neglect the light-

est SM fermions for the smallness of their couplings. We
choose the region in the parameter space where we can
ignore the other channels which either are not allowed
kinematically or are suppressed by their couplings. Thus
in this work, squarks and sleptons are too heavy to be
relevant in neutral Higgs decay. The neutral Higgs decays
into nonsupersymmetric final states that involve gauge
bosons and/or other Higgs bosons are ignored as well. In
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the region of large tan�, these decays typically contribute
less than 1% of the total Higgs decay rate [24]. Thus we
can neglect these final states.

We calculate the radiative corrected partial decay widths
of the important channels mentioned above. In the case of
CP violating case under investigation we use for the radi-
atively corrected � of neutral Higgs into quarks and leptons
the analysis of [18], for the radiatively corrected partial
widths into charginos we use the current analysis, and for
the radiatively corrected decay width into neutralino we
use [25]. We define

 ��i;jl �
��H0

l ! ��i �
�
j � � �0�H0

l ! ��i �
�
j �

�0�H0
l ! ��i �

�
j �

; (52)

where the first term in the numerator is the decay width
including the full loop corrections and the second term is
the decay width evaluated at the tree level. Finally, to
quantify the size of the loop effects on the branching ratios
of the neutral Higgs decay we define the following quan-
tity:

 �Bri;jl �
Br�H0

l ! ��i �
�
j � � Br0�H0

l ! ��i �
�
j �

Br0�H0
l ! ��i �

�
j �

; (53)

where the first term in the numerator is the branching ratio
including the full loop corrections and the second term is
the branching ratio evaluated at the tree level. The analysis
of this section is utilized in Sec. IV where we give a
numerical analysis of the size of the loop effects and
discuss the effect of the loop corrections on decay widths
and branching ratios.

IV. NUMERICAL ANALYSIS

In this section we discuss in a quantitative fashion the
size of loop effects on the partial decay width and the
branching ratios of the neutral Higgs bosons into chargi-
nos. The analysis of Sec. II is quite general and valid for the
minimal supersymmetric standard model. For the sake of
numerical analysis we will limit the parameter space by
working within the framework of the SUGRA model [26].
Specifically we will work within the framework of the
extended mSUGRA model including CP phases. We take
as our parameter space at the grand unification scale to be
the following: the universal scalar mass m0, the universal
gaugino mass m1=2, the universal trilinear coupling jA0j,
the ratio of the Higgs vacuum expectation values tan� �
hH2i=hH1i where H2 gives mass to the up quarks and H1

gives mass to the down quarks and the leptons. In addition,
we take for CP phases the following: the phase �� of the
Higgs mixing parameter �, the phase A0

of the trilinear
coupling A0, and the phases �i�i � 1; 2; 3� of the SU�3�C,
SU�2�L and U�1�Y gaugino masses. In this analysis the
electroweak symmetry is broken by radiative effects which
allows one to determine the magnitude of � by fixing MZ.
In the analysis we use one-loop renormalization group

(RGEs) equations for the evolution of the soft supersym-
metry (SUSY) breaking parameters and for the parameter
�, and two loop RGEs for the gauge and Yukawa cou-
plings. In the numerical analysis we compute the loop
corrections and also analyze their dependence on the
phases. The masses of particles involved in the analysis
are ordered as follows: for charginos m��1

<m��2
and for

the neutral Higgs �mH1
; mH2

; mH3
� ! �mH;mh;mA� in the

limit of no CP mixing where mH is the heavy CP even
Higgs,mh is the light CP even Higgs, andmA is theCP odd
Higgs.

We investigate the question of how large loop correc-
tions are relative to the tree values. We first discuss the
magnitude of the loop corrections of the partial decay
width defined in Eq. (52). As we mentioned earlier the
loop corrections to the partial decay width of the chargino
channel have been investigated before in the CP conserv-
ing case [22,23]. The correction in these analyses is of the
order of �10% of the tree-level value. Our analysis sup-
ports this conclusion. In Figs. 3 and 4 we give a plot of
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FIG. 3. tan� dependence of ��1 ! ��1 �
�
1 . The curves in

ascending order correspond to �� � 0:2, 0.4, 0.6 (rad). The input
is m0 � 350 GeV, m1=2 � 180 GeV, �1 � 0:4 �rad�, �2 �

0:5 �rad�, �3 � 0:6 �rad�, A0
� 0:8 �rad�, and jA0j � 250 GeV.
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FIG. 4. tan� dependence of ��3 ! ��1 �
�
1 . The curves in

ascending order correspond to �� � 0:2, 0.4, 0.6 (rad). The input
is m0 � 350 GeV, m1=2 � 180 GeV, �1 � 0:4 �rad�, �2 �

0:5 �rad�, �3 � 0:6 �rad�, A0
� 0:8 �rad�, and jA0j � 250 GeV.
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��1;1
l �l � 1; 3� as a function of tan� for the specific set of

inputs given in the captions of these figures. We notice that
the partial decay width gets a change of 7� 15% of its
tree-level value. We also notice that the CP violating phase
�� can affect the magnitude of this change. This effect has
not been addressed in the previous analyses as they are
working in the CP conserving scenario. To compare be-
tween our analysis and the previous ones we have to notice
that these analyses are using the general SUSY parameter
space where they put by hand all the parameters that
control the analysis. In [22], the authors choose the
SUSY parameter set SPS1a of the Snowmass points and
slopes as a reference point. They choose for the trilinear
couplings the values of At � �487 GeV, Ab �
�766 GeV, and A� � �250 GeV. The values of the other
parameters are M � 197:6 GeV, M0 � 98 GeV, � �
353:1 GeV, tan� � 10, mA0 � 393:6 GeV, M ~Q1;2

�

558:9 GeV, M ~U1;2
� 540:5 GeV, M ~D1;2

� 538:5 GeV,
M ~L1;2

� 197:9 GeV, M ~E1;2
� 137:8 GeV, M ~Q3

� 512:2
GeV, M ~U3

� 432:8 GeV, M ~D3
� 536:5 GeV, M ~L3

�

196:4 GeV, and M ~E3
� 134:8 GeV. In all the figures of

[22], these values are used, if not specified otherwise. In
our mSUGRA analysis the magnitude of all these parame-
ters and others are fixed by the five input parameters
m0 � 100 GeV, m1=2 � 250 GeV, tan� � 10, A0 �

�100 GeV, and a positive sign of � in the CP conserving
scenario [27]. These parameters are different from those of
our Figs. 3 and 4. By using these parameters and fixing
some of them by hand when needed to match their values
in the analysis of [22], we were able to have a fair agree-
ment with their Figs. 2–9. As an example of this check we
show in Table I a comparison of the two works. For the
input of Fig. 2 of [22] with CP violating phases are set to
zero we can see that partial decay widths in both works
have the same behavior as functions of masses and their
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FIG. 5. tan� dependence of �Br1 ! ��1 �
�
1 . The curves in

ascending order at tan� � 40 correspond to �� � 0:5, 0.1,
1.0, 1.5, and 2.0 (rad). The input is m0 � 500 GeV, m1=2 �

150 GeV, �1 � 0:4 �rad�, �2 � 0:5 �rad�, �3 � 0:6 �rad�, A0
�

0:3 �rad�, and jA0j � 250 GeV.
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FIG. 6. tan� dependence of �Br3 ! ��1 �
�
1 . The curves in

ascending order at tan� � 40 correspond to �� � 0:5, 0.1,
1.0, 1.5, and 2.0 (rad). The input is m0 � 500 GeV, m1=2 �

150 GeV, �1 � 0:4 �rad�, �2 � 0:5 �rad�, �3 � 0:6 �rad�, A0
�

0:3 �rad�, and jA0j � 250 GeV.
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FIG. 7. jA0j dependence of �Br1 ! ��1 �
�
1 . The curves in

ascending order at jA0j � 0 correspond to tan� � 40, 35, 30,
25, and 20. The input is m0 � 500 GeV, m1=2 � 150 GeV, �1 �

0:4 �rad�, �2 � 0:5 �rad�, �3 � 0:6 �rad�, �� � 0:7 �rad�, and
A0
� 0:1 �rad�.
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FIG. 8. jA0j dependence of �Br3 ! ��1 �
�
1 . The curves in

ascending order at jA0j � 0 correspond to tan� � 40, 35, 30,
25, and 20. The input is m0 � 500 GeV, m1=2 � 150 GeV, �1 �

0:4 �rad�, �2 � 0:5 �rad�, �3 � 0:6 �rad�, �� � 0:7 �rad�, and
A0
� 0:1 �rad�.

EFFECTIVE LAGRANGIAN FOR THE . . . PHYSICAL REVIEW D 76, 075012 (2007)

075012-9



magnitudes are fairly close to each other. However it seems
that our loop corrected values of the partial widths are
different from those of Eberl et al. This could be under-
stood since our loop analysis of the effective Lagrangian
includes only the vertex corrections beside the corrections
in the Higgs potential.

In the work of Ref. [23] only 8 out of 26 diagrams of the
present analysis are calculated and they correspond to the
vertex corrections from Figs. 1 and 2(ii), part (a); 1 and
2(ii), part (b); 1 and 2(i), part (b); and 1 and 2(i) part (a). By
considering these diagrams only in the comparison, our
analysis is in fair agreement with their Figs. 2– 4, 6, 8 for
their inputs.

Now we turn to address the question of how much loop
corrections can affect the branching ratios into charginos.
The branching ratio of a decay mode is defined to be the
ratio between the partial decay rate of this mode and the
total decay rate. In the parameter space under investigation
this total decay rate includes the rates of decays into
charginos, heavy quarks, taus, and neutralinos. In Figs. 5
and 6 we give a plot of �Br1;1

l �l � 1; 3� defined by
Eq. (53) as a function of tan� for the specific set of inputs
given in the captions of these figures. Figure 5 is for the
neutral Higgs H1 boson and Fig. 6 is for the neutral Higgs
H3 boson. In all regions of the parameter space investi-
gated in this work, the decay of the lightest Higgs bosonH2

into charginos is forbidden kinematically, since we have in

these regions the fact that 2m��1
>mH2

. The analysis of
Figs. 5 and 6 shows that the loop correction varies strongly
with tan� with the correction changing sign for the case of
H3 decay. Further, the analysis shows that the loop correc-
tion can be as large as about�40% of the tree contribution
for both H1 and H3 cases. We also notice that the behavior
of �Br1;1

l �l � 1; 3� as a function of tan� changes consid-
erably by changing the phase of �. So for some values of
this phase we find that this parameter increases as tan�
increases and for other values of �� we see that it decreases
as tan� increases. As shown in the previous figures, the
parameter tan� is playing a strong role. This parameter is
important at the tree level through the diagonalizing mass
matrices of the chargino and neutral Higgs and their spec-
trum. At the loop level it has an extra effect explicitly in
lP;Sjk and implicitly through the radiatively corrected ma-
trix elements Ylm and through the corrections ��jk, ��jk,
� jk, � jk. The values of the branching ratios themselves
at tree and one-loop levels are shown in Table II.

We notice that their magnitudes are not negligible for the
region of the parameter space investigated. These non-
negligible branching ratios for the decay of the neutral
Higgs into charginos suggest that these decay modes could
be measurable at the soon-to-operate LHC. However, one
should also consider the production rates for H1 and H3

bosons to assess whether the change in branching ratios
could be detectable at colliders. This analysis goes beyond
the scope of the current work. We also notice that the phase
of the parameter � affects the tree-level branching ratios as
well. This comes mainly from the structure of the chargino
matrix. The more important channels in the region of the
parameter space investigated are the decay into bottom and
top quarks. They have the highest values of branching
ratios. The radiative corrections of these channels are
also more than those of the charginos and neutralinos.
These channels were studied before [1,17,18] as mentioned
above. However a 20% of branching ratio for the case of
neutral Higgs as shown in the above table is not very small
and could justify carrying out the current analysis.

In Figs. 7 and 8 we give a plot of �Br1;1
l �l � 1; 3� as a

function of jA0j for the specific set of inputs given in the
caption of these figures. The analysis of these figures
shows that the loop corrections are substantial and reaches
the value of �38% of the tree contribution for the case of
H1 decay and the value of�43% for the case of H3 decay.

TABLE I. A comparison between the current analysis and
Eberl et al. [22] for benchmark cases.

Case �tree
eberl �tree

our �loop
eberl �loop

our

2.a mA0
� 700 GeV 0.95 GeV 0.94 GeV 0.85 GeV 0.80 GeV

2.a mA0
� 800 GeV 1.18 GeV 1.17 GeV 1.0 GeV 0.91 GeV

2.b mH0
� 800 GeV 0.7 GeV 0.69 GeV 0.63 GeV 0.58 GeV

2.b mH0
� 900 GeV 0.8 GeV 0.8 GeV 0.73 GeV 0.70 GeV

TABLE II. Values of branching ratios at tree and one-loop
levels of neutral Higgs into the channel ��1 �

�
1 at tan� � 24

for the input of Figs. 5 and 6.

�� (rad) Br0�H1� Brloop�H1� Br0�H3� Brloop�H3�

0.5 6% 4.7% 18.2% 13.8%
1.0 8.4% 6.9% 21.3% 18.1%
1.5 9.2% 7.9% 23.4% 22.2%
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FIG. 9. �� dependence of �Br1 ! ��1 �
�
1 . The curves in as-

cending order at �� � 2:0 �rad� correspond to jA0j � 100, 250,
500, 750, and 900 GeV. The input is tan� � 20:0, m0 �
500 GeV, m1=2 � 150 GeV, �1 � 0:4 �rad�, �2 � 0:5 �rad�,
�3 � 0:6 �rad�, and A0

� 0:2 �rad�.
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Next we investigate the effects of CP violating phases
on the loop corrections of the neutral Higgs decays into
charginos. In Figs. 9 and 10 we give a plot of �Br1;1

l �l �
1; 3� as a function of �� for the specific set of inputs given
in the caption of these figures. The analysis of the figures
shows that the loop correction has a sharp dependence on
��. Further, the correction is changing sign as �� varies
from 0 to 	 for two cases of H3 decay. Thus �� affects not
only the magnitude of �Br1;1

l but also its sign depending on
the value of ��.

In Figs. 11 and 12 we give a plot of �Br1;1
l �l � 1; 3� as a

function of A0
for the specific set of inputs given in the

caption of these figures. Here also we find a very substan-
tial dependence of �Br1;1

l on A0
. This dependence is very

large in the case of H3 decay and it exceeds �40% of the
tree contribution.
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FIG. 10. �� dependence of �Br3 ! ��1 �
�
1 . The curves in

ascending order at �� � 	 �rad� correspond to jA0j � 100,
250, 500, 750, and 900 GeV. The input is tan� � 20:0, m0 �
500 GeV, m1=2 � 150 GeV, �1 � 0:4 �rad�, �2 � 0:5 �rad�,
�3 � 0:6 �rad�, and A0

� 0:2 �rad�.
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FIG. 12. 0 dependence of �Br3 ! ��1 �
�
1 . The curves in

ascending order at A0
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450, 400, 100, and 200 GeV. The input is tan� � 20:0, m0 �
500 GeV, m1=2 � 150 GeV, �1 � 0:4 �rad�, �2 � 0:5 �rad�,
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FIG. 11. 0 dependence of �Br1 ! ��1 �
�
1 . The curves in
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450, 400, 100, and 200 GeV. The input is tan� � 20:0, m0 �
500 GeV, m1=2 � 150 GeV, �1 � 0:4 �rad�, �2 � 0:5 �rad�,
�3 � 0:6 �rad�, and �� � 0:1 �rad�.
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FIG. 13. �2 dependence of �Br1 ! ��1 �
�
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ascending order at �2 � 0:75 �rad� correspond to jA0j � 50,
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FIG. 14. �2 dependence of �Br3 ! ��1 �
�
1 . The curves in

ascending order at �2 � 0:75 �rad� correspond to jA0j � 50,
100, 150, 200, and 250 GeV. The input is tan� � 20:0, m0 �
500 GeV, m1=2 � 150 GeV, �1 � 0:4 �rad�, �3 � 0:6 �rad� and
�� � 0:2 �rad�, and A0

� 0:3 �rad�.
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In Figs. 13 and 14 we give a plot of �Br1;1
l �l � 1; 3� as a

function of �2 for the specific set of inputs given in the
caption of these figures. Here we find a small effect of this
phase on the loop corrections.

V. CONCLUSION

In this paper we have carried out an analysis of the
supersymmetric loop corrections to ��j �

�
k H

0
l couplings

within MSSM. In supersymmetry after spontaneous break-
ing of electroweak symmetry one is left with three neutral
Higgs bosons which in the absence of CP phases consist of
two CP even Higgs bosons and one CP odd Higgs boson.
In the absence of loop corrections, the lightest Higgs boson
mass satisfies the inequality mh <MZ and by including
these corrections the lightest Higgs mass can be lifted
above MZ. With the inclusion of CP phases the Higgs
boson mass eigenstates are no longer CP even and CP
odd states when loop corrections to the Higgs boson mass
matrix are included. Further, inclusion of loop corrections
to the couplings of charginos and neutral Higgs is in
general dependent on CP phases. Thus the decays of
neutral Higgs into charginos can be sensitive to the loop
corrections and to the CP violating phases. The effect of
the supersymmetric loop corrections is found to be in the
range of 7� 15% for the partial decay width. For the
branching ratios it is found to be rather large, as much as
40% in some regions of the parameter space. The effect of
CP phases on the modifications of the partial decay width
and the branching ratio is found to be substantial in some
regions of the MSSM parameter space.
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APPENDIX

The integral of import to this work is
 

J�
Z d4k

�2	�4
1

�k2�m2
1� i
��k

2�m2
2� i
��k

2�m2
3� i
�

:

(A1)

It could be written in the form

 

Z d4k

�2	�4
1

D
; (A2)

where

 

1

D
�

1

a
1

b
1

c
; a � k2 �m2

1 � i
;

b � k2 �m2
2 � i
; c � k2 �m2

3 � i
:
(A3)

Using Feynman parametrization, 1
D could be written as

 

1

D
� 2

Z 1

0
dx
Z 1�x

0
dz

1

�a� �b� a�x� �c� a�z	3
:

(A4)

The denominator in the above integral could be written in
the form k2 �M2 � i
 where M2 � �m2

1 �m
2
2�x� �m

2
1 �

m2
3�z�m

2
1. Thus the integral J can take the form

 J �
Z d4k

�2	�4
2
Z 1

0
dx
Z 1�x

0
dz

1

�k2 �M2 � i
	3
: (A5)

Now integrating over k and using the standard integral, for
n � 3

 

Z d4k

�2	�4
1

�k2 ��� i
�n
� i	2 ��n� 2�

��n�
1

�n�2 (A6)

one can find that the integral J has the form

 J �
i

�4	�2
Z 1

0
dx
Z 1�x

0
dz

1

� �z
; (A7)

where  � �m2
1 �m

2
2�x�m

2
1 and � � m2

1 �m
2
3.

Integrating over z one can get for the integral J the form of

 J �
i

�4	�2
1

m2
1 �m

2
3

Z 1

0
dx ln��1x�m2

3� � ln��2x�m2
1�;

(A8)

where �1 � m2
3 �m

2
2 and �2 � m2

1 �m
2
2. Finally we in-

tegrate over x to get for J the form of

 J �
i

�4	�2
f�m2

1; m
2
2; m

2
3�; (A9)

where

 

f�m2
1; m

2
2; m

2
3� �

1

m2
1 �m

2
3

1

m2
3 �m

2
2

1

m2
1 �m

2
2




�
m2

2m
2
3 ln

�
m2

2

m2
3

�
�m2

3m
2
1 ln

�
m2

3

m2
1

�

�m2
1m

2
2 ln

�
m2

1

m2
2

��
: (A10)

This is the famous form factor that appears in the analysis
of the radiative corrections for the quark and lepton masses
[28], the decay rates of neutral and charged Higgs into
quarks and leptons [1,17,18,20], and in the b! s� process
[19]. In the latter process, the authors are using different

form factor H�
m2

1

m2
3
;
m2

2

m2
3
�. This form factor could be easily

converted to our f�m2
1; m

2
2; m

2
3� through the simple relation
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 m2
3f�m

2
1; m

2
2; m

2
3� � H

�
m2

1

m2
3

;
m2

2

m2
3

�
: (A11)

For the case where two of the masses are equal, m2 �
m3, one can repeat the same analysis with b � c � k2 �
m2

3 � i
 and a � k2 �m2
1 � i
. By doing so one can get

for the form factor J

 J �
i

�4	�2
1

�m2
3 �m

2
1�

2

�
m2

1 ln
�
m2

3

m2
1

�
�m2

1 �m
2
3

�
: (A12)
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