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We present a detailed analysis of meson-induced massive lepton (muon) Drell–Yan production for the
process ��N ! ����X, considering both an unpolarized nucleon target and longitudinally polarized
protons. Using a QCD framework, we focus on the angular distribution of ��, which is sensitive to the
shape of the pion distribution amplitude, the goal being to test corresponding results against available
experimental data. Predictions are made, employing various pion distribution amplitudes, for the
azimuthal angle dependence of the �� distribution in the polarized case, relevant for the planned
COMPASS experiment. QCD evolution is given particular attention in both considered cases.
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I. INTRODUCTION

The meson-induced production of massive dileptons off
baryons in the Drell–Yan (DY) process [1] MB! l�l�X
provides a useful means of analyzing the quark structure of
an unstable hadron, like the pion. Indeed, one can extract
(see, for example, [2,3]) in such a context the quark struc-
ture function of the pion and test the process independence
of the nucleon structure function measured in deeply in-
elastic scattering.

On the other hand, for large Q2 and large longitudinal
momentum (carried by a pion’s quark constituent) the
hadronic differential cross section for the production of a
massive lepton pair via the annihilation of an antiquark and
a quark in the colliding hadrons—pion and nucleon, re-
spectively—involves the pion distribution amplitude (DA)
in order to describe the pion bound state. Tuning the DY
reaction to the kinematic edge of the phase space, where
the antiquark �u from the pion is far off-shell, i.e., x �u ! 1, it
is sufficient to treat the quark u, originating from the
nucleon, as being nearly free and on-mass-shell, so that
the bound-state details of the nucleon become irrelevant
[4]. In those circumstances the process MB! l�l�X re-
duces to ��u! ����X and the corresponding ampli-
tude becomes calculable within perturbative QCD. The
binding effects of the pion state are taken into account by
means of the pion DA (which is the pion wave function
integrated over transverse momenta), making this type of
process suitable to test the details of proposed nonpertur-
bative models for the pion DA.

Moreover, the angular distribution of the produced
lepton pair (actually the ��), relative to the pion direction,
depends in a sensitive way on the pion DA. Hence, mea-
suring the angular distribution parameters �, �, � (for an
unpolarized target) and ��, �� (for longitudinally polarized
protons), one can extract useful information on the shape of
the pion DA [5,6]. This is particularly important with
regard to a proposed experiment by the COMPASS
Collaboration to collect high-precision data from the scat-
tering of a pion beam off a polarized target [7].

In the present work we will consider (i) the inclusive
production of dimuons from the hard scattering of pions on
an unpolarized nuclear target and (ii) an analogous process
with longitudinally polarized protons. The appearance of a
single transverse-spin asymmetry in the latter case is re-
lated to an imaginary part, which may even dominate the
dimuon angular distribution [6]. Because this contribution
is very sensitive to the pion DA, the single-spin asymmetry
can be used in conjunction with the experimental data in
order to select the most preferable pion DA. Our attention
is focused in both cases on the role played by the pion
bound state in terms of the pion DA.

The paper is organized as follows. In the next section,
we present the theoretical background of the DY model in
�N collisions, taking into account the valence-quark
bound state of the pion, which we model with the aid of
nonlocal QCD sum rules [8] in comparison with the
Chernyak–Zhitnitsky [9] model and the asymptotic pion
DA [10–12]. Section III contains the presentation of our
results for the angular distribution parameters �, �, �, and
comparison with the data from the E615 experiment at
Fermilab [3]. In this section, we also make predictions
for the angular parameters �� and ��, using the aforemen-
tioned pion DAs. Particular attention is devoted to the end
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point behavior of different pion DAs by considering an
azimuthal moment of the pion DA, discussed before in [6].
Finally, our conclusions are provided in Sec. IV.

II. DRELL–YAN PROCESS OF DIMUON
PRODUCTION

This section describes the theoretical method used to
calculate the angular distribution of the �� in the DY
process in a �N collision in terms of the parameters �,
�, � (unpolarized target) and ��, �� (longitudinally polar-
ized protons).

The DY process is the dominant mechanism to produce
lepton pairs with a large invariant mass Q2 in hadronic
collisions, like��N scattering. In the context of this model
a massive lepton (muon) pair is created through the elec-
tromagnetic annihilation of an antiquark from the beam
pion and a quark from the nucleon target, as depicted in
Fig. 1. Moreover, in the kinematic region of large x� �
x �u ! 1 (or xL ! 1, see next section), the antiquark in the

pion is subject to bound-state effects encoded in the
valence-quark pion DA, while the quark from the nucleon
is nearly on shell. Then, the pion bound state can be
resolved via hard-gluon exchange between the annihilating
antiquark and the spectator in convolution with the pion
DA [5], displayed diagrammatically in Fig. 2. This pro-
vides a means to test the validity of proposed models for
the pion DA, derived from nonperturbative QCD calcula-
tions, because the angular distribution of the produced
muon pair depends in a sensitive way on the shape of the
pion DA. Contributions from higher-order hard-gluon ex-
change are suppressed by powers of �s and will be
ignored; those due to evolution will be taken into account
in leading order (LO). Alternatively, ignoring chromody-
namic binding effects, one may extract in the context of the
DY model, the structure functions of the pion and the
nucleon [3,4] or focus on quark density functions [4,13].
These issues are outside the scope of the present
investigation.

To continue with our quantitative analysis, we first
present some explanations on the kinematics of the DY
process together with the definitions of the dynamical
parameters which describe the angular distribution in the
hadronic differential cross section.

A. Kinematics and variables of the DY process

For the convenience of the reader, the relevant kinematic
parameters and dynamical variables for the DY process
MB! l�l�X (with M, B denoting a meson and a baryon,
respectively) are compiled below in conceptual groups and
in conjunction with Fig. 1:

Momenta
(i) p� � p: Pion momentum.
(ii) pN � P: Nucleon momentum.
(iii) p �u: Momentum of the annihilating antiquark �u

emerging from the pion, p �u � x �up. As x �u ! 1
(i.e., �u far off-shell), p2

�u becomes large and far
spacelike.

(iv) x �u: Longitudinal-momentum fraction (light-cone
variable) of the annihilating �u from the meson.
In the kinematical regime, we are considering,
x �u � x�.

FIG. 1 (color online). Graphical representation of the Drell–
Yan process ��N ! ����X. Symbols p � p�, P � pN , and
q � �xuP� x �up� qT , where x �u � x� and xu � xN (see for
details Sec. II A), mean four-momenta. Here and below, solid
lines denote leptons and also the quarks emerging from the �N
collision, double lines indicate bound states (with their corre-
sponding wave functions being illustrated by shaded blobs),
whereas the curly line stands for the exchanged hard-gluon
and the wavy line represents the highly virtual photon.

FIG. 2 (color online). Leading (perturbative) contributions to the QCD amplitude describing the Drell–Yan process ��N !
����X at large Q2 and xL, the latter defined in Eq. (2.9). The designations are the same as in Fig. 1.
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(v) hk2
Ti: Average of the square of the transverse mo-

mentum of the annihilating �u from the meson
(k2

T � Q2).
(vi) pu: Momentum of the annihilating quark u emerg-

ing from the nucleon, pu � xuP. Because x �u ! 1,
it is sufficient to consider the u quark to be nearly
free and on shell: xu � xN (quark masses and trans-
verse momenta neglected).

(vii) Q � m��: Invariant mass of the massive lepton
(muon) pair, or, equivalently, momentum of the
virtual photon created by the annihilated quarks
(Q2 � q2). In this analysis we consider values in
the range Q2 � �4–81� GeV2.

(viii) s: Squared invariant mass of the initial hadrons,
i.e., s � �p� P�2. In our numerical analysis we
use s � �100–500� GeV2, which covers the
252 GeV �� beam of the E615 Collaboration at
Fermilab [3].

Masses
(i) m�: Pion mass. Because s	 m2

�, we set m� � 0.
(ii) m: Bare quark mass. Because s	 m2, we set m �

0.
(iii) mN: Nucleon mass.
Kinematic variables
(i) � � Q2=s: Scaling parameter.
(ii) � � QT=Q: This scaling parameter is an approxi-

mate measure for the squared transverse momentum
Q2
T � �q

2
T of the virtual photon in the hadronic

center-of-mass frame (cmf). Inspection of Fig. 1
reveals that qT appears only in combination with
x �up, namely, qT � x �up. Then, in order to separate
both terms unambiguously, one has to demand that
qT should not contain any part of the pion momen-
tum p, cf. Eq. (2.6).

(iii) xL � 2QL=
���
s
p

< 1: Longitudinal-momentum frac-
tion (Feynman x) of the lepton pair (associated with
the virtual photon) in the hadron cmf (Q2

L � q2
L).

QL and QT are the photon-momentum components
parallel and perpendicular, respectively, to the in-
cident pion momentum in the hadron cmf.

(iv) xF � x� � xN and x�xN � �. Neglecting the quark
transverse momentum and mass (as s becomes very
large), the quantities x� and xN can be identified
with x �u and xu, respectively. Combining the two
equations above, one finds [3] x�;N � 
�xF �
�x2
F � 4��1=2�=2.

Angular distribution parameters (see Fig. 3)
(i) �: Polar angle measuring the �� direction with

respect to the t channel (or Gottfried–Jackson sys-
tem of axes), i.e., cos� � p̂� � p̂�. The definitions of
other choices of axes (frames) can be found, e.g., in
[3].

(ii) 	: Azimuthal angle between the massive lepton-
pair plane and the plane of the incident hadrons in
the lepton rest frame.

(iii) �, �, �: Angle-independent coefficients, depend-
ing on Q2 and xL. These three parameters control
the dilepton angular distribution and are sensitive
to the shape of the pion DA.

(iv) ��, ��: Angle-independent coefficients, depending
on Q2 and xL, induced by the imaginary part to
the DY amplitude in the polarized case. They are
sensitive to the shape of the pion DA.

In our analysis we consider values of s much larger than
the nucleon mass, s  100m2

N , so that this be neglected,
though we derive the exact result withm2

N � 0 and proceed
then with the approximate expression with mN � 0, where
it is applicable. The momenta p and P are on the light cone
and, hence, we have

 p2 � 0; P2 � m2
N � 0;

2�p � P� � s�m2
N � ~s � s:

(2.1)

For the cross-section calculation, one can appeal to the
optical theorem and set the upper right line in Fig. 1,
denoting the d-quark, on-mass shell. Then,

 2�p � qT� �
q2
T

1� x �u
�
��2Q2

1� x �u
(2.2)

and, due to q � �xu � x �u�p� qT , one obtains
 

Q2 � �s�m2
N�xux �u

�
1�

xum
2
N

x �u�s�m
2
N�

�

�
�2Q2

1� x �u

�
1�

2xum2
N

s

�

� sxux �u

�
1�

xum2
N

x �us

�
�
�2Q2

1� x �u
; (2.3)

or
 

xux �u �

�
1�

�2

1� x �u

�
1�

2xum
2
N

s

��
Q2

~s�m2
N�xu=x �u�

�

�
1�

�2

1� x �u

�
�
�
1�

xum2
N

x �us

�
; (2.4)

which fixes the value of xu as a function of x �u, �, and �. We

FIG. 3 (color online). Angular definitions of the Drell–Yan
process in the center-of-mass frame of the produced massive
lepton pair. The axis ẑGJ denotes the pion direction in the
Gottfried–Jackson (GJ) frame.
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also see that a nonzero nucleon mass is important only at
very small x �u ’ m

2
N=s. At this value of x �u the value of xu is

close to 1, so that, neglecting mN , one finds 1=
1�
�m2

N=Q
2�=�1� �2��. Hence, the difference can be sizable

and, especially at Q2 � 2m2
N and �� 1, it can reach as

much as 20%.
In the following considerations (and, in particular, in the

analysis of the polarized DY process), we will use the
longitudinal-momentum fraction of the photon, xL. To
this end, recall that in the hadron cmf one has

 p �

���
s
p

2
�1; 0; 0;�1�; P �

���
s
p

2
�1; 0; 0;�1�;

q? � �0; q?1; q?2; 0�;
(2.5)

and, using Eq. (2.2), one finds

 qT � q? � aTP; aT �
�2�

1� x �u
; (2.6)

 

q � q? � qL;

qL � x �up� �xu � aT�P �

���
s
p

2
�x0; 0; 0; xL�;

(2.7)

with xL being defined by

 x0 � x �u � xu � aT; xL � x �u � xu � aT: (2.8)

It is convenient to recast xL in terms of x �u, �, and � to read

 xL � x �u �
1� �2

x �u
�: (2.9)

The inverse relation

 x �u �
xL �

�����������������������������������
x2
L � 4�1� �2��

q
2

(2.10)

defines x �u as a function of xL, �, and �.

B. Drell–Yan �N process with a pion bound state

There have been attempts [5] and, in particular [6], to
test the compatibility of different pion DAs with the DY
angular distribution measured in the scattering of pions off
protons. The first work suggested that the CZ pion DA (and
some variant of it) fits the unpolarized data [3] better than
the asymptotic DA, or narrower convex versions [13]. The
second work focused on the possibility of longitudinally
polarized protons as a target and discussed additional
angular parameters that vanish for an unpolarized target.
It was argued that future polarized experimental data on
these processes may be able to distinguish among various
pion DAs because of the high sensitivity of these parame-
ters to the particular shape of the pion DA. Though there is
still no such data available, meanwhile important knowl-
edge has been collected that is rather unfavorable for the
end point–dominated type of two-humped pion DAs, like
the CZ one. For instance, new high-precision lattice simu-

lations [14–16] give a new level of detail for the second
Gegenbauer coefficient a2, yielding values around 0.2 to
0.24 at a momentum scale of 2 GeV, well within the range
suggested by the nonlocal QCD sum-rule estimates [8]—
hereafter referred to as BMS—and supported by the analy-
sis in [17–19] of the CLEO data [20] on the �� 
 tran-
sition form factor using light-cone QCD sum rules. This a2

value is about 2 times smaller than its counterpart of the CZ
pion DA and casts serious doubts about the consistency of
this model with experiment. Moreover, the aforementioned
BMS CLEO-data analysis has confirmed the earlier
Schmedding and Yakovlev [21] findings which excluded
the CZ pion DA at least at the 2� level. On the other hand,
the asymptotic pion DA seems to be also excluded, given
that its Gegenbauer coefficient a2 is identically zero and
the CLEO-data analysis relegates this DA outside the 2�
error ellipse (for the most recent rigorous analysis, see
[19]), while being also incompatible with the lattice results
[14–16]. Further theoretical arguments and details can be
found in [22]. See also [23] for a recent development of the
nonlocal QCD sum-rule approach and the extraction of the
pion DA.

Therefore, it would seem reasonable and timely to up-
grade the calculation of the DY angular parameters of the
��N hard-scattering process by taking into account the
recent developments quoted above. To continue, we first
recall the definition of the pion DA, ’��y;�2

0�, which
specifies the fractional longitudinal momentum y of the
valence-quark constituents in the pion at the normalization
scale �2

0. At the (leading) twist-two level it is defined by
the following matrix element

 h0 j �d�z�
�
5C�z; 0�u�0� j ��p�ijz2�0

� ip�f�
Z 1

0
dyeiy�zp�’��y;�2

0�; (2.11)

 

Z 1

0
’��y;�2

0�dy � 1; (2.12)

where f� � 130:7� 0:4 MeV [24] is the pion-decay con-
stant defined by

 h0j �d�0�
�
5u�0�j�
��p�i � ip�f�: (2.13)

Above, a straight path-ordered Fock–Schwinger connector
[25] (Wilson line) C�0; z� � P exp
�igs

Rz
0 t
aAa��y�dy

��

has been inserted to preserve gauge invariance of the
operator product. In the following, we use the light-cone
gauge which reduces the contribution of the Wilson line to
unity. The normalization scale, �2

0, of the pion DA is
related to the ultraviolet (UV) regularization of the
quark-field operators on the light cone in (2.12), whose
product becomes singular for z2 � 0.

The pion DA cannot be derived from first principles, but
has to be inferred from nonperturbative QCD models (or
from experiment). This not withstanding, its evolution is
governed by perturbative QCD [10–12] and can be ex-
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pressed in the form
 

’��y;�2� � U�y; s;�2; �2
0� �s ’��s; �

2
0�;

�s �
Z 1

0
ds;

(2.14)

where ’��s;�2
0� is a nonperturbative input determined at

some low-energy normalization point �2
0 � 1 GeV2,

where the local operators in Eq. (2.11) are renormalized,
while U�y; s;�2; �2

0� is the evolution operator from that
scale to the observation scale �, calculable in QCD per-
turbation theory. In the asymptotic limit, the shape of the
pion DA is completely fixed by perturbative QCD to be
’asy
� �y� � 6y�1� y� [10–12], with the nonperturbative in-

formation being solely contained in the pion-decay con-
stant f�.

In the leading-twist approximation of the pion DA, in
which we are working, ’��y;�2

0� can be expressed in
terms of the Gegenbauer polynomials, which form an
orthonormal set of eigenfunctions. Then,

 ’��y;�2
0� � 6y�1� y�
1� a2��2

0�C
3=2
2 �2y� 1�

� a4��2
0�C

3=2
4 �2y� 1� � . . .�; (2.15)

with all nonperturbative information being encapsulated in
the expansion coefficients an. Depending on the nonper-
turbative approach applied, these coefficients can be calcu-
lated via QCD sum rules [9], QCD sum rules with nonlocal
condensates [8], or lattice simulations [14–16,26]. More
details can be found in the original papers already cited,

while we here restrict ourselves to the obtained results,
which we quote in Table I. The shapes of these DAs are
displayed in the left panel of Fig. 4, whereas the evolution
effect is illustrated in the right panel of this figure in terms
of the BMS pion DA. Note that the underlying quark
virtuality employed, is �2

q � 0:4 GeV2 [17] corresponding
to a correlation length of the scalar quark nonlocal con-
densate of about 0.31 fm. As one anticipates from this
figure, the key characteristic of the BMS-type pion DAs
is that the end point region x! 0, 1 is strongly sup-
pressed—not only relative to the CZ pion DA, but even
with respect to the asymptotic one (for mathematical de-
tails, see [22]). In contrast, the double-humped shape—
reminiscent of the CZ pion DA—turns out to be of minor
importance [27].

Let us now make some remarks on the evolution of the
pion DA in LO of perturbative QCD. Taking into account
only the first two Gegenbauer coefficients, one obtains
 

’LO
� �y;�

2
F� � 6y�1� y�
1� aLO

2 ��
2
F�C

3=2
2 �2y� 1�

� aLO
4 ��

2
F�C

3=2
4 �2y� 1��; (2.16)

where aLO
2 ��

2
F� and aLO

4 ��
2
F� are given by

 aLO
n ��2

F� � an��2
0�

�
�s��

2
F�

�s��2
0�

�

�0�n =�2b0�

: (2.17)

The expressions for the anomalous dimensions 
�0�n and the
beta-function coefficient b0 are listed, for example, in [17].
One sees from the right panel of Fig. 4 that the effect of the

TABLE I. Pion DA models used in the analysis.

�–DAsj�2�1 GeV2 Asymptotic BMS [8] BMS bunch [8,18] CZ [9]

a2 0 0.20 [0.13, 0.25] 0.56
a4 0 �0:14 
�0:04;�0:22� 0
Higher 0 Negligible Negligible 0

0.5

1

1.5

2

2.5

2

0 0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 0.2 0.4 0.6 0.8 1

FIG. 4 (color online). The left panel shows the ‘‘bunch’’ of pion DAs (strip of two-humped broken lines), derived from nonlocal
QCD sum rules (for a summarized exposition, see, e.g., [22]), in comparison with two extreme alternatives: the asymptotic DA [10–
12]—dotted line—and the CZ model [9]—long-dashed two-humped line—at the momentum scale �2 � 1 GeV2. The solid line
inside the strip of broken lines represents the BMS model [8]. The right panel illustrates the effect of one-loop evolution on the pion
DA, exemplified by the BMS model, in comparison with the asymptotic solution (continuous convex line). The double-humped solid
line represents ’LO

BMS�x� at 1 GeV2, while the broken lines mark ’LO
BMS�x� at 4, 20, and 100 GeV2 (with the larger scale corresponding to

the larger value of the DA at the middle point).
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inclusion of the LO diagonal part of the evolution kernel is
indeed important. This figure shows how the BMS pion DA
’LO

BMS�x� evolves from the normalization scale of 1 GeV2

(double-humped solid line) to higher momentum values at
4, 20, and 100 GeV2 (broken lines), with the larger scales
corresponding also to larger values of the DA at the middle
point. The asymptotic profile (continuous solid line) is
displayed for comparison.

C. DY reaction with an unpolarized target

The angular distribution of the �� in the pair rest frame
can be written in terms of the kinematic variables �,�, � as
follows:
 

d5���� � N ! �� ��� � X�

dQ2dQ2
TdxLd cos�d	

/ N�~x; ��
�

1� �cos2��� sin2� cos	�
�
2

sin2� cos2	
�
;

(2.18)

where [5]
 

��~x; �� �
2

N
f�1� ~x�2
�>ImI�~x��2 � �F� ReI�~x��2�

� �4� �2��2~x2F2g; (2.19)

 ��~x; �� � �
4

N
�~xFf�1� ~x�
F� ReI�~x�� � �2~xFg;

(2.20)

 ��~x; �� � �
8

N
�2~x�1� ~x�F
F� ReI�~x��; (2.21)

 

N�~x; �� � 2f�1� ~x�2
�ImI�~x��2 � �F� ReI�~x��2�

� �4� �2��2~x2F2g (2.22)

with

 ~x�xL; �� �
xL �

�����������������������������������
x2
L � 4�1� �2��

q
2�1� �2�

: (2.23)

Also displayed is the normalization factor of the cross
section, N. The abbreviations

 F �
Z 1

0
dy
’�y; ~Q2�

y
; (2.24)

 I�~x� �
Z 1

0
dy

’�y; ~Q2�

y�y� ~x� 1� i"�
(2.25)

are functionals of the pion DA and, therefore, depend on
the evolution momentum scale ~Q2 �Q2. Note that the
inverse moment (2.24) of the pion DA plays a crucial
role in the description of several form factors of the pion
in perturbative QCD [27]. We will have more to say about
the choice of the evolution scale in the next subsection.
Note also that the denominators in Eqs. (2.24) and (2.25)
originate from the gluon and quark propagators in the
subprocesses shown in Fig. 2, respectively. Before present-
ing results for these angular coefficients, let us first discuss
what changes are induced when the nuclear target is
polarized.

D. DY reaction with longitudinally polarized protons

In the polarized DY process the angular distribution of
the �� contains two additional parameters �� and ��, enter-
ing additively Eq. (2.18) with the same angular structure as
� and �, respectively, being, however, proportional to the
target longitudinal polarization s‘:

 ���~x; �� �
�2�s‘�~xF’�~x; ~Q2�

�1� ~x�2
�F� ReI�~x��2 � �2’�~x�2� � �4� �2��2~x2F2 ��nucl; (2.26)

 �� nucl �
4
9 �qvu�xp;�2� � 4

9 �qsu�xp;�2� � 1
9 �qsd�xp;�2�

4
9q

v
u�xp;�2� � 4

9 q
s
u�xp;�2� � 1

9q
s
d�xp;�2�

; (2.27)

 ���~x; �� � 2� ���~x; ��; (2.28)

where xp � �=~x, �2 is the evolution scale for the nucleon
parton distributions. Note that all momenta refer to the
hadronic cmf. The polarized parton distributions used in
our analysis are taken from [28], whereas for the unpolar-
ized structure functions we use the parametrization of
Ref. [29]. To evolve these distributions from their normal-
ization scale �2

0 � 4 GeV2 to the scale �2 � Q2 �

16 GeV2, we employed the Fortran codes supplied by the
authors of these papers on the Durham web site.1

1See http://durpdg.dur.ac.uk/hepdata/grv.html for GRV95 and
http://durpdg.dur.ac.uk/pdflib/gehrmann/pdf/welcome.html for
GS96.
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Lacking radiative corrections to the process under study,
we cannot fix the evolution scale unambiguously. In an
effort to get a measure for the entailed uncertainty, we have
analyzed the dependence of our results on the choice of the
evolution scale by varying �2 in the range �2 � Q2=2 and
�2 � 2Q2. We found that, depending on the model pion
DA used, the variance of the calculated �� parameter lies
between 2% and 17%, with moderate sensitivity to the
adopted � value. Details are given in Table II for the (large)
xL interval, in which the one-gluon exchange is still a good
approximation and only the pion bound state is of impor-
tance. Recall in this context that the only evolution effect in
the case of the asymptotic pion DA stems exclusively from
the DGLAP evolution of the nucleon parton distributions.
On the other hand, in the case of the BMS and the CZ pion
DAs, the total evolution effect is the result of the combi-
nation of the ERBL evolution of the pion DA and the
DGLAP evolution of the nucleon parton distributions (un-
polarized and polarized) in �nucl [cf. Eq. (2.27)].

It was noted in [6] that the angular moment of the pion
DA, defined by

 M ang �
Z

sin2� sin	d��s‘ � 1�

� �2��~xF’�~x; ~Q2� ��nucl; (2.29)

is particularly sensitive to the ~x (or xL) end point region and
can be used in comparison with experimental data in order
to distinguish pion DAs which behave differently exactly
in this region. We have, therefore, included predictions also
for this quantity (see next section, Fig. 8). In a similar
context, it is important to consider the (experimental)
single-spin azimuthal asymmetry (SSA)

 A �
d��s‘ � �1� � d��s‘ � �1�

d��s‘ � �1� � d��s‘ � �1�
(2.30)

after averaging the cross sections over the polar angle � 2

0; ��:

 A �	; xL; �� �
� ���s‘ � �1� sin2	

2� �� 1
2� cos2	

: (2.31)

In Eq. (2.30), ��s‘ � �1� and ��s‘ � �1� denote oppo-
site helicity states of the longitudinally polarized target.
Notice that in order that the longitudinally polarized nu-

cleon parton distributions can transfer their polarization to
the azimuthal distribution of the massive lepton pair, one
needs an imaginary part and the interference of amplitudes
with a phase difference between them. Both ingredients are
provided here by the pion DA and the hard-gluon ex-
change. Ignoring pion bound-state effects in the treatment
of the DY process, one would have to include in the hard
cross sections perturbative QCD radiative corrections pro-
portional to �s in order to create a SSA.

III. COMPARISON WITH EXPERIMENTAL DATA

In this section we present our results for the angular
distribution parameters �, �, � (versus x� ! x �u) for the
unpolarized DY process and compare them with the avail-
able experimental data. We also include predictions for the
parameter �� (versus xL), which is nonzero only in the
polarized DY process, and the SSA A.

All results were obtained using different models for the
pion DA, already mentioned, and they are shown at differ-
ent values of QT , i.e., at different values of the scaling
parameter �.

To be specific, we compare in Fig. 5 our theoretical
predictions for �, �, � with experimental data from E615
[3] in that x� region reported by this Collaboration using a
252 GeV �� beam interacting in an unpolarized tungsten
target.

We used for convenience the Gottfried–Jackson frame
and included in our analysis the data sample listed in their
Table VIII. Because the range of the probed transverse
photon momentum QT is in our opinion too large for
averaging, we followed another strategy than the authors
in Ref. [5]. Notably, we adopted some value of the scaling
parameter � � QT=Q and required the momentaQT andQ
to be within the reported window of the measurement in
[3]. We evaluated this way the angular parameters shown in
the figures, obtained with different pion DAs, including
one-loop ERBL evolution with Q2 � m2

��, and for three
different values of � � 0:06, 0.3, 0.5, whereas s �
500 GeV2 in accordance with [3]. Strictly speaking, the
results at too low values of � & 0:06 are, actually, not
compatible with factorization because then QT becomes
of the order of �QCD. They are shown here merely for
illustration purposes.

One important observation from Fig. 5 is that the pa-
rameter � increases proportionally with �, as it is qualita-
tively expected from Eq. (2.20) (though there is an

TABLE II. Change of predictions for ���xL; ��, shown in Fig. 7, due to different settings of the
evolution scale.

�-DAs Asymptotic BMS [8] CZ [9]

� � 0:06 and 0:5 � xL � 0:84 2.0%–2.5% 12%–2.5% 17%–2.5%
� � 0:30 and 0:5 � xL � 0:83 2.0%–2.5% 9%–0% 13%–0%
� � 0:50 and 0:5 � xL � 0:81 1.5%–2.0% 8%–0% 13%–8%
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additional term proportional to �3, absent in the parton DY
model). This increase turns out to be small for the asymp-
totic DA [10–12], whereas it becomes rather too strong for
the CZ model [9], while for the BMS strip [8] this enhance-
ment with � is moderate and provides best agreement with
the data. A similar behavior is seen also for � in this figure,
which, according to Eq. (2.21), should increase proportion-
ally to �2. Also here the BMS strip compares most favor-
ably with the data relative to the other options. On the other
hand, the Lam–Tung combination 2�� 1� � [30], which
is the analogue of the Callan–Gross relation in deeply

inelastic scattering (and also reflects the kinematical nature
of the azimuthal asymmetry [31]), is badly violated by the
data.

This trend is in agreement with the theoretical predic-
tions above approximately x �u � 0:6, though, at very large
x �u close to the kinematic limit, all tested model DAs tend to
fall stronger than the data.

We turn our attention now to the polarized case. Figure 6
shows the predictions for the angular parameter �� as a
function of xL for three different values of � � 0:06, 0.3,
0.5, and two center-of-mass-energies s � 100 GeV2

FIG. 5 (color online). Results for the angular distribution parameters �, �, and � as functions of x �u � x� for different values of
� � QT=Q. Predictions for the Lam–Tung [30] combination 2�� �1� �� are also displayed. The (green) shaded strip contains the
results for the pion DAs calculated with nonlocal QCD sum rules [8,17,18]. The (blue) solid line corresponds to one of these end
point–suppressed DAs, termed BMS, while the dotted (black) solid line shows the result for the asymptotic DA, and the (red) dashed
line is the prediction for the end point–dominated Chernyak–Zhitnitsky DA [9]. One-loop evolution of the pion DAs to each measured
Q2 value is included. The data were taken from [3] and were evaluated as explained in the text.
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(upper row) and s � 400 GeV2 in the range expected to be
covered in the COMPASS experiment. As before, the
results shown were obtained for the asymptotic, BMS,
and CZ pion DAs. [Similar results (not shown) hold also
for the parameter ��, which is interlinked with ��.]

The result of LO evolution of the pion DA as well as of
the nucleon structure functions in the angular parameter ��
is the detailed image of curves shown in Fig. 7.

To unravel the behavior of the various pion DAs in the
end point region, we also examine the angular moment

FIG. 7 (color online). Evolution effect on the angular parameter ���xL; �� vs xL in several steps of the scaling parameter �. Results
are shown for the asymptotic pion DA [10–12] (left panel), the BMS model DA [8] (central panel) and the CZ one [9] (right panel).
The following designations are used: The solid lines within each (color) thickness group correspond to the smallest � value. The short-
dashed lines denote the results for the intermediate � values, whereas the long-dashed lines represent the results with the largest �
values. The group of the (blue) superfine lines covers the range � � 0:001, 0.003, 0.006; the group of (black) thick lines gives the
results for � � 0:01, 0.03, 0.06, whereas the (red) heavy lines are associated with the values � � 0:1, 0.3, 0.5. The upper row
corresponds to a center-of-mass energy s � 100 GeV2, whereas the lower one has s � 400 GeV2.
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FIG. 6 (color online). Angular parameter ���xL; �� as a function of xL for three different pion DAs, evaluated at three different values
of the scaling parameter � using one-loop evolution. Results are shown for the asymptotic pion DA [10–12] (black dotted line), the
BMS model [8] (blue solid line) and the CZ one [9] (red dashed line). The upper row corresponds to a center-of-mass energy s �
100 GeV2, whereas the lower one has s � 400 GeV2.
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[cf. Eq. (2.29)] and display the results in Fig. 8. As men-
tioned in the previous section, this quantity was proposed
in [6] as a sensitive measure for the angular modulation of
the pion DA at large xL. One sees from this figure that this
seems indeed to be the case, especially for not too small �
values and, once experimental data will become available,
it could potentially serve to discriminate among different
pion DAs.

To complete the analysis, we include 3D plots of the
parameter �� as a function of xL and � (Fig. 9) and
analogously 3D plots of the angular asymmetry
A�	; xL; �� versus xl and 	 (Fig. 10), the latter for � �
0:3. Note that both quantities have been evaluated for two
different values of the center-of-the-mass energy s �
100 GeV2 (upper rows) and s � 400 GeV2 (lower rows),
as expected for the COMPASS experiment [7].

The observed increase of A with xL suggests that the
single-spin asymmetry of the muon-pair angular distribu-
tion is associated with the valence Fock-state contributions
in the pion DA. This behavior is valid for all considered
pion DAs and does not significantly depend on the value of
the scaling parameters � and �, though its size decreases
with increasing s. We have verified that the results do not
change significantly for larger � values. If future experi-

mental data would confirm such a single-spin asymmetry,
this would point to a new mechanism for generating a new
nontrivial phase in QCD factorization leading to T-odd
spin asymmetries that mimic the effect of a true T
violation.

IV. CONCLUSIONS

Our objective in this work was (i) to update previous
results on the unpolarized ��N ! ����X DY process
and (ii) to make detailed predictions for the angular distri-
bution parameters for the hard scattering of pions on
longitudinally polarized protons. The single-spin asymme-
try, predicted here for various pion distribution amplitudes,
may soon become amenable to experimental check at
COMPASS. To this end, we have presented an updated
analysis of the DY process with the inclusion of the pion’s
DA, the latter based on the theoretical appraisal of the
theoretical situation obtained within the context of non-
local QCD sum rules and supported by recent high-
precision lattice calculations and other experimental data
from the pion-photon transition. Though the existing data
on the unpolarized DY ��N ! ���� process cannot
single out one particular pion DA with little ambiguity,
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the ‘‘bunch’’ of the BMS DAs, derived from nonlocal QCD
sum rules, seems to comply most favorably with the E615
data. Given the distinctive behavior of all considered pion
DAs with respect to the longitudinal-momentum fraction,
carried by the annihilating quark from the pion in the
polarized DY process, one may hope that measuring the
angular moment in the planned COMPASS experiment
may lend quantitative support for one or the other proposed
pion DA.

On the other hand, it is also important to consider
another (and actually the most common) mechanism of
the�� N Drell–Yan process, treating the pion structure in
terms of parton distributions rather then the pion DA. This
mechanism is the dominant one at moderate values of xL.
There are also related contributions to the SSA due to the
imaginary phases emerging in the short-distance subpro-
cesses [32,33]. These contributions have recently been
studied for the kinematics of RHIC and J-PARC [34].
The investigation of the relevance of this mechanism in
the case of the COMPASS kinematics requires further
investigation.

ACKNOWLEDGMENTS

We would like to thank A. V. Efremov and S. V.
Mikhailov for discussions and useful remarks. We are
grateful to R. Bertini, F. Bradamante, and O. Denisov for
discussions on the COMPASS experiment and its potential
extension to the Drell–Yan process. Two of us (A. P. B. and
O. V. T.) are indebted to Professor Klaus Goeke for the
warm hospitality at Bochum University, where part of
this work was carried out. N. G. S. is grateful for support
to BLTP at JINR, where this work was completed. O. V. T.
is also indebted to M. Anselmino, F. Balestra, R. Bertini,
A. Kotzinyan, and G. Pontecorvo for the warm hospitality
and useful discussions at INFN (Torino). This work was
supported in part by the Deutsche Forschungsgemein-
schaft, Grant No. 436 RUS 113/881/0, the Heisenberg–
Landau Programme (Grant 2007), the Russian Foundation
for Fundamental Research, Grants No. 06-02-16215 and
No. 07-02-91557, and the Russian Federation Ministry of
Education and Science (Grant MIREA 2.2.2.2.6546).

[1] S. D. Drell and T.-M. Yan, Phys. Rev. Lett. 25, 316 (1970).
[2] S. Palestini et al., Phys. Rev. Lett. 55, 2649 (1985).
[3] J. S. Conway et al., Phys. Rev. D 39, 92 (1989).
[4] E. L. Berger and S. J. Brodsky, Phys. Rev. Lett. 42, 940

(1979).
[5] A. Brandenburg, S. J. Brodsky, V. V. Khoze, and D.

Müller, Phys. Rev. Lett. 73, 939 (1994).
[6] A. Brandenburg, D. Müller, and O. V. Teryaev, Phys. Rev.

D 53, 6180 (1996).
[7] R. Bertini, O. Denisov, and S. Paul, in Proceedings of the

Villars Meeting of the CERN SPSC, Villars, Switzerland,
2004 (unpublished); EoI COMPASS Collaboration,
‘‘Drell–Yan Program at COMPASS’’ (unpublished).

[8] A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Phys.
Lett. B 508, 279 (2001); 590, 309(E) (2004).

[9] V. L. Chernyak and A. R. Zhitnitsky, Phys. Rep. 112, 173
(1984).

[10] A. V. Efremov and A. V. Radyushkin, Phys. Lett. B 94, 245
(1980).

[11] A. V. Efremov and A. V. Radyushkin, Theor. Math. Phys.
(Engl. Transl.) 42, 97 (1980).

[12] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157
(1980).

[13] E. L. Berger, Z. Phys. C 4, 289 (1980).
[14] L. Del Debbio, Few-Body Syst. 36, 77 (2005).
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