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We present a method to nonperturbatively determine the parameters of the on-shell, O�a�-improved
relativistic heavy quark action. These three parameters, m0, � , and cB � cE, are obtained by matching
finite-volume, heavy-heavy, and heavy-light meson masses to the exact relativistic spectrum through a
finite-volume, step-scaling recursion procedure. We demonstrate that accuracy on the level of a few
percent can be achieved by carrying out this matching on a pair of lattices with equal physical spatial
volumes but quite different lattice spacings. A fine lattice with inverse lattice spacing 1=a � 5:4 GeV and
243 � 48 sites and a coarse, 1=a � 3:6 GeV, 163 � 32 lattice are used together with a heavy quark mass
m approximately that of the charm quark. This approach is unable to determine the initially expected, four
heavy quark parameters: m0, � , cB, and cE. This apparent nonuniqueness of these four parameters
motivated the analytic result, presented in a companion paper, that this set is redundant and that the
restriction cE � cB is permitted through order aj ~pj and to all orders in ma where ~p is the heavy quark’s
spatial momenta.
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I. INTRODUCTION

The study of flavor physics and CP violation plays a
central role in particle physics. In particular, many of the
parameters of the standard model can be constrained by
measurements of the properties of hadrons containing
heavy quarks. However, to do this one needs theoretical
determination of strong-interaction masses and matrix el-
ements to connect the experimental measurements with
those fundamental quantities. Lattice quantum chromody-
namics (QCD) provides a first-principles method for the
computation of these hadronic masses and matrix ele-
ments. However, lattice calculations with heavy quarks
present special difficulties since in full QCD calculations,
which properly include the effects of dynamical quarks, it
is impractical to work with lattice spacings sufficiently
small that errors on the order of ma can be controlled.
These problems are addressed by using a number of im-
proved heavy quark actions designed to control or avoid
these potentially important finite lattice spacing errors. The
results of recent calculations of basic parameters of the
standard model can be found in the lattice heavy quark
reviews of Refs. [1–5].

A variety of fermion actions have been used in lattice
calculations involving heavy quarks. These include heavy
quark effective theory [6] (HQET) (for which the static
approximation is the leading term) and nonrelativistic
QCD [7] (NRQCD). These methods have significant limi-
tations: NRQCD has no continuum limit, and although
HQET has a continuum limit, it cannot be applied to
quarkonia. While systems involving bottom quarks may
permit a successful expansion in inverse powers of m, this
is likely not true for systems including a charm quark.

A third approach, the one adopted here, is the Fermilab
or relativistic heavy quark (RHQ) method [8,9] in which
extra axis-interchange asymmetric terms are added to the
usual relativistic action. As is discussed below, this action
can accurately describe heavy quark systems provided the
improvement coefficients it contains are properly adjusted.
As the heavy quark mass decreases, this action goes over
smoothly to the order a improved fermion action of
Sheikholeslami and Wohlert (SW) [10]. Thus, it seems
appropriate to refer to this as the relativistic heavy quark
method since it retains the relativistic form of the Wilson
fermion action (with the exception that lattice axis-
interchange symmetry is broken) and approaches the stan-
dard relativistic action as ma becomes small.

As is discussed in the original papers [8,9] and consid-
ered in detail in our companion paper [11], this approach
builds upon the original work of Sheikholeslami and
Wohlert, extending it to the case of a possibly very heavy
quark with mass m � 1=a but restricted to a reference
system in which these quarks are nearly at rest. Such a
situation can be described by a Symanzik effective
Lagrangian [12] which contains terms of higher dimension
than four which explicitly reproduce the finite lattice spac-
ing errors implied by the lattice Lagrangian.

In this RHQ approach, the continuum effective
Lagrangian is imagined to reproduce errors of first order
in aj ~pj and all orders in ma or p0a, where � ~p; p0� is the
heavy quark four-momentum. Such an effective action will
contain many terms, including those with arbitrarily large
powers of the combination aD0 where the gauge-covariant
time derivative D0 will introduce a factor of p0 and so
cannot be neglected. As described in Ref. [8] and discussed
in detail in our companion paper, this Lagrangian can be
greatly simplified by performing field transformations
within the path integral for the effective theory. These field
transformations do not change the particle masses pre-
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dicted by the theory and, as is discussed in Ref. [11], they
effect on-shell spinor Green’s functions only by a simple,
Lorentz noncovariant, 4� 4 spinor rotation. (The use of
the equations of motion in Ref. [9] is equivalent to the
above field transformation approach.)

As is shown in our companion paper [11], after this
simplification, the resulting effective Lagrangian contains
only three parameters: the quark mass mc, an asymmetry
parameter �c describing the ratio of the coefficients of the
spatial and temporal derivative, and a generalization of the
Sheikholeslami and Wohlert cSW to the case of nonzero
mass which we refer to as ccP. Here the superscript c
indicates that these are the coefficients that appear in the
continuum effective Lagrangian. If these three, mass-
dependent parameters can be tuned to physical continuum
values (mc, 1 and 0, respectively) by the proper choice of
mass-dependent coefficients in the lattice action, then the
hadronic masses computed in the resulting theory will
contain errors no larger than � ~pa�2.

It is important to recognize that such order � ~pa�2 terms
will have coefficients which are not simple constants but
actual functions of the variable ma. Thus, in order to
neglect such terms, we must assume that their coefficients
remain bounded as ma varies over the relevant range. That
this assumption is obeyed can be checked at tree level and
may be true more generally because the heavy quark
propagator is a decreasing function of the heavy quark
mass [8].

In addition, a new parameter � multiplying a noncovar-
iant ~� � ~p in the 4� 4 spinor matrix mentioned above will
be needed to realize truly covariant on-shell Greens func-
tions. Here � will depend on the (usually composite)
fermion operator being used even for a fixed action. As is
discussed below and in detail in Ref. [11], this is one fewer
parameter than found in the previous work of the Fermilab
and Tsukuba groups.

Thus, in our calculation we use the relativistic heavy
quark lattice action:
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. Written in this standard form, there are
six possible parameters that can be adjusted to improve the
resulting long-distance theory, three more than are needed.
We begin by making the choice rs � � and rt � 1. This
leaves four parameters whose effects we can study. In the
following we will investigate the nonperturbative effects of
these four parameters, m0a, � , cB, and cE. However, when
determining an improved RHQ action nonperturbatively,
we will impose the further restriction cB � cE, making the
improved action uniquely defined at our order of
approximation.

The different coefficient choices of improved lattice
action by the Fermilab and Tsukuba groups yield two
distinct sets of coefficients for the action. These are sum-
marized in Table I. The coefficients in each approach have
been calculated by applying lattice perturbation theory at
the O�a�-improved, one-loop level to the quark propagator
and quark-quark scattering amplitude [13,14].

In this paper, we will propose and demonstrate a non-
perturbative method for determining these coefficients
based on a step-scaling approach, which eliminates all
errors of O�g2n�. Step-scaling has been used in the past
to connect the lattice spacing accessible in large-volume
simulations with a lattice scale sufficiently small that
perturbation theory becomes accurate [15,16].
Nonperturbative matching conditions are imposed to con-
nect the original calculation with one performed at a
smaller lattice spacing a01 � a�. Iterative matching of
this sort with n steps then connects the theory of interest
and a target lattice theory defined with lattice spacing a0n �
a�n. This may require a number of steps n which is not too
large since, while the coupling constant decreases only
logarithmically with the energy scale, that energy scale
increases exponentially with n. For example, if a final
comparison with order g2 perturbation theory is used, we

TABLE I. Comparison of the conventions and/or values used
to specify the six terms in the improved lattice action of Eq. (1).
The top row identifies terms that appear in Eq. (1). The next row
lists our choice for the coefficient of each term and the next two
rows specify that same coefficient written in the notation of the
Fermilab [8] and Tsukuba [9] papers.

Action �0D0 ~� ~D �D2
0 �� ~D�2 i

2�ijFij i�0iF0i

This paper 1 � 1 rs cB cE
Fermilab 1 � 1 rs� cB� cE�
Tsukuba 1 � 1 rs cB cE
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expect an error of order �g0�4 � ln�a0n�
�2 � n�2, where g0

is the bare coupling for the finest lattice.
The situation for heavy quarks is even more favorable.

Here the target, comparison theory does not need to have
such small lattice spacing that perturbation theory is accu-
rate. In fact, this theory can be treated nonperturbatively
provided the final lattice spacing a0n is sufficiently small
that simulations with an ordinary O�a�-improved relativ-
istic action will give accurate results [17]. This implies that
the size of the error will be of order �ma0�2 � n�2 or n�
�error��1=2. In the work reported here we will match the
step-scaled heavy quark theory with an O�a�-accurate
lattice calculation performed using domain wall fermions.

A critical question in developing such a step-scaling
approach is to decide upon the actual quantities that will
be ‘‘matched’’ when comparing two theories defined with
different lattice spacings but which are intended to be
physically equivalent. Among the quantities which might
be matched are the Schrödinger functional [18–20], off-
shell Green’s functions defined in the RI/MOM scheme
[21] or physical masses, and matrix elements at finite
volume.

Our first approach to this topic was to investigate the off-
shell RI/MOM scheme since this method had worked well
in earlier light quark calculations, see e.g. Refs. [22,23],
and also permits a direct comparison with quantities de-
fined in perturbation theory. We were able to define RI/
MOM kinematics which lay within the regime of validity
of the effective heavy quark theory described above and to
carry out a tree-level calculation of the amplitudes of
interest [24,25]. However, the increased number of pa-
rameters needed in the effective theory to describe off-
shell amplitudes, the need to work with gauge-noninvariant
quantities, and the difficulty of computing ‘‘disconnected’’
gluon correlation functions ultimately made this approach
appear impractical.

In this paper, we adopt the third method mentioned
above and determine the coefficients in the heavy quark
effective action appearing in our step-scaling procedure by
requiring that the physical, momentum-dependent mass
spectrum of two physically equivalent theories agree
when compared on the same physical volume. Since the
step-scaling approach requires physically small volumes
be studied, these spectra will be significantly distorted by
the effects of finite volume and it is important that these
effects be the same in each of the theories being com-
pared—thus the need to compare on identical physical
volumes. By comparing more physical, finite-volume
quantities (as many as seven) than there are parameters
to adjust (three), we also have an overall consistency test of
the method. Finally, as described above, at the smallest
lattice spacing, we compute the quantities being compared
using a standard domain wall fermion (DWF) action which
has no order ma errors and accurate chiral symmetry. We
assume that at this smallest lattice spacing the explicit

errors of order �ma�2, present in the domain wall fermion
calculation, are sufficiently small to be neglected.
Preliminary results using this method were published in
Ref. [26].

The structure of this paper is as follows. We introduce
our on-shell approach to determine the coefficients in the
relativistic heavy quark action via step-scaling both in the
quenched approximation and for full QCD in Sec. II. In this
paper we will work in the quenched approximation and
explicitly carry out the first stage of matching between a
fine and a coarse lattice in order to determine the feasibility
of this approach and the accuracy that can be achieved.
Specifically the ‘‘fine’’ lattice uses 1=a � 5:4 GeV and the
‘‘coarse’’ lattice 1=a � 3:6 GeV. (A second matching
step, evaluating the first coarse-lattice action on a larger
physical volume and matching to an even larger lattice
spacing, 1=a � 2:4 GeV, is now underway [27].)
Section III lists the parameters used in this calculation,
describes our determination of the lattice spacing, and
discusses our method for obtaining the physical heavy-
heavy and heavy-light spectrum.

The problem of determining the parameters to be used in
the coarse-lattice action which will reproduce the fine-
lattice mass spectrum is studied in Sec. IV and the depen-
dence of this spectrum on the four parameters m0a, � , cB,
and cE presented. We are unable to determine these four
parameters with any reasonable precision, a conclusion we
now understand since only three parameters are required to
determine the mass spectrum to order aj ~pj and all orders in
�ma�n [11]. We then restrict the parameter space to cB �
cE, as is justified theoretically, and find that the resulting
three parameters can now be determined quite accurately.
In Sec. V we compare our result with both perturbative and
nonperturbative determinations of the quark mass and the
one-loop lattice perturbation calculation of the lattice pa-
rameters � , cB and cE performed by Nobes [28]. Section VI
presents a summary and outlook for this approach.

II. STRATEGY

We propose to determine the three coefficients m0a, � ,
and cP  cB � cE in the RHQ lattice action of Eq. (1) by
carrying out a series of matching steps. We begin with a
sufficiently fine lattice spacing that no heavy quark im-
provements are needed (ma� 1) and a conventional light
quark calculation will give accurate results. We then carry
out a series of calculations using the RHQ lattice action of
Eq. (1) on lattices with increasingly large lattice spacing
and increasingly large physical volume. When we increase
the lattice spacing at fixed physical volume, we perform
calculations at both lattice spacings on identical physical
volumes and require that the resulting finite-volume,
heavy-heavy, and heavy-light energy spectra agree when
these particles are at rest or have small spatial momenta.
When we increase the lattice volume at fixed lattice spac-
ing, we simply use the parameters, previously determined,
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in a calculation now on the larger volume. The first same-
physical-volume matching of the energy spectrum is done
between the heavy quark theory and a conventional fine-
lattice calculation done with domain wall fermions. An
example of this finite-volume, step-scaling recursion is
shown in Fig. 1.

Specifically, we will calculate the pseudoscalar (PS),
vector (V), scalar (S), and axial-vector (AV) meson masses
in the heavy-heavy (hh) system and pseudoscalar and
vector masses for the heavy-light (hl) system. We will
work with the following mass combinations:

(i) Spin-average: mhh
sa �

1
4 �m

hh
PS � 3mhh

V �, mhl
sa �

1
4 �

�mhl
PS � 3mhl

V�
(ii) Hyperfine splitting: mhh

hs � mhh
V �m

hh
PS,mhl

hs � mhl
V �

mhl
PS

(iii) Spin-orbit average and splitting: mhh
soa �

1
4 �

�mhh
S � 3mhh

AV�, m
hh
sos � mhh

AV �m
hh
S

(iv) Mass ratio: m1=m2 where E2 � m2
1 �

m1

m2
p2, with m1

the rest mass and m2 the kinetic mass.
By examining these seven quantities we should be able to
determine the three parameters m0a, � , and cP and also
check the size of the scaling violations.

The first step in this program calculates these seven
quantities using the domain wall fermion action on the
fine, 243 � 64 lattice with 1=a � 5:4 GeV (I). Next, these
seven quantities are computed a second time using a
coarse, 163 � 32 lattice with 1=a � 3:6 GeV and, there-
fore, the same physical volume. This is calculation II. The
three heavy quark parameters entering this coarse-lattice
calculation must be adjusted so that these seven quantities
agree between calculations I and II. It is these calculations
that are carried out in this paper using the parameters given
in Table II.

Third, we expand the volume of calculation II to 243 �
48, while keeping all other parameters fixed. The results of

this third, expanded volume calculation (III) can then be
matched with a fourth calculation which has a lattice
spacing larger by a factor of 3=2 (IV). The simulation
parameters for this second matching step are given in
Table III. By repeating this pattern, we can extend the
calculation to quenched lattices with the desired volume
where serious, infinite-volume, charm physics may be
studied.

In this paper, we demonstrate only the matching be-
tween calculations I and II. The leading heavy quark dis-
cretization error in calculation I is of order �ma�2 where
�ma�2 � 4%, making it the dominant systematic error on
the fine-lattice result. Of course, this error can be reduced
in future calculations by choosing a fine lattice that has an
even smaller lattice spacing and correspondingly smaller
physical volume. Without improvement beyond the usual
Sheikholeslami and Wohlert term, the leading heavy quark
discretization error on the coarse lattice is expected to be
O�ma�2 with �ma�2 � 10%. However, once we introduce
the improved lattice action of Eq. (1) and properly tune the
coefficients, we should be able to reduce the error to
�aj ~pj�2 � 1%.

As will be demonstrated in the remainder of this paper,
this proposed step-scaling method works well and offers a
feasible approach to heavy quark calculations with accu-
rately controlled finite lattice spacing errors. However,
unless we can move beyond the quenched approximation
used here, this method will be of only limited utility. Using
this method for full QCD will, of course, be more computa-
tionally demanding because each of the two sets of lattice

TABLE II. The specific choice of parameters for the two sets
of lattice configurations analyzed in this paper.

I II

Volume 243 � 48 163 � 32
1=a 5.4 GeV 3.6 GeV
L 0.9 fm 0.9 fm
� 6.638 6.351
ma 0.2 0.3
Action DWF RHQ

TABLE III. The choice of parameters for the two sets of lattice
configurations needed for the next step in this step-scaling
program. Calculations with these parameters are now underway
but are not described in this paper.

III IV

Volume 243 � 48 163 � 32
1=a 3.6 GeV 2.4 GeV
L 1.33 fm 1.33 fm
� 6.351 6.074
ma 0.3 0.45
Action RHQ RHQ

V 243 48 V 163 32

DWF
ma=0.2
a−1=5.4GeV

RHQ
ma=0.3
a−1=3.6GeV

RHQ
ma 0.3
a 1 3.6GeV

RHQ
ma 0.45
a 1 2.4GeV

RHQ
ma 0.45
a 1 2.4GeV

RHQ
ma 0.65
a 1 1.6GeV

FIG. 1 (color online). The sequence of lattice sizes and lattice
spacings used to determine the coarse-lattice, heavy quark
parameters through a step-scaling technique beginning with a
comparison with an O�a�-improved light quark calculation. The
matching between the top two lattice spacings is the calculation
described in this paper.
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configurations generated for this matching process must be
obtained from a full, dynamical simulation including the
quark determinant. However, such an approach could be-
come prohibitively expensive if the value of the light
dynamical quark masses, mlighta, must decrease toward
zero with decreasing a.

Fortunately, such small dynamical quark masses are not
required in this step-scaling approach. The combination of
the usual gauge and light quark action together with the
effective lattice action of Eq. (1) defines a complete physi-
cal theory, including the properties of heavy quarks, that is
unambiguously specified at short distances 	 with a�
	� 1=mlight. Recall that in the continuum such a local
field theory is typically defined in a mass- and volume-
independent fashion. Short-distance renormalization con-
ditions are imposed to fix the theory in a manner that is
insensitive to quark masses and space-time volumes.
Similarly our fine-lattice theory, viewed as a function of
the bare input lattice parameters, also defines such a mass-
and volume-independent theory.

Given sufficient computer power, the implications of
this theory could be worked out on arbitrarily large spatial
volumes and for arbitrarily small masses. The results
would be well-defined functions of the bare input parame-
ters which would require no adjustment as the quark mass
and spatial volume were varied. The lattice spacing could
be determined in physical units by comparing to �QCD as
determined from a vertex function at short distances with
the light quark masses having a negligible effect.

Replacing the standard light quark action appropriate for
our finest lattice with the improved lattice action of Eq. (1)
does not change this situation. The parameters in the heavy
quark action could be evaluated or renormalized by exam-
ining Green’s functions evaluated at nonexceptional mo-
menta without infrared or light quark mass sensitivity
[24,29]. We would still be working with a short-distance-
defined field theory that will give meaningful predictions
as a function of lattice volume and light quark mass. Thus,
when comparing two such effective theories defined at two
different lattice spacings we are free to use any lattice size
L and dynamical quark mass mlight we find convenient
provided L� a and mlight � 1=a. In fact, if mlight is
sufficiently small that it does not effect the finite-volume
heavy quark spectrum being compared, we need not even
use the same quark mass in the two calculations being
compared! Of course, this is likely a quark mass that is
expensively small and a better strategy is to work with
sufficiently small spatial volume and sufficiently heavy
dynamical quark mass that they do effect the quantities
being matched and must be given equivalent physical
values in each of the calculations being compared.

We conclude that employing the procedure developed
here in full QCD, while difficult, is practical and well
within the reach of present computer resources. Just as
our step-scaled lattice spacing decreases and we move to

increasingly smaller spatial volumes, we should also move
to increasingly heavier quark masses. In both cases finite
volume and finite dynamical quark mass effects are dis-
torting the spectrum being compared, but these distortions
are entirely physical and must be accurately described by
the effective actions being compared.

III. SIMULATIONS

We performed this calculation on a 512-node partition of
the QCDOC machine located at Columbia University. We
used the Wilson gauge action since for this case the relation
between lattice coupling and lattice spacing has been
thoroughly studied [30,31].

The gauge configurations were generated using the heat-
bath method of Creutz [32], adapted for SU(3) using the
two-subgroup technique of Cabibbo and Marinari [33].
The first 20 000 sweeps were discarded for thermalization
and configurations thereafter were saved and analyzed
every 10 000 sweeps. We examined the autocorrelation
between configurations for both the standard 4-link pla-
quette and the hadron propagators evaluated at a time
separation of 12 lattice units. Here we use the standard
autocorrelation function 
�t� as

 
�t� �
1

Ntot � t

XNtot�t

j

�O�j� � �O��O�t� j� � �O� (5)

and identify the autocorrelation time as the size of the
region near t � 0 in which 
�t� � 0.

For the case of the plaquette (which was calculated
every sweep), we found an autocorrelation time of approxi-
mately 3 sweeps. We studied the propagator correlations
using two 243 � 32, � � 6:638 test calculations: in the
first, the propagators were computed on 120 configura-
tions, separated by 5 sweeps and in the second on 40
configurations separated by 50 sweeps. The resulting cor-
relation functions for five different hadron propagators
evaluated at a temporal source-sink separation of 12 lattice
units are shown in Fig. 2. Autocorrelation on the scale of
100 sweeps can be seen in the data sampled every five
sweeps. Essentially no autocorrelation can be seen for the
propagators sampled every 50 sweeps. Since we used a
total of 100 such lattice configurations, separated by 10 000
sweeps, for all of the quantities discussed in this paper, we
will assume that quantities calculated on different configu-
rations are statistically independent.

A. Lattice scale

Four different quantities with a meaningful physical
scale enter each of the two lattice calculations that must
be matched at a given stage in our step-scaling procedure.
Most familiar is the distance scale determined by the static
quark potential or the chiral limit of the light hadron
spectrum. This is an important physical scale that will
influence even small-volume, heavy quark results. As is
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conventional, we will refer to this quantity as the ‘‘lattice
spacing.’’ (For example, we might determine the Compton
wave length of the 
 meson to be 2.5 lattice units. This
would yield a lattice spacing a � 	
=2:5 �
0:26 fm=2:5 � 0:105 fm.) We will find it convenient to
determine this from direct calculation of the static quark
potential. The other three scales are the lattice volume, and
the masses of the light and heavy quarks. (In our discussion
of heavy-light systems we will ignore the strange quark and
work with degenerate up and down quarks.)

Of course, the lattice spacing, expressed in physical
units, is also important since it gives us a direct idea of
the size of the discretization errors which we are trying to
control. For this purpose we do not need great precision
(something that cannot be achieved in a quenched calcu-
lation under any circumstances). We will determine the
lattice spacing in physical units from the static quark
potential evaluated at an intermediate distance to yield

the Sommer scale [30] which is then determined from a
phenomenological, static quark potential model. While the
later is not precisely defined, this method has the advantage
that it uses only pure gauge theory without any fermion
action being involved. We could get a physical value for
the lattice scale from the pion decay constant f� or the rho
meson mass but these are more difficult to calculate and
may be more sensitive to finite volume and other system-
atic errors.

Our strategy for choosing the parameters to be used on
the fine lattice and then finding physically equivalent pa-
rameters to be used on the coarser lattice proceeds as
follows. We first decide on a target ratio of lattice scales
determined by the ratio of lattice volumes that we intend to
use. In the present case a ratio of 3=2 is implied by our
choice of 243 and 163 lattice volumes. Second, we choose
the bare lattice coupling on the fine lattice to ensure that the
fine-lattice spacing is sufficiently small (here chosen to be
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V

FIG. 2. The autocorrelation function for five different heavy-heavy meson propagators evaluated at a source-sink separation of 12
lattice units with � � 6:638 and a 243 � 48 space-time volume. In the top graph the propagators were calculated on every 5th
configuration while in the bottom graph the propagator measurements were separated by 50 sweeps. This suggests that our separation
of 10 000 sweeps between measurements ensures that they will be uncorrelated.
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1=a � 5:4 GeV). The stronger coupling must then give a
lattice spacing larger by a factor of 3=2 than the fine value
or 1=a � 3:6 GeV. While for a dynamical QCD calcula-
tion, this would require considerable numerical explora-
tion, for a quenched calculation with the Wilson gauge
action, we can simply refer to extensive earlier work.

Next we choose the light quark mass to be used on the
fine lattice as sufficiently light that the heavy-light mesons
being studied will involve a different momentum scale than
do the heavy-heavy mesons but not so light as to unreason-
ably increase the computational cost. For the calculations
reported here we used the domain wall formalism for the
light quarks and chose the mass mfa � 0:02, one-tenth of
the 0.2 heavy quark mass. The light quark mass to be used
on the coarse lattice is determined by requiring that the
light-light pseudoscalar meson have a mass 3=2 times
larger than that found on the fine lattice when measured
in lattice units.

Finally the heavy quark mass on the fine lattice is
estimated to correspond to the bare charm-quark mass.
While in the present calculation we have used the single
valuemfa � 0:2, a complete calculation will likely require
one or two more masses so that a final interpolation/ex-
trapolation can be done to make the physical charmed
hadron mass agree with experiment. The heavy quark
mass on the coarse lattice is one of the three heavy quark
parameters whose determination is discussed in the next
section.

Let us now discuss the choice of lattice scale in more
detail. The static potential is expected to have the following
form:

 V�R� � C�
�
R
� �R; (6)

where R is the separation between the static quarks. The
scale implied by the heavy quark potential is often speci-
fied using the Sommer parameter r0 which is defined by the
condition

 � R2 @V�R�
@R

��������R�r0

� 1:65: (7)

This is appropriate on standard size lattices for bare cou-
plings in the range � � 6=g2 � 6:57. For weaker cou-
plings, �> 6:57, one uses a second, smaller distance
scale rc defined by

 R2F�R�jR�rc � 0:65; (8)

where rc
r0
� 0:5133�24� [31]. While it may be problematic

in a quenched calculation, we can attempt to determine r0

from a phenomenological potential model, which gives
r0 � 0:5 fm [34].

Reference [31] gives predictions for the resulting lattice
spacing when the coupling � of Wilson gauge action is in
the range 5:7 � � � 6:92:

 

ln�a=r0� � �1:6804� 1:7339��� 6� � 0:7849��� 6�2

� 0:4428��� 6�3: (9)

With the help of Eq. (9), we can locate the � values needed
to achieve the desired cutoff scales and fine-tune it later as
necessary. As our final choices, we have � � 6:638 for the
a�1 � 5:4 GeV lattice and � � 6:351 for the a�1 �
3:6 GeV one.

Since the comparison of lattice scales between our two
simulations is fundamental to this matching program, we
have carried out additional calculations to make sure that
the lattice spacing is correctly selected. This requires a
direct calculation of the static quark potential on our lattice
configurations.

Recall that the static quark potential can be extracted
from the ratio of Wilson loops:

 V�~r� � log
�
hW� ~r; t�i
hW�~r; t� 1�i

�
; (10)

where h� � �i denotes an average over gauge configurations.
In order to improve the signal and to extract the potential
V�r� from smaller time separations, we smear the gauge
links in the spatial directions according to Ref. [35]:
 

Uk�n� ! PSU�3�

�
Uk�n� � csmear

X
l�k

Ul�n�Uk�n� l̂�

�U�l�n� l̂� k̂�
�
; (11)

where k and l each indicate a spatial direction, PSU�3� is an
operator that projects a link back to an SU(3) special
unitary matrix, csmear is the smearing coefficient (set to
0.5 in our case), and the smearing procedure is performed
nsmear times. More details regarding the algorithm can be
found in Refs. [36,37]. In our calculation we found good
results for nsmear � 180 for the fine lattice and nsmear � 60
for the coarse one.

While we did determine the two scale standards r0 and
rc individually for both of our lattice spacings, our lattice
volumes are somewhat small to permit a comparison with
infinite-volume results. We therefore also determined the
ratio of lattice spacings without using the Sommer scale by
directly comparing the potentials computed on our two sets
of lattice configurations using the relation

 V1�n� � V2�n=	�=	� C
0; (12)

where 	 � a2=a1 is the ratio of the two lattice spacings.
We first fit the static potential on the fine lattice to the form
given in Eq. (6), determining the parameters C, �, and �.
Next we scaled the resulting fitted function according to
Eq. (12) and adjusted the parameters 	 and C0 in that
equation to obtain the best fit to the static potential mea-
sured on the coarse lattice. Figure 3 shows a comparison of
the potential determined from � � 6:351 configurations
and a scaled and shifted version of the � � 6:638 poten-
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tial. The agreement is excellent and this procedure gives an
independent value for the lattice spacing ratio of 1.51(2),
which agrees with what we wanted.

B. Domain wall fermions

We will now briefly describe the domain wall fermion
calculations that were used for the heavy quark on the
finest lattice and the light quarks on both lattices. The
domain wall Dirac operator can be written as

 Dx;s;x0;s0 � �s;s0D
k
x;x0 � �x;x0D

?
s;s0 (13)

 

Dkx;x0 �
1

2

X4

��1

	�1� ���Ux;��x��̂;x0

� �1� ���U
y
x0;��x��̂;x0 
 � �M5 � 4��x;x0 (14)

 

D?s;s0 �
1

2
	�1� �5��s�1;s0 � �1� �5��s�1;s0 � 2�s;s0 


�
mfa

2
	�1� �5��s;Ls�1�0;s0

� �1� �5��s;0�Ls�1;s0 
; (15)

where the fifth-dimension indices s and s0 lie in the range
0 � s, s0 � Ls � 1, M5 is the five-dimensional mass, and
mf directly couples the two walls at s � 0 and s � Ls � 1.
It is related to the physical mass of the four-dimensional
fermions.

The M5 parameter is optimized by the choice of M5 �
1�mcrit, where mcrit is the critical value of the mass for

the 4-dimensional Wilson fermion action. This quantity
has been calculated perturbatively up to one-loop level
for the Wilson gauge action and either the Wilson [38] or
SW [39] fermion actions. In the quenched approximation,
for Wilson fermions and with our choices of gauge cou-
pling, we find mcrit � �0:495 at � � 6:638, and mcrit �
�0:522 at � � 6:351. Therefore, we use M5 � 1:5 in the
DWF action for both our � values.

The DWF action is O�a� off-shell improved due to the
preservation of chiral symmetry, and no further improve-
ment in the action or quark fields is performed. The chiral
symmetry breaking can be measured from the residual
mass, which can be computed from the ratio

 amres �

P
x
hJa5q� ~x; t���0�iP
x
hJa5 � ~x; t���0�i

; (16)

provided t� a. Here J5q is a pseudoscalar density located
at the midpoint of the fifth dimension. The residual mass
has been thoroughly studied, for example, in Ref. [40] for
various values of �, Ls, and M5. Those results suggest that
the mres values for each of our lattice configurations are
much smaller than the 0.001 24 value determined at � �
6:0 with lattice volume 163 � 32� 16 and M5 � 1:8. This
indicates that chiral symmetry breaking is small, and
ignoring the contribution of mres in the heavy quark sector
will have an effect smaller than 0.5%.

However, there is a limitation to using large values ofmf

with DWF. Recall that there are two types of eigenvectors
of the Hermitian DWF Dirac operator: propagating and
decaying states [41,42]. The former, unphysical states have
nonzero 5th-dimension momenta and large Dirac eigenval-
ues around 1=a. The ‘‘decaying’’ states are bound to the
walls of the 5th dimension and are the physical states
corresponding to the four-dimensional Dirac eigenstates
in the continuum limit. The gap between these two types of
states is controlled by the domain wall height M5.
However, as mf increases, the eigenvalues of the physical
states increase while those of the propagating states do not.
Thus, we must be careful to avoid the situation in which the
states with the smallest eigenvalues are dominated by these
unphysical states. Therefore, a careful check on the lowest
eigenvalues for the target mf being used to simulate the
heavy quarks on the fine lattice is needed. Figure 4 shows
the 5-dimensional eigenfunction, averaged over 4-
dimensional space,

P
xj�x;sj

2 as a function of the 5th-
dimensional coordinate s for the lowest 19 eigenvalues
with various mfa: 0.22, 0.27, 0.37, 0.47. As can be seen
in the figure, these first 19 eigenfunctions appear to be
physical states bound to the 4-dimensional wall for the first
three mass values. However, mfa � 0:47 is sufficiently
large that propagation into the 5-dimension can be clearly
seen. We conclude that our mfa � 0:2 for the heavy quark
is safe, well below the region where such unphysical states
arise.

0 5 10 15
R

0

0.2

0.4

0.6

0.8

FIG. 3 (color online). The static quark potential calculated on
both the coarse and fine lattices. The static quark potential values
computed on the � � 6:351 lattice are shown as circles. The
squares mark the static quark potential from the � � 6:638
lattice scaled by the fitted ratio of lattice spacings 	 � 1:51
and shifted by a constant. The agreement between these two
different sets of points gives good evidence that the ratio of
lattice spacings between these two � values is the desired 3=2.
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C. Spectrum measurements

In order to get good signals for the heavy quark states of
interest for relatively small time separations, a smeared
wave function source is used for the heavy quark (but not
the light quark). Here, we adopt the Coulomb gauge-fixed
hydrogen ground-state wave function,

 �gnd�r� � e�r=r0 ; (17)

as the source of the heavy fermion(s) and use a point source
for the light fermion (if any). At the sink the two propa-
gators are evaluated at the same point and the resulting
gauge invariant combination summed over a 3-
dimensional plane at fixed time, with a possible momen-
tum projection factor. An optimized radius, r0, was chosen
in the fashion suggested in Ref. [43]. Table IV lists all the
local meson operators used in our calculation.

Figure 5 shows how the plateau in the effective mass plot
improves between a point and smeared source. The
smeared-source meson plateaus are much better than those
of the local source, even for the scalar and axial-vector
mesons.

To constrain the space-time asymmetry parameter � , we
also computed the pseudoscalar meson energy in the
heavy-heavy sector for the three lowest momenta: 2�

L �

�0; 0; 0�, 2�
L �0; 0; 1�, and 2�

L �0; 1; 1�, where L is the spatial
lattice size. The dispersion relation may be expanded in
momentum as

 E�p� � m1 �
p2

2m2
�O�p4�: (18)

As we will see, requiring the ratio of static to kinetic mass,
m2=m1 � 1, is useful for determining the coefficient � .

TABLE IV. Meson states created by local operators of the
form � � , labeled in spectroscopic notation.

� 2S�1LJ JPC

�5
1S0 0��

�i 3S1 1��

1 3P0 0��

�5�i
3P1 1��

4. 8. 12. 16.

1.2

1.4

1.6

S

4. 8. 12. 16.

1.2

1.4

1.6

1.8

AV

4. 8. 12. 16.

1.

1.2

1.4

1.6

PS

4. 8. 12. 16.
1.

1.2

1.4

1.6

1.8

V

FIG. 5 (color online). A comparison of effective mass plateaus between point and smeared sources in the heavy-heavy sector.
Triangles denote the point-point source, and pentagons denote the point-smeared heavy meson correlators. Clearly, the plateaus have
been improved by the smearing. However, a double-cosh fit to the two distinct wave function sources might help us determine the
ground-state energy even more accurately.

0 2 4 6 8 10 12

0

0.01

0.02
amf 0.47

0

0.01

0.02
amf 0.37

0

0.01

0.02
amf 0.27

0

0.01

0.02
amf 0.22

FIG. 4. The dependence on the fifth dimension, s, of the space-
time sum of the modulus squared of the 19 lowest-lying eigen-
vectors of the Hermitian domain wall Dirac operator:

P
xj�x;sj

2.
This is shown for a Wilson quenched gauge configuration with
� � 6:638, V � 164, Ls � 12, M5 � 1:8, and mfa 2
f0:22; 0:27; 0:37; 0:47g. The unphysical, propagating states are
seen only for mfa > 0:37.
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D. Parameters

Table V lists the fixed parameters used throughout this
matching stage for the fine and coarse lattices. The heavy
quark mass was set to approximate that of the charm mass
and the light quark mass was chosen 10 times smaller. The
lattice spacing ratio between these two lattices is 1.5. The
domain wall fermion parameters used on the fine lattice
have been carefully studied and we find no unphysical
states in the chosen mass range as discussed in previous
section. Table VI shows the hadron mass spectrum com-
puted on the fine lattice. As can be seen, m1=m2 � 1:02�2�
is consistent with 1, indicating that heavy quark discretiza-
tion effects using domain wall fermions are small. One
expects that the light quark mass on the coarse lattice
should be 0.03 and the data for the light-light spectrum
with this choice of light quark mass is listed in Table VII.
As one can see from Table VII, the light-light meson
spectra on the coarse and fine lattices agree when com-
pared in the same units, indicating that the light quark mass
is well tuned on the coarse lattice.

A complete list of the parameter sets used for the RHQ
action on the coarse lattice is given in Table VIII. The first
42 sets of data were initial trials chosen to give good
coverage in parameter space. In order to perform a more
systematic analysis, described in Sec. IV, we also collected
a ‘‘Cartesian’’ set (sets Nos. 43–66) chosen close to the
desired fine-lattice measurements. These 24 data sets are
centered around set No. 14. The range of each parameter in
this Cartesian data set was selected so that within that
range the estimated difference between a linear and qua-

TABLE VI. Mass spectrum measured on the fine lattice in units of a�1.

mPS mV m1=m2 mAV mS

Light-light 0.175(3) 0.233(5) � � � � � � � � �

Heavy-light 0.467(2) 0.485(3) � � � � � � � � �

Heavy-heavy 0.716(1) 0.728(1) 1.02(2) 0.810(5) 0.799(4)

TABLE VII. Light-light hadron spectrum measured on the
coarse lattice in units of a�1 and units of 3=2a to compare
with the fine-lattice results in Table VI.

Units mPS mV

Light-light 1=a 0.259(6) 0.328(10)
Light-light 3=2a 0.173(4) 0.219(7)

TABLE V. Common parameters for each of the coarse and fine data sets. For both data sets
L � 0:9 fm, while for the domain wall fermion action we use Ls � 12 and M5 � 1:5. Here
‘‘TBD’’ indicates a value to be determined in the matching procedure being developed here.

Label � V SL amL SH amH a�1 (static quark potential)

Fine 6.638 243 � 48 DWF 0.02 DWF 0.2 5.4 GeV
Coarse 6.351 163 � 32 DWF 0.03 RHQ TBD 3.6 GeV

TABLE VIII. Parameters used on the coarse lattice.

Set number m0a cB cE �

1 0.0 1.552 06 1.457 69 1.012 81
2 0.07 1.5474 1.424 45 1.000 63
3 0.0426 1.550 34 1.438 43 1.006 74
4 0.0426 1.550 34 1.438 43 1.1
5 0.0426 1.550 34 1.438 43 0.9
6 0.033 002 9 1.609 21 1.538 43 1.043 95
7 0.023 002 9 1.609 21 1.438 43 1.043 95
8 0.023 002 9 1.609 1 1.538 43 1.043 95
9 0.0426 1.609 21 1.438 43 1.043 95
10 0.0426 1.550 34 1.438 43 1.006 74
11 0. 1.552 06 1.438 43 1.012 81
12 0.032 789 3 1.5108 1 1.438 43 1.035 63
13 0.023 002 9 1.510 81 1.438 43 1.035 63
14 0.032 789 3 1.510 81 1.538 43 1.035 63
15 0.01 1.700 12 1.574 29 1.021 52
16 0.003 705 1.708 62 1.5768 1.023 49
17 0.0138 1.714 95 1.578 71 1.024 99
18 0.02 1.718 86 1.579 91 1.025 93
19 0.03 1.725 23 1.581 88 1.027 49
20 0.08 1.706 83 1.576 27 1.023 07
21 0.09 1.713 08 1.578 15 1.0245
22 0.1 1.719 39 1.580 07 1.026 06
23 0.101 197 1.5031 1.932 37 1.003 17
24 0.159 393 1.456 19 2.426 73 0.999 347
25 0.217 59 1.409 29 2.9211 0.995 52
26 0.275 786 1.362 38 3.415 47 0.991 694
27 0.333 983 1.315 48 3.909 83 0.987 867
28 0.392 179 1.268 58 4.4042 0.984 041
29 �0:132 144 1.963 91 0.619 831 1.047 58
30 �0:064 219 7 1.836 27 1.098 32 1.035 53
31 �0:030 257 3 1.772 44 1.337 56 1.029 51
32 �0:009 879 93 1.734 15 1.4811 1.0259
33 0.017 289 9 1.683 09 1.6725 1.021 08
34 0.037 667 3 1.6448 1.816 04 1.017 47
35 0.043 216 1.5843 0.635 194 1.044 15
36 0.027 915 7 1.621 66 1.490 05 1.043 85
37 0.038 103 1.596 76 1.586 81 1.044 05
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dratic fit would be less than 5% as expected from an
examination of the first 42 parameter sets. This yields a
region that is close to reproducing the target fine data and
in which a linear approximation should be good: m0a �
0:0328� 0:1, cB � 1:511� 0:1, cE � 1:538� 0:3 and
� � 1:036� 0:02, which is shown in Fig. 6.

The 24-set Cartesian data will allow us to calculate the
first and second derivatives directly from the measure-
ments. Note that we have more measurements than we
actually need. This provides additional checks on our
method and the validity of the scaling of physical quanti-
ties between the coarse and fine lattices. We expect that the
total number of data sets that we will use for the next step
of matching will be dramatically reduced.

Using the methods described in Sec. III C, we have
measured the pseudoscalar (PS), vector (V), scalar (S),
and axial-vector (AV) mesons in the heavy-heavy system,
and PS and V in the heavy-light system. We use combina-
tions of the masses to try to simplify their dependence on
the coefficients of the RHQ action. For the heavy-light
system, we use the spin-average and hyperfine splitting;
for the heavy-heavy system, we use these and also include
the spin-orbit average, spin-orbit splitting, and the ratio of

m1=m2. The resulting values for these quantities for each of
the 66 data sets are given in Table IX.

IV. ANALYSIS AND RESULTS

The final step in this matching procedure is to determine
the parameters in the heavy quark action of Eq. (1),
fm0a; cB; cE; �g, that will yield the seven quantities mea-
sured on the coarse lattice which agree with those deter-
mined on the fine lattice. Of course, this might be done by
‘‘trial and error’’ and, as can be seen by scaling the num-
bers in Table IX, data set No. 14 comes very close to such a
result. However, to fully understand this step-scaling
method (for example to properly propagate errors), it is
important to learn in detail how the measured spectra
depend on these input parameters.

As a starting point, we will attempt to use a subset of our
parameter space chosen so that the resulting coarse-lattice
hadron masses are well fit by a simple linear dependence
on the heavy quark parameters:

 Yn � A� J � Xn; (19)

where n labels the parameter set while X and Y are 4-
dimensional and 7-dimensional column vectors made up of
the four input heavy-action parameters and the seven com-
puted masses or mass ratios, respectively:

FIG. 6 (color online). The distribution in the 3-parameter
space �m0a; cB; �� of the 24-set Cartesian data. The center
circular point is set No. 14, and the points around it are sets
Nos. 43–66. The starred point represents the final matching
coefficients determined in Sec. IV B.

Set number m0a cB cE �

38 0.022 841 3 1.634 12 1.441 67 1.043 75
39 0.012 445 8 1.7295 1.235 41 1.042 95
40 0.012 445 8 1.7295 1.615 02 1.042 95
41 0.012 445 8 1.7295 0.855 798 1.042 95
42 0.027 386 1.709 23 1.307 37 1.038 74
43 0.132 789 1.610 81 1.838 43 1.055 63
44 �0:067 210 7 1.610 81 1.838 43 1.055 63
45 0.132 789 1.410 81 1.838 43 1.055 63
46 �0:067 210 7 1.410 81 1.838 43 1.055 63
47 0.132 789 1.610 81 1.238 43 1.055 63
48 �0:067 210 7 1.610 81 1.238 43 1.055 63
49 0.132 789 1.410 81 1.238 43 1.055 63
50 �0:067 210 7 1.410 81 1.238 43 1.055 63
51 0.132 789 1.610 81 1.838 43 1.015 63
52 �0:067 210 7 1.610 81 1.838 43 1.015 63
53 0.132 789 1.410 81 1.838 43 1.015 63
54 �0:067 210 7 1.410 81 1.838 43 1.015 63
55 0.132 789 1.610 81 1.238 43 1.015 63
56 �0:067 210 7 1.610 81 1.238 43 1.015 63
57 0.132 789 1.410 81 1.238 43 1.015 63
58 �0:067 210 7 1.410 81 1.238 43 1.015 63
59 0.132 789 1.510 81 1.538 43 1.035 63
60 �0:067 210 7 1.510 81 1.538 43 1.035 63
61 0.032 789 3 1.610 81 1.538 43 1.035 63
62 0.032 789 3 1.410 81 1.538 43 1.035 63
63 0.032 789 3 1.510 81 1.838 43 1.035 63
64 0.032 789 3 1.510 81 1.238 43 1.035 63
65 0.032 789 3 1.510 81 1.538 43 1.055 63
66 0.032 789 3 1.510 81 1.538 43 1.015 63

TABLE VIII. (Continued)
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TABLE IX. Mass spectrum measured on the coarse lattice in units of a�1 (where ‘‘sa’’ is spin averaged, ‘‘hs’’ is hyperfine splitting,
‘‘soa’’ is spin-orbit averaged, ‘‘sos’’ is spin-orbit splitting; ‘‘hl’’ is heavy-light and ‘‘hh’’ is heavy-heavy).

Set number mhh
sa mhh

hs mhl
sa mhl

hs mhh
sos mhh

soa m1=m2

1 1.0137(17) 0.0174(6) 0.679(5) 0.0254(17) 0.020(5) 1.135(14) 0.988(21)
2 1.1314(15) 0.0152(5) 0.742(4) 0.0221(15) 0.017(4) 1.251(13) 0.949(18)
3 1.0872(16) 0.0160(5) 0.718(5) 0.0233(15) 0.018(4) 1.207(14) 0.966(19)
4 1.1755(16) 0.0153(5) 0.762(5) 0.0228(15) 0.017(4) 1.298(13) 1.075(21)
5 0.9776(16) 0.0169(5) 0.664(5) 0.0241(16) 0.020(5) 1.094(14) 0.842(16)
6 1.0724(17) 0.0171(5) 0.709(5) 0.0248(16) 0.019(5) 1.193(14) 1.021(21)
7 1.0840(15) 0.0170(5) 0.716(4) 0.0246(16) 0.018(4) 1.208(12) 1.009(17)
8 1.0622(15) 0.0176(5) 0.704(4) 0.0254(16) 0.025(4) 1.190(12) 1.016(18)
9 1.1177(15) 0.0165(5) 0.734(4) 0.0238(15) 0.017(4) 1.241(12) 1.002(16)
10 1.0949(14) 0.0161(5) 0.723(4) 0.0234(15) 0.017(4) 1.217(12) 0.956(15)
11 1.0255(15) 0.0174(5) 0.686(4) 0.0254(16) 0.019(4) 1.149(12) 0.980(17)
12 1.1148(15) 0.0157(5) 0.733(4) 0.0232(15) 0.017(4) 1.238(12) 0.992(16)
13 1.0981(15) 0.0160(5) 0.724(4) 0.0236(15) 0.017(4) 1.221(12) 0.995(16)
14 1.0937(15) 0.0162(5) 0.721(4) 0.0239(15) 0.018(4) 1.216(12) 0.998(16)
15 0.9384(19) 0.0204(7) 0.638(5) 0.0287(19) 0.024(6) 1.060(15) 1.016(23)
16 0.9637(18) 0.0199(6) 0.652(5) 0.0280(18) 0.023(5) 1.085(15) 1.013(23)
17 0.9822(18) 0.0195(6) 0.661(5) 0.0275(18) 0.022(5) 1.103(15) 1.012(22)
18 0.9935(18) 0.0193(6) 0.667(5) 0.0273(18) 0.022(5) 1.114(14) 1.011(22)
19 1.0115(18) 0.0190(6) 0.677(5) 0.0268(17) 0.021(5) 1.132(14) 1.009(22)
20 1.1019(16) 0.0171(5) 0.725(5) 0.0242(16) 0.019(5) 1.221(13) 0.986(20)
21 1.1187(16) 0.0169(5) 0.734(5) 0.0239(16) 0.018(4) 1.237(13) 0.985(19)
22 1.1353(16) 0.0167(5) 0.743(5) 0.0235(15) 0.018(4) 1.254(13) 0.984(19)
23 1.0809(16) 0.0164(5) 0.714(5) 0.0240(16) 0.019(5) 1.196(14) 0.973(19)
24 1.0521(16) 0.0175(6) 0.699(5) 0.0255(16) 0.020(5) 1.164(14) 0.988(20)
25 0.9985(17) 0.0195(6) 0.670(5) 0.0279(18) 0.023(6) 1.107(14) 1.013(22)
26 0.9143(19) 0.0229(8) 0.624(5) 0.0318(20) 0.027(7) 1.021(15) 1.054(27)
27 0.7896(23) 0.0295(11) 0.557(5) 0.0384(25) 0.035(9) 0.895(18) 1.12(4)
28 0.606(3) 0.0469(28) 0.460(6) 0.052(4) 0.053(18) 0.708(24) 1.21(10)
29 0.8593(22) 0.0235(8) 0.596(5) 0.0316(21) 0.026(7) 0.993(17) 1.049(28)
30 0.9229(20) 0.0212(7) 0.630(5) 0.0293(19) 0.024(6) 1.050(15) 1.027(25)
31 0.9461(19) 0.0204(7) 0.642(5) 0.0286(19) 0.023(6) 1.070(15) 1.019(24)
32 0.9573(19) 0.0201(7) 0.648(5) 0.0282(18) 0.023(6) 1.079(15) 1.016(23)
33 0.9693(18) 0.0197(6) 0.655(5) 0.0279(18) 0.023(5) 1.089(15) 1.011(23)
34 0.9760(18) 0.0195(6) 0.658(5) 0.0277(18) 0.023(5) 1.095(14) 1.009(22)
35 1.2455(15) 0.0136(4) 0.802(4) 0.0195(13) 0.013(4) 1.372(13) 0.976(18)
36 1.0711(17) 0.0171(5) 0.708(5) 0.0248(16) 0.019(5) 1.192(14) 1.020(21)
37 1.0736(17) 0.0170(5) 0.709(5) 0.0248(16) 0.019(5) 1.194(14) 1.022(21)
38 1.0696(17) 0.0172(5) 0.707(5) 0.0248(16) 0.019(5) 1.191(14) 1.019(21)
39 1.0700(17) 0.0176(5) 0.708(5) 0.0249(16) 0.019(5) 1.194(14) 1.013(21)
40 0.9864(18) 0.0198(6) 0.663(5) 0.0279(18) 0.022(5) 1.108(15) 1.036(23)
41 1.1359(16) 0.0162(5) 0.743(5) 0.0228(15) 0.017(4) 1.262(13) 0.997(20)
42 1.0824(17) 0.0173(5) 0.715(5) 0.0245(16) 0.019(5) 1.205(14) 1.007(21)
43 1.1866(15) 0.0157(5) 0.769(4) 0.0227(15) 0.017(4) 1.303(13) 1.019(20)
44 0.8149(23) 0.0245(9) 0.571(5) 0.0340(23) 0.030(7) 0.937(17) 1.10(3)
45 1.2271(15) 0.0138(4) 0.790(4) 0.0209(14) 0.015(4) 1.344(13) 1.012(19)
46 0.8705(22) 0.0212(8) 0.601(5) 0.0309(21) 0.027(6) 0.993(16) 1.090(28)
47 1.3000(14) 0.0136(4) 0.830(4) 0.0195(13) 0.014(4) 1.420(12) 0.986(18)
48 0.9691(19) 0.0189(6) 0.654(5) 0.0274(18) 0.022(5) 1.095(15) 1.052(24)
49 1.3356(14) 0.0119(3) 0.849(4) 0.0179(12) 0.012(3) 1.456(12) 0.979(17)
50 1.0164(18) 0.0165(5) 0.679(5) 0.0250(17) 0.020(5) 1.143(14) 1.045(22)
51 1.1473(15) 0.0160(5) 0.749(4) 0.0230(15) 0.018(4) 1.263(13) 0.973(19)
52 0.7632(24) 0.0257(9) 0.545(5) 0.0354(24) 0.032(8) 0.884(17) 1.06(3)
53 1.1894(15) 0.0141(4) 0.772(4) 0.0210(14) 0.016(4) 1.305(13) 0.967(18)
54 0.8218(22) 0.0221(8) 0.576(5) 0.0319(21) 0.028(7) 0.943(16) 1.045(28)
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 X �

m0a
cB
cE
�

0
BBB@

1
CCCA Y �

mhh
sa

mhh
hs

mhl
sa

mhl
hs

mhh
soa

mhh
sos

m1=m2

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (20)

The quantities A and J are a 7-dimensional column vector
and a 7� 4 matrix which represent the constant and linear
terms in our linear approximation. (In most of the discus-
sion to follow, we will work with all seven measured
quantities. However, if this number is decreased, the vec-
tors Y, A, and the matrix J will shrink appropriately.)

Given a specific group of N of our data sets, Xni j1�i�N ,
we can determine the quantities A and J by minimizing an
appropriate 2 for such a linear fit:

 2
C �

XN
i�1

�A� J � Xni � Yni�T �W�1
C � �A� J � X

ni � Yni�:

(21)

Here W is a 7� 7 matrix representing a choice of corre-
lation matrix. In the results that follow we will use

 �WC�d;d0 �
XN
i�1

h�Ynid � �Ynid ��Y
ni
d0 �

�Ynid0 �i; (22)

where h� � �i represents an average over the 100 jackknife
blocks obtained by omitting one of the 100 measurements
with Ynid the result for that jackknife block and �Ynid the
corresponding average. Replacing WC by the simpler, un-
correlated error matrix �W0C�d;d0 �

PN
i�1 �d;d0�

ni
d had little

effect on the final results where �id is the usual squared
error on the measured quantity Yid. Determining the A and J
which minimize 2

C is straightforward because this is a
quadratic function of these 35 numbers and the minimum
can be obtained by solving 35 linear equations. Typically

these 35 equations are quite regular, with a stable solution
even if only a relative few of our data sets are used.

The use of linearity to determine the desired matching
heavy quark parameters is reasonable if we are working in
a region that is close to the right choice for those parame-
ters. Once we have determined the matrix J and vector A,
we can solve for the coefficients XC that will yield meson
masses equal to those found on the fine lattice, YF . Here
we add the subscripts C and F to indicate our estimates for
the physical coarse-lattice parameters (XC) and the coarse-
lattice masses (YF ), scaled from those calculated using the
fine lattice.

Again we minimize a quantity 2
F , similar to that given

in Eq. (20). However, the fine-lattice correlation matrix,
WF , which appears in the equivalent version of Eq. (20) is
defined through a modified version of Eq. (21).
Specifically, the fine-data analogue of Eq. (21) is used for
all but the seventh row and seventh column, which corre-
spond to the quantity m1=m2. Since this must be unity in a
relativistic calculation (and is one within errors for our
DWF results), we set �YF �6 � 1 and the corresponding
elements of the correlation �WC�d�6;6 � �WC�6;d�6 � 0
for 0 � d � 6. In order that the resulting correlation ma-
trix be invertible, we arbitrarily set �WC�6;6 � 10�8. This
has the effect of constraining the coarse-lattice value of
m1=m2 � 1. The resulting minimum is again determined
by solving a set of linear equations. That solution can be
written explicitly as

 XC � �J
T �W�1

F � J�
�1 � JT �W�1

F � �YF � A�: (23)

Finally, to determine the error on the resulting heavy
quark parameters XC, we add in quadrature two different
sources of error. To compute the first, we use the average
value of the masses YF , deduced from the fine-lattice
calculation, which together with jackknifed results for J
and A gives us the error on XC coming from the statistical
fluctuations in the coarse-lattice data. We then estimate the
statistical error coming from the fine-lattice calculation by

Set number mhh
sa mhh

hs mhl
sa mhl

hs mhh
sos mhh

soa m1=m2

55 1.2662(14) 0.0138(4) 0.813(4) 0.0196(13) 0.014(4) 1.385(13) 0.940(17)
56 0.9272(19) 0.0194(6) 0.633(5) 0.0279(18) 0.023(6) 1.052(15) 1.004(23)
57 1.3030(14) 0.0120(3) 0.833(4) 0.0179(12) 0.013(3) 1.422(12) 0.934(17)
58 0.9764(18) 0.0169(6) 0.659(5) 0.0254(17) 0.020(5) 1.102(15) 0.997(21)
59 1.2495(15) 0.0137(4) 0.803(4) 0.0195(13) 0.014(4) 1.367(12) 0.978(18)
60 0.9026(20) 0.0200(7) 0.619(5) 0.0284(19) 0.023(6) 1.027(15) 1.052(24)
61 1.0626(17) 0.0172(5) 0.704(4) 0.0242(16) 0.018(5) 1.184(14) 1.016(20)
62 1.1071(17) 0.0151(5) 0.728(4) 0.0221(15) 0.016(4) 1.228(13) 1.009(19)
63 1.0140(18) 0.0179(6) 0.678(4) 0.0256(17) 0.020(5) 1.134(14) 1.034(21)
64 1.1453(16) 0.0148(5) 0.748(4) 0.0212(14) 0.015(4) 1.267(13) 0.995(19)
65 1.1051(17) 0.0160(5) 0.726(4) 0.0230(15) 0.017(4) 1.226(13) 1.036(20)
66 1.0656(17) 0.0163(5) 0.706(4) 0.0233(15) 0.017(4) 1.186(13) 0.989(19)

TABLE IX. (Continued)
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using the average values for J and A in Eq. (22) and the
jackknifed values of YF to determine the resulting fluctua-
tions in the resulting heavy quark parameters XC caused by
the statistical errors in the determination of YF .

A. Four-parameter action

As is suggested by the large number of data sets listed in
Table VIII, we had greater difficulty than expected in
determining the four parameters m0a, cB, cE, and � .
Typically, reasonable choices of a subset of the parameter
sets from the initial group of 42 parameter sets listed in
Table VIII gave similar values for the final heavy quark
parameters. However, the derivative matrix was typically
quite singular and the resulting parameters, especially cE,
not well determined. In an attempt to make this process
more deterministic, we collected the 24 Cartesian data sets
from which we could determine the matrix of derivatives J
from simple differences. The result for J agreed very well
with that typically determined from the fitting procedure
described earlier to the less regular parameter choices in
our first 42 data sets. We conclude that this linear descrip-
tion of our coarse-lattice data is a good approximation. For
simplicity, we present only the results from this final
determination of J and A from the Cartesian data.

Specifically, the 24 parameter choices within our
Cartesian data set (Nos. 43–66) use parameters of the form

 Xni � �Xi � ��n�i�i: (24)

Here the quantity f��n�ig0�i�3 determines the first 16
parameter choices, where ��n�i � ��1�int�n=2i�, the expres-
sion int�x� represents the integer part of the number x and
the index n varies between 0 and 15. The four-parameter
increments �0 � 0:1, �1 � 0:1, �2 � 0:3, and �3 � 0:02
were listed earlier and are displayed in Fig. 6. The remain-
ing eight data sets use the values ��16� n�i �
��1�n�int�n=2�;i for n � 0; 1; . . . ; 7. The quantities A and J
can be directly determined using the following expres-
sions:

 Jd;i �
1

9

X23

n�0

��n�i
Ynd
2�i

(25)

 Ad �
1

24

X23

n�0

Ynd �
X3

i�0

Jd;i �Xi: (26)

We can then substitute the resulting values of A and J
into the linear relation of Eq. (18) and test this linear
description of our coarse-lattice results for the 24
Cartesian data sets. The simplest test of linearity should
be 2

C of Eq. (20). However, for our 24 sets of seven
quantities, the resulting 2

C=�7� 24� is � 15 suggesting
this linear description is poor. This large value of 2

C comes
from the linear prediction of the heavy-heavy spin-average
masses. If these are dropped from the calculation of 2

C, we

obtain 2
C=�6� 24� � 1:7, a much more acceptable value.

Looking more closely, we find the linear prediction for the
heavy-heavy spin-average masses agrees with the calcu-
lated value with a fractional discrepancy of 1%–2% for the
24 data sets. This is certainly a reasonable accuracy given
the systematic errors in determining these masses from our
lattice calculation. However, since the statistical error on
these quantities, which is used in our definition of 2

C, is of
the order of 0.1%–0.2%, we should expect these large 2

C

values. Thus, we conclude that the linear description of the
coarse-lattice results is satisfactory.

Using these results for J and A, Eq. (22) and the proce-
dure outlined in the previous section to determine the error,
we can go on to find the coarse-lattice parameters which
describe the fine-lattice results:

 XTC � fm0a; cB; cE; �g

� f�0:018�100�; 1:648�227�; 0:957�904�; 1:038�23�g;

(27)

where the superscript T indicates the transpose of the
column vector XC. The results form0a and � are reasonably
accurate. Note the relative error in m0a should not be
determined by comparing to the central value for m0a
which is shifted by the additive renormalization implied
by mcrit to be close to zero. Rather, one should recognize
that this error in m0a corresponds to a 4% relative error in
mhh

sa . However, the errors on cB and especially cE are
unacceptably large.

In order to better understand these large errors, we now
examine the matrix JT � J. This matrix is closely related to
the matrix JTW�1

F J which is inverted in Eq. (22) to obtain
the coarse-lattice parameters. While the characteristics of
the matrix JTW�1

F J are entirely similar to those of JT � J,
we found it more natural to focus on the simpler matrix JT �
J whose definition does not depend on a somewhat ad hoc
choice for the correlation matrix WF .

The eigenvalues of the matrix JT � J are

 f9:55�15�; 1:39�10�; 0:000 138�21�; 0:000 037�12�g (28)

with corresponding eigenvectors

 f0:832�4�;�0:1099�6�;�0:1079�7�; 0:532�6�g;

f�0:522�7�; 0:062�6�; 0:085�3�; 0:846�4�g

f0:181�7�; 0:81�7�; 0:56�10�;�0:003�6�g;

f0:041�23�;�0:57�10�; 0:82�7�;�0:0156�29�g

(29)

Here the eigenvectors reading top to bottom correspond to
the eigenvalues in Eq. (27) reading left to right. The
eigenvalues span a range of more than 5 orders of magni-
tude and dramatically decrease between the eigenvectors
dominated by the m0a or � directions and those aligned
with cB or cE. The smallest eigenvalue corresponds to an
eigenvector that has a large component in the cE direction
which leads to large error in the cE coefficient. [Recall that
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the components of the eigenvectors displayed in Eq. (28)
are arranged in the order fm0a; cB; ce; �g.]

Given the range of quantities measured and the precision
of the results, we were surprised that cE remains to a large
degree undetermined. Of course, this is precisely the result
that would be obtained if we were working with a redun-
dant set of parameters. Thus, we went back and looked
carefully at the arguments which determined this set of
‘‘independent’’ parameters and discovered an additional
field transformation that permits cE to be transformed into
cB. This result is valid to all orders inma and up to errors of
order �a ~p�2. This theoretical analysis is presented in the
companion paper [11].

Here, we will exploit this substantial simplification and
use only the three parameters m0a, � , and cP  cB � cE.
As is shown in the next section, within this restricted
parameter space, the problem of determining m0a, � , and
cP from given values for our seven measured quantities is
well-posed and accurate results for these three parameters
can be easily obtained making our proposed step-scaling,
matching procedure quite practical.

B. Three-parameter action

We will now exploit this simplification from four action
parameters to three and determine those three parameters
which give coarse-lattice results agreeing with those found
on the fine lattice. Specifically, we will use the action in
Eq. (1) but fix rs � � , rt � 1, and cE � cB � cP, and
study the dependence of the seven spectral quantities mak-
ing up the vector Y in Eq. (19) on the three parametersm0a,
cP, and � making up the vector:

 X�3� �
m0a
cP
�

0
@

1
A: (30)

As is shown in Ref. [11], a proper, mass-dependent choice
for three parameters will yield on-shell quantities which
are accurate to arbitrary order in �ma�n with errors no
larger than �a ~p�2.

How does this affect our analysis? We could, of course,
disregard all of our four-parameter runs and collect an
entirely new set of data with the restriction cB � cE.
Instead we will exploit the approximate linearity of much
of our four-parameter data and interpolate to obtain what
we expect to be a good approximation to the results we
would obtain had we chosen cB � cE.

Thus, we set cP � cB and explicitly subtract the devia-
tion that results from cE � cB using the matrix of deriva-
tives J determined in the four-parameter analysis above.
Such an expansion in cB � cE should be especially safe
given the very weak dependence on this difference that we
have seen. Hence, the coarse-lattice masses to be used in
this three-parameter analysis are obtained from

 Y�3�;nd � Ynd � Jd;2�c
n
B � c

n
E�: (31)

The action parameters corresponding to each of these data
sets are X�3�;n0 � Xn0 , X�3�;n1 � Xn1 , and X�3�;n2 � Xn3 . The
resulting ‘‘three-parameter’’ data sets with 1 � n � 66
can then be analyzed in precisely the same fashion as
was done for the case of four parameters, following the
steps taken in Eqs. (18)–(22).

Again we use as the center point that data set giving
results closest to the results from the fine lattice, which is
�X�3�;14�T � f0:0328; 1:511; 1:036g from set No. 14, the
Cartesian data sets 43–66, and obtain

 �X�3�C �
T � fm0a; cP; �g � f0:037�26�; 1:50�9�; 1:029�14�g:

(32)

The errors quoted here are statistical and obtained as
described in the beginning of this section by combining
in quadrature the errors coming from the determination of
the fine-lattice masses and the statistical uncertainties in
determining the coarse-lattice parameters which reproduce
those fine-lattice results.

Note that m0a is relatively small (close to zero) as a
reflection of mcritical for Wilson-type fermions lying close
to mcharm for our lattice spacing. The significance of the
error in m0a can be estimated from J�3�1;1 times the error in
m0a from the average coarse data, giving a 4% effect of the
error in m0a on the resulting heavy-heavy, spin-averaged
mass.

These better defined results for the case of the three-
parameter action demonstrate that the singularity in the
matrix that must be inverted to solve for these heavy quark
parameters has disappeared. For completeness, we list the
eigenvalues and eigenvectors of the 3� 3 matrix �J�3��TJ�3�

to be contrasted with the singular results found for the four-
parameter case in Eqs. (27) and (28):

 f9:77�15�; 1:41�10�; 0:000 26�4�g; (33)

with corresponding eigenvectors,

 f0:824�4�;�0:2157�11�; 0:524�6�g;

f�0:504�8�; 0:142�7�; 0:852�4�g;

f0:258�4�; 0:9661�11�;�0:008�7�g:

(34)

A comparison of Eqs. (27) and (28) with Eqs. (32) and (33)
shows that the first two large eigenvalues and correspond-
ing eigenvectors are changed very little by the reduction
from four to three parameters.

Next we would like to examine the contribution to
systematic error due to ignoring the quadratic terms in
our analysis. Using our 24 Cartesian data sets, we can
calculate both the first (J-matrix) and second derivatives
(a quadratic matrix Q) directly, without using a fitting
procedure. The resulting simple Taylor expansions around
the center point are
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Ynq � Y�3�;14 � J�3� � �X�3�;n � X�3�;14�

� 1
2�X

�3�;n � X�3�;14� �Q � �X�3�;n � X�3�;14�; (35)

where Q is the 3� 3 tensor of second derivatives and n
runs from 43 to 66 (including only the Cartesian data sets).
We can now estimate how much our resulting parameters X
depend on the quadratic terms and get a reasonable esti-
mate of the systematic error.

Using this quadratic approximation, we determine the
best-fit, coarse-lattice parameters X�3�C by minimizing
 

2
F ;q � �YF � Y

�3�;14 � J�3� � �X�3�C � X
�3�;14�

� 1=2�X�3�C � X
�3�;14�T �Q�3� � �X�3�C � X

�3�;14��T

�W�1
F � �YF � Y

�3�;14 � J�3� � �X�3�C � X
�3�;14�

� 1=2�X�3�C � X
�3�;14�T �Q�3� � �X�3�C � X

�3�;14��:

(36)

The result is �X�3�C �
T � fm0a; cP; �g � f0:034�8�; 1:50�3�;

1:035�5�g, now including the effects of quadratic terms.
Comparing these numbers with those in Eq. (31) from the
linear approximation, one sees that the quadratic contribu-
tions to the results are buried in statistical noise. Therefore,
we will not include contributions to the possible systematic
errors coming from the neglect of these quadratic terms in
the analysis.

The systematic errors enter as: (a) We use �ma�2 � 0:22

or 4% as an estimate of the heavy quark discretization
errors from domain wall fermion calculation on the fine
lattice. (b) The remaining RHQ heavy quark discretization
effects on the coarse lattice are given by �a ~p�2 � ��s�� �
1 GeV�ma�2 � 0:004. (c) Finally we estimate 1.3% as
the systematic error arising from the matching of the
spatial volumes of fine and coarse lattices. Therefore, add-
ing these three systematic errors in quadrature gives our
final coefficients: �X�3�C �

T � fm0a; cP; �g � f0:037�26��
�13�; 1:50�9��6�; 1:029�14��40�g where the first error shown
is statistical and the second systematic.

In our analysis, we have determined three parameters in
the action by requiring that seven physical quantities agree
between the coarse and fine lattices. Can we match fewer

physical quantities between the coarse and fine-lattice
spacing calculations and obtain the same result? Table X
summarizes the results for various choices of the quantities
being matched. As we can see, all the different choices give
consistent values for our three action parameters, agreeing
within one �. Thus, we have very consistent results for
different choices of calculated quantities which provides a
numerical demonstration of the validity of the heavy quark
version of the Symanzik improvement program being im-
plemented here.

Let us focus on two choices of measurements: index
‘‘E’’ using all seven measurements and index ‘‘B’’ using
only the results from heavy-heavy data. One might hope
that the more measurements we include in the analysis, the
smaller the resulting errors will be. However, it should be
recognized that the cost in computer time of making the
additional measurements involving light quarks is high. As
we can see, despite its considerable added cost, the index E
set makes only a small improvement on the statistical
errors. It may be more sensible to double the number of
configurations and focus exclusively on the heavy-heavy
system in future calculations.

V. COMPARISONS WITH OTHER APPROACHES

The description of heavy quarks explored in this paper is
one of a number of formulations built on Wilson’s original
fermion action [44] with the addition of clover and/or
anisotropic terms. In this section we compare the parame-
ters m0a, � , and cP determined here for our 1=a �
3:6 GeV effective heavy quark theory with similar parame-
ters determined by two of these other methods: standard,
O�4�-symmetric, clover-improved Wilson fermions, and
the 4-parameter, anisotropic Fermilab action. This serves
both as an approximate check of the results determined
here and an opportunity to compare perturbative and non-
perturbative methods.

A. O�a�-improved Wilson fermions

Since the asymmetry parameter � was found to be close
to unity, it is of interest to compare our parametersm0a and
cP with the corresponding mass �mW0a� and
Sheikholeslami-Wohlert �cSW� parameters which appear

TABLE X. The resulting coarse-lattice parameters obtained by matching various combina-
tions of physical quantities between the coarse and fine lattices. Different choices of the
quantities to be matched give action parameters consistent with each other within one �,
showing the consistency of this heavy quark improvement program.

Measurement index Data used X�3�C

A mhh
sa , mhh

hs , mhh
sos, m1=m2 f0:07�4�; 1:67�13�; 1:030�14�g

B “A”�mhh
soa f0:04�3�; 1:56�10�; 1:034�12�g

C mhh
sa , mhh

hs , mhl
sa, mhl

hs, m1=m2 f0:06�4�; 1:62�13�; 1:032�14�g

D “D”�mhh
sos f0:04�3�; 1:56�10�; 1:034�12�g

E All f0:03�3�; 1:53�10�; 1:035�12�g
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in the standard, relativistic, O�a�-improved, Wilson fer-
mion action.

We first consider the Sheikholeslami-Wohlert or clover
coefficient cSW. This can be obtained from the nonpertur-
bative result of Ref. [45]:

 cSW �
1� 0:656g2 � 0:152g4 � 0:054g6

1� 0:922g2 ; (37)

where g is the lattice coupling constant and � � 6=g2.
This gives cSW � 1:544 for our choice of� � 6:351 which
compares well with our result cP � 1:50�9��6�.

Next examine the bare Wilson mass mW0a. For the
standard, O�a�-improved Wilson action, this is usually
related to the continuum, ‘‘physical’’ quark mass by a
combination of a shift coming from the intrinsic chiral
symmetry breaking of Wilson fermions and a multiplica-
tive renormalization factor Zm:

 m��� � Zm�mW0 �mcrit=a�; (38)

where mcrit=a locates the value of mW0 at which the pion
mass vanishes and m��� represents the continuum quark
mass, defined by a renormalization condition imposed at
the energy scale �. In the discussion below we will use the
MS scheme and � � 2:0 GeV. We have introduced an
explicit factor of the inverse lattice spacing in Eq. (37) to
give the continuum quark mass its proper units.

We first determine the value of mMS��� which corre-
sponds to the mf � 0:2 input mass used in our reference,
� � 6:638 domain wall fermion calculation. For domain
wall fermions Eq. (37) also applies but m0 should be

replaced bymf=a and�mcrit bymres, a measure of residual
domain wall fermion chiral symmetry breaking that is
sufficiently small that it will be neglected here. While a
quenched, � � 6:638, domain wall fermion value for Zm is
not known, the value Zm � 1:59 obtained at � � 6:0 [22]
may not be too far off. (The results presented in Ref [46]
can be used to compare Zm evaluated with the DBW2
action at two very different lattice spacings, 1=a �
1:3 GeV and 1=a � 2:0 where a change of less than 3%
is seen.) Thus, we conclude that the calculations described
in this paper correspond to mMS�� � 2:0 GeV� �
1:72 GeV. (This large value suggests that our choice for
mf on the fine lattice may be somewhat larger than is
appropriate for the charm-quark mass.)

To relate this result for m���MS to the value of mW0

expected in a physically equivalent, O�a�-improved
Wilson calculation at � � 6:351, we next determine
mcrit. The critical quark mass can be estimated using either
perturbative or nonperturbative methods. The two-loop,
perturbative value for mcrit for the Wilson gauge and
O�a�-improved fermion action has been obtained in
Ref. [39]:

 mcrit � g2��1� � g4��2� (39)

 ��1� �
N2
c � 1

Nc
��0:162 857 1� 0:043 483 03cSW

� 0:018 095 8c2
SW� (40)

 ��2� � �N2
c � 1�

��
�0:017 537�

1

N2
c

0:016 567�
Nf
Nc

0:001 186 18
�
�

�
0:002 601�

1

N2
c

0:000 559 7

�
Nf
Nc

0:000 545 9
�
cSW �

�
�0:000 155 6�

1

N2
c

0:002 622 6�
Nf
Nc

0:001 365 2
�
c2

SW �

�
�0:000 163 15

�
1

N2
c

0:000 158 03�
Nf
Nc

0:000 692 25
�
c3

SW �

�
�0:000 017 219�

1

N2
c

0:000 042 829�
Nf
Nc

0:000 198 100
�
c4

SW

�
;

(41)

where the number of fermion flavors Nf � 0 in the
quenched approximation, the number of colors Nc � 3,
and we use the value of cSW � 1:544 determined above.
This gives mcrit � �0:219 for � � 6:351.

An alternative way to compute mcrit is to take the non-
perturbative, ALPHA collaboration measurement of �crit

(for example from Table 1 in Ref. [45]) and parametrize it
as a function of coupling constant:

 �crit �
0:130 287� 0:239 546g2 � 0:111 829g4

1� 1:849 15g2 � 0:868 181g4 (42)

for 6:0 � � � 7:4 and use mcrit �
1

2�crit
� 4. This gives

mcrit � �0:317. We will adopt this latter, nonperturbative
value as being more accurate.

Finally, in order to invert Eq. (37) to obtain the expected
value of mW0a which can be compared with our result for
m0a, we require the appropriate factor Zm for our rather
fine � � 6:351 lattice. However, for this comparison we
can avoid the extra translation to and from the MS scheme
by directly comparing quantities calculated in the RI
scheme at ��2:0 GeV. From Tables I and II of
Ref. [22] we determine ZRI

m �DWF��1:81. We will use a
similar nonperturbative value ZRI

m �SW��1=ZNPM
S �1:82

extracted from Table 1 of Ref. [47]. This value is only
approximate for our situation since it was obtained on a
coarser, ��6:2 lattice. Using these values we obtain
mW0 � ZRI

m �DWF�=ZRI
m �SW�mf �mcrit=a � �0:018=a

in units of 1=a�3:6 GeV. Thus, we can compare our RHQ
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action parameters fm0a;�;cPg�f0:037�26��13�;1:50�9��
�6�;1:029�14��40�g with those for a corresponding
O�a�-improved Wilson theory describing the same system:
f�0:018; 1:544; 1g. Since the two values for m0a should be
viewed as quite close to zero, these two actions are very
similar suggesting that, for a 1=a � 3:6 GeV lattice a
standard O�a�-improved Wilson action, with cSW and ZRI

m
determined nonperturbatively but at zero quark mass, may
describe a charmed quark at least to the accuracy of this
somewhat rough comparison.

B. Four-parameter Fermilab action with one-loop
coefficients

We now compare our nonperturbative result for the
remaining parameters � and cP with the one-loop pertur-
bative calculations carried out by Nobes [28] for the
closely related quantities, � , cB, and cE appearing in the
Fermilab action.

These one-loop coefficients of Fermilab action were
calculated using automated perturbation theory techniques
from the scattering of a quark off of a background chro-
momagnetic(electric) field [28]. The calculations are done
on the lattice and in the continuum and the comparison
used to determine the lattice parameters.

The analytic tree-level coefficients (after being trans-
lated into our notation for the action) are

 � 	0
 �

��������������������������������������������������������������������������
m0a�2�m0a�

4�1�m0a�

�
2
�
m0a�2�m0a�
2 ln�1�m0a�

s

�
m0a�2�m0a�

4�1�m0a�

c	0
B � � 	0


c	0
E � � 	0

�
�� 	0
�2 � 1

m0a�2�m0a�
�

� 	0


�1�m0a�

�
m0a�2�m0a�

4�1�m0a�
2

�
:

(43)

Next, the one-loop result for � 	1
 is given by the formula

 � 	1
 ���1�g2
0Z
	1

M2
�
�� 	0
�2�� 	0
 sinh�ln�1�m0a��

� 	0
�sinh�ln�1�m0a��
: (44)

We use this formula and the numerical one-loop results
from Tables 6.1 and 6.2 in Ref. [28] and perform an error-
weighted fit to the three functions of interest, ��m0a�,
cB�m0a�, and cE�m0a� with expressions of the form

 X	1
 �

P3
i�0 ai�m0a�

i

1�
P3
i�1 di�m0a�

i ; (45)

where X represents cB, cE, and � while the a’s and d’s are
listed in Table XI. This fit implies that at m0a � 0:036,
the coefficients are cB � 1:261, cE � 1:246, and � �
1:003, � 1:4� lower than our nonperturbatively deter-
mined coefficients: �X�3�C �

T � f0:037�26��13�; 1:50�9��
�6�; 1:029�14��40�g. (Since the results of Nobes have cB �
cE we can directly compare the coefficients in his 4-
parameter and our 3-parameter lattice action.)

To see directly the effects of the differences between
these perturbative and nonperturbative coefficients, we
should compare the resulting spectra. Although we did
not use these one-loop numbers in a spectrum calculation,
we can use our linear description of the dependence of the
spectra on the action parameters [the coefficients J and A
of Eq. (18)] to get a good idea of what the resulting masses
would be were we to use these one-loop coefficients. We
summarize the results in Table XII. These are reasonably
close to our nonperturbative results with the largest dis-
crepancy being the two hyperfine splittings which are 25%
smaller when determined from the one-loop coefficients.

There is a second, extensive perturbative calculation of
the one-loop, tadpole improved RHQ lattice action by the
Tsukuba group [13]. However, because the Tsukuba action
uses five parameters with rs � � , we cannot make a direct
comparison. While continuum field transformations can be
employed on the continuum effective Lagrangian to prove
that these 5-parameter and 3-parameter descriptions should

TABLE XI. Parametrization of the one-loop coefficients of the Fermilab action using Eq. (44).

a0 a1 a2 a3 d1 d2 d3

� 	1
 0.000 299 23 0.001 249 77 0.163 759 0.025 828 7 5.102 43 1.657 13 0.006 332 12
c	1
E 0.270 419 0.431 474 0.162 718 0.002 124 38 1.874 36 0.319 194 0.006 191 83

c	1
B 0.271 519 0.012 232 2 �0:000 039 117 0 0.056 595 5 0 0

TABLE XII. The expected coarse-lattice results for various choices of coefficients, XC, in the heavy quark effective action. Here the
linear approximation of Eq. (18), with coefficients A and J determined from data sets Nos. 43–66, is being used to predict the
corresponding physical masses.

Parameter mhh
sa mhh

hs mhl
sa mhl

hs mhh
sos mhh

soa m1=m2

X�3�C 1.0854(16) 0.0165(5) 0.716(4) 0.0239(16) 0.019(4) 1.206(13) 1.000(20)
XFermilab
C 1.1700(15) 0.0124(4) 0.763(4) 0.0194(13) 0.014(4) 1.292(13) 0.943(16)

Scaled YF 1.0881(16) 0.0175(6) 0.725(3) 0.0267(13) 0.017(3) 1.211(8) 1.002(23)
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lead to the same continuum physics up to discrepancies of
order � ~pa�2, these transformations are not defined for the
lattice variables and cannot be used to relate the one-loop
coefficients of the Tsukuba action given in Ref. [13] and
those determined here.

VI. SUMMARY AND OUTLOOK

In this work, we have demonstrated that it is practical to
determine the coefficients of the relativistic heavy quark
action nonperturbatively through a finite-volume, step-
scaling technique. This has been done by matching various
heavy-heavy and heavy-light mass spectrum calculations
on two quenched lattices. The domain wall fermion action
is used on fine lattice, where ma is relatively small, while
for the coarse lattice an improved relativistic heavy quark
action is used. By comparing the finite-volume predictions
of these two theories, we can then determine the coeffi-
cients of the heavy quark action. In order to simplify the
analysis, we assumed a linear relation between the parame-
ters appearing in the heavy quark action and the resulting
mass spectrum. (Of course, this assumption can be made
arbitrarily accurate by working in a region sufficiently
close to the desired solution.) The coefficients in this linear
relation were determined by computing the coarse-lattice
mass spectrum for a number of choices for the RHQ action.
We could then use this linear relation to precisely deter-
mine those heavy quark parameters which would yield the
masses implied by the fine-lattice calculations.

We initially applied this matching technique to the four-
parameter version of the heavy quark action originally
proposed in Ref. [8]. However, for this case, the system
of linear equations that must be solved was singular within
statistical errors and the resulting parameters, especially
the coefficients cB and cE very poorly determined. This
lead us to search for possible redundancy in the four-
parameter action and recognize, as is discussed in detail
in a companion paper [11], that a further field transforma-
tion was available that could be used to set cE � cB,
reducing the number of independent parameters to three.
With this restriction the problem of determining the rela-
tivistic heavy quark action is well posed and the coeffi-
cients can be accurately determined. Our result for the bare
mass, clover term, and asymmetry between the space and
time derivatives is fm0a; cP; �g � f0:037�26��
�13�; 1:50�9��6�; 1:029�14��40�g, where the first error is
statistical and the second systematic, excluding those com-
ing from the quenched approximation. Finally, we included
a quadratic term in the dependence of our measured masses
on the action parameters and obtained a result consistent
with the linear expansion.

While the calculation presented here describes the result
of a single step-scaling, from 1=a � 5:4 to 1=a � 3:6, this
procedure is robust and can be repeated leading to an
accurate description of the charm-quark system on lattices
of 1=a � 2:4 and 1.6 GeV with controlled O�aj ~pj�2 errors
[27]. We can easily decrease the statistical error by increas-
ing the number of configurations (here 100 were used) and
reduce the systematic error by starting with a finer lattice
for the domain wall fermion calculation. Our use of the
quenched calculation is intended to provide a computa-
tionally inexpensive study of the matching procedure.

The next step is a determination of the coefficients in
this relativistic heavy quark action, appropriate for charm
physics in full QCD. As discussed in Sec II, we can
perform the same finite-volume, step-scaling procedure
on 2� 1 flavor dynamical lattices. Since the long- and
short-distance physics can be treated separately, we can
substantially reduce the computational cost of such full
QCD step-scaling by using heavier light quark sea masses
in the earlier stage of matching, as long as msea=�QCD are
equal for each pair of systems being matched. Such a
calculation should be practical on presently available
computers.
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