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A numerical technique is proposed for an efficient numerical determination of the average phase factor
of the fermionic determinant continued to imaginary values of the chemical potential. The method is
tested in QCD with eight flavors of dynamical staggered fermions. A direct check of the validity of
analytic continuation is made on small lattices and a study of the scaling with the lattice volume is
performed.
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I. INTRODUCTION

Lattice QCD simulations in the presence of a finite
density of baryonic matter are hindered by the well-known
sign problem. Consider, for instance, the QCD partition
function

 Z��;�� �
Z

DUe�SG�U��detM�U;���2

�
Z

DUe�SG�U�j detM�U;��j2ei2�; (1)

describing two flavors of quarks (or eight flavors in the case
of staggered fermions) which are given an equal chemical
potential �: the determinant of the fermionic matrix M is
in general complex (� � 0) for � � 0 and Monte Carlo
simulations are not feasible. Various possibilities have
been explored to circumvent the problem, like reweighting
techniques [1–3], the use of an imaginary chemical poten-
tial either for analytic continuation [4–10] or for recon-
structing the canonical partition function [11–13], Taylor
expansion techniques [14,15], and nonrelativistic expan-
sions [16–18].

The problem is not present in the case of a finite isospin
density, i.e. when quarks are given opposite chemical
potentials. Indeed, due to the property detM�U;��� �
detM�U;���, the partition function

 Z��;��� �
Z

DUe�SG�U�j detM�U;��j2 (2)

has a positive measure. That is also known as phase
quenched QCD. The average value of the phase factor of
the fermionic determinant, hei2�i��;���, where the index
indicates the partition function the expectation value refers
to, gives a direct measurement of the severeness of the sign
problem. hei2�i 	 0 signals the stage at which the complex
nature of the determinant implies a significant difference
between finite baryonic density and finite isospin density,
as well as a poor reliability of reweighting techniques (see
Ref. [19] and references therein).

It clearly follows from Eqs. (1) and (2) that the average
phase factor is the expectation value of the ratio of two
determinants and it can also be expressed as the ratio of

two partition functions:

 hei2�i� �
�

detM���
detM����

�
��;���

�
Z��;��
Z��;���

: (3)

Its direct numerical computation becomes difficult as the
lattice volume V increases, since it involves the numerical
evaluation of fermionic determinants.

It has been proposed recently [20,21] to study the ana-
lytic continuation of the average phase factor to imaginary
values of the chemical potential

 

hei2�ii� �
�

detM�i��
detM��i��

�
�i�;�i��

�
Z�i�; i��
Z�i�;�i��

�

R
DUe�SG�U� detM�U; i�� detM�U; i��R
DUe�SG�U� detM�U; i�� detM�U;�i��

; (4)

where Z�i�; i�� and Z�i�;�i�� are the analytic continu-
ation of the partition functions at finite baryonic and iso-
spin chemical potentials, respectively, which are both
suitable for numerical simulations since detM�U; i�� is
always real. Numerical difficulties, however, are present
also in this case: the observable to be averaged is still
expressed in terms of fermionic determinants. Moreover,
in principle, sampling problems deriving from a bad over-
lap between the two statistical distributions described by
Z�i�; i�� and Z�i�;�i�� may arise. In Ref. [21] the
fermionic determinant has been estimated on the basis of
the lowest lying eigenvalues of the fermionic matrix.

In the present paper we propose a new technique which,
making use of numerical strategies developed in different
contexts, permits an exact evaluation of the average phase
factor with a reasonable scaling of the required CPU time
as the lattice volume is increased. In doing this we will
fully exploit the possibility of performing numerical simu-
lations of the partition function Z�i�1; i�2� for generic
values of �1 and �2.

In Sec. II we illustrate two different possible methods,
which are then numerically tested and compared in Sec. III
for the theory with 8 staggered flavors.

PHYSICAL REVIEW D 76, 074501 (2007)

1550-7998=2007=76(7)=074501(6) 074501-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.074501


II. THE METHOD

The evaluation of the average phase factor, expressed
like in Eq. (3) or Eq. (4) as the ratio of two different
partition functions, resembles similar problems which are
encountered in quite different contexts, like the evaluation
of disorder parameters in statistical models and in lattice
gauge theories. Explicit examples are given by monopole
disorder parameters or by the ’t Hooft loop, both related to
the investigation of color confinement. The major problem
in those cases is the small overlap between the statistical
distributions corresponding to two different partition func-
tions, resulting in a poor sampling efficiency. Powerful
techniques have been developed in both cases, consisting
in either determining derivatives of the disorder parame-
ters, from which the ratio of partition functions can then be
reconstructed after integration [22–24], or in making use
of various reweighting techniques, like that of rewriting the
original ratio in terms of intermediate ratios which are
more easily evaluable [25–27].

In the present case the major difficulty derives from a
direct computation of the observables, which is expressed
in terms of fermionic determinants, but sampling problems
may, in principle, worsen the situation also in this case,
especially in the large volume limit. In the following we
will describe the application of both kinds of techniques
described above to the present case, and try to understand
by numerical simulations which of them is best suited for
this context.

We describe at first how to reconstruct hei2�i in terms of
derivatives. Consider the modified ratio

 R���� �
Z�i�; i��
Z�i�;�i��

; (5)

where

 Z�i�; i�� �
Z

DUe�SG�U� detM�U; i�� detM�U; i��:

(6)

It is clear that R����� � 1, while R���� is the original
ratio. It can be easily verified that

 ���� �
d
d�

lnR���� �
d
d�

lnZ�i�; i��

�

�
iTr

�
M�1�i��

d
d�i��

M�i��
��
�i�;i��

: (7)

The last quantity is nothing but i times the average number
of quarks coupled to the chemical potential i�: the latter is
purely imaginary for symmetry reasons, hence ���� is real,
and can be computed using a noisy unbiased estimator. The
average phase factor can then be obtained by integration

 hei2�ii� � exp
�Z �

��
����d�

�
(8)

and no quark determinant must be explicitly computed.

In practice, the derivative ���� will be computed for a
discrete set of values of � and then integrated numerically.
The precision attained for hei2�ii� will depend both on the
statistical errors of the single determinations and on the
systematic uncertainty linked to numerical integration; the
last can be estimated, for instance, by varying the chosen
interpolation procedure. In principle it is also possible to
determine further derivatives of � in order to improve the
integration accuracy.

As a different method we consider rewriting hei2�ii� as
the product of N intermediate ratios:

 hei2�ii� �
Z�i�; i��
Z�i�;�i��

�
ZN
ZN�1

ZN�1

ZN�2
. . .
Z1

Z0
�
YN
k�1

rk;

(9)

where ZN � Z�i�; i��, Z0 � Z�i�;�i�� while

 Zk �
Z

DUe�SG�U� detM�U; i�� detM�U; i���
 k����

(10)

with �� � 2�=N. The idea is to compute each single ratio
rk by a different Monte Carlo simulation. This is not
conceptually different from the first approach: finite dif-
ferences of a free energy are computed in this case instead
of its derivative. However the numerical procedure is dif-
ferent and it is not clear a priori which approach is more
convenient.

In the second case the improvement comes from the
increased overlap between each couple of partition func-
tions and from the simple form in which the observable
appearing in each ratio rk can be rewritten, for large
enough N. Indeed we have

 rk � hdetM�i��
 ����= detM�i��i�i�;i��

� hexp�Tr lnA��; ����i�i�;i��; (11)

where � � ��
 �k� 1��� and

 A�U; �; ��� � M�U; i���1M�U; i��
 ����: (12)

If �� is small, the matrix A�U; �; ��� is very close to the
identity matrix Id for each gauge configuration U, hence rk
can be easily computed by a variety of methods. One
possibility could be, for instance, the use of unbiased
estimators of detA [28,29], which would involve the com-
putation of the square root of A.

Our choice is instead that of expanding the logarithm in
Eq. (11), thus rewriting the following approximate expres-
sion for rk:

 rk ’ hexp�Tr�A� Id� � 1
2 Tr�A� Id�2 
 . . .�i: (13)

Each trace in the exponential can be evaluated by a noisy
estimator as follows:

 Tr �A�U� � Id�n ’
1

K

XK
j�1

��j�y�A�U� � Id�n��j�; (14)
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where ��j� is a random vector satisfying h��j�yi1
��j�i2 i� �

�i1;i2 . The computation of each noise estimate in Eq. (14)
can be made faster if, when applying the matrix A�U� �
M�U; i���1M�U; i��
 ���� to the vector ��j� (or to
�A�U� � Id�n�1��j� at higher orders), ��j� itself is taken
as a starting tentative solution for the inverter giving
M�U; i���1�M�U; i��
 ������j��: the guess is better and
better as ��! 0. In this case the estimator is biased, hence
the final result must be checked to be independent of the
number K of random vectors used. Moreover the system-
atic error involved in the truncation of the logarithm ex-
pansion, Eq. (13), must be properly estimated and kept
under control. As we will show in the following, in all the
examined cases (parameter sets and values of ��) the bias
can be made negligible with very few random vectors,
while corrections beyond the second order in the logarithm
expansion are irrelevant.

III. NUMERICAL RESULTS

We have tested our methods for the theory with 8
staggered flavors of mass am � 0:1. We will present re-
sults obtained on L3

s � Lt lattices with Lt � 4 and Ls � 4,
8, 16. At zero chemical potential this theory presents a
strong first order deconfinement/chiral transition, the criti-
cal coupling being �c 	 4:7 for Lt � 4. We have per-
formed simulations both in the deconfined region
(� � 4:8) and in the low temperature confined region

(� � 4:6). On the smallest lattice (Ls � 4) we will com-
pare our results directly with those obtained at real isospin
chemical potential by a direct evaluation of the phase of the
determinant. Numerical simulations have been performed
mostly on the APEmille facility in Pisa. The INFN
apeNEXT facility in Rome has been used for the largest
lattice. The standard exact HMC algorithm [30] has been
used with trajectories of length 1.

A collection of the results obtained for imaginary chemi-
cal potentials is reported in Table I.

A. Systematic errors and comparison of the methods

In Figs. 1–3 we report various determinations of ����
(minus the imaginary part of the baryon number, Eq. (7))
obtained on discrete sets of points.

It is apparent that ���� is a very smooth function of � in
all cases, independently of the lattice size and of the ex-
plored phase (confined or deconfined) [31]. In most cases it
can even be approximated by a linear function; therefore
numerical integration turns out to be an easy task. We have
adopted a simple linear interpolation between consecutive
points to obtain the results given in Table I, the reported
errors derive from standard error propagation of the statis-
tical errors of the single data points. We have verified, by
changing the order of the interpolating polynomial, that the
systematic error related to the interpolation-integration
procedure is negligible with respect to the statistical one.

Concerning the second method described in Sec. II, we
have adopted a standard trick [25] in order to reduce
systematic effects. Each partial ratio rk in Eq. (9) has
been rewritten as

 rk �
�

detM�i��
 ����
detM�i��

�
i�;i�
�
r
k
r�k

�
hdetM�i��
 ����= detM�i��
 ��

2 ��ii�;i��
���=2��

hdetM�i��= detM�i��
 ��
2 ��ii�;i��
���=2��

:

(15)

TABLE I. Collection of determinations of the average phase
factor continued to imaginary values of � for various parameter
sets and computation methods. In the fourth column the method
used to obtain the determination is described: DER(N) stands for
the integration of the first derivative � determined on a discrete
set of (N 
 1) points, Eq. (8); RAT(N) stands for the evaluation
of N intermediate ratios rk, Eq. (9). Finally for the smallest
lattice also a direct determination of the expectation value in
Eq. (4) is reported for comparison.

Ls � Im��� Method hei2�ii� HMC trajs

4 4.8 0.025 DER(10) 1.003 22(42) 700 k
4 4.8 0.025 RAT(5) 1.0030(18) 150 k
4 4.8 0.025 RAT(10) 1.0028(11) 300 k
4 4.8 0.025 direct 1.0033(11) 40 k
4 4.8 0.05 DER(20) 1.0108(11) 800 k
4 4.8 0.05 RAT(10) 1.0122(16) 500 k
4 4.8 0.075 DER(15) 1.0266(17) 350 k
4 4.8 0.10 DER(20) 1.0454(16) 700 k
4 4.8 0.20 DER(16) 1.283(8) 700 k
8 4.8 0.025 DER(10) 1.0164(19) 150 k
8 4.8 0.025 RAT(5) 1.0200(50) 50 k
16 4.8 0.025 DER(10) 1.0732(85) 60 k
16 4.8 0.025 RAT(5) 1.053(33) 40 k
16 4.8 0.05 DER(10) 1.368(30) 40 k
4 4.6 0.025 DER(5) 1.0061(10) 200 k
4 4.6 0.05 DER(10) 1.0270(15) 350 k
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FIG. 1. ���� for various values of � at � � 4:8 and Ls � 4.
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rk can again be evaluated by a single simulation and a
jackknife analysis has to be applied to obtain a correct error
estimate. Two major benefits derive in this case. First, the
reduced value ��=2 greatly improves the convergence of
the logarithm expansion in Eq. (13). Second, the bias
introduced by the finite number of noisy estimators, see
Eqs. (13) and (14), gets largely cancelled in the ratio. That
is apparent from Fig. 4, where we plot r
k and the inverse of
r�k defined in Eq. (15), and their geometric mean (i.e.

�����
rk
p

),
as a function of the number K of noise vectors, in one
particular sample case. It is clear that, while the single
factors have a relatively slow convergence, their product is
stable from K � 5 on. We have, however, always used
K � 30 in our determinations, which roughly optimizes
the precision obtained on rk at constant numerical effort.

Regarding the logarithm expansion, Eq. (13), we have
always adopted a third order approximation: in all cases the
discrepancy with the result obtained at the second order is
at least 1 order of magnitude smaller than the statistical
uncertainty. The fact that the systematic error related to this

expansion is well under control can be also appreciated
from Table I, second and third row, showing that the
determination of hei2�ii� is stable against the variation of
the number of intermediate ratios.

Let us now come to the comparison between the two
methods. While they always give perfectly compatible
results, thus confirming the absence of appreciable system-
atics, it is clear from Table I that, with a comparable
numerical effort (in the last column we give the total
number of Monte Carlo trajectories used for each determi-
nation), the method described by Eq. (8) (integration of the
derivative) furnishes more accurate determinations; this is
especially true on the largest lattice. We have therefore
chosen this method in order to perform more extensive
studies of hei2�ii�.

B. Test of analytic continuation

The average phase factor computed at finite isospin
chemical potential, at variance with that computed in the
quenched theory, is expected [20,21] to be an analytic
function of �2 around �2 � 0 [32]. We can test analytic
continuation by comparing our results with direct determi-
nations of hei2�i performed at real chemical potentials: this
is done only for the smallest lattice (Ls � 4), where the
second determination is easily affordable.

We plot in Fig. 5 results obtained at � � 4:6 and � �
4:8. The whole set of results obtained at real chemical
potentials (�2 > 0) and imaginary chemical potentials
(�2 < 0) can be described by a simple quadratic behavior

 hei2�i � 1
 A�2 (16)

in a range j�2j � 0:01, with A � �4:41�9� and
�2=d:o:f: ’ 1:5 for � � 4:8 and A � �10:2�3� and
�2=d:o:f: ’ 1:8 for � � 4:6. If the range of values is ex-
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FIG. 2. ���� for various values of � at � � 4:6 and Ls � 4.
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FIG. 4. r
k (blank triangles) and the inverse of r�k (blank
circles) defined in Eq. (15), together with their geometric
mean, i.e.

�����
rk
p

(filled circles). Data are showed for Ls � 4, � �
0:05, � � �0:045, and �� � 0:005.
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FIG. 3. ���� for various values of � at � � 4:8 and Ls � 16.
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tended a quartic term is necessary

 hei2�i � 1
 A�2 
 B�4 (17)

as shown in the figure. We obtain, at � � 4:8, A �
�4:48�8�, B � 15:7
 2:5, and �2=d:o:f: ’ 1:3.

Analyticity around�2 � 0 is therefore well verified. We
stress that at � � 4:8 our largest value of the imaginary
chemical potential is still below the first Roberge-Weiss
phase transition taking place at Im��� � 	=�3Lt�, hence
within the expected range of validity of analytic continu-
ation for �2 < 0 at high temperatures.

C. Large volume scaling

We have performed numerical simulations at different
values of Ls in order to test both the behavior of hei2�i and
the efficiency of our method as the lattice volume is
increased.

In Fig. 6 we report determinations performed at fixed
values of i� and variable Ls at � � 4:8. A behavior

 hei2�i � 1
 CL
s (18)

well describes the data with 
	 2:5 for both values of i�.
Concerning the numerical efficiency, we notice that to

obtain a comparable precision (of the order of 10%) for
(hei2�i � 1), on the largest lattice (163 � 4) we needed a
CPU time which is less than 1 order of magnitude bigger
than what we needed on the smallest lattice (44).
Considering that the two lattice volumes differ by a factor

64, we deduce that, at least for the quark mass considered
in the present study, our method requires a numerical effort
which scales in an affordable way with the lattice size.

IV. CONCLUSIONS

We have presented two different techniques, described,
respectively, by Eqs. (8) and (9), for an efficient numerical
determination of the average phase factor of the fermionic
determinant continued to imaginary values of the chemical
potential. We have applied both methods to QCD with 8
dynamical staggered flavors, verifying the absence of un-
controlled systematic effects and performing a comparison
of the efficiencies, with the conclusion that the method
based on the integration of the imaginary part of the baryon
density, Eq. (8), is numerically more convenient. A fair
good scaling of the efficiency is observed as the lattice
volume is increased. We have also directly tested, on small
lattices, the analyticity of the average phase factor around
�2 � 0.

The method proposed and tested in the present paper can
be used to perform more extensive studies of the average
phase factor continued to imaginary chemical potentials,
with more physical quark masses and number of flavors.
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FIG. 6. hei2�ii� as a function of the spatial lattice size Ls for
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