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Energies for excited isospin I � 1
2 and I � 3

2 states that include the nucleon and � families of baryons
are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used
include nonlocal operators that provide G2 irreducible representations of the octahedral group. The
decomposition of spin 5

2 or higher spin states is realized for the first time in a lattice QCD calculation. We
observe patterns of degenerate energies in the irreducible representations of the octahedral group that
correspond to the subduction of the continuum spin 5

2 or higher. The overall pattern of low-lying excited
states corresponds well to the pattern of physical states subduced to the irreducible representations of the
octahedral group.
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I. INTRODUCTION

The theoretical determination of the spectrum of baryon
resonances from the fundamental quark and gluon degrees
of freedom is an important goal for lattice QCD. To date
there have been many lattice studies of ground state en-
ergies for different baryons [1–3] but only a few results for
excited state energies have been reported [4–11]. No clear
determination of states with spin 5

2 or higher has been
published because nonlocal operators have not been used.
In this work we find degenerate energies that occur in
irreducible representations of the octahedral group corre-
sponding to the subduction of the continuum spin 5

2 or
higher. The pattern of lattice QCD baryon states that we
observe is compared with the physical spectrum.

Lattice correlation functions correspond to definite irre-
ducible representations (irreps) of the octahedral group
when the source and sink operators transform accordingly.
There are six double-valued irreps of the octahedral group:
three for even parity that are labeled with a g subscript
(gerade) and three for odd parity that are labeled with a u
subscript (ungerade). They are G1g, Hg, G2g, G1u, Hu, and
G2u.

Continuum values of total angular momenta are realized
in lattice simulations by patterns of degenerate energies in
the continuum limit that match the patterns in Table I for
the subduction of spin J to the double-valued irreps of the
octahedral group. For example, a state in one of the G2

irreps is a signal for the subduction of continuum spin 5
2 or

higher. For spin 5
2 , there must be partner states in theH and

G2 irreps that would be degenerate in the continuum limit.

For spin 7
2 , there must be partner states in theG1,H, andG2

irreps.
This paper reports on work to determine the pattern of

low-lying states in the I � 1
2 and I � 3

2 channels. We carry
out an analysis in quenched lattice QCD using quasilocal
and one-link-displaced operators formed from three quark
fields. Smeared quark and gluon fields are used [12,13].
Smearing reduces the couplings to short wavelength fluc-
tuations of the theory and provides cleaner determinations
of energies [14]. This is important when a large array of
interpolating field operators is used in order to implement
the variational method of Refs. [15,16].

Both quasilocal and nonlocal operators transforming
according to the G2 irrep are required. We have developed
sets of baryon operators that transform according to irre-
ducible representations in two publications, one using an
analytical method based on appropriate Clebsch-Gordan
coefficients for the octahedral group [17] and the other
using a projection method that has been automated and
provides very large sets of operators [18]. Results obtained
from both methods are found to agree. In this work we use,

TABLE I. The number of occurrences of double-valued irrep
� of the octahedral group for half-integer values of continuum
spin J.

� J � 1=2 3=2 5=2 7=2 9=2 11=2

G1 1 0 0 1 1 1
H 0 1 1 1 2 2
G2 0 0 1 1 0 1
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for the positive parity channels, the three-quark operators
defined in Tables VI, VII, and X of Ref. [17]. These
compose a complete set of quasilocal operators plus the
simplest set of nonlocal operators having one quark dis-
placed relative to the other two.

The level ordering of baryon masses has been modeled
using the spin-flavor SU(6) quark model. Negative parity
multiplets are degenerate under SU(6) symmetry but the
symmetry is broken by addition of a spin-spin contact
interaction between quarks [19]. As a result, the lowest
N�JP � 1

2
�� and N�32

�� states become less massive than the
unperturbed levels and other states, such as N�52

��, ��1
2
��,

and ��32
��, become more massive. This pattern is observed

in our lattice calculations. Degeneracies of SU(6) are
further broken by addition of a spin-spin tensor interaction.
In the positive parity excited states, Isgur and Karl [20]
introduced an anharmonic perturbation in order to explain
the mass splittings, and a hyperfine interaction was intro-
duced to break the degeneracy of the multiplets. They
found that the second excited N�12

�� state, the lowest
N�32

�� state and the N�52
�� states are nearly degenerate.

Our lattice results using a relatively large pion mass equal
to 490 MeV follow this pattern.

This paper is organized as follows. In Sec. II, we review
the baryon operator construction and show the types of
operators used in our simulations. In Sec. III the use of
charge conjugation together with time reversal is dis-
cussed. The combination provides a means to obtain a
second correlation matrix for each gauge configuration.
In Sec. IV we review the computational techniques with
special emphasis on the variational method that is essential
for obtaining excited states. Also we discuss the aniso-
tropic action that is employed and the tuning of parameters
required to obtain the correct speed of light. Section V
presents and discusses the results for energies and eigen-
vectors in each irrep and their stability with respect to the
number of operators used in the variational method.
Section VI discusses the pattern of lowest energy levels
in the lattice results and shows that it is consistent with the
physical spectrum. Two notable findings are (1) the first
positive-parity excited state in the I � 1

2 , G1g channel is
found to have energy significantly higher than the experi-
mentally known mass of the Roper resonance, and (2) spin
assignments of either 5

2 or 7
2 are possible for some lattice

levels that preferably would be assigned spin 5
2 in order to

match the pattern of the physical levels. Section VII gives a
summary of the results.

II. IMPROVED BARYON OPERATORS

A. Quasilocal operators

We employ operators that transform as irreducible rep-
resentations of the octahedral group. They are formed as
linear combinations of elemental operators that have defi-
nite isospin and strangeness as follows,

 

�B ����k �x; t� � c���k����;0
�B����x; t�; (1)

where �, �, � are Dirac indices and the Clebsch-Gordan
coefficients for the octahedral group provide the appropri-
ate coefficients c���k����;0. [17] The subscript ‘‘0’’ denotes
quasilocal operators in which all quark fields have the
same coordinates, �x; t�. Octahedral group irreps are de-
noted by � � fG1g; G2g; Hg;G1u; G2u; Hug and the corre-
sponding irrep dimensions are d� � f2; 2; 4; 2; 2; 4g,
respectively. Each baryon operator carries a row label
that distinguishes between the d� members of irrep �,
i.e., � � 1; 2; . . . ; d�. When group representations contain
m� occurrences of irrep �, the label k is used to denote the
kth embedding.

Quasilocal elemental operators �B��� in Eq. (1) are color
singlet combinations of products of three quark fields, each
of which is smeared in the same gauge-covariant fashion
about point x. They are listed in Table II for the different
baryons. Although not shown in the table, each quark field
has a color index i, j or k, and a factor �ijk is included in
order to construct a color-singlet combination. The Dirac
index symmetries that give nonvanishing operators and the
number of available quasilocal operators distributed over
gerade irreps are also shown in the table.

Note that the ‘‘barred’’ form of the operator is given and
it is formed from three barred quark fields. The ‘‘unbarred’’
form of baryon operator is obtained by a similar sum using
complex conjugates of the same coefficients and three
quark fields,

 B����k �x; t� � c���k�����;0 B����x; t�: (2)

TABLE II. Baryons and the corresponding quasilocal three-
quark elemental operators. Columns 1– 4 show the symbol,
isospin, strangeness, and the form of elemental quasilocal source
operators with maximum Iz, respectively. In the next column, the
MA label (mixed-antisymmetric) denotes combinations of three
Dirac indices that are antisymmetric under permutation of the
first two labels and orthogonal to the totally antisymmetric
combination. Similarly, the MS label (mixed-symmetric) de-
notes combinations of indices that are symmetric with respect
to the first two labels and orthogonal to the totally symmetric
combination. Columns 6–8 show numbers of embeddings of
operators with irreps G1g, G2g and Hg, respectively. The last row
shows the total number of even-parity operators, including all
rows. Odd-parity operators are obtained from the even-parity
ones as explained in the text.

�B I S �B��� Dirac G1g G2g Hg Total

�N 1=2 0 � �u� �d� � �d� �u�� �u�=
���
2
p

MA 3 0 1 10
�� 3=2 0 �u� �u� �u� S 1 0 2 10
�� 0 �1 � �u� �d� � �d� �u�� �s�=

���
2
p

MA,A 4 0 1 12
�� 1 �1 �u� �u� �s� MS,S 4 0 3 20
�� 1=2 �2 �s� �s� �u� MS,S 4 0 3 20
�� 0 3 �s� �s� �s� S 1 0 2 10
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Note that no G2 irreps are obtained from quasilocal inter-
polating fields.

A quark field operator and a barred field operator are
transformed into one another by charge conjugation as
follows,

 C �q�C
y � �C��0q�0 ; Cq�C

y � �q�0C
y
�0�; (3)

where C � �4�2. A three-quark operator that transforms
according to irrep � of the octahedral group is related by
charge conjugation to an operator that transforms accord-
ing to irrep �c, which has opposite parity, i.e.,
 

C �B����k Cy � c���k����;0C �B���Cy � �c
���k�
���;0C����0�0�0B�0�0�0

� �c��c�ck�
�0�0�0;0B�0�0�0 ;

CB����k Cy � c���k�����;0 CB���C
y � c���k�����;0

�B�0�0�0C
y
�0�0�0���

� c��c�ck��
�0�0�0;0

�B�0�0�0 ; (4)

where C�0�0�0��� � C�0�C�0�C�0�. If � is G1g, G2g orHg,
then �c is G1u, G2u or Hu, respectively, and �c � d� �
1� �. This one-to-one correspondence between an opera-
tor of one parity and an operator with the opposite parity
holds for any quasilocal or displaced operator. Choosing
the gerade operators according to Eq. (1) and the ungerade

operators according to the right side of Eq. (4) provides a
convenient labeling of operators that facilitates the use of
charge-conjugation relations to realize improved statistics,
as explained in Sec. III.

B. One-link-displaced operators

A simple extension of quasilocal operators involves
displacement of the third quark field along a spatial direc-
tion relative to the first two quark fields, with a gauge link
included in order to maintain gauge covariance. An abbre-
viated notation for displacements uses the operator d̂‘
whose action on a three-quark quasilocal operator is de-
fined as follows,

 

d̂‘ �B����k �x; t� � �ijkf
�IS�
abcc

���k�
���

�~qi;a� �x; t� �~q
i;b
� �x; t�

� �~qk
0;ca
� �x� ‘̂; t�Uyk

0k
‘ �x; t�; (5)

where ‘̂ can take any of six spatial directions,	x,	y,	z.
Displacement operators transform amongst themselves

under lattice rotations. Linear combinations of displace-
ments provide suitable bases for the construction of irreps.
We define six linearly independent combinations of dis-
placements and the operators that create them as follows,

 Â1
�B D̂� �B D̂� �B D̂0

�B Ê0
�B Ê2

�B
� �

T �

1��
6
p �d̂x �B� d̂y �B� d̂z �B� d̂�x �B� d̂�y �B� d̂�z �B�

i
2 
�d̂x

�B� d̂�x �B� � i�d̂y �B� d̂�y �B��
� i

2 
�d̂x
�B� d̂�x �B� � i�d̂y �B� d̂�y �B��
� i��

2
p �d̂z �B� d̂�z �B�

1����
12
p 
2�d̂z �B� d̂�z �B� � �d̂x �B� d̂�x �B� � �d̂y �B� d̂�y �B��

1
2 
�d̂x

�B� d̂�x �B� � �d̂y �B� d̂�y �B��

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(6)

where displacement operators denoted as Â1, D̂	;0, and
Ê0;2 create combinations of operators that transform ac-
cording to the A1, T1, and E single-valued irreps of the
octahedral group, respectively. As may be seen in Table III,
the lowest angular momentum in A1 is L � 0, the lowest in
T1 is L � 1, and the lowest in E is L � 2. The combina-
tions of displacements are chosen so that they transform as
the lattice discretizations of the spherical harmonics YLm,
i.e., Â1 � Y00, D̂�;0;� � Y11, Y10, Y1�1, and Ê0;2 � Y20,
�Y22 � Y2�2�. Using this convention, the A1, T1, and E
one-link-displaced operators are defined as

 

�B ����k �

8>>>>>><
>>>>>>:

Â1
�B����k0P

r;�0
C � T1 �0

� r �0

� �
D̂r

�B��
0�0�

k0

P
r;�0
C

� E �0

� r �0

� �
Êr �B��

0�0�
k0

� c���k����;‘d̂‘ �B��� (7)

respectively, where

 C
� �0 �00

� �0 �00

� �

are Clebsch-Gordan coefficients appropriate for forming
overall irrep � from direct products of irreps �0 and �00.
The coefficients follow the conventions of Ref. [17]. The
second line of Eq. (7) defines new coefficients for linear

TABLE III. The number of occurrences of single-valued irrep
� of the octahedral group for integer values of continuum
angular momentum L.

� L � 0 1 2 3 4

A1 1 0 0 0 1
T1 0 1 0 1 1
E 0 0 1 0 1
T2 0 0 1 1 1
A2 0 0 0 1 0
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combinations of displaced three-quark operators that real-
ize the A1, T1, or E-type operators of Eq. (6). Table IV
shows the numbers of positive-parity, one-link-displaced
operators for different baryons. For the one-link-displaced
operators, there are inequivalent operators for each of the
two ways that I � 1

2 can be formed from three light quarks,
namely, the mixed-antisymmetric (MA) and mixed-
symmetric (MS) combinations. Operators corresponding
to total derivatives are excluded because they vanish
when projected to zero total momentum.

We construct matrices of correlation functions

 

C����kk0 �t����0���0 � c���k�����;‘ c
��0�0k0�
��	;‘0

X
x
h0jB����x; t�d̂

y
‘ d̂‘0

� �B�0�0�0 �0; 0�j0i�4
�0��

4
�0��

4
�0	; (8)

where displacement operator d̂‘ applied to baryon fields
denotes a one-link-displaced baryon field for ‘ �
	x;	y;	z and a quasilocal baryon for ‘ � 0. Lattice
operators belonging to different irreps or different rows
are orthogonal because of the octahedral symmetry of the
lattice. Different embeddings of a given irrep and row
provide sets of operators that we used in calculating the
matrix of correlation functions. The �4 matrices are in-
cluded in Eq. (8) in order to produce a Hermitian matrix of
correlation functions. For the operators used in this work,
the �4 matrices always reduce to a factor P ���k0 � 	1 when

they act on the three barred quark fields in �B����k . This
factor is the 	 parity defined in Ref. [17]. We write a matrix
of correlation functions for irrep � and row � as

 C����kk0 �t� � P ���k0

X
x
h0jB����k �x; t� �B����k0 �0; 0�j0i: (9)

III. CHARGE CONJUGATION

By inserting complete sets of particle states jni and
antiparticle states j �ni in Eq. (9), and using translational
invariance to extract the dependence on x and t, correlation
functions are expanded as
 

C����kk0 �t� � P k0�P;0

�X
n


�t�h0jB����k jnihnj �B����k0 j0ie
�Ent

�
X

�n


��t�h0j �B����k0 j �nih �njB
����
k j0ieE �nt

�
: (10)

Using the charge conjugation relations j �ni � Cjniei�, and
the invariance of the vacuum state under charge conjuga-
tion, the antiparticle contributions in the t < 0 part of
Eq. (10) are rewritten as

 P ���
k0 h0jC

�B����k0 CyCj �nih �njCyCB����k Cyj0i

� P ��c�
k0 c��c�ck��

���;‘ c��c�ck0�
�0�0�0;‘0 h0jB���d̂

y
‘ jni

�

� hnjd̂‘0 �B�0�0�0 j0i
�;

where P ��c�
k0 � �P

���
k0 . The relation between correlation

functions with different parities is then [18]

 C����kk0 �t� � �C
��c�c��
kk0 ��t�: (11)

Applying the temporal lattice boundary conditions
C����kk0 ��t� � �tC

����
kk0 �T � t�, with �t � �1 for periodic

boundary conditions and �t � �1 for antiperiodic bound-
ary conditions, the matrix of correlation functions can be
written as
 

C����kk0 �t� � �P;0

X
n



�t�P ���k0 h0jB
����
k jnihnj �B����k0 j0ie

�Ent

� �t
�T � t�P
��c�
k0 h0jB

��c�c�
k jni�

� hnj �B��c�c�
k0 j0i�e�E �n�T�t�� (12)

in the interval 0  t < T. The forward propagating signal
of a correlation function is equal to the backward prop-
agating signal of the parity-reversed, complex-conjugated
correlation function within the factor ��t, i.e.,

 C����kk0 �t� � ��tC
��c�c��
kk0 �T � t�: (13)

This symmetry is used to improve statistics. For each
gauge configuration we compute matrices of correlation
functions using for positive-parity operators the �B���-type
operators and for the corresponding negative-parity opera-
tors the �B��c�-type operators. Starting with a matrix of
correlation functions for a given parity, a second matrix
of correlation functions is obtained for the opposite parity.
After time-reversal, complex conjugation and multiplica-

TABLE IV. Numbers of embeddings of even-parity irreps,
G1g, G2g, and Hg, that are obtained with one-link-displaced
operators for different baryons. Columns show the number of
operators for each overall irrep that can be made using the three
irreps of one-link displacements: A1, T1, and E. Operators
corresponding to a total derivative acting on a three-quark
operator are omitted because they vanish when projected to
zero momentum.

�B Disp. G1g G2g Hg

�N
A1 8 0 4
T1 8 3 11
E 4 4 12

��, ���
A1 4 0 3
T1 4 1 5
E 3 3 7

��
A1 4 0 1
T1 5 1 6
E 1 1 5

��, ��
A1 4 0 3
T1 7 3 10
E 3 3 7
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tion by the factor ��t, the second matrix of correlation
functions is averaged with the first one. A typical state
created by the �B����k operator has an effective mass plateau
occurring in first half of the time extent, t < T=2. Using the
�B��c�c�
k operator, a similar plateau occurs at t > T=2. These

two plateaus are largely statistically independent samples
because gauge configurations on time slices significantly
before T=2 are largely uncorrelated with ones on time
slices significantly after T=2.

IV. COMPUTATIONAL TECHNIQUES

A. Variational method

Analysis of excited state energies is based upon the
matrices of correlation functions defined in Eq. (9).
Statistics are improved by averaging over the rows of
irreps, all of which are equivalent because of the cubic
symmetry. The matrix averaged over rows is denoted as
C���kk0 �t�, i.e., the row label is omitted.

Because the operators used to form a matrix of correla-
tion functions are not normalized with respect to one
another, we find that they can produce diagonal elements
of a correlation matrix that differ by 2 orders of magnitude.
It is convenient to adopt a normalization scheme at time t0
such that each operator produces a diagonal matrix element
equal to 1. Thus, we define normalization factors,

 Nk�t0� �
1�������������������

jC���kk �t0�j
q ; (14)

and renormalize the operators by attaching a factor Nk to
operator Bk. The new matrix of correlation functions is

 

~C ���kk0 �t� � NkC
���
kk0 �t�Nk0 ; (15)

and its diagonal elements obey ~C���kk �t0� � 1. Because of
this normalization convention the components of eigenvec-
tors indicate the relative importance of the contributions of
various operators to an eigenstate.

In order to extract an energy spectrum from the matrix of
correlation functions, we numerically solve the following
generalized eigenvalue equation,

 

X
k0

~C���kk0 �t�v
�n�
k0 �t; t0� � ��n��t; t0�

X
k0

~C���kk0 �t0�v
�n�
k0 �t; t0�;

(16)

where superscript n labels the eigenstates, such as the
ground state, the first excited state, and so forth. The
reference time t0 in Eq. (16) is taken near the source
time t � 0 in order to have significant contributions from
excited states and to ensure stability of the Cholesky
procedure below. The principal eigenvalues ��n��t; t0� are
related to the energy En by [16]

 ��n��t; t0� ’ e�En�t�t0��1�O�e�j�Ejt��; (17)

where �E is the difference between En and the next closest
energy.

Energies En are calculated from the principal eigenval-
ues according to

 En � � ln
�
��n��t� 1; t0�

��n��t; t0�

�
: (18)

We also perform fits of��n��t; t0� to an exponential function
��n��t; t0� � e�En�t�t0� over a range of time slices in order
to better determine the error of the energy En.

Numerical solutions of the generalized eigenvalue equa-
tion are obtained by performing a Cholesky decomposition
of the matrix of correlation functions at the reference time,
t0,

 

~C ���kk0 �t0� � ATkk00Ak00k0 : (19)

For the transfer matrix,

 T�t; t0� � �A
T��1 ~C����t�A�1; (20)

the eigenvalue problem is

 Tkk0 �t; t0�V
�n�
k0 �t; t0� � ��n��t; t0�V

�n�
k �t; t0�; (21)

 V�n�k �t; t0� � Akk0v
�n�
k0 �t; t0�: (22)

Left and right eigenvectors of the transfer matrix Tkk0 �t; t0�
are the same.

Eigenvectors in the generalized eigenvalue equation,
Eq. (16), are orthogonal with respect to ~C���kk0 �t0�, i.e.,

 v�n�Tk �t; t0� ~C
���
kk0 �t0�v

�n0�
k0 �t; t0� � �nn0 : (23)

It follows from Eqs. (16) and (23) that the correlation
matrix at time t is diagonalized by these vectors, i.e.,

 v�n�Tk �t; t0� ~C
���
kk0 �t�v

�n0�
k0 �t; t0� � ��n��t; t0��nn0 : (24)

It is useful to define improved operators by first adopting a
suitable normalization of the eigenvector components. Let

 ~v �n�k �t; t0� � Zn�t�Nkv
�n�
k �t; t0�; (25)

such that

 

X
k

j~v�n�k �t; t0�j
2 � 1: (26)

The factor Zn allows a comparison of the overall normal-
ization of eigenvectors calculated on different volumes.

B. Lattice setup and tuning

A technical difficulty in extracting excited state energies
from lattice QCD simulations is that the signal-to-noise
ratio degrades for increasing time. A plateau in the energy
may not be realized for excitations. We use several tech-
niques to overcome this problem, namely, the optimization
of operators so as to achieve early plateaus of the energies,
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the imposition of symmetries and the use of more gauge
configurations to increase the statistics, and the use of
anisotropic lattices. Anisotropic lattices are designed
with temporal lattice spacing at smaller than spatial lattice
spacing as. Using a finer lattice spacing along the time
direction provides more time slices for analysis of corre-
lation functions at small time separations from the source.
Of course anisotropic lattices require tuning of coefficients
in the action.

In this work, anisotropic lattices with two different
volumes are used: 239 gauge field configurations on a
163 � 64 lattice and 167 configurations on a 243 � 64
lattice. For both lattices, the renormalized ratio of spatial
lattice spacing to temporal spacing is  � as=at � 3:0 and
the temporal lattice spacing corresponds to a�1

t �
6:0 GeV [8]. Gauge-field configurations are generated us-
ing the anisotropic, unimproved Wilson gauge action in the
quenched approximation with � � 6:1

1. Anisotropic Wilson gauge action

The anisotropic Wilson gauge action [21–24] is given by
 

SG �
�
Nc

�
1

0

X
x;s>s0

Re Tr�1� Pss0 �x��

� 0

X
x;s

Re Tr�1� Pst�x��
�
: (27)

The renormalized anisotropy  � 3 is held fixed in our
calculations and the bare anisotropy, 0, is varied in order
to obtain the target value of  for the desired value of � �
6:1. Because the quenched approximation is used, tuning
of the gauge action may be performed independently of the
fermion action. Determination of the renormalized anisot-
ropy is based on measurements of static potentials for a
quark-antiquark pair.

2. Anisotropic Wilson fermion action

The anisotropic Wilson fermion action has the form
 

SF � ata3
s

X
x

�q�x�
�
m0 � �t

�
�4rt �

at
2

�t

�

� �s
X
s

�
�srs �

as
2

�s

��
q�x�; (28)

where
 

��q�x� �
U��x�q�x� �̂��U

y
��x� �̂�q�x� �̂�� 2q�x�

a2
�

;

r�q�x� �
U��x�q�x� �̂��Uy��x� �̂�q�x� �̂�

2a�
: (29)

Note that when �t � �s, the fermion action in Eq. (28)
becomes the original Wilson fermion action [25]. We hold
�t � 1 in the tuning because that preserves the projection
property of �1	 �4�=2 for parity. Then �s and the bare

quark massm0 are tuned in order to obtain the desired pion
mass and the correct speed of light.

The tuning is based on the relativistic dispersion relation
for the pion, E2�p� � m2c4 � c2p2, where E�p� is the
energy of a pion with total momentum p and mc2 �
E�0�. Expressing quantities in terms of the lattice spacing,
the speed of light is

 c�p� � 

���������������������������������������������
�atE�p��2 � �atE�0��2

�asp�2

s
; (30)

where  is the renormalized anisotropy. We measured the
pion energy E�p� for p � 0 and the lowest three nonzero
values of momentum, namely, p � 2�

L �1; 0; 0�,
2�
L �1; 1; 0�,

and 2�
L �1; 1; 1�. We tuned �s for five different bare quark

masses m0. The dispersion relation for tuned parameter �s
on the 163 � 64 lattice is plotted in Fig. 1. The straight
lines passing through the mean value of E2�0� show the
desired continuum dispersion relation for each pion mass.
In physical units, the volume is about �1:6 fm�3 �
�2:1 fm�.

For the anisotropic, unimproved Wilson fermion action,
tuning of the fermion action produced the results given in
Table V. A periodic boundary condition is employed for

0.0 1.0 2.0 3.0
(a

s
p)

2

0.00

0.02

0.04

0.06

0.08

0.10

(a
tE

(p
))

2

FIG. 1. Pion dispersion relation based on tuned parameters m0

and �s. The renormalized anisotropy is 3.0 and the lattice volume
is 163 � 64 with � � 6:1. Lines show the c � 1 dispersion
relation. The meaning of symbols is given in Table V.

TABLE V. Tuning parameters for the fermion action on the
163 � 64 lattice using renormalized anisotropy  � 3 and �t �
1

Symbol a2
t m

2
� m� �MeV� m0 �s

� 0.0066(5) 490 �0:313 0.898
� 0.0104(5) 610 �0:318 0.901
4 0.0126(5) 675 �0:305 0.902
� 0.0224(5) 900 �0:290 0.910
� 0.0335(5) 1100 �0:280 0.915
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spatial directions and an antiperiodic boundary condition is
employed for the temporal direction. Our spectrum calcu-
lations are based on the parameter set that yields a pion
mass of 490 MeV.

Gauge links are smeared at source and sink according to
the APE-smearing method [12],
 

U�n�1�
j �x� !U�n�j �x��

1

�

X
k?j

U�n�k �x�U
�n�
j �x� k̂�U

y�n�
k �x� ĵ�;

(31)

where projection of gauge link matrices to SU(3) is per-
formed after each iteration. We used the APE-smearing
parameters ��; n� � �2:5; 3� throughout this work.

Quark fields are smeared for both quasilocal and one-
link-displaced operators using the Gaussian smearing
method [13],

 q��x; t� !
X
x0
Ĝ�N��x; x0�q��x

0; t�; (32)

where Ĝ�N� is an operator that acts recursively,
 

Ĝ�N��x; x0� �
X
y

��x;y � �
2r2

x;y=4N�Ĝ�N�1��y; x0�;

Ĝ�0��x; x0� � �x;x0 ;
(33)

and r2
x;x0 is a three-dimensional, gauge-covariant

Laplacian operator. We used ��;N� � �3:0; 20� in this
calculation.

V. DISCUSSION OF RESULTS FOR EACH
SYMMETRY CHANNEL

We have extracted energies for I � 1
2 and I � 3

2 channels
by diagonalizing matrices of correlation functions formed
from three-quark operators that share the same octahedral
symmetry. A large number of operators is available so that
reduction to a set of the most important operators is carried
out in the initial stage. The available operators are divided
into several subsets containing roughly 3 to 8 operators
each and we diagonalize the matrices computed from each
subset of operators. Inspection of the energies and corre-
sponding eigenvectors reveals which operators provide
stronger signals for the low-lying states of interest. In the
second stage we omit all but these good operators and form
new matrices of correlation functions, which are then
diagonalized. This two-stage procedure yields solid results
for energies of low-lying states and is less susceptible to
noise than applying the variational method directly to the
matrices of largest dimension.

In each symmetry channel, we have studied how the
energies depend upon the number of good operators that
are used in applying the variational method. Starting from a
given set of good operators, matrices of correlation func-
tions of reduced dimension are obtained by omitting a less
important operator from the selected set. Continuing this
process, we have diagonalized matrices of various dimen-
sions and obtained energies. Low-lying energies in each
symmetry channel are plotted as a function of matrix
dimension in Fig. 2. The I � 3

2 ,G2g=u channel is not shown
because results in that channel are based on a single

FIG. 2 (color online). Energies in lattice units versus dimension of the matrices of correlation functions. Data for the 243 � 64 lattice
are used. Upper panels show energies for positive parity states and lower panels show energies for negative parity states. The I � 3

2 ,
G2g=u states are excluded because correlation functions are based on a single operator.
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operator. The lowest energy states are more or less stable as
long as a few important operators are retained. However, it
is expected that use of more than the minimum number of
operators improves the lowest-lying states because it re-
duces contamination from higher lying states. This expec-
tation appears to hold true for the lowest and first excited
states but is less evident for higher excited states with the
limited set of operators used in this work.

Diagonalization of a matrix of correlation functions
provides the principal eigenvalues ��n��t; t0�. These have
been fit with a single exponential form over a selected
range of times, t1  t  t2 in order to extract energies,
i.e., ��n��t; t0� � Ce�En�t�t0�. The resulting energies are
given in Tables VI, VII, VIII, and IX, which show the
energies obtained for positive-parity states with I � 1

2 ,
negative-parity states with I � 1

2 , positive-parity states

TABLE VI. The I � 1
2 , N�, positive-parity energies in the units of a�1

t obtained on a 243 � 64
lattice (left) and a 163 � 64 lattice (right). The irrep is shown in the first row together with the
dimension of the matrix of correlation functions used. In the first column, energy values obtained
from fitting the principal eigenvalues are shown in increasing order, namely, the second row
contains energies of the lowest-lying states for each channel and the third row contains the first
excited state energies, etc. The Z-factor of Eq. (25) is given in the second column. A time range
in which the energy and the Z-factor are fitted on the 243 � 64 lattice is listed in the third
column.

G1g, 10� 10, 243 � 64 G1g, 10� 10, 163 � 64

Energy Zn Time Energy Zn
0.193(3) 5:75�15� � 10�5 19–24 0.194(4) 8:45�15� � 10�5

0.398(6) 4:79�12� � 10�5 8–12 0.403(6) 9:53�26� � 10�5

0.399(7) 5:64�33� � 10�5 10–15 0.409(8) 8:84�46� � 10�5

G2g, 4� 4, 243 � 64 G2g, 4� 4, 163 � 64
Energy Zn Time Energy Zn

0.374(13) 1:47�57� � 10�5 13–18 0.414(13) 2:11�35� � 10�5

0.398(10) 1:34�25� � 10�5 10–14 0.444(7) 7:66�100� � 10�5

0.574(21) 3:73�30� � 10�5 11–14 0.564(12) 5:90�199� � 10�5

Hg, 12� 12, 243 � 64 Hg, 12� 12, 163 � 64
Energy Zn Time Energy Zn
0.365(9) 5:40�15� � 10�5 13–18 0.375(9) 9:25�33� � 10�5

0.395(7) 5:14�14� � 10�5 10–15 0.407(5) 8:38�21� � 10�5

0.400(7) 4:39�7� � 10�5 10–16 0.407(8) 7:75�10� � 10�5

0.403(8) 4:27�10� � 10�5 10–14 0.422(6) 8:07�17� � 10�5

0.427(8) 6:36�8� � 10�5

0.443(6) 8:75�7� � 10�5

TABLE VII. The I � 1
2 , N�, negative-parity energies in the units of a�1

t obtained on a 243 �
64 lattice (left) and a 163 � 64 lattice (right). A similar description applies as in the caption of
Table VI.

G1u, 7� 7, 243 � 64 G1u, 7� 7, 163 � 64

Energy Zn Time Energy Zn
0.290(5) 5:68�53� � 10�5 12–17 0.290(7) 9:19�40� � 10�5

0.323(12) 5:73�44� � 10�5 11–17 0.340(6) 9:35�73� � 10�5

G2u, 3� 3, 243 � 64 G2u, 3� 3, 163 � 64
Energy Zn Time Energy Zn

0.327(10) 1:93�82� � 10�5 15–20 0.325(9) 2:67�121� � 10�5

0.473(11) 7:24�22� � 10�6 7–12

Hu, 8� 8, 243 � 64 Hu, 8� 8, 163 � 64
Energy Zn Time Energy Zn

0.284(16) 5:00�38� � 10�5 18–23 0.284(9) 8:07�26� � 10�5

0.308(7) 5:74�8� � 10�5 15–22 0.310(8) 1:04�1� � 10�4

0.330(9) 7:93�5� � 10�5 16–22 0.328(8) 1:44�1� � 10�5
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with I � 3
2 , and negative-parity states with I � 3

2 , respec-
tively. Operators are selected so as to provide the best
quality of energies for the larger lattice volume and the
same sets of operators are then used for the smaller lattice
volume. The Z factors given in Eq. (25) are also shown
along with the energies. Each table shows results for two
lattices, 163 � 64 and 243 � 64, and six symmetry chan-
nels, G1g=u, G2g=u and Hg=u. In some channels, there are
states in the 163 � 64 analysis that are missing from the
243 � 64 analysis and vice versa.

We have examined the Z factors defined in Eqs. (25) and
(26) as a possible means to detect scattering states follow-
ing the methods of Ref. [26]. This has not produced clearly
interpretable results. Therefore we discuss the results for
each channel in the following subsections assuming that
there are no scattering states in the extracted spectra for the
pion mass used in these calculations.

A. G1 channel

In the I � 1
2 , G1g channel, we selected 10 operators on

the 243 � 64 lattice that give the best quality of energies

using the variational method, and the same 10 operators are
used to analyze the 163 � 64 lattice data. The ground state
of this channel, i.e., the nucleon state, has a very stable set
of eigenvector components with respect to time as shown
in Fig. 3. As many studies have shown, the ground state is
dominated by a local operator of the form uT�C�5�dP�u,
where P	 are parity projection matrices for Dirac spinors.
However, we find non-negligible contributions from non-
local T1 operators represented by diamonds, circles, and
inverted triangles in the figure. One significant operator has
a mixed-symmetric isospin symmetry with totally symmet-
ric Dirac indices. Although this isospin symmetry is un-
usual, nonlocal operators formed from three quarks allow
such combinations. In fact, this operator plays a significant
role in the first excited state in combination with a local
operator of the second embedding. The first and second
excited states have relatively clean signals and are domi-
nated by local and T1-displaced operators, respectively.
Similar energies are calculated for states on the two lattice
volumes except for the second excited state. Dominance of
a nonlocal operator in the second-excited-state eigenvector

TABLE IX. The I � 3
2 , ��, negative-parity energies in the units of a�1

t obtained on the 243 �
64 lattice (left) and the 163 � 64 lattice (right). A similar description applies as in the caption of
Table VI.

G1u, 6� 6, 243 � 64 G1u, 6� 6, 163 � 64

Energy Zn Time Energy Zn
0.309(9) 3:13�99� � 10�6 15–20 0.312(7) 5:38�117� � 10�5

G2u, 1� 1, 243 � 64 G2u, 1� 1, 163 � 64
Energy Zn Time Energy Zn
0.506(7) 7:31�16� � 10�5 6–12 0.539(5) 1:43�2� � 10�4

Hu, 7� 7, 243 � 64 Hu, 7� 7, 163 � 64
Energy Zn Time Energy Zn
0.320(5) 8:38�30� � 10�5 12–17 0.317(6) 1:16�4� � 10�4

0.485(7) 5:56�53� � 10�5 7–12 0.485(8) 9:14�28� � 10�5

TABLE VIII. The I � 3
2 , ��, positive-parity energies in the units of a�1

t obtained on the 243 �
64 lattice (left) and the 163 � 64 lattice (right). A similar description applies as in the caption of
Table VI.

G1g, 5� 5, 243 � 64 G1g, 5� 5, 163 � 64

Energy Zn Time Energy Zn
0.378(17) 5:05�14� � 10�5 14–18 0.373(8) 1:67�5� � 10�4

0.392(7) 7:41�26� � 10�5 12–17 0.401(13) 9:33�16� � 10�5

G2g, 1� 1, 243 � 64 G2g, 1� 1, 163 � 64
Energy Zn Time Energy Zn

0.416(7) 8:92�28� � 10�5 9–14 0.429(6) 1:49�4� � 10�4

Hg, 4� 4, 243 � 64 Hg, 4� 4, 163 � 64
Energy Zn Time Energy Zn

0.231(3) 1:22�3� � 10�4 19–26 0.232(4) 1:79�4� � 10�4

0.326(7) 5:89�5� � 10�5 13–20 0.341(13) 1:11�1� � 10�4

0.370(25) 6:54�4� � 10�5 19–23 0.399(10) 1:20�6� � 10�4

0.400(8) 7:15�5� � 10�5 14–19 0.402(6) 1:29�2� � 10�4
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might explain this dependence on lattice volume because
we find that the nonlocal operators generally exhibit more
sensitivity to the spatial volume. Eigenvectors are more or
less the same in each state on the two lattices as far as the
coefficients of the two or three most important operators
are concerned. Fluctuations of the eigenvector components
generally increase with time for excited states, but they are
fairly stable in the time ranges where energies are
extracted.

In the G1u channel we obtain two states which could
correspond to N�12

�; 1535� and N�12
�; 1650�. Each is domi-

nated by two local operators but in different linear combi-
nations. Contributions from nonlocal operators for the first
excited state are around jv�n�k �t; 0�j & 0:3, which is less
than for positive parity states. The energy of the lowest
state on the two lattice volumes is essentially the same,
suggesting that a 163 lattice is large enough to contain this
state with a 490 MeV pion mass.

In the I � 3
2 , G1g channel, the first excited (the lowest)

state in 163 volume corresponds to the lowest (the first
excited) state in 243 volume. This correspondence is based
on the similarity of eigenvector components. The first
excited state of I � 3

2 , G1g has lattice energy of 0.392(7)
on the larger volume and 0.373(8) on the smaller volume,
with error bars that do not overlap. The apparent crossover
of energies of the same state at different lattice volumes is
observed only in this particular state. The eigenvectors for
these states show that they are dominated by T1 displaced
operators with MS isospin.

In the negative parity channel, it is more difficult to
determine the excited state energies due to the large error

bars, while the lowest state, corresponding to ��12
�; 1620�,

is fairly stable. Again the T1 displaced operators dominate
the eigenvectors of the two lowest energy states.

B. H channel

We find a richer spectrum in I � 1
2 , Hg=u than in other

channels as shown in Tables VI, VII, and VIII. Plateaus are
achieved for t � 20 in the first three states. Approximate
plateaus could be selected for the next three states.
However, the use of more diverse operators together with
better statistics is required in order to extract reliably more
than the first three states.

We obtained four energies for the I � 1
2 , Hg channel

using the 243 lattice and six energies using the 163 lattice,
with errors relatively small compared with those in other
channels. A quasilocal operator yields the dominant cou-
pling to the lowest Hg state and our operator is essentially
the same as the Rarita-Schwinger projected operator that
has been used in other works. The Rarita-Schwinger pro-
jected lattice interpolating field belongs to the H irrep and
is therefore consistent with the subduction of continuum
spins 3

2 ;
5
2 ;

7
2 ; � � � . Several works [4,6,7,9] have suggested

that this lowest Hg state likely corresponds to a continuum
spin 3

2
� state. However, we find an indication that it corre-

sponds to a higher spin, either 5
2
� as in the N�52

�; 1680�, or
7
2
�. The possible spins will be discussed in the next section

when the patterns of states over all the irreps are
considered.

For states above the ground state, combinations of non-
local T1 operators dominate the couplings. Consistent with
this, we observe a finite volume effect on some energies in

FIG. 3. Eigenvector components v�0�k �t; 0� of the ground state for (a) the I � 1
2 ,G1g channel using a 10� 10 matrix and (b) the I � 1

2 ,
Hu channel using an 8� 8 matrix, both on the 243 � 64 lattice. The vertical axis is the value of the coefficient of a basis operator and
the horizontal axis is time. Each basis operator corresponds to a symbol in the plot; the four most important operators are listed below
the plot together with their symbols. �N�k

S;Sz
is our notation for a smeared three-quark operator with spin S, spin projection Sz, irrep �,

and embedding k. The symmetry (MA, MS, or S) of Dirac indices for each three-quark operator is written next to the operator. Explicit
forms of the operators �N�k

S;Sz
are provided in Ref. [17].
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the N�, Hg excited spectrum. Even though the lowest
energy state is dominated by the quasilocal operator, its
energy has some dependence on the volume of the lattice.
The lowest and the first excited states are clearly identifi-
able from eigenvector compositions in both volumes.
Eigenvectors for the second and the third excited states
are contaminated by noise on the 243 lattice with the
available statistics, although the 163 lattice provides stable
eigenvectors.

The I � 1
2 , Hu states provide the least contaminated

group of states in the sense that energies for several excited
states are determined easily and the lowest few states have
eigenvectors that are nearly as stable as those of the nu-
cleon G1g ground state. The lowest-lying state should
correspond to the physical N�32

�; 1520� state, the first ex-
cited state should correspond to the N�52

�; 1675� state, and
the second excited state should correspond to the
N�32

�; 1700� state, supposing no scattering states are in-
volved. Energy differences between these states are rela-
tively small and our lattice results agree with this pattern.
In contrast to the positive parity channel, finite volume
effects in energies are well within statistical fluctuations.
The nonlocal three-quark operators that we use yield non-
vanishing MS isospin combinations although the simplest
quark model does not have them. Our results show that
contributions of MS isospin operators are crucial to the first
and second Hu excited states. The same operators are
important in both volumes. Energy differences between
parity-partner states are found to be smaller for the I �
1
2 , H irreps than for other channels.

The � baryon appears as the lowest energy state in the
I � 3

2 , Hg channel. A local operator with nonrelativistic
spin components dominates the ground state with very
small error bars. The first and second excited state signals
should correspond to ��32

�; 1600� and ��52
�; 1905�, respec-

tively. Signals for these states are also reasonably clean on
the 163 lattice, however the results on the 243 lattice are
subject to larger fluctuations and the extracted energies are
not reliable.

In the I � 3
2 , Hu spectrum we find that the ground state,

corresponding to ��32
�; 1700�, has stable signatures in both

energy and eigenvector plots but the signal is short-lived.
This is associated with the fact that the most important
operator is the negative parity transform of the operator
that dominates the positive parity ground state. The result-
ing long-lived plateau in the backward-in-time part of the
correlation function limits the range of times where the
excited state energies can be extracted. The energy differ-
ences between parity-partner states of the low-lying delta
baryon spectrum in the H irrep are larger than in other
channels.

C. G2 channel

The G2 baryon spectrum is the least explored because
nonlocal operators have not been readily available.

However, G2 operators are very important for the assign-
ment of higher spins because of their role in the patterns of
subduction of continuum spins to the octahedral irreps.

We have selected the four best operators for the I � 1
2 ,

G2g spectrum by the method described earlier. One of these
is the operator with E-type spatial displacement, which
transforms evenly under spatial inversion. We find that G2

energies are the most difficult to extract in our calculations
because the plateaus are relatively short-lived, signal-to-
noise ratios are small, and the number of operators that we
have used for the variational method is limited. The limi-
tation on the number of operators arises because we have
restricted the operators to ones that can be constructed
from one-link displacements. Work in progress includes
more varied types of operators, which yield larger numbers
of G2 operators [11].

The lowest state in the I � 1
2 , G2g channel has signifi-

cant couplings to the T1-displaced MA isospin operator,
the T1-displaced MS isospin operator, and the E-displaced
MS isospin operator. There is a non-negligible contribution
to the lowest energy state of G2 from the E-type of dis-
placed operator that corresponds to L � 2 in the subduc-
tion of continuum angular momenta. The first excited state
has significant couplings to a combination of two T1 op-
erators that also contribute to the ground state but in a
different linear combination. The second excited state
couples almost purely to a single T1 operator with MS
isospin. Eigenvectors are similar on the two lattice volumes
for the lowest three states, however their energies change
significantly. The lowest energy is calculated to be
0.362(17) in this channel, which agrees very well with
the lowest I � 1

2 , Hg energy, 0.365(9). Because these two
energies are degenerate within errors, they are consistent
with being the partner states for spin 5

2 . However, that is not
the only possibility as is discussed in the next section.

For the I � 1
2 , G2u channel, the T1-displaced operator

with MS isospin dominates the lowest state, while the
E-displaced operator plays a significant role with
jv�n�k �t; 0�j � 0:4 in the first excited state. The lowest physi-
cal state corresponding to I � 1

2 ,G2u isN�52
�; 1675�, which

should also occur as the first excited state of the Hu

spectrum. The lowest energy state ofHu should correspond
to N�32

�; 1520�. We find that the first excited state of theHu

channel has energy 0.308(7), whereas the lowest state G2u

state has energy 0.327(10) in the larger volume. In the
smaller lattice volume, Hu and G2u energies are 0.310(8)
and 0.325(9), respectively. The possible spin assignments
are discussed further in the next section.

Having several good operators in each symmetry chan-
nel is important for the success of the variational method.
Based on our present results using four G2 operators, we
find that the energy of I � 1

2 ,G2u is lighter than that of I �
1
2 ,G2g, which is also consistent with experiment. An earlier
analysis with one G2 operator found the opposite [8].

LATTICE QCD DETERMINATION OF PATTERNS OF . . . PHYSICAL REVIEW D 76, 074504 (2007)

074504-11



For the I � 3
2 , G2 channels, our set of quasilocal and

one-link-displaced operators does not contain a subset that
provides better signals than are obtained from a correlation
function based on a single operator. The problem is noise.
Therefore we simply fit the energies based on individual
correlation functions and pick the best-behaved one, which
is found to involve the T1-displaced operator. Because no
diagonalization is involved, the energy is relatively con-
taminated in early time slices and the plateau is weak. The
I � 3

2 ,G2 spectrum needs further study using a larger set of
operators, such as two-link-displaced operators or opera-
tors that have two quarks displaced from the third quark.

VI. PATTERN OF LOWEST-LYING ENERGIES

The physical spectrum of baryon excited states shows a
number of degeneracies between states of different spins.
In the lattice results, this means that particular care must be
exercised in order to identify spins because accidental
degeneracies of two states can provide the same patterns
in the octahedral irreps as a single higher spin state. Given
the limited energy resolution of our calculations, this leads
to alternative interpretations for the spins of some excited
states in the lattice results. It is more appropriate to com-
pare the pattern of lattice results to the pattern of experi-
mental masses and spins subduced to the irreps of the
octahedral group.

Although there are substantial discretization errors with
the quark action that is used, and they could contribute
differently in the different irreps, clear patterns in the
degeneracies emerge. Focusing on the group of three
positive-parity excited states near lattice energy atE �
0:36 in Fig. 4, two interpretations are possible. (a) The

group consists of a spin 1
2 state and a spin 5

2 state that
accidentally are degenerate. In this case the G1g state cor-
responds to spin 1

2 and the Hg and G2g partner states
correspond to the subduction of spin 5

2 . (b) The group
consists of a single state with the degenerate G1g, Hg and
G2g partner states corresponding to the subduction of spin
7
2 . Note that these are the only possible interpretations. It is
not possible for the H state to be an isolated spin 3

2 state
because that would require the G2 state also to be an
isolated state. There is no interpretation for an isolated
G2 state. Higher spins than 7

2 would require more partner
states than are found.

In the physical spectrum of positive-parity nucleon reso-
nances, the lowest excited state, N�12

�; 1440�, lies below all
negative parity states. We do not find a signal for a positive-
parity excitation that has lower energy than the negative-
parity excitations at this quark mass. The next two excited
nucleon states are essentially degenerate, namely,
N�52

�; 1680� and N�12
�; 1710�, each with a width of about

100 MeV. Spin 7
2 states occur only at significantly higher

energy (1990 MeV). These states are well separated
from other states and the width of each is about
100 MeV. Primarily because of the absence of spin 7

2 in
the low-lying spectrum, interpretation (a) of our lattice
results is more consistent with the pattern of physical
energies and spins.

In the negative-parity spectrum, we also obtain essen-
tially the same results for both lattice volumes. The three
lowest states shown on the right half of Fig. 4 are unam-
biguously identified as follows: the lowest G1u state corre-
sponds to spin 1

2 and the lowest twoHu states correspond to
distinct spin 3

2 states. Above these is a group of three states
with roughly the same lattice energy: atE � 0:33 (within
errors). Again there are two possible interpretations.
(a) The group consists of a spin 1

2 state in G1u that is
accidentally degenerate with a spin 5

2 state, the latter having
degenerate partner states in Hu and G2u. (b) The group
consists a spin 7

2 state having degenerate partner states in
G1u, Hu and G2u.

The pattern of low-lying physical states starts with
N�32

�; 1520�, N�12
�; 1535� and N�32

�; 1700�. These should
correspond to distinct Hu, G1u and Hu states on the lattice,
in agreement with the three lowest negative-parity states in
Fig. 4. The next two physical states are N�12

�; 1680� and
N�52

�; 1675�, which essentially are degenerate. They
should show up as degenerate G1u, Hu and G2u states on
the lattice. This pattern of spins is consistent with
interpretation (a) of the lattice states at lattice energy
atE � 0:33. The pattern of energies of the physical states
has N�52

�; 1675� a little lower in energy than N�32
�; 1700�,

but the lattice results at lattice spacing 0.1 fm place the spin
5
2 state above the spin 3

2 state. Study of the continuum limit
of the lattice spectrum is required in order to resolve these
issues.
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FIG. 4 (color online). The energies obtained for each symme-
try channel of I � 1

2 baryons are shown based on the 243 � 64
lattice data. The scale on the left side shows energies in lattice
units and the scale on the right side shows energies in GeV. The
scale was set using the string tension. Errors are indicated by the
vertical size of the box.
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Figure 5 shows the pattern of lowest-lying energies for
each irrep with the � states included. Energies have been
converted to physical units but the purpose of this graph is
to display the pattern of level orderings for low lying spin-
parity channels with spins up to 5

2 , not to make a compari-
son of absolute energy values with experiment.

The spin assignments in the negative parity channels
obtained in our simulations correspond reasonably well
with the physical spectrum, i.e., the N�32

�� is the lowest,
the N�12

�� is slightly above, the ��12
�� is next, the ��32

�� is
next, the N�52

��, to which I � 1
2 , G2u corresponds, is

slightly above, and finally the ��52
�� is highest. One result

that does not correspond with nature is the relative order of
the N�52

�� and the ��3
2
�� states, although the error bars

overlap and the energy splitting of the mean values is only
2%. Considering these six states, the mean energies of
N�32

�� and N�12
�� are less than the other four. This agrees

with what is predicted by the quark model with the contact
spin-spin interaction between quarks treated as a
perturbation.

In the positive-parity channels, with the exception of the
Roper resonance, our spin assignments also follow the
same orderings as occur in nature: the N�12

�� is the lowest,
the ��32

�� is next, the N�52
�� is next, for which Hg and G2g

are degenerate, the ��12
�� is next up, and finally the ��52

��

is highest. The analysis of Isgur and Karl based on the
quark model yields a nearly degenerate set of states corre-
sponding to N�12

�; 1710�, N�32
�; 1720�, and N�52

�; 1680�.
Their calculation explains well the small energy splitting,
’ 40 MeV, between these states. Our results yield a fair
agreement with this result. Energies of the first excited

state of I � 1
2 , G1g, the first excited state of I � 1

2 , Hg,
and the lowest I � 1

2 , G2g are 0.398(6), 0.395(7), and
0.362(17), respectively. Closeness of first two energies
above is remarkable, but the third energy is significantly
different. Note that our assignments cause the lowestN�32

��

to correspond to the first excited state of I � 1
2 ,Hg because

the lowest state corresponds to the JP � 5
2
�. Although our

energy splittings at this quark mass can be much larger than
those in the physical spectrum, if our spin assignments are
correct the ordering of energies of the lightest states in a
given channel reproduces the physical ordering.

On the other hand, comparison of the order of energy
levels with different parities provides different conclu-
sions. For instance, the ��32

�� energy should appear be-
tween N�52

�� and N�32
�� energies (here only the lowest

energies are considered), but it does not. Further study of
the continuum limit is required in order to confirm the spin
assignments.

VII. SUMMARY AND OUTLOOK

This paper presents spectra for isospin I � 1
2 and I � 3

2
states based on lattice QCD simulations using the
quenched approximation, anisotropic lattices with as=at �
3 and a pion mass of 490 MeV. Sets of three-quark inter-
polating fields are used to construct matrices of correlation
functions and the variational method is used to extract
energies. Smeared quark and gluon fields are used to
diminish the coupling to short wavelength fluctuations of
lattice QCD. The result is that diagonalizations are able to
extract good signals for low-lying states. We have obtained
as many as 17 energies for I � 1

2 states and 10 energies for
I � 3

2 baryon states, including various spin-parity channels.
The variational method determines the best linear combi-
nations of basis operators for energy eigenstates. For each
obtained energy eigenstate, we paid close attention to the
stability of the eigenvector components with respect to
time and with respect to the two different volumes.

Because scattering states are expected to be present in
the spectrum, we have calculated spectral weights for all
states on two volumes. However, the weights do not pro-
vide evidence for two-particle states in our spectra. The
first positive-parity excited state in the I � 1

2 , G1g channel
is found to have energy significantly higher than the ex-
perimentally known mass of the Roper resonance. Better
ways are being developed to identify scattering states and
resonances, such as the use of operators that should have
large couplings to the �� N states and the use of several
pion masses in order to better detect s-wave �N states.

Because the minimum spin that is contained in the G2

irrep is 5
2 , we have found strong evidence for spin 5

2 or
higher for both parities in our spectra for I � 1

2 . We also
have found evidence for degenerate partner states corre-
sponding to the subduction of spin 5

2 or higher to the
octahedral irreps.
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FIG. 5. The lowest energies obtained for each symmetry chan-
nel of I � 1

2 and I � 3
2 baryons are shown in columns 2 and 4 and

the experimental levels are shown in columns 1 and 3. The 243 �
64 lattice data are shown and the left two columns show the
energies of positive-parity states and the right two columns show
the energies of negative-parity states. The vertical axis shows
energy in MeV.
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The lattice results for the I � 1
2 low-lying excited states

provide the correct number and pattern of octahedral states
for the subduction of the spins of the low-lying physical
states, with the exception of the Roper state. When the �
states are included, the overall pattern of lattice results for
the lowest energy in each channel is similar to the pattern
observed in nature.

The results shown here and in Ref. [11] represent a first
glimpse of the pattern of nucleon and � excitations as
predicted by QCD, but they are based on the quenched
approximation, a 490 MeV pion mass and an action that

may have significant discretization effects. Similar calcu-
lations in full QCD are under way with an improved action,
several pion masses, several lattice spacings and much
larger sets of baryon interpolating operators.
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