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We study the e�e� ! ��� reaction for pions in an isoscalar s wave which is dominated by loop
mechanisms. For kaon loops we start from the conventional R�PT, but use the unitarized amplitude for
K �K � �� scattering and the full kaon form factor instead of the lowest order terms. We study also effects
of vector mesons using R�PT supplemented with the conventional anomalous term for VVP interactions
and taking into account the effects of heavy vector mesons in the K�K transition form factor. We find a
peak in m�� around the f0�980� as in the experiment. Selecting the �f0�980� contribution as a function of
the e�e� energy we also reproduce the experimental data except for a narrow peak, yielding support to the
existence of a 1�� resonance above the �f0�980� threshold, coupling strongly to this state.
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I. INTRODUCTION

The initial state radiation e�e� ! �ISR � �� ! �ISR �
X in electron-positron machines is being used to study
electron-positron annihilation into hadronic states X, scan-
ning energies below the original design in the so-called
radiative return method. This method has proved to be
useful both in the study of the properties of low-lying
resonances in� factories [1] as well as in the measurement
of the cross section for electron-positron annihilation into
different hadronic final states in B factories [2]. In the latter
case it is possible to study electron-positron annihilation
into hadronic states over the range from 1 up to 5 GeV with
a clean identification of the desired final states over the
hadronic background. Detailed analysis of some of these
processes shows enhancements of the corresponding cross
sections whose proper description seems to require the
existence of new resonances. Indeed, a broad structure
was found in the e�e� ! �ISRJ= ���� cross section
showing the existence of a resonance with a mass of about
4.26 GeV [3]. More recently, in studying the cross section
as a function of the center of mass for e�e� ! �ISR���
with the dipion mass close to the f0�980�, another structure
was found around 2.2 GeV indicating the existence of a
new resonance with a mass of about 2.175 GeVand a width
of 58 MeV [4].

For final pions in a C even state, the leading electromag-
netic contributions to the e�e� ! ��� process come
from the exchange of a virtual photon. The quark lines of
the� and�� final states are disconnected thus at tree level
the �� ! ��� can only be induced by sequential decays
like �� ! !��! ��� which are suppressed by the
small !�� mixing. We explored this possibility finding
this contribution rather small. The natural mechanisms
appear at one loop level. In particular for a dipion mass
close to the f0�980� this process involves the ���f0 vertex
function with a photon with a virtuality above 2 GeV. The

very same vertex function appears also in one of the
mechanisms (dominant in the case of neutral pions) for
the radiative decay �! ��� recently measured in
electron-positron � factories [5] but there photons are
on-shell. The vertex function at k2 � 0, the �f0� cou-
pling, appearing in these decays is an important piece in
the elucidation of the structure of the lowest lying scalar
nonet.

The �! ��� decays have been studied in effective
models for nonperturbative QCD [6] incorporating scalar
degrees of freedom and in unitarized chiral perturbation
theory [7] (see also applications to �! K0 �K0� in [8]). In
both formalisms, the dynamics is dominated by the chain
�! S�! ��� where the �! S� decay is induced at
one loop level through charged kaon loops which couple to
the explicit scalar fields in the former case or generate them
dynamically through K �K � �� rescattering in the latter
case. The very same dynamics must be at work in the case
of virtual photons and should be the dominant one for low
photon virtualities. The calculation of such effects is the
subject of this paper.

Unlike the case of the �! S� decay where the real
photon tests only the electric charge, here we have a highly
virtual photon which couples to higher multipoles and the
way to incorporate systematically the effects of kaon loops
is to consider the full kaon form factor FK��k

2� in the
�K�K� interaction. Furthermore, although the contribu-
tion of neutral kaons vanishes for real photons, in the case
of virtual photons the ��K0 �K0 coupling is not null and we
must consider also neutral kaon loops with the correspond-
ing form factor. The challenge here is the proper charac-
terization of the kaon form factor at the energy of the
reaction. Fortunately we have at our disposal both a theo-
retical calculation of the neutral and charged kaon form
factors in U�PT [9] and direct measurements [10] in the
energy region of interest. In the former case, the kaon form
factor is matched with the perturbative QCD predictions at
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high energy and to �PT at low energy and, although the
calculated form factor cannot account for the effects of
excited vector mesons lying around 1.6 GeV, it is in
agreement with the scarce experimental data above
2 GeV. Concerning the K �K � �� scattering, it remains
in the same energy range as in �! ��� decays and we
can safely use the amplitudes calculated in unitarized
chiral perturbation theory which contains naturally the
scalar poles.

The high virtuality of the exchanged photon makes
probable the excitation of higher mass hadronic states.
The quark structure of the � suggests that the K�K inter-
mediate state can also give important contributions to
e�e� ! ��� via the production of virtual K� �K, with
the virtual K� decaying into a�K and the final rescattering
of kaons into pions. In this concern it is worth mentioning
that experimental data on e�e� ! K0K��� at

���
s
p
�

1400–2180 MeV show that this reaction is dominated by
intermediate neutral K�0K0 production with theK�0 decay-
ing into K��� [11], hence there is a sizable coupling of a
virtual photon to the K�K system at the mentioned ener-
gies. The proper description of this mechanism requires the
knowledge of the transition K�K electromagnetic form
factor but, again, it can be extracted from experimental
data on e�e� ! K0K��� which shows that, in addition to
the contributions from the exchange of lowest lying vec-
tors, this form factor receives also contributions from the
exchange of �0 and �0. Remarkably there is no evidence
for contributions coming from the exchange of !0 to this
form factor.

In this paper we study the above mentioned mechanisms
for e�e� ! ��� for the dipion system in an isoscalar
s wave. The paper is organized as follows: In Sec. II we
calculate the ����� vertex function using U�PT. In
Sec. III we calculate intermediate vector meson contribu-
tions using U�PT supplemented with the anomalous term
describing VVP interactions and incorporate contributions
from heavy mesons to the K�K transition form factor. In
Sec. IV we analyze the different contributions and our
summary and conclusions are given in Sec. V.

II. UNITARIZED �PT PREDICTIONS FOR
e�e� ! �����I�J�0

Following [7], the process e�e� ! ��� is induced at
one loop level by the kaon loops. In the calculations the
vertices are borrowed from resonance chiral perturbation
theory (R�PT) [12]. We follow the conventions in [12] and
the relevant interactions in their notation are

 L � L�2� �L�F� �L�G�; (1)

 L �2� � 1
4f

2 tr	�D�U�yD�U� �Uy � �yU
; (2)

 L �F� �
FV

2
���
2
p tr�V��f

��
� �; (3)

 L �G� �
iGV���

2
p tr�V��u�u��; (4)

where
 

u� � iuyD�Uu
y; U � u2;

u � e��i=
��
2
p
���=f�; � �

1���
2
p �i’i;

(5)

 

f��� � uF��L uy � uyF��R u;

D�U � @�U� i	v�;U
:
(6)

We introduce the photon field through v� � eQA� and
F��L � F��R � eQF�� (e > 0) where F�� denotes the
electromagnetic strength tensor. For further details in the
notation we refer the reader to Ref. [12]. The relevant
diagrams are shown in Fig. 1, where for simplicity a shaded
circle and a dark circle account for the diagrams 1(i) plus
1(j) and 1(k) plus 1(l), respectively, which differentiate the
direct photon coupling from the coupling through an inter-
mediate vector meson. We will address the corresponding
diagrams as 1(a) and 1(b), when we have the direct photon
coupling and 1�a0�, 1�b0�, when the coupling goes through
the exchange of a vector meson. The kaon form factor at
lowest order contains the exchange of vector mesons in
diagrams 1�a0� and 1�b0� which in R�PT are intrinsically
gauge invariant.

One interesting feature of the use of meson-meson chiral
amplitudes is that in the different processes one can fac-
torize the amplitude on-shell inside the loops. This is the
case in the construction of the unitary meson-meson am-
plitudes where the factorization can be seen as a conse-
quence of the reabsorption of the off-shell terms into
renormalization of elementary couplings [13], or using
the N=D method of unitarization that relies upon the
imaginary part of the amplitudes which involves the on-
shell part [14]. These two methods have been generalized
to the case of meson-baryon interaction in [15,16], respec-
tively. More concretely, for the case close to ours in �!
K0 �K0� it was demonstrated, using arguments of gauge
invariance, that only the on-shell part of the meson-meson
amplitudes was needed inside the loops [8]. Explicit can-
cellation of the off-shell terms can be seen in our formal-
ism and we only sketch the derivation since there are basic
principles that tell us this factorization should always be
possible. The reason is that the off-shell part of the meson-
meson amplitude is unphysical and can be changed with a
unitary transformation of the fields, that, however, should
not change the physical amplitudes. Technically the can-
cellations in our formalism go as follows. As discussed in
[13,17], to lowest order in the chiral expansion the K �K �
�� amplitude (denoted by ~V0

K�) for arbitrary values of the
particle momenta pi has the form

 

~V 0
K� � V0

K� � 	
X
i

�p2
i �m

2
i �; (7)

NAPSUCIALE, OSET, SASAKI, AND VAQUERA-ARAUJO PHYSICAL REVIEW D 76, 074012 (2007)

074012-2



where V0
K� denotes the on-shell amplitude. In the following

we use the convention that all external particle momenta of
the ���k���Q���p���p0� vertex function flow into the
vertices and will change this direction only in the numeri-
cal results. Considering the off-shell part of the meson-
meson interaction in diagrams 1(a) and 1(b), associated to
the line of momentum l� k cancels the corresponding
meson propagator and generates a topological structure
like the one of diagram 1(f). On the other hand,
diagram 1(f) is a genuine diagram that can be calculated
by using the Lagrangian L2 of Eq. (2) expanded to four
mesons. When this is done one finds an exact cancellation
of the off-shell terms against diagram 1(f). On the other
hand, there are similar cancellations between the off-shell
part of the meson-meson amplitude associated to the line
with momentum l�Q in diagrams 1(a)–1(c) with the
genuine contributions in diagrams 1(d) and 1(e). A rem-
nant contribution appears after the cancellations, which

vanishes for real photons and involves derivatives in the
vector fields. Exact cancellation of this part would require
the introduction of counterterm Lagrangians involving
derivatives of V�� and f��� , and such Lagrangians are
sometimes used for this purpose [18]. Finally the off-shell
part of diagram 1(h) which involve charged kaons only
cancels exactly diagram 1(g) with charged kaons in the
loops. Remaining tadpole contributions from neutral kaons
can be canceled by appropriate counterterms. In summary,
all one has to do is to evaluate the diagrams 1(a)–1(c) and
1(h) with the meson-meson amplitudes factorized on-shell
and omitting the rest of diagrams. This lowest order am-
plitude is iterated in the coupled channel framework used
in [13,17] to obtain the unitarized K �K ! �� amplitudes
which contain the scalar poles. In a section to come we will
study the contributions of loops involving vector meson
propagators. In this case we do not have enough informa-
tion on the higher order Lagrangians to explicitly show the

FIG. 1 (color online). Feynman diagrams for e�e� ! ��� in R�PT.
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cancellations but we shall equally assume that the meson-
meson amplitude can be factorized on-shell out of the
loops.

Let us start with the simplest diagrams 1(a) and 1(b)
with charged kaons in the loops, pointlike K�K�� inter-
action and charged pions in the final state. A straightfor-
ward calculation yields

 � iMa�b
K� � �

e2
���
2
p
GV

f2

t0K����
3
p

L�

k2 T��Q
�

�; (8)

where k2 � �p� � p��2, L� � �v�p����u�p��, Q de-
notes the momentum of the �, and �
� denotes the polar-
ization tensor of the antisymmetric field ��� used to
describe the � meson. The on-shell unitarized amplitude
for isoscalar s-waveK �K � �� scattering is denoted as t0K�
and it is related to the physical tK��� amplitude as tK��� �
�t0K�=

���
3
p
�. It factorizes on-shell out of the loop tensor

integral given by

 T�� � i
Z d4l

�2��4
2�2l� k��l�

��l�Q���l���l� k�
; (9)

with ��l� � l2 �m2
K � i".

The ‘‘seagull’’ diagram 1(c) yields

 � iMc
K� �

e2
���
2
p
GV

f2

t0K����
3
p

L�

k2 GK�m
2
���g���Q� k�
�


�;

(10)

where m2
�� � �Q� k�2 and GK denotes the loop integral

 GK�p
2� �

Z d4l

�2��4
i

��l���l� p�
: (11)

Using dimensional regularization we get

 GK�m2
��� � �2"

Z ddl

�2��d
i

��l�Q���l� k�

�
1

�4��2

�
a��� � log

m2
K

�2 � IG�m
2
���

�
(12)

with

 IG �
Z 1

0
dx log

�
1�

m2
��

m2
K

x�1� x� � i"
�

� �2� � log
�� 1

�� 1
; (13)

where ��m2
��� �

����������������������������������
1� �4m2

K=m
2
���

q
. The substraction

constant has been fixed in Ref. [17] to a��0� � 1 for�0 �
1:2 GeV matching the cutoff regularized integral for a
cutoff � � 1 GeV. It is related at different scales as
a��� � a��0� � log�

2

�2
0

in such a way that the loop function

is scale independent.
There is no direct coupling of the photon to neutral

kaons and adding up all contributions we obtain

 

�iMa�b�c
K � �

e2
���
2
p
GV

f2

t0K����
3
p

L�

k2

� 	Tabc�� Q
 �GK�m2
���g��k

�
�; (14)

where

 Tabc�� � T�� �GK�m
2
���g��: (15)

Notice that in diagrams 1(a)–1(c) pions appear only
through t0K�. Since the K �K � �� amplitude with neutral

pions satisfy tK��0 �
t0K���

3
p the amplitude for e�e� ! ���

with neutral pions in the final state is also given by
Eq. (14).

Let us now consider diagrams 1�a0� and 1�b0� with
charged kaons in the loops and charged pions in the final
state. These diagrams involve the propagation of vector
particles. The propagator for a vector meson in the tensor
formalism is given by

 �
	���p� �
i�
	���p�

p2 �M2
V � i"

; (16)

where
 

������p� �
1

M2
V

	�p2 �M2
V�g��g�� � g��p�p�

� g��p�p� � ��$ ��
: (17)

This tensor is antisymmetric under the exchange �$ � or
�$ �, symmetric under the exchange ��$ ��, and
satisfies

 p�������p� � g��p� � g��p�;

������p�p
� � g��p� � g��p�:

(18)

The Lagrangian in Eq. (1) yields the following vertices for
the ��k;��V�k; 
	� and V�Q;
	�P�p�P0�p0� interactions

 ��V�
	 �
eFV

3
k
g�	CV;

�VPP
0


	 � �

���
2
p
GVCVPP0

f2 p
p
0
	;

(19)

with the SU�3� factors given by

 C� � �
���
2
p
; C! � 1; C� � 3; (20)

 

C�K�K� � C�K0 �K0 � 1; C!K�K� � C!K0 �K0 � �
1���
2
p ;

C�K�K� � �
1���
2
p ; C�K0 �K0 �

1���
2
p : (21)

The amplitude for diagrams 1�a0� and 1�b0� with charged
kaons in the loops is

 � iMa0�b0
K� �

���
2
p
e2GV

f2

L�

k2

t0K����
3
p ~FK��k

2�Ta
0b0
�
��
� (22)
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where ~FK��k
2� stands for the vector meson contributions to

the charged kaon form factor
 

~FK��k
2� �

1

2

X
V��;�;!

FV
3

���
2
p
GVCVCVK�K�

f2

k2

k2 �M2
V

�
GVFV

2f2

�
k2

m2
� � k2 �

1

3

k2

m2
! � k2 �

2

3

k2

m2
� � k

2

�
:

(23)

and the loop tensor integral is given by

 Ta
0b0
�
� �

1

k2 k
�����
�k�i

Z d4l

�2��4

�
4�l� k��l
l
�l�Q��

�K�l��K�l�Q��K�l� k�
: (24)

This is an explicitly gauge invariant tensor due to the
antisymmetry of ����
�k� under �$ �. Using
����
�k�k�k
 � 0 and �
� � ���
 it can be rewritten to

 Ta
0b0
�
� � �

�
Tabc�� �

GK�m
2
���

k2 �k2g�� � k�k��
�
Q
: (25)

The amplitude for diagrams 1�a0� and 1�b0� can in turn be
rewritten as
 

�iMa0�b0
K� �

�e2
���
2
p
GV

f2

t0K����
3
p

L�

k2
~FK��k

2�

�

�
Tabc�� �

GK�m
2
���

k2 �k2g�� � k�k��
�

�Q
�
�: (26)

There are also contributions of neutral kaons in the loops.
The calculation of these contributions is similar to the
charged kaon loops due to the related SU�3� factors in
Eq. (21). The only difference comes from the sign of the �
factors in Eq. (21) which changes from the charged to the
neutral case. The total amplitude is obtained from Eq. (26)
just replacing ~FK� by ~FK� � ~FK0 where the intermediate �
contributions cancel. Including neutral and charged kaon
contribution we obtain
 

�iMa0�b0
K �

�e2
���
2
p
GV

f2

t0K����
3
p

L�

k2
~Fiso�k2�

�

�
Tabc�� �

GK�m2
���

k2 �k2g�� � k�k��
�

�Q
�

�; (27)

with

 

~F iso�k
2� � ~FK��k

2� � ~FK0�k2�

�
FVGV

3f2

�
k2

m2
! � k

2 �
2k2

m2
� � k

2

�
: (28)

For neutral pions in the final state we obtain the same result
due to relations tK��0 � �t0K�=

���
3
p
� and tK0�0 � �t0K�=

���
3
p
�.

The calculation of diagram 1(h) requires that we work
out the ��k;����Q;
��K�p� �K�p0� vertex contained in LF

in Eq. (3). For neutral kaons this vertex vanishes and for
charged kaons we obtain

 ��
� �
eFV���
2
p
f2
g��k
: (29)

The amplitude for diagram 1(h) is

 � iMh � �
e2FV���

2
p
f2

L�

k2

t0K����
3
p GK�m2

���g��k
�
�: (30)

Adding up contributions of all diagrams in Eqs. (14), (27),
and (30) we obtain the kaon loop contributions for both
final pion charge states as

 � iMK � �
e2

���
2
p
GV

f2

t0K����
3
p

L�

k2

�
F0
VMD�k

2�Tabc�� � ~Fiso�k
2�

�
GK�m

2
���

k2 �k2g�� � k�k��
�
Q
�
� �

e2
���
2
p

f2

�

�
GV �

FV
2

�
t0K����

3
p

L�

k2 GK�m
2
���g��k
�


�;

(31)

where

 F0
VMD�k

2� � 1� ~Fiso�k2�

� 1�
FVGV

3f2

�
k2

m2
! � k

2 �
2k2

m2
� � k

2

�
: (32)

accounts for the lowest order terms of the kaon isoscalar
form factor (the sum of the charged and neutral kaon form
factors) in R�PT [9] which is valid at low photon virtual-
ities. Notice that the second term in Eq. (31) contains only
the vector meson contributions to the kaon form factor but
the constant term due to the electric charge is missing. This
term should come from Lagrangians with higher deriva-
tives of the fields (specifically from the term @
V
�@�f

��
� )

which is absent in our basic interactions in Eq. (1). We will
assume in the following that the constant term due to the
charge is provided by such missing interactions and, hence,
write F0

VMD instead of ~Fiso in the second term of Eq. (31).
The high virtualities involved in our process requires

that we work out the complete �K �K vertex functions. The
calculation of these vertex functions has been done in the
context ofU�PT in Ref. [9]. We use this result and replace
in the following the leading order terms so far obtained,
F0
VMD�k

2�, by the full isoscalar form factor F0
K�k

2� �
FK��k

2� � FK0�k2�.
The evaluation of Eq. (31) requires that we work out the

loop tensor Tabc�� . It can be easily shown that Tabc�� is finite
and gauge invariant. The most general form of this tensor is
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 Tabc�� � ag�� � bQ�Q� � cQ�k� � dk�Q� � ek�k�
(33)

where a, b, c, d, e are form factors. Gauge invariance
requires
 

k�Tabc�� � �a� ck 
Q� ek
2�k� � �bk 
Q� dk

2�Q� � 0;

(34)

imposing the following relations among the form factors

 a � �ck 
Q� ek2; bk 
Q � �dk2; (35)

thus Tabc�� has the following explicitly gauge invariant form
 

Tabc�� � �c�Q 
 kg�� �Q�k�� �
d

k 
Q
�k2Q� � k 
Qk��

�Q� � e�k2g�� � k�k��: (36)

The second term vanishes upon contraction with Q
�

�

and we are left only with two form factors

 Tabc�� � �c�Q 
 kg�� �Q�k�� � e�k2g�� � k�k��: (37)

A straightforward calculation using conventional Feynman
parametrization yields

 c � �
1

4�2m2
K

IP; e � �
1

4�2m2
K

JP: (38)

where

 IP �
Z 1

0
dx
Z x

0
dy

y�1� x�

1� Q2

m2
K
x�1� x� � 2Q
k

m2
K
�1� x�y� k2

m2
K
y�1� y� � i"

(39)

 JP �
1

2

Z 1

0
dx
Z x

0
dy

y�1� 2y�

1� Q2

m2
K
x�1� x� � 2Q
k

m2
K
�1� x�y� k2

m2
K
y�1� y� � i"

: (40)

In terms of the a and e form factors we get the amplitude for kaon loops contribution to e�e� ! �� ! �	��
I;J�0 as
 

�iMP �
e2

���
2
p
GV

f2

t0K����
3
p

L�

k2 F
0
K�k

2�

�
c�Q 
 kg�� �Q�k�� �

�
e�

GK

k2

�
�k2g�� � k�k��

�
Q
�
�

�
e2

���
2
p

f2

�
GV �

FV
2

�
t0K����

3
p

L�

k2 GK�m2
���g��k
�
�: (41)

The vertex function for ���k���Q;
��	��q���q0�
I;J�0 is
straightforwardly obtained just removing the factor � eL�

k2

and it is worthy to analyze our results in terms of this vertex
function. Notice that in addition to the terms associated to
the full kaon form factors we get a contact term which
survives in the real photon limit and has been already
noticed in the studies of radiative � decays [7]. The
combinationGV �

FV
2 is small and it vanishes in the context

of vector meson dominance [19]. We will keep this term
and discuss below its impact on the cross section but we
must be clear from the beginning that it cannot be taken
seriously at high photon virtualities without its dressing by
a form factor.

Tensor and vector fields are related as @�V�� � MVV�
and for an on-shell � it is convenient to rewrite Eq. (41) in
terms of the conventional polarization vector related to the
polarization tensor as �
��Q� � i

M�
�Q
�� �Q��
� in

such a way that
 

Q
�
��Q� � iM����Q�;

g��k
�
��Q� �
i
M�
�Q 
 kg�� �Q�k����:

(42)

Using these relations we get

 

�iMP �
ie2

���
2
p
M�

f2

t0K����
3
p

L�

k2

��
GVF

0
K�k

2�c�
�
GV �

FV
2

�

�
GK�m2

���

M2
�

�
�Q 
 kg�� �Q�k�� �GVF

0
K�k

2�

�

�
e�

GK

k2

�
�k2g�� � k�k��

�
�� (43)

Using now Eqs. (38) we obtain

 � iMP �
�ie2

2�2m2
K

t0K����
3
p

L�

k2 	APL
�1�
�� � BPL

�2�
��
�� (44)

with the Lorentz structures

 L�1��� � Q 
 kg�� �Q�k�; L�2��� � k2g�� � k�k�;

(45)

and
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AP �

���
2
p
M�

2f2

�
GVF

0
K�k

2�IP �
�
GV �

FV
2

�
m2
K

4M2
�

gK�m
2
���

�
;

(46)

 BP �

���
2
p
M�GV

2f2 F0
K�k

2�

�
JP �

m2
K

4k2 gK

�
; (47)

where we defined gK�p2� � �4��2GK�p2�.

III. CONTRIBUTIONS FROM VECTORS IN THE
LOOPS

The process e��p��e��p�� ! ��Q;����p���p0� can
also proceed through e��p��e��p�� ! K��p� �K�p0� !
��Q;��K�p� �K�p0� with the kaons rescattering to a pion
pair as shown in Fig. 2. The VV0P interaction is dictated by
the anomalous Lagrangian which we rewrite in terms of the
tensor field as

 L anom �
G���
2
p ���
	 tr�@�V�@
V	��

�
GT

4
���
2
p ���
	 tr�V��V
	��; (48)

with GT � MVMV0G. The required vertex for
V�k;�; ��V0�q; 
;	�P is

 ���
	�k; q� �
iGTCVV0P

4
���
2
p ���
	 (49)

with the SU�3� factors given by
 

C�K��K� � C�K�0K0 � 1;

C�K��K� � �C�K�0K0 � C!K��K� � C!K�0K0 �
1���
2
p :

(50)

The amplitude from the diagram in Fig. 2 gets contribu-
tions from K��K� and K��K� in the loops plus K�0 �K0

and �K�0K0. The first two contributions can be summed to

 � iM� � �2e2Flo
K��K��k

2�
GT���

2
p

�
MK�

16

�
t0K����

3
p

L�

k2 T�
��

�:

(51)

Here the K�K transition form factor is given as

 Flo
K�K�k

2� �
X

V��;!:�

GTCVK��K����
2
p

FVCV
3MK�

1

k2 �M2
V

�
FVG

6

�
M!

k2 �M2
!
�

3M�

k2 �M2
�
�

2M�

k2 �M2
�

�

(52)

where the upper (lower) sign corresponds to the charged
(neutral) case. The explicitly gauge invariant tensor T�
� is
given by

 T�
� � i
Z d4l

�2��4
k
�


�
�
�k���
��������l����
�

�K�l�Q��K� �l��K�l� k�
:

(53)

The calculation of this tensor, the separation of the effects
at the different scales involved in our reaction and the
fixing of the necessary substraction constants is rather
involved and for the sake of clarity we deferred it to the
appendix. We calculate this tensor in the appendix as

 T�
� �
16

M2
K�

1

16�2

��
2� IG � I2 �

1

2
log
m2
K

�2

�
Q 
 k

m2
K

JV

�
g��k
 �

1

m2
K

JV�k2g�� � k�k��Q


�
;

(54)

with

 JV �
Z 1

0
dx
Z x

0
dy

y�1� x�

1� Q2

m2
K
x�1� x� � 2Q
k

m2
K
�1� x�y� k2

m2
K
y�1� y� �

�m2
V�m

2
K�

m2
K
�y� x� � i"

(55)

 I2 �
Z 1

0
dx
Z x

0
dy log

�
1�

Q2

m2
K

x�1� x� �
2Q 
 k

m2
K

�1� x�y�
k2

m2
K

y�1� y� �
�m2

V �m
2
K�

m2
K

�y� x� � i"
�
: (56)

Altogether we obtain the amplitude as

FIG. 2. Feynman diagram for e�e� ! K� �K ! �K �K !
���.
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�iM� �
�2e2

16�2m2
K

Flo
K��K��k

2�
GT���
2
p
MK�

t0K����
3
p

L�

k2

� 	IVk
g�� � JV�k
2g�� � k�k��Q

�


� (57)

with

 IV � m2
K

�
IG � I2 � 2�

1

2
log
m2
K

�2

�
�Q 
 kJV: (58)

Calculations for the amplitude M0 corresponding to neu-
tral K� in the loops are quite similar and can be obtained
from M� just replacing the charged transition form factor
by the neutral one due to t0K��� � t0

K0��
� �t0K�=

���
3
p
�.

Adding up these amplitudes we get
 

�iMV �
�2e2

16�2m2
K

~F0
K�K�k

2�
GT���
2
p
MK�

t0K����
3
p

L�

k2

�	IVk
g��� JV�k2g��� k�k��Q

�
�; (59)

where the isoscalar transition form factor to lowest order is
given by

 

~F 0
K�K�k

2� � Flo
K��K��k

2� � Flo
K��K��k

2�

�
FVG

3

�
M!

k2 �M2
!
�

2M�

k2 �M2
�

�
: (60)

This amplitude can be written in terms of the conventional
polarization vector for an on-shell � using Eqs. (42) and
(45) andGT � M�MK�G. We also replace the lowest order
terms in Eq. (60) by the full transition form factor to obtain

 � iMV �
�ie2

2�2m2
K

t0K����
3
p

L�

k2 	AVL
�1�
�� � BVL

�2�
��
�� (61)

with

 AV �
G

4
���
2
p F0

K�K�k
2�IV; BV � �

GM2
�

4
���
2
p F0

K�K�k
2�JV:

(62)

This contribution is proportional to the isoscalar transi-
tion form factor F0

K�K�k
2� and, similarly to the kaon form

factor in the case of kaon loops, we need a proper descrip-
tion of this form factor at the energy of the reaction, which
could be achieved either by a proper unitarization of this
form factor or using experimental data if they exist. At the
energy region of interest the unitarization of this form
factor would reproduce the poles of known vector reso-
nances coupled to the K�K system. The lowest order result
in Eq. (60) already contains the poles corresponding to the
lowest lying vectors. The Particle Data Group lists the
!�1650�, ��1680�, and ��1700� resonances in this energy
region, which we will call !0, �0, �0 in the following. In
this concern it is remarkable that studies of e�e� !
K0K��� at

���
s
p
� 1400–2180 MeV show that this reac-

tion is dominated by intermediate neutral K�0K0 produc-
tion (with a small contribution of the charged channel and

negligible light vector meson contributions) in turn coming
from intermediate �0 and �0 [11]. There is no evidence for
!0 contributions in these reactions. Furthermore, a direct
measurements of the kaon form factors in e�e� ! K�K�,
K0 �K0 [10] at

���
s
p
� 1400–2200 MeV shows also evidence

for contributions of �0 and �0 to the kaon form factors
(again no signal for !0 is found here) around 1700 MeV
and there is no signal for contributions of higher vector
resonances in the charged case. Although the inclusion of
such effects improves the description of the kaon form
factor around 1700 MeV the values around 2.2 GeV are
roughly the same as those of the unitarized charged kaon
form factor [9]. Coming back to the K�K transition form
factor, in Ref. [11] the product

 ���0 ! e�e��BR��0 ! K�K� � 0:39� 0:11 KeV

(63)

is measured, and assuming that K�K is the dominant
channel for the �0 meson, it allows us to extract the �0�
coupling which we write as g�0� � �em2

�0=f�0 � from

 ���0 ! e�e�� �
4�
2m�0

3f2
�0

� 0:39� 0:11 KeV; (64)

which yields f�0 � 31. Similarly the �0K�K coupling can
be extracted from the total width

 ��V ! V 0P� �
g2
VV0P

4�
jpj3; (65)

which for the case at hand (jpj � 462 MeV, � �
150 MeV) and assuming same coupling of the �0 to
K��K� and K�0K0 yields g�0K�K � 2g�0K�0K0 �

2g�0K��K� � 4:37� 10�3 MeV�1.
Taking into account the �0 and �0 contribution introdu-

ces a factor

 

g�0K�K
2f�0

�
�

3

2

m2
�0

k2 �m2
�0 � im�0��0

�
m2
�0

k2 �m2
�0 � im�0��0

�

(66)

in the transition form factor of charged (� ) and neutral
(� ) K�K in the loops. Contributions from �0 cancel in the
sum, thus the isoscalar transition form factor is given by

 F0
K�K�k

2� �
FVG

3

�
M!

k2 �M2
! � im!�!

�
2M�

k2 �M2
� � im���

�
�
g�0K�K
f�0

�

� m2
�0

k2 �m2
�0 � im�0��0

�
: (67)

Finally, taking into account both pseudoscalar and vec-
tors in the loops we obtain the total amplitude as
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�iM �
�ie2

2�2m2
K

t0K����
3
p

1

k2
�v�p����u�p��

� 	AL�1��� � BL
�2�
��
��; (68)

where

 A � AP � AV; (69)

 B � BP � BV; (70)

with the specific functions in Eqs. (46), (47), and (62).
Recall these results are valid for ingoing particles. For the
numerical computations in the following section we re-
verse the momenta of the final particles and obtain
 

�iM �
ie2

2�2m2
K

t0K����
3
p

1

k2
�v�p����u�p��	IL�1��� � JL

�2�
��
��

(71)

with
 

I �

���
2
p
M�

2f2

�
GVF

0
K�k

2�IP �
�
GV �

FV
2

�
m2
K

4M2
�

gK�m
2
���

�

�
G

4
���
2
p F0

K�K�k
2�

�
Q 
 kJV �m2

K

�
IG � I2 � 2

�
1

2
log
m2
K

�2

��
(72)

 J �

���
2
p
M�GV

2f2 F0
K�k

2�

�
JP �

m2
K

4k2 gK

�
�
GM2

�

4
���
2
p F0

K�K�k
2�JV:

(73)

and for the integrals IP, JP, JV , and I2 we must use
Eqs. (39), (40), (55), and (56) just changing the sign of Q 

k. Also, since our analysis includes an energy region
relatively far from the �0 peak we use in Eq. (67) an
s-dependent width given by

 ��0 �s� �
g2
�0K�K

4�

�
�1=2�s;m2

K� ; m
2
K�

2
���
s
p

�
3
; (74)

with

 ��m2
1; m

2
2; m

2
3� � 	m

2
1 � �m2 �m3�

2
	m2
1 � �m2 �m3�

2
:

(75)

IV. NUMERICAL RESULTS

The differential cross section for this process is given as

 

d�
dm��d�Q

�
1

�2��4
1

8s3=2
jQjj~pjj �Mj2: (76)

Here Q stands for the trimomentum of the � in the center
of momentum system of the reaction and ~p denotes the
momentum of the final charged pion in the dipion center of
momentum system

 jQj �
�1=2�s;M2

�;m
2
���

2
���
s
p ; j~pj �

�1=2�m2
��;m

2
�;m

2
��

2m��
;

(77)

where we neglect terms proportional to m2
e. A straightfor-

ward calculation yields

 j �Mj2 �
1

4

X
pol

jMj2

� jCj2
�
jIj2

1

2
�M2

� � jQj
2x2 �!2� � 2 Re�IJ��

�
���
s
p
!� jJj2

s

2M2
�

�M2
� � jQj

2x2 �!2�

�

(78)

 � jCj2
�
jIj2

1

2
	M2

��1� x
2� �!2�1� x2�
 � 2 Re�IJ��

�
���
s
p
!� jJj2

s

2M2
�

	M2
��1� x

2� �!2�1� x2�


�

(79)

where x � cos� with � the �-beam angle, ! the � energy

 ! �
s�M2

� �m
2
��

2
���
s
p ; (80)

and C stands for the global factor

 C �
ie2

2�2m2
K

t0K����
3
p : (81)

Integrating the solid angle we get
 Z
j �Mj2d�Q �

4�
3
jCj2

�
jIj2�M2

� � 2!2� � 6 Re�IJ��
���
s
p
!

� jJj2
s

M2
�

�2M2
� �!

2�

�
: (82)

The dipion spectrum is finally given as

 

d�
dm��

�

2

24�5m4
K

jQjj~pj

s3=2

jt0K�j
2

3
h�s;m���; (83)

where
 

h�s;m��� � jIj
2�M2

� � 2!2� � 6 Re�IJ��
���
s
p
!

� jJj2
s

M2
�

�2M2
� �!

2�: (84)

We evaluate numerically the integrals and the differential
cross section. We are interested in dipion energies m��
close to the f0�980� mass in whose case the K �K ! ��
scattering between the kaons in the loops and the final
pions takes place at this energy independently of the value
of

���
s
p

and of the momenta in the loops. As a consequence,
when replacing the lowest order terms for this amplitude
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by the unitarized amplitude as proposed in Sec. II, we can
safely use the results of [13,17] and take a renormalization
scale� � 1:2 GeV for the functionGK [17], in spite of the
fact that the reaction takes place at a much higher energy���
s
p
� 2 GeV. The unitarized amplitudes naturally contain

the scalar poles and there is no need to include explicitly
these degrees of freedom in the calculation. For the kaon
form factor we use the unitarized version calculated in
Ref. [9], the values obtained in this analytic form repro-
duce the direct measurements of the charged kaon form
factor at the energy region of interest [10].

Using the physical masses and coupling constantsmK �
495, m� � 1019:4, 
 � 1=137, GV � 53 MeV, FV �
154 MeV, f� � 93 MeV, and G � 0:016 MeV�1 in
Eq. (83) we obtain the spectrum shown in Figs. 3 where
the presence of the f0�980� is well visible. This is a con-
sequence of the fact that the f0�980� poles are well repro-
duced in the unitarization of meson-meson s-wave
isoscalar amplitudes present in our calculation. The

���
s
p

dependence in the differential cross section is dominated
by the phase space factor in the lower energy region (the
opening of the �f0 channel) and the lowering beyond the
�f0 threshold is dictated by the form factors.

Next we integratem�� from 850 to 1100 MeV following
the cuts implemented in [4]. The obtained cross section is
shown in Fig. 4 (solid curve) where we also show the
experimental points quoted in Ref. [4]. We must remark
that all the parameters in Eqs. (72) and (73) have been fixed
in advance and in this sense there are no free parameters in
our calculations. We should note that in the loops with
pseudoscalars there is a term that has no form factor. At
low photon virtualities this term is small and its extrapo-
lation to high k2 requires that we dress it with a form factor
which does not come from the Lagrangians that we are
using. Thus some uncertainty should be accepted at this

point. However, we find numerically that the contributions
of the loops with pseudoscalars is far smaller than the
contributions of the vector meson loops [by themselves
1 order of magnitude smaller close to the �f0 threshold)
but through interference with vector meson loops they
become more relevant]. The effect of the term with no
form factor is shown in Fig. 4 where we plotted the cross
section as a function of

���
s
p

in the case when this term is
absent (solid line) and dressed with the kaon form factor
(dashed line). As we can see, the effect of this term is
negligible when dressed with the kaon form factor.

The elaborate theoretical study carried out in this paper,
using standard tools to produce the �f0�980� has suc-
ceeded in reproducing the bulk of the experimental data
as a function of the energy. Yet, the theory, producing
reasonable numbers around

���
s
p
� 2000 MeV and beyond

2300 MeV, fails to provide the right strength in the region
around 2150 MeV where a peak appears in the data. There
is no way, within our theoretical framework, with reason-
able changes of the parameters within existing uncertain-
ties, to obtain this peak. As a consequence of it, we are
inclined to conclude, following the lines of Ref. [4], that
there is a 1�� meson resonance around 2150 MeV cou-
pling strongly to �f0�980�, as also concluded in [4]. In as
much as our theoretical results provide a ‘‘background’’
very similar to the one assumed there, our conclusions
about the resonance are the same as in [4] and we refrain
from repeating the same analysis leading to the properties
of the new resonance. Recalling the result from [4], the
resonance has a mass of MR � 2175 MeV, a width of � �
58 MeV, and quantum numbers 1�� as the photon.

FIG. 4 (color online). Cross section for e�e� ! �	��
I�0

integrated in the m�� � 850–1100 MeV range as a function of���
s
p

including all contributions. Experimental points from
Ref. [4], triangled (boxed) points correspond to charged (neutral)
pions.

FIG. 3 (color online). Differential cross section as a function
of the dipion invariant mass and of the center of mass energy.
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From the theoretical point of view such a resonance is a
real challenge since their properties are not predicted by
ordinary quark models hinting to a possible exotic charac-
ter [20].

V. SUMMARY AND CONCLUSIONS

We studied electron-positron annihilation into ��� for
pions in an isoscalar s wave. We find the tree level con-
tributions induced via !�� mixing negligible. At one
loop level, using the vector mesons interactions arising in
R�PT we show the cancellation of the contributions com-
ing from the off-shell parts of the meson-meson amplitudes
in the calculation of the kaon loops. The on-shell parts are
iterated to obtain the unitarized meson-meson amplitudes.
We obtain contributions proportional to these amplitudes
and to the lowest order terms of the kaon form factors. In
addition, we find a term with the unitarized meson-meson
amplitudes but without the kaon form factors. The effect of
the latter is negligible when dressed with the kaon form
factor. The photon exchanged in e�e� ! ��� is highly
virtual and the proper description of this process requires
that we use the full kaon form factors. Thus, instead of the
lowest order terms arising in the calculation we use the full
form factor as calculated in U�PT [9].

The high virtuality of the exchanged photon makes the
excitation of higher mass states likely. We calculate the
excitation of K�K states with rescattering of kaons into the
final pions. This contribution is calculated using U�PT
supplemented with the anomalous term describing VVP
interactions. There are two different energy scales involved
in the reaction: M�, m�� � � and

�����
k2
p

* 2 GeV and we
perform a clear separation of the effects at these scales. It is
shown that the only substraction constant required is the
one associated to the meson-meson scattering. The formal-
ism naturally yields the contribution from light vector
mesons to the K�K transition form factor. However, the
proper description of this form factor at the energy of the
reaction requires that we include contributions from heavy
mesons, which are extracted from the data on e�e� !
K0K��� at

���
s
p
� 1400–2180 MeV [11]. All the parame-

ters entering the calculation have been fixed in advance and
there is no freedom in their choice. For the differential
cross section we find a peak in m�� around the f0�980� as
in the experiment [4]. We select the � f0�980� events
imposing the cuts used in the analysis of Ref. [4]. The
corresponding cross section as a function of the e�e�

energy describes satisfactorily the experimental data ex-
cept for a narrow peak around 2150 MeV, yielding support
to the existence of a 1�� resonance above the �f0�980�
threshold whose structure started to be debated and seems
to be nonconventional [20]. On the other hand, the descrip-
tion of the peaks of m�� around the f0�980� resonance, as
well as the agreement with data on total cross sections (up
to the signal of the new resonance), without the explicit
introduction of the f0�980� state, provides extra support for

the f0�980� as being dynamically generated from the in-
teraction of pseudoscalar mesons in coupled channels.
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APPENDIX

We use dimensional regularization to calculate the loop
tensor in Eq. (53) which in dimension d � 4� 2" reads

 T�
� � i�2"
Z ddl

�2��d

�
g�	k
�
	�
�k���
��������l����
�

�K�l�Q��K� �l��K�l� k�
; (A1)

where � stands for the renormalization scale. Using
Eq. (18) and the antisymmetry of the Levi-Civita tensors
we get

 g�	k
�
	�
�k���
�� � �g
�
�k
 � g
�k

����
��

� 2k
��
�� (A2)

 

��
��������l����
� �
2

m2
K�
	�l2 �m2

K� ���
���
��


�

� 2��
����
�

�l

�l�
 (A3)

which allows us to split the loop tensor as

 T�
� �
4

m2
K�
�T�1��
� � T

�2�
�
��; (A4)

where
 

T�1��a� � i�2"
Z ddl

�2��d
k
��
�����
�

��l�Q���l� k�

� �d� 3��d� 2��k
g�� � k�g�
��
2"

�
Z ddl

�2��d
i

��l�Q���l� k�
; (A5)

 T�2��
� � 2i�2"
Z ddl

�2��d
k
��
����

�

�l

�l�

�K�l�Q��K� �l��K�l� k�
:

(A6)

A straightforward calculation yields
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 T�1��a� � 4k
g��

�
3

16�2 �GK�m2
���

�
; (A7)

where we used �
� � ���
. Notice that we get a constant
contribution coming from the contraction of the Levi-
Civita tensors in dimension d besides the conventional
loop function GK.

The second loop tensor contains two different scales:
M�, m�� � � and

�����
k2
p

* 2 GeV and we must ensure a
clean separation of the effects at these scales and the
correct estimate of the corresponding substraction con-
stants. With this aim we perform a decomposition of this
tensor in terms of scalar integrals. The tensor integral

 C�� � i�2"
Z ddl

�2��d
l�l�

�K�l�Q��K� �l��K�l� k�
(A8)

can be decomposed as
 

C�� � C00g�� � C11Q�Q� � C12�Q�k� � k�Q��

� C22k�k�: (A9)

We will be interested only in the coefficients of g�� and
Q�k� since the remaining terms give vanishing contribu-
tions to the process at hand. Contracting with g��,Q�, and
k� we get the following equations for the coefficients:

 dC00 �Q2C11 � 2Q 
 kC12 � k2C22

� GK�m
2
��� �M

2
VC0 � R00; (A10)

 

C00 �Q2C11 �Q 
 kC12 �
1
2	

1
2GK�m2

��� � �Q2 � �2�C1


� R11 (A11)

 

Q2C12 �Q 
 kC22 �
1
2	V1�k2� � 1

2GK�m2
���

� �Q2 � �2�C2
 � R12 (A12)

 

C00 �Q 
 kC12 � k2C22 �
1
2	�k

2 ��2�C2 �
1
2GK�m2

���


� R22; (A13)

where �2 � M2
V �m

2
K, C0 stands for the finite scalar

integral

 C0 � �2"
Z ddl

�2��d
i

�K�l�Q��K� �l��K�l� k�
; (A14)

and C1, C2 stand for the coefficients of the decomposition
of the vector integral

 C� � i�2"
Z ddl

�2��d
l�

�K�l�Q��K� �l��K�l� k�

� C1Q� � C2k�: (A15)

It can be easily shown that C1 and C2 are finite. The
functions V1 and V are given by

 V1�k
2� �

1

2

�
V�k2� �

�2

k2 	V�k
2� � V�0�


�
; (A16)

 V�k2� � �2"
Z ddl

�2��d
i

�K� �l���l� k�
: (A17)

The required coefficients read

 C00 �
1

d� 2
�R00 � R11 � R22�; (A18)

 

C12 �
1

d� 2

1

�Q 
 k�2 �Q2k2

� 	Q 
 k��R00 � R11 � 3R22� � 2k2R12
: (A19)

Explicitly
 

C00 �
1

2�d� 2�
	GK�m

2
��� � 2M2

VC0 �Q
2C1

� k2C2 ��2�C1 � C2�
; (A20)

 

C12 � �
1

4	�Q 
 k�2 �Q2k2

f2M2

VQ 
 kC0

� k2	V�k2� �GK�m
2
���
 � �2	V�k2� � V�0�


�Q 
 k�Q2 ��2�C1

� 	3Q 
 k�k2 � �2� � 2k2�Q2 � �2�
C2g: (A21)

Notice that the dependence of the integrals on the two
different scales (k2 and Q2, m2

��) involved in the process
have been neatly separated. Furthermore, divergences in
V�k2� � V�0� and V�k2� �GK�m2

��� cancel out rendering
C12 finite as expected. In contrast C00 is divergent but its
divergent term appears in GK�m2

��� whose finite part has
already been matched to the cutoff regularized integral. As
a final result we obtain that effects involving the scale k2

are finite and the only substraction constant required is the
one in the loop integral associated to the meson-meson
scattering.

Contracting the Levi-Civita tensors (in dimension d) we
obtain
 

T�2��
� � �2	Q 
 kC12 � �d� 2�C00
�d� 3�

� �g��k
 � g�
k�� � 2C12�d� 3�

� �k2g�
 � k�k
�Q�

� 2C12�d� 3��k2g�� � k�k��Q
: (A22)

The antisymmetry of �
� allows us to rewrite this tensor as
 

T�2��
� � �4	Q 
 kC12 � �d� 2�C00
�d� 3�g��k


� 4C12�d� 3��k2g�� � k�k��Q
: (A23)

For the piece containing the divergent integral C00 we
obtain
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�4�d� 3��d� 2�C00 � �2
�

2

�4��2
�GK�m2

���

� 2M2
VC0 �Q2C1 � k2C2

��2�C1 � C2�

�
: (A24)

The constant term in this equation comes from the dimen-
sional factor d� 3 which in turn arises from the contrac-
tion of the Levi-Civita tensors in dimension d.

In the numerical computation it is easier to work with
these integrals written in terms of Feynman parameters. In
order to calculate T�2��
� we use the following Feynman
parametrization

 

1


	�
� 2

Z 1

0
dx
Z x

0
dy

1

	
� �	� 
�x� ��� 	�y
3

(A25)

with
 


 � �l�Q�2 �m2
K � i"; 	 � l2 �m2

V � i";

� � �l� k�2 �m2
K � i": (A26)

After some algebra we get the term contributing to our
process as
 

T�2��
� � 4��
����
�

�k


�2"i
Z 1

0
dx
Z x

0
dy

�
Z ddr

�2��d
r�r� � �1� x�yQ�k�

	r2 � ~m
3
; (A27)

where

 

~m2 � m2
K �Q

2x�1� x� � 2Q 
 k�1� x�y� k2y�1� y�

� �m2
V �m

2
K��y� x� � i"; (A28)

A comparison with

 T�2��
� � 2��
�����
�k
	C00g�� � C12Q�k�
 (A29)

allows us to identify

 C00 �
2

d
�2"i

Z 1

0
dx
Z x

0
dy
Z ddr

�2��d
r2

	r2 � ~m
3
; (A30)

 C12 � �2�2"i
Z 1

0
dx
Z x

0
dy
Z ddr

�2��d
�1� x�y

	r2 � ~m2
3
: (A31)

The C12 integral is finite thus we can set d � 4 wherever it
appears to obtain

 C12 � �
1

16�2m2
K

JV (A32)

with

 JV �
Z 1

0
dx
Z x

0
dy

�1� x�y

1� Q2

m2
K
x�1� x� � 2Q
k

m2
K
�1� x�y� k2

m2
K
y�1� y� �

�m2
V�m

2
K�

m2
K
�y� x� � i"

: (A33)

As to the term containing the divergent integral C00 we
obtain
 

�8�1� "��1� 2"�C00

� �
2

16�2

�
a��� � 3� log

m2
K

�2 � 2I2

�
(A34)

with a��� the substraction constant of G�m2
��� and

 

I2 �
Z 1

0
dx
Z x

0
dy log

�
1�

Q2

m2
K

x�1� x�

�
2Q 
 k

m2
K

�1� x�y�
k2

m2
K

y�1� y�

�
�m2

V �m
2
K�

m2
K

�y� x� � i"
�

(A35)

Summarizing, the tensors T�1���, T�2��� are given by

 T�1��
� �
4

16�2

�
4� log

m2
K

�2 � IG

�
k
g�� (A36)

 

T�2��
� �
4

16�2

��
Q 
 k

m2
K

JV �
1

2

�
4� log

m2
K

�2

�
� I2

�
k
g��

�
1

m2
K

JV�k
2g�� � k�k��Q


�
; (A37)

thus from Eq. (A4) we get

 

T�
� �
16

M2
K�

1

16�2

��
2� IG � I2 �

1

2
log
m2
K

�2 �
Q 
 k

m2
K

JV

�

� g��k
 �
1

m2
K

JV�k
2g�� � k�k��Q


�
: (A38)
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