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Elastic scattering amplitudes dominated by the Pomeron singularity which obey the principal unitarity
bounds at high energies are constructed and analyzed. Confronting the models of double and triple (at
t � 0) Pomeron pole (supplemented by some terms responsible for the low energy behavior) with existing
experimental data on pp and �pp total and differential cross sections at

���
s
p
� 5 GeV and jtj � 6 GeV2 we

are able to tune the form of the Pomeron singularity. Actually the good agreement with the data is received
for both models though the behavior given by the dipole model is more preferable in some aspects. The
predictions made for the LHC energy values display, however, the quite noticeable difference between the
predictions of models at t � �0:4 GeV2. Apparently the future results of TOTEM experiment will be
more conclusive to make a true choice.
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I. INTRODUCTION

The forthcoming TOTEM experiment at LHC will pro-
vide us with the first measurements of soft Pomeron
(strictly speaking Pomeron and odderon) as the contribu-
tions of secondary reggeons are negligible at such high
energies. Then obviously the precise measurement of pp
differential cross section makes it possible to discriminate
the various Pomeron models comparing their particular
predictions. Certainly, such an analysis makes sense only
if the same data set is used with the model parameters
reliably fixed. For the time being there are three model
types for elastic hadron scattering amplitudes which repro-
duce rising cross sections experimentally measured with a
high precision.

(i) Models treating Pomeron (and odderon as well) as a
simple pole in a complex momentum plane located
to the right of unity, �P�0� � 1� " � 1:1 [1,2]. In
order to describe a dip-bump structure in differential
cross section one should take into account the cuts in
one or another form. Such a Pomeron violates uni-
tarity bound �t�s� � Cln2s at s! 1. However, the
argument that unitarity corrections are important
only at higher energies justifies this approach.

(ii) Pomeron with �P�0�> 1 is an input in some scheme
of unitarization (for example, eikonal or quasieiko-
nal [3], U-matrix models [4]). Having done the
unitarization all such models give �t�s� / ln2s,
whereas other characteristic predictions depend on
the concrete model.

(iii) Another way to construct amplitude is just to take
into account unitarity and analytical requirements
from the beginning as well as experimental informa-
tion on the cross sections (e.g., growth of total cross
sections). We named such a model in what follows as
the model of unitarized Pomeron. Here the most

successful examples are tripole Pomeron [�t�s� /
ln2s] [5–7] and dipole Pomeron [�t�s� / lns] [8,9].

Within the third approach we consider the models of
tripole and dipole Pomeron. These models are most suc-
cessful in a description of all data on the forward scattering
data [10].

As has been shown [10,11] the total cross sections of
meson and nucleon interactions are described with the
minimal �2 in the dipole and tripole models in which
forward scattering amplitudes are parametrized in explicit
analytic form. This conclusion was confirmed by analysis
applying the dispersion relations for the real part of am-
plitudes [12].

The elastic scattering at small jtj (0:1 � jtj �
0:5 GeV2) (pp, �pp,�	p, andK	p) was analyzed in detail
[13]. The particular model was considered as a combina-
tion of hard [with �h�0� � 1:4] and soft �s�0� � 1:1
Pomeron contributions. It was noticed in [14] that addi-
tional hard Pomeron essentially improves the description
of the meson and nucleon data on parameter � �
ReA�s; 0�=ImA�s; 0� comparing with the ordinary soft
Pomeron model. Extension of the model to higher jtj can
be done within some scheme of unitarization (e.g., eikonal,
quasieikonal, U matrix) taking into account Pomeron re-
scatterings or cuts.

Here we focus on the dipole and tripole Pomeron mod-
els. Without presenting the details we note here these
models describe the small-jtj differential cross sections
with the same level of precision [�2=dof & 1:05; degrees
of freedom (dof)] as the model of [13] did. The purpose of
this paper is to demonstrate the description of the data on
elastic pp and �pp scattering at low and middle t in the
dipole and tripole Pomeron models.

In Sec. II we present the general restrictions on hardness
of Pomeron singularity and form of its trajectory at small t,
imposed by unitarity bounds on cross sections. In Secs. III
and IV parametrizations of pp and �pp elastic scattering
amplitudes are presented dealing with dipole and tripole*martynov@bitp.kiev.ua
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Pomeron models, correspondingly. Results of least square
analysis for both models as well as their comparison are
given in the Sec. V.

II. GENERAL CONSTRAINTS

Let us reiterate here that the model with �t�s� / ln2s is
not compatible with a linear Pomeron trajectory having the
intercept 1. Indeed, let us assume that

 �P�t� � 1� �0Pt

and the partial wave amplitude develops the form

 ’�j; t� � ��j�
��j; t�


j� 1� �0Pt�
n �

i��1; t�

j� 1� �0Pt�

n ;

��j� �
1� e�i�j

� sin�j
:

(1)

In �s; t�-representation amplitude ’�j; t� is transformed
to

 a�s; t� �
1

2�i

Z
dj’�j; t�e��j�1�; � � ln�s=s0�: (2)

Then, we have Pomeron contribution at large s as

 a�s; t� � �g�t�
ln��is=s0��
n�1��is=s0�

�0Pt; (3)

where

 g�t� � ��t�= sin���P�t�=2�:

If as usual g�t� � g exp�bt� then we obtain

 �t�s� / lnn�1s; �el�s� /
1

s2

Z 0

�1
dtja�s; t�j2 / ln2n�3s:

(4)

According to the obvious inequality,

 �el�s� � �t�s�; (5)

we have

 2n� 3 � n� 1) n � 2: (6)

Thus we come to the conclusion that a model with
�t�s� / ln2s is incompatible with a linear Pomeron trajec-
tory. In other words, the partial amplitude Eq. (1) with n �
3 (but used in some papers) in principle is incorrect.

If n � 1 we have a simple j pole leading to constant total
cross section and vanishing elastic cross section. However,
such a behavior of the cross sections is not supported by
experimental data.

If n � 2 we have the model of dipole Pomeron [�t�s� /
ln�s�] and would like to emphasize that double j pole is the
maximal singularity of partial amplitude settled by unitar-
ity bound (5) if its trajectory is linear at t � 0.

Thus, constructing the model leading to cross section
which increases faster than ln�s�, we need to consider a
more complicated case:

 ’�j; t� � ��j�
��j; t�


j� 1� k��t�1=	�n

�
i��1; t�


j� 1� k��t�1=	�n
: (7)

Making use of the same arguments as above, we obtain

 �t�s� / lnn�1s;

�el�s� / ln2n�2�	s and 	 � n� 1:
(8)

However in this case amplitude a�s; t� has a branch point at
t � 0 which is forbidden by analyticity.

A proper form of amplitude leading to teff
1 decreasing

faster than 1= lns (it is necessary for �t to rise faster than
lns) is the following

 ’�j; t� � ��j�
��j; t�


�j� 1�m � kt�n
: (9)

Now we have m branch points colliding at t � 0 in j plane
and creating the pole of order mn at j � 1 (but there is no
branch point in t at t � 0). At the same time teff / 1=lnms
and from the �el / ln2mn�2�ms � �t / lnmn�1s � ln2s
one can obtain

 mn � m� 1; mn � 3: (10)

If �el / �t then n � 1� 1
m . Furthermore, if �t / lns then

m � 1 and n � 2, which corresponds just to the dipole
Pomeron model. In the tripole Pomeron model m � 2 and
n � 3=2, which means �t / ln2s.

III. DIPOLE PARAMETRIZATIONS

The dominating term at high energy in this model is
double pole

 ’d�j; t� /
1

�j� 1� �0dt�
2 : (11)

Apparently in accordance with the inequalities (10) the
double pole obeys the unitarity limit for linear Pomeron
trajectory (m � 1). Adding to the partial amplitude less
singular term [simple pole with a trajectory having inter-
cept ��0� � 1 and a different slope �0] we obtain the
dipole Pomeron model in the form

 ’�j; t� � ��j�
�d�t�

�j� 1� �0dt�
2 � ��j�

�s�t�
j� 1� �0st

: (12)

It can be rewritten in �s; t� representation as
 

a�s; t� � gd ln��iz���iz�1��
0
dt exp�bdt�

� gs��iz�
1��0st exp�bst�; (13)

1teff can be defined by behavior of elastic scattering amplitude
at s! 1. If a�s; t� � sf�s�F�t=teff�s�� then �el�s� /
jf�s�j2

R
0
�1 dtjF�t=teff�j

2 � teff jf�s�F�1�j
2.
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where variable z is proportional to cosine of scattering
angle in the t channel

 z � �t� 2�s� 2m2
p��=z0; z0 � 1 GeV2: (14)

Generally, the form factors (or residues) ��t� may be
chosen in various forms (e.g., exponential, factorized
powers, etc.). However, we consider the simplest exponen-
tial ones.

Let us consider two effective reggeons: crossing-even,
R��s; t�, and crossing-odd, R��s; t�) instead of four con-
tributions—f;! and �; a2 (the latter two reggeons are of
less importance at high energy). We take into account their
contribution in the standard form. However, we insert an
additional factor ZR�t� that changes sign at some t.2

 R�s; t� � �RgRZR�t���iz�
�R�t� exp�bRt�; (15)

where �R � �1= sin�0:5����0�� for R� reggeon and
�R � i= cos�0:5����0�� for R� reggeon. Obviously these
terms are very close to f and ! reggeons, respectively.
There are some arguments [13] to use the factors ZR�t� in
the form

 ZR�t� �
tanh�1� t=tR�

tanh�1�
: (16)

Going to extended wide regions of s (
���
s
p
� 5 GeV) and t

(0:1 � jtj � 6 GeV2),3 we certainly need a few extra terms
in amplitude to reach a good fit to the data. First of all
it concerns the odderon contribution. The existing
data on total cross section and parameters � �
Rea�s; 0�=Ima�s; 0�, as is well known, do not show any
visible odderon contribution. However, it appears defi-
nitely to provide the difference of pp and �pp differential
cross sections at

���
s
p
� 53 GeV and t around the dip. So,

we add the odderon contribution vanishing at t � 0
 

O�s; t� � t2zZR��t�fo1ln2��iz� exp�bo1t�

� o2 ln��iz� exp�bo2t�

� o3 exp�bo3t�g��iz�1��
0
ot: (17)

The term / ln2�s� in Eq. (17) does not violate unitarity
restriction �el�s� � �t�s� at very large s due to the pres-
ence of factor t2 (in the dipole model teff � 1= lns, there-
fore �el / t3eff ln

4s / lns).
At high energy and at t � 0 two main rescattering terms

of dipole Pomeron (or cut terms) have the same form as the
input amplitude—double pole plus simple pole. It means
that comparing the model with experimental data we are

not able to distinguish unambiguously input terms and
cuts. Then as a result, at t � 0 one may use the input
amplitude only. At t � 0 the situation occurs more com-
plicated because the slopes of trajectories in the cut terms
are different from the input one. These terms are important
at large jtj but, in fact, they are already taken into account
at t � 0.

Keeping in mind the above arguments and preserving a
good description of the data at t � 0 we take Pomeron,
Pomeron-Pomeron, and Pomeron-reggeons cuts vanishing
at t � 0. Certainly they are not ‘‘genuine’’ rescatterings but
mimic them quite efficiently at t � 0. Thus we write:

the Pomeron contribution

 P�s; t� � �gP��iz�1��
0
Pt
exp�bP1t� � exp�bP2t��; (18)

the Pomeron-Pomeron cut

 CP�s; t� � �
t

ln��iz�
gPP��iz�

1��0Pt=2 exp�bPPt�; (19)

the Pomeron-even reggeon cut
 

CR��s; t� � �
tZR��t�

ln��iz�
�R�gP�ZR��t���iz�

���0���0P�t


 exp�bP�t�; (20)

where

 �0P� �
�0P�

0
R�

�0P � �
0
R�

; (21)

and the Pomeron-odd reggeon cut
 

CR��s; t� � �i
tZR��t�

ln��iz�
�R�gP�ZR��t���iz�

���0���0P�t


 exp�bP�t�; (22)

 �0P� �
�0P�

0
R�

�0P � �
0
R�

: (23)

IV. TRIPOLE POMERON MODEL

As it follows from Eq. (10) for the dominating contri-
bution in a tripole Pomeron model with �t�s� / ln2�s�, i.e.,
n � 2, m � 3=2, we should take

 ’1�j; t� � ��j�
�1�j; t�


�j� 1�2 � kt�3=2
: (24)

It seems to be natural to write the subleading terms as the
following:

 ’2�j; t� � ��j�
�2�j; t�


�j� 1�2 � kt�
; (25)

 ’3�j; t� � ��j�
�3�j; t�


�j� 1�2 � kt�1=2
: (26)

2For the crossing-odd term of amplitude such a factor is well
known and describes the crossover effect, i.e., intersection of the
ab and �ab differential cross sections at t � �0:15 GeV2. Our
analysis [13] has shown that a similar factor is visible in the
crossing-even reggeon term.

3A more sophisticated form for residues should be considered
for larger jtj.
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Then the amplitude has a form

 ’�j; t� � ’1�j; t� � ’2�j; t� � ’3�j; t� � R�j; t�; (27)

where R�j; t� means the contribution of other reggeons and
possible cuts (which are important at low energies).

Taking into account that

 

Z 1
0
dxx��1e�!xJ
�!0� � I�
 ; (28)

where

 I
�1

 �

�2!0�

����

�
p

��
� 1=2�

�!2 �!2
0�

�1=2

;

I
�2

 � 2!

�2!0�

����

�
p

��
� 3=2�

�!2 �!2
0�

�3=2

;

one can find

 

1

�!2 �!2
0�

3=2 �
1

2!0

Z 1
0
dxxe�x!J1�!0x�; (29)

 

1

!2 �!2
0

�
1

!0

Z 1
0
dxe�x! sin�x!0�; (30)

and

 

1

�!2 �!2
0�

1=2 �
Z 1

0
dxe�x!J0�!0x�: (31)

Thus tripole amplitude with the subleading terms can be
presented as
 

atr�s; t� � iz
�
g�1 exp�b�1t� ln��iz�

2J1������
��

� g�2
sin������

��
exp�b�2t�

� g�3J0������ exp�b�3t�
�
; (32)

where �� � ln��iz� � ��, z is defined by Eq. (14), and
�� � r�

�������������
�t=t0

p
, t0 � 1 GeV2, r� is a constant.

A similar expression for odderon contribution (but in-
troducing the factors t and ZR��t�) is given by
 

O�s; t� � ztZR��t�
�
g�1 ln��iz�

2J1������
��

exp�b�1t�

� g�2
sin������

��
exp�b�2t�

� g�3J0������ exp�b�3t�
�
; (33)

where �� � ln��iz� � �� and �� � r�
�������������
�t=t0

p
.

Again, similar to the dipole model we add the ‘‘soft’’
Pomeron

 P�s; t� � �gP��iz�1��
0
Pt exp�bPt�; (34)

the reggeon and cut contributions which are of the same
form as in dipole Pomeron model Eqs. (19), (20), and (22).

AGLN model.—Let us give a few comments about an-
other version of the tripole Pomeron model presented in the
papers [6,7].

(1) If � � ln��is=s0�, s0 � 1 GeV2, then the first
Pomeron term in [6,7] is identical to the term in
Eq. (32), while for the second and third terms the
authors use

 g2�t��J0����

and

 g3�t�
J0����� � �0��J1������;

which originated from the partial amplitudes

 ’�j; t� � ��j�g2�t�
2�j� 1�


�j� 1�2 � kt�3=2
;

and

 ’�j; t� � ��j�g2�t�
�j� 1�2 � kt


�j� 1�2 � kt�3=2
;

respectively.
(2) They used another form of odderon terms. The

maximal odderon contribution in the form
 

Om�s; t� � g�1ln2��iz�
sin�����
��

exp�b�1t�

� g�2 ln��iz� cos����� exp�b�2t�

� g�3 exp�b�3t� (35)

as well as a simple pole odderon and odderon-
Pomeron cut are also taken into account.

(3) Omitting the details we note that because of the
chosen form of signature factors the AGLN ampli-
tude has pole in the physical region at t � �1=�0 �
�4 GeV2. This feature of the model restricts its
applicability region. AGLN amplitude has similar
poles even at lower values of jtj in the reggeon
terms. Thus the model requires a modification to
describe a wider region of t than was considered in
[7]; namely, jtj � 2:6 GeV2.

(4) Clearly this model leads to the unreasonable inter-
cept value for the crossing-odd reggeon, ���0� �
0:34. It is in strong contradiction with the values
known from meson resonance spectroscopy data.
One could expect it close to the intercept of !
trajectory, �!�0� � 0:43–0:46 [11].

Nevertheless, in Sec. V we demonstrate the curves for
differential cross sections obtained in the AGLN model in
comparison with the results of our dipole and tripole
models at energies available and future LHC.
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V. COMPARISON WITH EXPERIMENTAL DATA

A. Total cross sections

Analyzing the pp and �pp data we keep in mind a further
extension of the models to elastic �	p and K 	 p scatter-
ing, which are quite precisely measured. One important
point should be underlined from the beginning. Fitting the
pp and �pp data on �t and � gives the set of parameters
which is essentially different from those derived from the
fit of all (p, �p, �, and K meson) the data.

Following this procedure at the first stage we determine
all the parameters that control the amplitudes at t � 0. We
use the standard data set for the �	p and K 	 p total cross
sections and the ratios � (at 5 �

���
s
p

< 2000 GeV) [15] to
find intercepts of C	 reggeons and couplings of the re-
ggeon and Pomeron exchanges. There are 542 experimental
points in the region under consideration (see Table I).

An extension of the pp! pp and �pp! �pp dipole and
tripole amplitudes to �	p and K	p elastic scattering is
quite straightforward. All the couplings vary in these am-
plitudes at t � 0, but the odderon does not contribute to the
�p and Kp amplitudes. In the simplest unitarization
schemes (eikonal, U matrix) all total cross sections at
asymptotically high energies have the universal behavior
�t�s� ! �0log2�sap=s0�, where �0 is independent of the
initial particles. Today the data available support this con-
clusion and advocate putting the same couplings gp�1 �
g��1 � gK�1 for the leading Pomeron terms in all ampli-
tudes. Additionally, in order to avoid uncertainty at t � 0
[constant contributions to total cross sections come addi-
tively from the third term of Eq. (32) and from soft
Pomeron, Eq. (34)], we substitute couplings g�3 for g�3 �
gP in Eq. (32). As a result we have energy independent
contribution to the total cross from g�3 only.

The following normalization of ab! ab amplitude is
used,

 �t �
1

sab
ImA�s; 0�;

d�
dt
�

1

16�s2
ab

jA�s; t�j2; (36)

where

 sab �
������������������������������������������������������
�s�m2

a �m2
b�

2 � 4m2
am2

b

q
� 2plab

a
���
s
p

and plab
a is the momentum of hadron a in laboratory system

of b.
The details of the fit at t � 0 are presented in Tables I

and II.

B. Differential cross sections

At the second stage of the fitting procedure we fix all the
intercept and coupling values obtained at the first stage.
The other parameters are determined by fitting the d�=dt
data in the region

TABLE I. Quality of the fit to �t and �.

�2
tot=Np

Quantity Number of data Dipole model Tripole model

�ppt 104 0:882 60
 100 0:870 55
 101

� �pp
t 59 0:952 80
 100 0:962 73
 100

��
�p

t 50 0:662 16
 100 0:667 92
 100

��
�p

t 95 0:100 23
 101 0:998 64
 100

�K
�p

t 40 0:723 57
 100 0:721 04
 100

�K
�p

t 63 0:613 92
 100 0:608 83
 100

�pp 64 0:166 12
 101 0:169 65
 101

� �pp 11 0:40392
 100 0:406 75
 100

��
�p 8 0:151 07
 101 0:150 36
 101

��
�p 30 0:125 60
 101 0:121 22
 101

�K
�p 10 0:108 69
 101 0:100 16
 101

�K
�p 8 0:121 85
 101 0:116 11
 101

�2
tot=dof

Total 542 0:994 50
 100 0:993 45
 100

TABLE II. Intercepts and couplings (GeV�2) in the dipole and tripole models from the fit to �t and �.

Dipole model Tripole model
Parameter Value Error Parameter Value Error

�R��0� 0:808 46
 100 0:360 35
 10�2 �R��0� 0:719 47
 100 0:184 96
 10�2

�R��0� 0:465 05
 100 0:914 16
 10�2 �R��0� 0:463 56
 100 0:737 46
 10�2

gpd 0:894 35
 101 0:194 99
 100 gp�1 0:153 30
 102 0:316 19
 100

gps �0:521 59
 102 0:300 78
 101 gp�2 0:191 53
 101 0:385 89
 10�1

gpR� 0:158 57
 103 0:308 46
 101 gp�3 0:206 72
 100 0:267 47
 10�2

gpR� 0:589 61
 102 0:287 75
 101 gpR� 0:969 06
 102 0:846 78
 100

g�d 0:704 77
 101 0:227 19
 100 gpR� 0:592 94
 102 0:232 28
 101

g�s �0:457 20
 102 0:290 22
 101 g��1 0:699 01
 101 0:183 96
 100

g�R� 0:106 91
 103 0:335 90
 101 g��2 0:101 06
 101 0:271 23
 10�1

g�R� 0:107 10
 102 0:525 07
 100 g�R� 0:562 96
 102 0:453 60
 100

gKd 0:543 51
 101 0:292 05
 100 g�R� 0:107 84
 102 0:436 87
 100

gKs �0:297 03
 102 0:332 34
 101 gK�1 0:121 86
 102 0:224 24
 100

gKR� 0:707 85
 102 0:437 92
 101 gK�2 0:146 83
 100 0:304 39
 10�1

gKR� 0:236 74
 102 0:111 59
 101 gKR� 0:287 30
 102 0:510 47
 100

gKR� 0:238 31
 102 0:916 97
 100
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 0:1 � jtj � 6 GeV2;
���
s
p
� 5 GeV: (37)

The measurements of the differential elastic cross sec-
tions were very intensive for the past 40 years. Fortunately,
most of them have been collected in the Durham database
[16]. However, there are 80 papers with different conven-
tions and various units. The complete list of the references
is given by [13]. We have uniformly formatted them, found
and corrected some errors in the sets, and gave a detailed
description of a full set which contains about 10 000 points.
Analyzing each subset of these data, we have paid [13]
particular attention to the data at small t. Some of the
subsets that are in strong disagreement with the rest of
the data set were excluded from the fit.

A similar work has been done for the data at jtj>
0:7 GeV2. We have found out and corrected some mistakes
in the database. Furthermore, we excluded from the final
data set the subsets [17] at

���
s
p
� 9:235 GeV, [18] at

���
s
p
�

19:47 and 27.43 GeV, [19] at
���
s
p
� 53:0 from pp data, and

[20] at
���
s
p
� 7:875 GeV, [21] at

���
s
p
� 9:778 GeV from

�pp data because they strongly contradict the bulk of data.
Thus, the considered models were fitted to 2532 points of
d�=dt
in the region Eq. (37). The results are given in Table III for
a quality of fitting and in Table IV for the fitting param-
eters.

In Figs. 1–5 we show experimental data at some ener-
gies and theoretical curves obtained in three models:
AGLN [7], dipole, and tripole. As for the AGLN model,
we would like to emphasize that the corresponding curves
were calculated at the parameters given in [7]. However, in
contrast to dipole and tripole models, the AGLN model
was fitted to differential cross sections at

���
s
p

> 9:7 GeV
and jtj< 2:6 GeV2 but not with a complete data set.
Therefore a disagreement between curves and data behav-
iors at lowest energies is not surprising in the given model.
The AGLN model works well at high energies.

TABLE III. Quality of the fit to d�=dt.

�2
tot=Np

Number of points, Np Dipole model Tripole model

d�pp=dt 1857 0:151 22
 101 0:181 53
 101

d� �pp=dt 675 0:141 83
 101 0:166 97
 101

TABLE IV. Parameters of the models, from the fit to d�=dt (parameters r	; �	 are dimensionless, tR	 are given in GeV2, the rest of
the parameters are given in GeV�2).

Dipole model Tripole model
Parameter Value Error Parameter Value Error

�0d 0:306 31
 100 0:169 23
 10�2 r� 0:254 17
 100 0:331 81
 10�2

�0s 0:280 69
 100 0:190 26
 10�3 �� 0:115 75
 101 0:148 24
 100

bd 0:386 75
 101 0:227 67
 10�1 b�1 0:345 83
 101 0:379 82
 10�1

bs 0:556 79
 100 0:146 94
 10�2 b�2 0:190 91
 101 0:305 98
 10�1

�0R� 0:820 00
 100 Fixed b�3 0:459 70
 100 0:297 50
 10�2

bR� 0:292 26
 101 0:300 19
 10�1 �0R� 0:820 00
 100 Fixed
tR� 0:488 52
 100 0:266 83
 10�2 bR� 0:106 68
 101 0:303 50
 10�1

�0R� 0:910 00
 100 Fixed tR� 0:542 37
 100 0:138 17
 10�1

bR� 0:152 01
 101 0:686 71
 10�1 �0R� 0:910 00
 100 Fixed
tR� 0:144 97
 100 0:248 11
 10�2 bR� 0:614 35
 10�1 0:200 44
 10�1

o1 0:307 38
 100 0:313 68
 10�2 tR� 0:157 55
 100 0:260 68
 10�2

o2 �0:631 19
 101 0:552 82
 10�1 r� 0:788 07
 10�1 0:605 63
 10�2

o3 0:134 56
 100 0:215 51
 10�2 �� 0:162 81
 102 0:190 20
 101

�0o 0:218 10
 10�1 0:703 24
 10�3 o1 �0:560 75
 10�1 0:517 02
 10�2

bo1 0:393 17
 101 0:816 97
 10�2 o2 0:173 72
 101 0:178 93
 100

bo2 0:450 07
 101 0:768 61
 10�2 o3 �0:611 93
 102 0:363 30
 101

bo3 0:129 47
 101 0:767 73
 10�2 bo1 0:120 38
 101 0:264 25
 10�1

gP 0:589 61
 102 0:985 76
 10�1 bo2 0:151 52
 101 0:317 22
 10�1

�0P 0:306 96
 100 0:204 75
 10�3 bo3 0:263 31
 101 0:783 49
 10�1

bP1 0:548 94
 100 0:150 36
 10�2 gP 0:160 42
 102 0:138 56
 10�1

bP2 0:593 65
 101 0:348 63
 10�1 �0P 0:360 60
 100 0:763 35
 10�2

gPP �0:393 24
 102 0:368 83
 100 bP 0:146 62
 101 0:291 52
 10�1

bPP 0:118 28
 101 0:440 25
 10�2 gPP 0:911 95
 101 0:840 44
 100

gP� �0:226 56
 103 0:275 29
 101 bPP 0:449 77
 100 0:464 04
 10�1

bP� 0:175 22
 101 0:984 59
 10�2 gP� 0:117 72
 102 0:577 53
 10�1

gP� �0:152 55
 102 0:282 13
 100 bP� 0:815 85
 10�1 0:281 85
 10�1

bP� 0:240 68
 10�1 0:613 36
 10�2 gP� 0:819 08
 101 0:884 08
 100

bP� �0:791 15
 10�1 0:458 33
 10�1
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FIG. 1 (color online). �pp at low energies.
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FIG. 3 (color online). �pp at high energies.
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FIG. 4 (color online). pp at high energies.
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VI. CONCLUSION

In this paper we compare three unitarized models of
elastic scattering amplitude fitting the dipole and tripole
models to all existing data. We emphasize that the ampli-
tude leading to the behavior of �t / ln2s should be pa-
rametrized with special care of the unitarity and analyticity
restrictions on properties of the leading partial wave
singularity.

The figures and tables demonstrate a good description of
the data within the considered models. However, the ob-
tained �2 (Table III) hints that the dipole Pomeron model
looks more preferable.

We believe the most interesting and instructive result for
a further search of a more realistic model is shown in Fig. 5.
Our predictions of the compared models (together with the
AGLN model) for pp cross section at LHC energy are
crucially different at jtj around 0:3–0:5 GeV2. Certainly
the future TOTEM measurement will allow one to distin-
guish between three considered models.
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FIG. 5 (color online). Predictions for LHC energy.
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