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We present a study of the electromagnetic structure of the nucleons with constituent quark models in the
framework of relativistic quantum mechanics. In particular, we address the construction of spectator-
model currents in the instant and point forms. Corresponding results for the elastic nucleon electromag-
netic form factors as well as charge radii and magnetic moments are presented. We also compare results
obtained by different realistic nucleon wave functions stemming from alternative constituent quark
models. Finally, we discuss the theoretical uncertainties that reside in the construction of spectator-model
transition operators.
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I. INTRODUCTION

A promising approach to the nucleon electromagnetic
(EM) structure at low and moderate momentum transfers
consists in employing constituent quark models (CQMs) in
the framework of relativistic quantum mechanics (RQM).
Different forms of RQM, such as the instant, front, and
point forms, have been used by various authors (e.g., in
Refs. [1–5]). Realistic descriptions of the EM nucleon
form factors were specifically obtained with the
Goldstone-boson-exchange (GBE) CQM. Working within
the point form, the electric and magnetic form factors of
both the proton and the neutron were described in surpris-
ingly good agreement with experimental data [6,7].
Similarly, the electric radii and magnetic moments of all
the octet and decuplet baryon ground states were repro-
duced as well [8]. By an analogous calculation also the
axial nucleon form factors could be explained consistently
[9]. Until now, it remains as a puzzle why the direct quark-
model predictions in point form fall so close to experiment
in all aspects of the electroweak nucleon structure, espe-
cially since simplified spectator-model current operators
have been employed and no additional parametrizations
have been introduced. It is noteworthy that the point form
results are also very similar to the parameter-free predic-
tions of the instanton-induced (II) CQM of the Bonn group
that were calculated in a completely different approach
along the Bethe-Salpeter formalism [3]. The quality of the
reproduction of the baryon EM properties gave impulse to
studies of strong decays of baryon resonances along the
same formalisms. However, the corresponding decay
widths are not described equally well [10–15].

In order to clarify the situation we undertook a closer
inspection of the point-form spectator model (PFSM) in
Ref. [11]. We demonstrated along the strong decay widths
that some significant effects may be caused by ambiguities
connected to the fact that a unique spectator-model con-
struction cannot be obtained by imposing Poincaré invari-
ance alone. It was already observed before that further
constraints should be included [16,17]. This property is

inherent to any form of RQM and in this paper we specifi-
cally discuss the effects of such ambiguities in the instant-
form spectator model (IFSM) and the PFSM.

We address the proton and neutron electromagnetic form
factors at momentum transfers up to Q2 � 4 GeV2. First
we introduce the construction of instant-form and point-
form spectator-model currents and characterize their par-
ticular properties. We then derive their nonrelativistic lim-
its and show that both, IFSM and PFSM, lead to the same
result, namely, the well-known nonrelativistic impulse ap-
proximation (NRIA). We provide a comparison of the
IFSM, PFSM and NRIA predictions of the GBE CQM
[18]. Subsequently, we examine the effects from different
realistic CQMs relying on distinct quark-quark dynamics.
In particular, we discuss the PFSM results by the GBE
CQM in relation to the ones of a one-gluon-exchange
(OGE) CQM, namely, the relativistic version of the
Bhaduri-Cohler-Nogami (BCN) CQM [19] as parame-
trized in Ref. [20]. In this context a comparison is made
also with the form-factor results reported from the II CQM
by the Bonn group [3]. Finally, in line with Refs. [16,17],
we discuss how additional constraints like charge normal-
ization and time-reversal invariance can be exploited to
reduce as much as possible some remaining ambiguities in
the present form of the spectator-model constructions. We
end the paper in Sect. IV with a summary and conclusion.

II. ELECTROMAGNETIC CURRENT

In RQM the nucleon states are expressed as eigenstates
jP; J;�i of the interacting mass operator

 M̂ � M̂free � M̂int; (1)

the intrinsic spin operator Ĵ, and its z-component �̂ (the
letters without hat denoting the corresponding eigenval-
ues). The covariant normalization of these states is

 hP0; J0;�0jP; J;�i � 2P0�3� ~P� ~P0��JJ0���0 : (2)

The mass operator M̂ is connected to the four-momentum
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operator P̂ and the four-velocity operator V̂ by the relations

 P̂ � � M̂V̂�; (3)

where

 P̂ �P̂� � M̂2: (4)

Because of the commutation relations among these opera-
tors the nucleon eigenstates with mass M can equivalently
be denoted as jV;M; J;�i. In this notation the elastic
transition amplitude between the incoming and outgoing
nucleon eigenstates is given by the following matrix ele-
ment of the reduced electromagnetic current operator

 F��0;��Q
2� �

�
V0;M;

1

2
;�0

��������Ĵ�rd
��������V;M; 12 ;�

�
; (5)

where Q2 � �P0� � P��2 is the momentum transfer by the
virtual photon. In the Breit frame, the nucleon electric and
magnetic Sachs form factors, GE�Q

2� and GM�Q
2�, are

related to the transition amplitude F��0;� by

 F0
�0;��Q

2� � 2MGE�Q2���0� (6)

 

~F �0;��Q2� � iQGM�Q2��y�0 � ~�� ~ez���; (7)

where �0, � � � 1
2 are the projections of the nucleon spin

~� along the direction ~ez of the z axis and � are the
corresponding Pauli spinors. The form factors also lead
directly to the magnetic moments

 � � GM�Q2 � 0� (8)

and the charge radii

 r2
ch � �6

dGE

d�Q2�

��������Q2�0
: (9)

The electric and magnetic form factors in Eqs. (6) and
(7) are Poincaré invariant, since both the mass-operator
eigenstates and the electromagnetic current operator trans-
form under the Poincaré group. Depending on the particu-
lar form of RQM (instant, front, or point forms) certain
generators of the Poincaré transformations become inter-
action dependent while the other ones belong to the kine-
matical subgroup.

It is still rather difficult to employ the full (many-body)
structure of the current operator and thus one adheres to
simplifications. The common form consists in the so-called
spectator approximation. The definition of a spectator-
model current operator is generally not unique and requires
additional constraints. In particular, the spectator-model
construction has to be covariant under the transformations
of the kinematic subgroup of the particular form of RQM
and it must guarantee for time-reversal invariance. Further
it should reduce to a sum of genuine single-particle cur-
rents in the limit of vanishing interaction among the con-
stituent quarks and yield the charge of the proton for the
electric form factor approaching momentum transfer

Q2 � 0. In addition, the construction should lead to a
proper nonrelativistic limit.

A. Instant-form spectator model

In the instant form the spatial translations and rotations
form the kinematic subgroup, whereas the boosts become
interaction dependent.

In the explicit calculations of the matrix elements (5)
one requires momentum eigenstates of the free three-quark
system jp1; p2; p3;�1; �2; �3i defined as tensor products
of single-particle momentum eigenstates jpi;�ii. In any
reference frame with total three-momentum ~P �

P
i ~pi

they can also be expressed as
 

j ~P; ~k1; ~k2; ~k3;�1; �2; �3i �
X
�i

Y
i

D1=2
�i�ifRW�ki;B�v�	g

� jp1; p2; p3;�1; �2; �3i;

(10)

wherein the Wigner rotations depend on the free four
velocity

 v �
Pfree

Mfree
�

P
i piP
i !i

: (11)

The momenta ki are connected to the momenta pi by the
Boost relations pi � B�v�ki and they fulfill the constraintP
i
~ki � 0. The individual quark energies are given by!i ������������������
m2
i �

~k2
i

q
. The�i correspond to the individual quark spins

in the rest frame of the three-quark system. The free
momentum eigenstates of Eq. (10) have the following
completeness relation

 1 �
X
�i

Z
d3 ~Pd3 ~k2d

3 ~k3

P
i !i

Efree

�
1

2!12!22!3
j ~P; ~k1; ~k2; ~k3;�1; �2; �3i

� h ~P; ~k1; ~k2; ~k3;�1; �2; �3j: (12)

They are well suited for instant-form calculations because
here the three-momentum ~P is not affected by interactions.
Representing the nucleon states with this basis allows one
to separate the internal motion according to

 h ~P0; ~k01; ~k
0
2; ~k
0
3;�01; �

0
2; �

0
3j
~P; J;�i

�
���������������
2E0freeE

q ��������������������������
2!012!022!03P

!0i

s
�3� ~P0 � ~P��M�1=2��� ~ki;�i�;

(13)

where E0free and E are the eigenvalues of the zeroth com-
ponents of the free and interacting four-momenta P̂0�free and
P̂�, respectively. The wave function �M�1=2��� ~ki;�i� is
just the rest-frame wave function of the nucleon. It is
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normalized to unity

 

X
�i

Z
d3k2d

3k3�?
M�1=2��0 �

~ki;�i��M�1=2��� ~ki;�i� � ���0

(14)

in accordance with the normalization condition of the
nucleon eigenstates in Eq. (2).

The transition amplitude (5) in instant form can then be
expressed as

 

F��0;��Q
2� � 2

��������
EE0
p X

�i�0i

X
�i�0i

Z
d3 ~k2d3 ~k3d3 ~k02d3 ~k03

1�������������������
EfreeE0free

q
��������������������������P

!i

2!12!22!3

s ��������������������������P
!0i

2!012!022!03

s
�?
M�1=2��0 �

~k0i;�0i�

�
Y
�0i

D?�1=2�
�0i�

0
i
fRW�k0i;B�v

0�	ghp01; p
0
2; p

0
3;�01; �

0
2; �

0
3jĴ

�
rdjp1; p2; p3;�1; �2; �3i

�
Y
�i

D1=2
�i�ifRW�ki;B�v�	g�M�1=2��� ~ki;�i�; (15)

The spectator model of the current operator in instant form (the IFSM) is then defined as

 

hp01; p
0
2; p

0
3;�01; �

0
2; �

0
3jĴ

�
rd;IFSMjp1; p2; p3;�1; �2; �3i

� 3e1 �u�p01; �
0
1��

�u�p1; �1�2p20�
3� ~p2 � ~p02�2p30�

3� ~p3 � ~p03���2�
0
2
��3�

0
3
: (16)

As a consequence of the very properties of the instant form
(with the three-momenta as generators of spatial trans-
lations lying in the kinematic subgroup) the momenta of
the struck quark in the incoming and outgoing nucleon are
related by

 p10 � p
0
10 � ~q0 ~p1 � ~p01 � ~Q: (17)

This means that the whole three-momentum carried by the
virtual photon is transferred to the quark 1, while only a
part of the photon energy is absorbed by a single quark, i.e.
~q0 � Q0. Clearly, ~q0 is uniquely determined by overall
momentum conservation and the two spectator conditions.
We shall see below that in the point form the spectator-
model construction leads to a different relation between p1

and p01, as the momenta no longer lie in the kinematic
subgroup.

The construction (16) is usually adopted in the Breit
frame. When transformed to a different reference frame, it
does not preserve its spectator-model structure but acquires
additional many-body contributions. Thus, in general, the
IFSM current should not be viewed as a one-body operator.
Furthermore a spectator-model construction made in an-
other reference frame defines a different spectator-model
current. As a result the calculation done with an IFSM
current defined in the Breit frame leads to a different result
than the calculation performed with an IFSM current de-
fined in the laboratory frame, say. In this sense the IFSM,
while always yielding Poincaré invariant results, bears an
ambiguity in the construction, as it is per se frame depen-
dent. If one imposes time-reversal invariance on the IFSM,
one necessarily has to resort to the Breit frame. In all other
reference frames additional many-body contributions
would be needed to guarantee time-reversal invariance.

Equation (15) exhibits all the effects of the Lorentz
boosts on the incoming and outgoing nucleon states
through the changes in the respective quark momenta and
the Wigner D-functions. Sometimes the latter are simply
ignored by setting them to unity [21]. While this simplifies
the calculations considerably, the resulting form factors
obtained in this way are no longer strictly Poincaré
invariant.

B. Point-form spectator model

In the point form the kinematic subgroup is the Lorentz
group, only the space-time translations are interaction
dependent. For the actual calculations it is advantageous
to use velocity states (of the free three-quark system)
defined by
 

jv; ~k1; ~k2; ~k3;�1; �2; �3i �
X
�i

Y
i

D1=2
�i�ifRW�ki;B�v�	g

� jp1; p2; p3;�1; �2; �3i;

(18)

where the momenta ki and pi are again connected through
the boost relation pi � B�v�ki and the ki satisfy

P
i
~ki � 0.

Since in the point form the four-velocity v � �v0; ~v� is
independent of the interaction, it can be expressed through
eigenvalues of the free or interacting momentum and mass
operators as

 v �
Pfree

Mfree
�
P
M
� V: (19)

The completeness relation for the velocity states reads
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 1 �
X
�i

Z
d3 ~vd3 ~k2d

3 ~k3
�
P
i !i�

3

v0

1

2!12!22!3
jv; ~k1; ~k2; ~k3;�1; �2; �3ihv; ~k1; ~k2; ~k3;�1; �2; �3j: (20)

Representing the nucleon states in the velocity-state basis allows one to separate the internal motion in the following way

 

�
v; ~k1; ~k2; ~k3;�1; �2; �3

��������V;M; 12 ;�
�
�

���
2
p

M
v0�

3� ~v� ~V�

��������������������������
2!12!22!3

�
P
i !i�

3

s
�M�1=2��� ~ki;�i�; (21)

which differs substantially from the separation followed in the instant form, Eq. (13). However, the �M�1=2��� ~ki;�i� is
again the rest-frame wave function of the nucleon. The nucleon mass eigenstates in Eq. (21) are normalized as in Eq. (2)
and the wave functions are normalized as in Eq. (14).

The transition amplitude, Eq. (5), of the electromagnetic current in point form reads

 

F��0;��Q
2� �

2

M2

X
�i�0i

X
�i�0i

Z
d3 ~k2d3 ~k3d3 ~k02d3 ~k03

�������������������������������������
�!1 �!2 �!3�

3

2!12!22!3

s �������������������������������������
�!01 �!

0
2 �!

0
3�

3

2!012!022!03

s
�?
M�1=2��0 �

~k0i;�0i�

�
Y
�0i

D?�1=2�
�0i�

0
i
fRW�k0i;B�V

0�	ghp01; p
0
2; p

0
3;�01; �

0
2; �

0
3jĴ

�
rd;PFSMjp1; p2; p3;�1; �2; �3i

�
Y
�i

D1=2
�i�ifRW�ki;B�V�	g�M�1=2��� ~ki;�i�; (22)

and the spectator-model approximation of the current operator in point form (the PFSM) is defined by the expression

 

hp01; p
0
2; p

0
3;�01; �

0
2; �

0
3jĴ

�
rd;PFSMjp1; p2; p3;�1; �2; �3i

� 3N e1 �u�p01; �
0
1��

�u�p1; �1�2p20�
3� ~p2 � ~p02�2p30�

3� ~p3 � ~p03���2�02
��3�03

: (23)

Here the momentum transfer to the struck quark is given by

 p�1 � p
0�
1 � ~q�; (24)

where ~q� � Q� is uniquely determined by the overall
momentum conservation and the two spectator conditions.
The relation between p1 and p01 is complicated, because
the transferred momentum ~q to the active quark inherits
nontrivial interaction-dependent contributions [11]. The
momentum transfers to the struck quark in IFSM,
Eq. (17), and in PFSM, Eq. (24), are rather different,
because in the instant form the kinematical subgroup in-
cludes the three-momentum, whereas in point form it does
not. Contrary to the IFSM, the PFSM maintains its
spectator-model character in all reference frames.
Always, only one quark is directly coupled to the photon,
and the PFSM current is manifestly covariant. In the limit
of vanishing quark-quark interaction such differences dis-
appear and one recovers ~q� ! Q�.

Formally, the above definition of Eq. (23) looks the same
as for the IFSM in Eq. (16) except for the appearance of an
extra factor N . The factor N is needed in the point form
in order to yield the proper proton charge from the electric
form factor in the limit Q2 ! 0 and to recover a sum of
individual-particle currents when the interaction is turned
off [11]. In the works [6–9] a choice of N symmetric with

regard to the incoming and outgoing nucleon states was
adopted

 N �N S �

�
MP
i !i

�
3=2
�
MP
i !
0
i

�
3=2
: (25)

It is important to notice that the factor N has nothing to do
with the normalization of the nucleon states: the nucleon
states follow the covariant normalization as in Eq. (2)
implying, together with the normalization of the wave
function in Eq. (14), the factors explicitly written out in
Eq. (22); the factor N must be considered as part of the
definition of the PFSM current and it is required to produce
a consistent spectator-model operator in the point form.

One should note that both N and ~q effectively depend
on all three-quark variables, and therefore the PFSM must
not be considered strictly as a one-body operator. It effec-
tively includes many-body contributions [11]. The factor
N can in principle be adopted in several ways. Later on
we shall come back to this issue.

C. Nonrelativistic impulse approximation

The nonrelativistic reduction of both the IFSM and the
PFSM leads to the same result, namely, to the NRIA:
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 F�NR
�0;� �Q

2� �

�
V 0;M;

1

2
;�0

��������Ĵ�rd;NR

��������V;M; 12 ;�
�

� 2M
X
�i�0i

Z
d3 ~k2d3 ~k3d3 ~k02d3 ~k03�?

M�1=2��0 �
~k0i;�0i�j

�
rd;NR�Q

2��M�1=2��� ~ki;�i� (26)

with
 

j�rd;NR�Q
2� � e1

1

�
~p1� ~p01
2m1
�

i ~�1�� ~p1� ~p01�
2m1

	�3� ~p2 � ~p02��
3� ~p3 � ~p03�

 !
(27)

and the momenta now being connected through the rela-
tions ~ki � ~pi � �mi=

P
imi� ~P and ~p1 � ~p01 � ~Q.

As is evident, all integration measures, normalization
factors, and Wigner rotations have reduced to unity and the
nonrelativistic expression for the EM current is recovered.

III. ELASTIC NUCLEON FORM FACTORS

In this section we present the theoretical results for the
elastic electromagnetic form factors of the nucleon calcu-
lated with the spectator-model currents constructed above.
First we compare the IFSM and PFSM results along the
GBE CQM. Then we show the influences from different
quark-model wave functions by comparing the GBE CQM
results with the predictions of the BCN-OGE CQM. We
stress that these results have been obtained without any
parameter variation. However, there reside ambiguities in
spectator-model constructions, which are discussed here
quantitatively in case of the PFSM.

A. IFSM versus PFSM results

Figures 1 and 2 contain the direct predictions for the
Sachs form factors obtained from the GBE CQM. Tables I

and II give the corresponding magnetic moments and
charge radii. Immediately some striking features are evi-
dent. For the electric form factors of both proton and
neutron the IFSM results are very similar to the NRIA
and especially in case of the proton, they lie far off the
experimental data. The PFSM predictions fall close to
experiment [7]. For the magnetic form factors the IFSM
and NRIA results become quite distinct, especially for
lower momentum transfers. This has the consequence
that the IFSM magnetic moments for both proton and
neutron turn out to be unreasonable in comparison with
experiment, while the NRIA results happen to reproduce
them quite well (see Table I).

Evidently, the spectator-model approximations are dif-
ferent in the instant and point forms even though they have
the same nonrelativistic limit. The relativistic effects stem
from the Lorentz boosts. In PFSM Lorentz boosts belong to
the kinematic subgroup while in IFSM they do not.
Consequently the two forms introduce different effective
many-body contributions in the spectator operators.
Therefore, we may interpret the differences between the
IFSM and PFSM results as being due to different contri-
butions from (effective) many-body contributions.

0 1 2 3 4

Q
2
 [(GeV/c)

2
]

0.0

0.5

1.0
Andivahis
Walker
Sill
Hoehler
Bartel
Christy
Qattan

GE
p

0 1 2 3 4

Q
2
 [(GeV/c)

2
]

0.0

0.5

1.0

1.5

2.0

2.5
Andivahis
Walker
Sill
Hoehler
Bartel
Christy
Qattan

GM
p

FIG. 1. Electric and magnetic form factors of the proton as predicted by the GBE CQM with the the IFSM (dashed line), PFSM (full
line), and the NRIA (dash-dotted line) current operators. Experimental data are from Refs. [30–32,37,38,61,62].
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It should be emphasized that we make the comparison of
the IFSM, PFSM, and NRIA predictions without any read-
justment of the CQM parameters. Here, we directly em-
ploy the nucleon wave function as produced by the GBE
CQM, whose parameters were fitted only to the baryon
spectra in Ref. [18]. One could bring, for example, the
IFSM results closer to experiment by an ad hoc modifica-
tion of the nucleon wave function and an adjustment of the
constituent quark mass, as is done in Ref. [5]. However,
this would then change also the PFSM and NRIA results
considerably, making a consistent comparison of the CQM
predictions obtained with the various spectator-model con-
structions difficult if not impossible.

B. Effects from quark-model wave functions

Having compared the results with different spectator-
model constructions of the EM current (in case of the GBE
CQM), we are now interested to see the effects from differ-
ent relativistic CQM nucleon wave functions. This com-
parison is performed along the PFSM approach. In addition
to the GBE CQM (whose hyperfine interaction is flavor
dependent) we have calculated the predictions of a differ-
ent relativistic CQM with a chromomagnetic hyperfine
interaction based on OGE dynamics. In particular, we
have employed the relativistic variant of the BCN CQM
[19] in the parametrization of Ref. [20]. For completeness
we have also included the predictions by even another type
of relativistic CQM, namely, the II CQM by the Bonn
group [23,24]. These results, however, stem from the
field-theoretic Bethe-Salpeter approach which is princi-
pally different from the RQM we followed. The current
operator employed in Ref. [3] has also been approximated
by a spectator-model construction.

In Figs. 3 and 4 we compare the predictions for the EM
form factors of proton and neutron, respectively; the cor-
responding results for the electric radii and magnetic mo-
ments are quoted in Tables III and IV. One observes that the
differences between the GBE and BCN CQMs are rela-
tively small; in most cases the curves are even indistin-
guishable. Only for the electric form factor of the neutron
the discrepancies between the curves are clearly visible,
but here one should take into account the expanded scale in
that figure. Differences between the GBE and BCN CQMs
are also found in the charge radii, whereas the magnetic
moments are again very similar. In all instances, the PFSM
predictions of the GBE and OGE CQMs are, nevertheless,
found in remarkable vicinity of the experimental data,
except for the electric radius of the neutron in case of the
BCN CQM. Certainly, the differences between the two

TABLE II. Charge radii of the proton and neutron (in fm2) as
predicted by the GBE CQM with the IFSM, PFSM, and the
NRIA current operators. Experimental data after the PDG [22].

GBE CQM
Nucleon IFSM PFSM NRIA Experiment

p 0.156 0.824 0.102 0.766
n �0:020 �0:135 �0:009 �0:116

TABLE I. Magnetic moments of the proton and neutron (in
n.m.) as predicted by the GBE CQM with the IFSM, PFSM, and
the NRIA current operators. Experimental data after the PDG
[22].

GBE CQM
Nucleon IFSM PFSM NRIA Experiment

p 1.24 2.70 2.74 2.79
n �0:79 �1:70 �1:82 �1:91
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Q
2
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2
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Q
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2
]

-2.0

-1.5

-1.0

-0.5

Lung
Markowitz
Rock
Bruins
Gao
Anklin 98
Anklin 94
Xu 2000
Kubon
Xu 2003

GM
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FIG. 2. Same as in Fig. 1 but for the neutron. Experimental data are from Refs. [51–60,63–74].
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TABLE III. Magnetic moments of the proton and neutron (in
n.m.) as predicted by the GBE, BCN and confinement-only
(CONF) CQMs along the PFSM and the II CQM along the
Bethe-Salpeter (BS) approach. Experimental data after the PDG
[22].

PFSM BS
Nucleon GBE BCN CONF II Experiment

p 2.70 2.74 2.65 2.74 2.79
n �1:70 �1:70 �1:73 �1:70 �1:91

TABLE IV. Charge radii of the proton and neutron (in fm2) as
predicted by the GBE, BCN and confinement-only (CONF)
CQMs along the PFSM and the II CQM along the Bethe-
Salpeter (BS) approach. Experimental data after the PDG [22].

PFSM BS
Nucleon GBE BCN CONF II Experiment

p 0.824 1.029 0.766 0.67 0.766
n �0:135 �0:263 �0:009 �0:11 �0:116
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FIG. 3. Electric and magnetic form factors of the proton as predicted by the GBE (full line) and BCN (dashed line) CQMs along the
PFSM approach; in addition the results for the case with only the confinement potential (inherent in the GBE CQM) are given (dash-
dotted line). For comparison also the predictions of the II CQM (dotted line) after Ref. [3] are shown. Experimental data as in Fig. 1.
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FIG. 4. Same as in Fig. 3 but for the neutron. Experimental data as in Fig. 2.
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types of CQMs are much smaller than the variations found
above between the IFSM and PFSM results.

It is now interesting to compare also with the predictions
of the II CQM. Surprisingly, they are very similar to the
ones of the GBE and OGE CQMs, even though they have
been derived in a completely different framework, namely,
along the Bethe-Salpeter approach. Only, the results from
the II CQM tend to undershoot the proton electric
form factor and overestimate the neutron electric
form factor but generally there is a similarity of the
Bethe-Salpeter and PFSM results.

On the other hand, a CQM, where only the confinement
potential is present, fails in reproducing the electromag-
netic nucleon structure. In particular, it yields the proton
form factors too small and misses the neutron electric form
factor completely. The reason is that a certain mixed-
symmetric spatial component in the neutron wave function
is needed in order to produce a nonvanishing electric
form factor. However, the neutron wave function produced
by the confinement-only potential comes practically with-
out a mixed-symmetric spatial part. That such type of
nucleon wave function cannot be adequate is consistent
with observations made already in earlier works [25,26].

For a closer inspection of the differences in the relativ-
istic CQM predictions it is instructive to look through the
magnifying glass of Gn

M=GD and Gp
M=GD ratios. This

comparison is given in Fig. 5. The tiny differences between
the PFSM predictions of the GBE and OGE CQMs are
confirmed. The Q2 dependence of the ratios is seen to be
slightly distinct in the case of the II CQM.

From the comparisons made in this subsection we con-
clude that realistic nucleon wave functions are necessary in
order to describe the proton as well as neutron electromag-
netic structure consistently. Such type of wave functions

are obviously achieved in the GBE, OGE, and II CQMs.
With respect to the nucleon electromagnetic structure the
presence of a hyperfine interaction itself is found of con-
siderable importance. Even though the various hyperfine
interactions of the CQMs considered here stem from differ-
ent dynamics, they obviously lead to similar nucleon wave
functions. When the hyperfine interaction is left out com-
pletely (cf. the case with the confinement potential only),
the nucleon structure can by no means be described in a
reasonable manner.

C. Uncertainties in the PFSM construction

Finally we deal with the problem that the PFSM con-
struction has some residual ambiguity. In particular, a
factor N necessarily appears in the PFSM current of
Eq. (23). As already mentioned the factor N is unavoid-
able, if one wants the spectator-model current to reduce to
a genuine one-body operator in the limit of zero-
momentum transfer [11]. It is also required to guarantee
for the proper charge normalization of the proton.

All results for the electromagnetic nucleon structure
considered so far have been calculated with the symmetric
choice for the factor N as given in Eq. (25). However, this
is not the only possibility. Following Ref. [11] one could
also adopt the general expression

 N �x; y� �
�
MP
i !i

�
xy
�
MP
i !
0
i

�
x�1�y�

; (28)

where x and y are to be considered as open parameters
varying in the range 0 
 x and 0 
 y 
 1. The normaliza-
tion factors so defined are all Lorentz invariant and all lead
to a covariant PFSM current with the required properties.
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FIG. 5. Same comparison as in Figs. 3 and 4 for the ratios of magnetic to dipole form factors of the proton (left panel) and the
neutron (right panel). All ratios are normalized to 1 at Q2 � 0.
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In the following, we examine the dependence of the EM
form-factor results on possible choices of N , i.e. varia-
tions of the parameters x and y. At zero-momentum trans-
fer the factor N depends only on x. In Fig. 6 we show the
results for the electric proton form factor Gp

E�Q
2� at

Q2 � 0, i.e. the proton charge, for varying x. Clearly, the
only possibility consistent with the proton charge normal-
ization is x � 3. This result is in line also with the argu-
ments given in Ref. [11] that in the limit Q2 ! 0 the PFSM
reduces to a genuine one-body operator only with a cubic
choice for the factor N .

Once the parameter x is uniquely fixed, let us now
examine the possible y dependence. In Fig. 7 we show
the third component of the transition amplitude (22) in the
Breit frame as a function of y for three different momentum
transfers. It is well known that in the Breit frame the
expectation value of the third component of the current
has to vanish under the constraint of time-reversal invari-
ance [27,28]. From the results in Fig. 7 it is immediately
seen that there is a unique value of y where the third
component of the transition amplitude vanishes for all
values of Q2. Consequently, y � 1

2 has to be chosen in
Eq. (28) in order to satisfy time-reversal invariance. This
motivates the symmetric choice in Eq. (25).

However, we may even find another choice for the factor
N that meets all requirements posed, including time-
reversal invariance. A valid construction would also be
 

N �z� �
1

2

��
MP
i !i

�
3z
�
MP
i !
0
i

�
3�1�z�

�

�
MP
i !i

�
3�1�z�

�
MP
i !
0
i

�
3z
�

(29)

with an open parameter z varying in the range 0 
 z 
 1.

This expression produces the symmetric choice of Eq. (25)
for the special value z � 1

2 .
Another form is obtained by choosing z � 0 (or equiv-

alently z � 1), leading to

 N ari �
1

2

��
MP
i !i

�
3
�

�
MP
i !
0
i

�
3
�
; (30)

which can be viewed as the arithmetic mean of two pieces
relating to the ratios of the interacting and free masses in
the incoming and outgoing nucleon states.

Evidently, all of the allowed forms of N , according to
Eqs. (28) and (29), lead to the same nonrelativistic limit,
which consists in the NRIA.

In summary we note that under the given premises there
remains a certain ambiguity in the PFSM construction
related to the factor N . Let us thus examine the variations
in the predictions for EM form factors resulting from
different possible choices of N . In Fig. 8 we show the
ratios of neutron and proton magnetic form factors to the
standard dipole form factors as obtained in the PFSM with
three particular choices of N ; the solid line is the N S
result and the dashed line represents the results with N ari.
Figure 9 contains the same comparisons for the proton
electric to magnetic as well as electric to dipole form-
factor ratios. The band of variations in the predictions is
limited by the cases with N ari and N S. The uncertainty
bands are anyway rather narrow since one must take into
account that these ratios are extremely sensitive to small
differences. For comparison we have added in Figs. 8 and 9
also the results obtained in IFSM (dash-double-dotted
lines).

Different choices of N �z� in Eq. (29) imply distinct
Q2-dependences in the form factors. One may ask which
particular value of z is favored by phenomenology. We
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FIG. 7. Third component of the transition amplitude
F3
�1=2�;�1=2��Q

2� in the Breit frame as a function of the exponent
parameter y in the PFSM factor N of Eq. (28) for three different
values of the momentum transfer Q2, calculated with the GBE
CQM [18].
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FIG. 6. Electric proton form factor Gp
E at momentum transfer

Q2 � 0 (i.e. proton charge) as a function of the exponent
parameter x in the PFSM factor N of Eq. (28), calculated
with the GBE CQM [18].
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have thus performed a simple one-parameter fit of N �z� to
the experimental data of the ratios Gn

M=GD and Gp
M=GD at

a single intermediate momentum transfer ofQ2 � 3 GeV2.
It leads to z � 1

6 and produces the results represented by the
dash-dotted lines in Fig. 8. They lie everywhere in between
the upper and lower bounds obtained with N ari and N S,
respectively.

Evidently at Q2 � 0 the spread from different forms of
N vanishes. It grows towards higher momentum transfers.
However, the ambiguity band remains relatively small up

to Q2 � 3–4 GeV2. Regarding the proton form factor ratio
in Fig. 8, the theoretical uncertainties are larger than the
experimental ones and this represent a significant limita-
tion. In addition, one must observe that the results with
N S tend to be lower than the experimental data, at least
beyond a momentum transfer of Q2 � 1 GeV2. However,
this curve should not be considered as the most favorable
PFSM prediction but merely a lower limit of possible
results due to an intrinsic theoretical uncertainty. A similar
situation replicates also for the ratio of the neutron mag-
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FIG. 8. Ratios of magnetic form factor to standard dipole parametrization for the proton (left) and neutron (right) with different
PFSM currents in case of the GBE CQM. The full lines denote the results with N S from the previous subsections, the dashed lines
with N ari from Eq. (30), and the dash-dotted lines with N fit, see the text. For comparison also the IFSM results are shown (dash-
double-dotted lines). All ratios are normalized to 1 at Q2 � 0.
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netic to dipole form factors in the right panel of Fig. 8,
although in this case the experimental uncertainties are
larger than for the proton.

The ratios involving the electric proton form factors are
given in Fig. 9. In case of the proton electric to dipole from
factor ratio the theoretical uncertainty band from the PFSM
calculations essentially covers the experimental data with
their errors. In particular the PFSM result produced with
N fit, where the z � 1

6 was adjusted only to the proton and
neutron magnetic form factors, is found in remarkable
consistency with the general trend of the experimental
data. The IFSM calculation is not in the position to produce
the right Q2-dependence, and it is far off the established
phenomenology. In the right panel of Fig. 9 the ratio of the
proton electric to magnetic form factors is shown. It has
become directly accessible by experiment through polar-
ization measurements [depicted by the filled blue (gray)
and magenta (dark gray) symbols] and this has lead to a
conflict with earlier cross-section data (marked by the open
black symbols); more recently cross-section measurements
have produced the data marked by the open green (light
gray) symbols. It is interesting to observe that the PFSM
predictions tend to follow the downbending of the ratio
with increasing momentum transfer. The N S results agree
with the polarization data, the curve with N fit hits the
latest measurement reported in Ref. [29] [shown by the
magenta (dark gray) star in the right panel of Fig. 9]. The
theoretical uncertainty band, however, remains rather nar-
row and is in any case smaller than the spread from the
various experimental data.

IV. SUMMARY AND CONCLUSION

We have studied the spectator-model constructions of
the electromagnetic current operator in the instant and
point forms of relativistic quantum mechanics. In particu-
lar we have specified the IFSM and PFSM current opera-
tors and have derived their common nonrelativistic limit,
the usual NRIA. We have calculated the direct predictions
of the GBE CQM for the elastic nucleon EM form factors,
including the electric radii and magnetic moments. The
PFSM results are found close to experimental data in
all instances, while the IFSM and NRIA results deviate
grossly.

Furthermore, we have investigated the dependences of
the form-factor results on nucleon wave functions from
different relativistic CQMs. The predictions of the GBE
CQM in PFSM have been contrasted to analogous results
calculated with the relativistic BCN CQM. The two CQMs
rely on hyperfine interactions from rather distinct dynami-
cal concepts (flavor dependent Goldstone-boson exchange
and color-magnetic interactions, respectively). Neverthe-
less, only minor variations are found in all predictions for
elastic nucleon form factors (as well as electric radii and
magnetic moments). In addition we have provided a com-
parison with the predictions of the II CQM, derived within

a completely different approach along the Bethe-Salpeter
formalism. Still, the II CQM leads to results that are quite
similar to the PFSM ones, in spite of the completely differ-
ent frameworks. Instead, if one leaves out the hyperfine
interaction completely, one obtains an unrealistic descrip-
tion that leads specifically to an almost vanishing electric
form factor of the neutron.

In addition we have addressed a theoretical uncertainty
that resides in the construction of the PFSM current. It
concerns the choice of a factor N in the PFSM construc-
tion that is unavoidable and cannot be constrained uniquely
by Poincaré invariance alone. Supplementary conditions
such as charge normalization and time-reversal invariance
can be imposed. Nevertheless, there remains a residual
indetermination in the factor N . We demonstrated the
band of variations of the PFSM results due to different
possible choices for N . It typically covers the spread of
experimental data with the upper bound represented by
N ari and the lower one by N S. The magnitudes of the
variations between results with different factors of N ,
however, are generally larger than differences due to nu-
cleon wave functions from alternative quark models.

At present there is a vivid discussion of some details of
the proton electromagnetic structure revealed by experi-
ment through the Gp

E=G
p
M ratio as depicted in Fig. 9.

Specifically one has become aware of a striking discrep-
ancy between earlier data extracted by the Rosenbluth
separation method [30–32] and more recent data measured
in polarization experiments [33–36]. The problem has
recently been investigated experimentally by additional
measurements at the Jefferson Laboratory using the
Rosenbluth technique [37,38]. According to Ref. [39] the
inclusion of Coulomb distortions in the Rosenbluth method
has a non-negligible effect, but cannot account for the
whole discrepancy. It also has been suggested that the
effect of two-photon contributions could have an impact
[40,41], particularly in the Rosenbluth separation.
Obviously, the experimental situation is still a matter of
discussion (see also Refs. [29,42,43]). On the theoretical
side, the major efforts to resolve the discrepancies take into
account two-photon corrections [44–48] and additional �
contributions [49]. For an updated discussion on this issue
see, e.g., Ref. [50].

Our present study tells that the IFSM calculation is not
in the position to reproduce the Gp

E=G
p
M data from either

the Rosenbluth separation or from the polarization mea-
surements. The corresponding momentum dependence is
contrary to both. On the other hand, one might be tempted
to conclude that the usual PFSM calculation (with the
factor N S) favors the lower lying polarization data
(cf. Fig. 9). However, our investigation of the uncertainties
still inherent in the PFSM results tells that the upper bound
of the predictions also comes close to the data from
Rosenbluth separation. With regard to the recent datum
from the asymmetric beam-target experiment by Jones
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et al. [29] it is particularly interesting to see that it is hit by
the prediction with N fit.
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