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The meson-cloud model of the nucleon consisting of a system of three valence quarks surrounded by a
meson cloud is applied to study the electroweak structure of the proton and neutron. Light-cone wave
functions are derived for the dressed nucleon as pictured to be part of the time a bare nucleon and part of
the time a baryon-meson system. Configurations are considered where the baryon can be a nucleon or a �
and the meson can be a pion as well as a vector meson such as the � or the !. An overall good description
of the electroweak form factors is obtained. The contribution of the meson cloud is small and only
significant at low Q2. Mixed-symmetry S0-wave components in the wave function are most important to
reproduce the neutron electric form factor. Charge and magnetization densities are deduced as a function
of both the radial distance from the nucleon center and the transverse distance with respect to the direction
of the three-momentum transfer. In the latter case, a central negative charge is found for the neutron. The
up and down quark distributions associated with the Fourier transform of the axial form factor have
opposite sign, with the consequence that the probability to find an up (down) quark with positive helicity is
maximal when it is (anti)aligned with the proton helicity.

DOI: 10.1103/PhysRevD.76.074011 PACS numbers: 12.39.�x, 13.40.Gp, 14.20.Dh

I. INTRODUCTION

Since the discovery of the proton finite size by
Hofstadter and co-workers more than 50 years ago [1],
electromagnetic form factors have played a privileged role
in the investigation of the nucleon structure (for recent
reviews, see [2–6]).

In principle, these quantities reflect the strong interac-
tion between quarks inside the nucleon and should be
described by quantum chromodynamics (QCD). In recent
years important progress has been made with lattice QCD
simulations [7–11]. Generic features of the baryon octet
mass spectrum are reproduced well in quenched lattice
QCD simulations (in which sea-quark contributions are
neglected) and electromagnetic properties can be studied
with pion masses as low as 0.3 GeV [10]. Qualitative
agreement with the experimental data has been obtained
[7,8], e.g. the flavor dependence of the Dirac form factor
F1�Q

2� [12]. The isovector nucleon form factors were
calculated in both the quenched and unquenched approx-
imations with configurations for pion masses down to
380 MeV [9]. Small unquenching effects and results larger
than the experimental data were found. Evaluating the
axial form factors as well as the �NN and �N� form
factors, it was possible to check the Goldberger-Treiman
relations [13]. Qualitatively consistent results with experi-
ment were obtained for the isovector form factor ratio
GP�Q

2�=GA�Q
2� of the nucleon axial vector form factors

[11]. At present, the state of the art is still limited by
systematic errors which are related to the fact that calcu-
lations are performed on finite volumes, at finite lattice
spacings, and at quark masses which are still relatively
large. In addition, the extrapolation to the chiral limit with
the help of the chiral effective field theory requires calcu-
lations of higher order than presently available [14–16]

(see also [17]) in order to account for the nonanalytic
behavior of the form factors on the quark masses [18].

Therefore, model calculations are still a valuable tool for
understanding the internal dynamics of the nucleon. In
particular, many theoretical calculations have been done
to investigate possible interpretations of the decreasing
ratio of the proton electric to magnetic form factors,
�pG

p
E�Q

2�=Gp
M�Q

2�, as a function of Q2 (see, e.g., [19]
for an overview and [20,21] for the two-photon physics in
elastic electron scattering), and we refer the reader to
Refs. [4,5] for a discussion of the different interpretations
of nucleon electromagnetic form factors proposed in the
literature.

Here we want to consider the possibility that the physical
nucleon is a bare nucleon surrounded by a meson cloud as a
consequence of the spontaneously broken chiral symmetry.
As first discussed in the context of deep inelastic scattering
[22,23], a pion cloud can give an explanation of the flavor-
symmetry violation in the sea-quark distributions of the
nucleon thus accounting for the violation of the Gottfried
sum rule [24]. This cloud will manifest itself as an exten-
sion of the charge distribution of protons and neutrons,
which should be observable in the electromagnetic form
factors at relatively small values of Q2. In fact, the neutron
charge density extracted from available data shows a posi-
tive core surrounded by a negative surface charge, peaking
at just below 1 fm, which can be attributed to a negative
pion cloud [25]. This is confirmed by the analysis of
Ref. [26] showing a pronounced bump structure in the
neutron electric charge form factor Gn

E�Q
2� (and a dip in

the other nucleon form factors) around Q2 � 0:2–
0:3 GeV2, which can be interpreted as a signature of a
very long-range contribution of the pion cloud extending
out to 2 fm. It must be said, however, that from dispersion
relation analysis [27,28] the pion cloud should peak much
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more inside the nucleon, at �0:3 fm, and the desired
bump-dip structure of Ref. [26] can only be achieved at
the cost of low-mass poles close to the ! mass in the
isoscalar channel and to the three-pion threshold in the
isovector channel [29]. In addition, while confirming the
long-range positively (negatively) charged component of
the proton (neutron) charge density, a recent model-
independent analysis of the infinite-momentum-frame
charge density of partons in the transverse plane [30] is
suggesting that the neutron parton charge density is nega-
tive at the center.

Mesonic degrees of freedom are naturally taken into
account in the baryon chiral perturbation theory that is
the effective field theory of the standard model at low
energies and small momentum transfer. The electromag-
netic form factors of the nucleon have been calculated to
fourth order (one-loop) in baryon chiral perturbation the-
ory within the manifestly Lorentz-invariant infrared regu-
larization approach [31] and the extended on-mass-
shell renormalization scheme [32,33]. The inclusion of
vector mesons as explicit degrees of freedom results in a
considerably improved description, accurate up to Q2 ’
0:4 GeV2.

The problem of considering the meson cloud surround-
ing a system of three valence quarks has been addressed
already in the past in a variety of papers (see, e.g., [34– 42]
and references therein). Along the lines originally pro-
posed in Refs. [43–45] and developed in [35], in this paper
a baryon-meson Fock-state expansion is used to construct
the state j ~Ni of the physical nucleon. In the one-meson
approximation the state j ~Ni is pictured as being part of the
time a bare nucleon, jNi, and part of the time a baryon-
meson system, jBMi. The bare nucleon is formed by three
valence quarks identified as constituent quarks according

to the ideas discussed in [46]. The model was revisited in
Ref. [47] to study generalized parton distributions where
the meson cloud gives an essential contribution in the so-
called ERBL region. We apply here the model to calculate
the electroweak form factors of the nucleon. The baryon-
meson system is assumed to include configurations where
the baryon can be a nucleon or a Delta and the meson can
be a pion as well as a vector meson such as the � or the !.

In Sec. II the relevant formulas of the meson-cloud
model are collected and the light-cone wave functions
derived. The calculation of the electroweak form factors
of the proton and neutron is illustrated in Sec. III, and the
results are presented and discussed in Sec. IV. Concluding
remarks are collected in the final section. Technical details
necessary to calculate the vertex functions describing the
transition to a baryon-meson state with vector mesons are
given in the Appendix.

II. LIGHT-CONE WAVE FUNCTION OF THE
NUCLEON IN THE MESON-CLOUD MODEL

The derivation of the nucleon light-cone wave function
(LCWF) in the meson-cloud model has been already dis-
cussed in Ref. [47]. In this section we review some perti-
nent formulas necessary for the calculation of the form
factors. In the meson-cloud model the nucleon is viewed as
a quark core, termed the bare nucleon, surrounded by a
meson cloud. The mesonic effects are treated perturba-
tively, by truncating the Fock-space expansion of the nu-
cleon state to the dominant components given by the bare
nucleon and the state containing a virtual meson with a
recoiling baryon. The corresponding quantum state of the
physical nucleon ( ~N), with four-momentum p�N �
�p�N ; p

�
N ;pN?� � �p

�
N ; ~pN� and helicity �, can be written as

 

j~pN; �; ~Ni �
����
Z
p
j~pN; �;Ni �

X
B;M

Z dyd2k?
2�2��3

1������������������
y�1� y�

p X
�0;�00

���N;BM�
�0�00 �y;k?�jyp�N ;k? � ypN?; �0;Bi

� j�1� y�p�N ;�k? � �1� y�pN?; �00;Mi; (1)

where the function ���N;BM�
�0�00 �y;k?� is the probability am-

plitude to find a physical nucleon with helicity � in a
state consisting of a virtual baryon B and a virtual meson
M, with the baryon having helicity �0, longitudinal-
momentum fraction y, and transverse momentum k?,
and the meson having helicity �00, longitudinal-momentum
fraction 1� y, and transverse momentum �k?. From the
normalization condition of the nucleon state
 

h~p0N; �
0; ~Nj~pN; �; ~Ni � 2�2��3p�N��p

0�
N � p

�
N �

� ��2��p0N? � pN?����0 ; (2)

one obtains the following condition on the renormalization
factor Z:

 1 � Z�
X
B;M

PBM=N; (3)

with

 PBM=N �
Z dyd2k?

2�2��3
X
�0;�00
j�1=2�N;BM�

�0�00 �y;k?�j2: (4)

From the definitions in Eqs. (3) and (4), one can interpret
the factor Z as the probability of finding a bare nucleon in
the physical nucleon, and PBM=N as the probability of
fluctuation of the nucleon in a baryon-meson state.

The probability amplitude ���N;BM�
�0�00 can be calculated

using time-ordered perturbation theory in the infinite-
momentum frame as explained in Ref. [47]. The final result
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reads

 ���N;BM�
�0�00 �y;k?� �

1������������������
y�1� y�

p V��0;�00 �N;BM�

M2
N �M

2
BM�y;k?�

; (5)

where V��0;�00 �N;BM� is the vertex function describing the
transition of the nucleon into a baryon-meson state, with
squared invariant mass

 M2
BM�y;k?� �

M2
B � k2

?

y
�
M2
M � k2

?

1� y
: (6)

The vertex function V��0;�00 �N;BM� has the following
general expression [48]:

 V��0;�00 �N;BM� � �uN��~pN; ��v��	
��~pM; �00� 	�~pB; �0�;

(7)

where uN is the nucleon spinor, 
 and  are the field
operators of the intermediate meson and baryon, respec-
tively, and �; �, 	 are bispinor and/or vector indices
depending on the representation used for particles of given
type. The explicit expressions for the �N and �� cases
have been derived in Appendix C of Ref. [47], while the
corresponding results for transitions with vector mesons
are worked out in the Appendix. Because of the extended
structure of the hadrons involved, one has also to multiply
the coupling constant for pointlike particles in the interac-
tion operator v��	 by phenomenological vertex form fac-
tors. These form factors parametrize the unknown
microscopic effects at the vertex and have to obey the
constraint FNBM�y; k2

?� � FNBM�1� y; k2
?� to ensure basic

properties like charge and momentum conservation simul-
taneously [49]. To this aim we will use the following
functional form:

 FNBM�y; k
2
?� � exp

�
M2
N �M

2
BM

2�BM

�
; (8)

where �BM is a cutoff parameter.
For the hadron states of the bare nucleon and baryon-

meson components in Eq. (1), we adopt a light-cone con-
stituent quark model, by using the minimal Fock-state
wave function in the light-cone formalism, i.e.
 

j~pH; �;Hi �
X
�i;�i

Z �dx���
x
p

�
N
	d2k?
N�H;	f


�

� �fxi;k?i;�i; �igi�1;...;N�

�
YN
i�1

jxip�H;pi?; �i; �ii; (9)

where �H;	f

� �fxi;k?i;�i; �igi�1;...;N� is the momentum

LCWF which gives the probability amplitude for finding
in the hadron N partons with momenta �xip�H;pi? �
ki? � xipH?�, and spin and isospin variables �i and �i,
respectively. In Eq. (9) and in the following formulas, the
integration measures are defined by

 

�
dx���
x
p

�
N
�

�YN
i�1

dxi����
xi
p

�
�
�
1�

XN
i�1

xi

�
; (10)

 	d2k?
N �
�YN
i�1

d2k?i
2�2��3

�
2�2��3�

�XN
i�1

k?i

�
; (11)

where the number of valence partons is N � 3 and N � 2
for the baryon and meson case, respectively. As explained
in Ref. [50], the wave function �H;	f


� can be obtained by
transforming the ordinary equal-time (instant-form) wave
function in the rest frame into that in the light-front dy-
namics, by taking into account relativistic effects such as
the Melosh-Wigner rotation, i.e.

 �H;	f

� �fxi;k?i;�i; �igi�;1;...;N� � 2�2��3

1�������
M0

p
YN
i�1

�
!i

xi

�
1=2 X

�1;...;�N

�H;	c

� �fki;�i; �i; �igi�1;...;N�

YN
i�1

D1=2�
�i�i
�Rcf�~ki��; (12)

where �H;	c

� is the canonical wave function, and

D1=2�
�i�i
�Rcf�~ki�� are the Melosh rotations defined in

Ref. [50]. In Eq. (12), !i �
������������������
m2 � k2

i

q
is the energy of

the ith quark, and M0 �
P
i!i is the free mass of the

system of N noninteracting quarks.
In our model calculation, we take into account the

meson-cloud contribution corresponding to �, �, and !,
with the accompanying baryon in the jBMi component of
the dressed nucleon being a nucleon or a �. The instant-
form wave function is constructed as the product of a
momentum wave function, which is spherically symmetric
and invariant under permutations, and a spin-isospin wave

function, which is uniquely determined by SU(6)-
symmetry requirements.

In the case of the nucleon, we adopt the momentum
wave function of Ref. [51], which reads

  N;	c
�fkigi�1;3� �
N0

�M2
0 � �

2�	
; (13)

with N0 a normalization factor. In Eq. (13), the scale �, the
parameter 	 for the power-law behavior, and the quark
mass m are taken as free parameters, and will be deter-
mined by a comparison with experimental data as ex-
plained in Sec. IV.
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The � is described as a state of isospin T � 3=2 ob-
tained as a pure spin-flip excitation of the nucleon, with the
corresponding momentum wave function equal to that of
the nucleon in Eq. (13).

Furthermore, the canonical wave function of the pion is
taken from Ref. [52] and reads

  �;	c
� ~k1; ~k2� �
i

�3=4�3=2
exp	�k2=�2�2�
; (14)

with ~k � ~k1 � � ~k2, and the two parameters � �
0:3659 GeV and mq � 0:22 GeV fitted to the pion form
factor data. The phase of the pion wave function (14) is
consistent with that of the antiquark spinors of Ref. [53].

The wave function of the � differs from the pion only in
the spin component, with the rest-frame spin states of the
q �q pair coupled to J � 1 instead of J � 0. Similarly, the!
is described by the same spin and momentum wave func-
tion as the �, but with the isospin component correspond-
ing to a singlet state. This choice corresponds to assuming
an ideal mixing in the vector sector, since the effects of the
��! mixing are irrelevant in the calculation of the
meson-cloud contribution to the nucleon form factors.
For the same reason, also the effects of the �0 �! mixing
are neglected.

Finally, we need to specify the parameters entering in
the vertex functions. The cutoff �BM in Eq. (8) should in
principle be different for each BM component. However,
the Jülich group [54] and Zoller [44] used high-energy
particle production data to determine all the �BM of inter-
est, and found that the data could be described by two
parameters: �1 for octet baryons and pseudoscalar and
vector mesons, and �2 for decuplet baryons. We have
chosen the values �1 � 0:61 GeV and �2 � 0:81 GeV,
which are consistent with the ones adopted in the cloudy
bag model [49] to obtain a good fit to both the violation of
the Gottfried sum rule and the measured sea-quark contri-
bution in the unpolarized parton distribution. For the NBM
coupling constants at the interaction vertex, we used the
numerical values given in Refs. [55,56] in the case of the �
and the �. Instead, for the NN! coupling, gNN!, we used
the result from the analysis of Ref. [57] about the !
contribution to the unpolarized antiquark distributions,
which favors a much smaller value for gNN! than the one
used to describe the nucleon scattering data. The numerical
values for each of the BM states are summarized in Table I.

Finally, with the specified parameters, the probabilities
for each of the BM components in the dressed nucleon are

 PN�=p � Pp�0=p � Pn��=p � 3Pp�0=p � 5:1%;

P��=p � P�����=p � P���0=p � P�0��=p � 2P�����=p

� 3:40%;

PN�=p � Pp�0=p � Pn��=p � 3Pp�0=p � 0:11%;

P��=p � P�����=p � P���0=p � P�0��=p � 2P�����=p

� 0:67%;

PN!=p � Pp!=p � 0:013%:

III. ELECTROWEAK FORM FACTORS OF THE
NUCLEON IN THE MESON-CLOUD MODEL

The Dirac and Pauli form factors F1�Q
2� and F2�Q

2� of
the nucleon are given by the spin conserving and the spin-
flip matrix elements of the vector current J�V � J0

V � J
3
V :

 F1�Q
2� � h~p� ~q; 1

2jJ
�
V j~p;

1
2i; (15)

 �qx � iqy�F2�Q
2� � 2MNh~p� ~q;�1

2jJ
�
V j~p;

1
2i; (16)

where Q2 � �q2. As was first shown by Drell and Yan
[59], the calculation of the form factors is conveniently
done in a coordinate frame where q� � 0. In particular, we
will use a symmetric frame where the nucleon momenta
are given by

 pN �
�
M2
N � q2

?=4

p�N
; p�N ;�

q?
2

�
�

�
M2
N � q2

?=4

p�N
; ~pN

�
;

p0N �
�
M2
N � q2

?=4

�p�N
; p�N ;�

q?
2

�
�

�
M2
N � q2

?=4

p�N
; ~p0N

�
:

(17)

With such a choice, the processes with vacuum pair pro-
duction are suppressed, and the current matrix elements
can be computed as a simple overlap of Fock-space wave
functions, with all off-diagonal terms involving pair pro-
duction or annihilation by the current or vacuum vanishing.
In the present meson-cloud model, we need to consider the
contributions from the diagonal overlap between the bare-
nucleon state, on one side, and the BM components, on the
other side. Furthermore, the electromagnetic current is a
sum of one-body currents, J� �

P
B;MJ

�
B � J

�
M, which

involves individual hadrons one at a time. This corresponds
to assuming that there are no interactions among the par-
ticles in a multiparticle Fock state during the interaction
with the photon. Therefore the external probe can scatter
either on the bare nucleon, jNi, or one of the constituents of
the higher Fock states, jBMi. As a result, the matrix
elements of the electromagnetic current can be written as
the sum of the following two contributions:

TABLE I. Coupling constants at the NBM interaction vertex.

g2
NN�
4�

f2
N��
4�

g2
NN�

4�2 fNN�
f2
N��

4�
g2
NN!

4�2

13.6 11:08 GeV�2 0.84 6:1gNN� 20:45 GeV�2 8.1

B. PASQUINI AND S. BOFFI PHYSICAL REVIEW D 76, 074011 (2007)

074011-4



 h~p0N; �
0
N; ~NjJ�V j~pN; �N; ~Ni � ZIN�0N;�N

� �I�0N;�N : (18)

In Eq. (18), IN is the contribution from the bare nucleon
corresponding to the diagram (a) in Fig. 1, and �I is the
contribution from the BM Fock components of the physical
nucleon. This last term can further be split into two con-
tributions, with the active particle being the baryon
(�I�B

0B�M) or the meson (�I�M
0M�B), i.e.

 �I�0N;�N �
X

B;B0;M

�I�B
0B�M

�0N;�N
�

X
M0;M;B

�I�M
0M�B

�0N;�N
: (19)

The �I�B
0B�M

�0N;�N
term in Eq. (19) is schematically repre-

sented in Fig. 1(b) and is explicitly given by

 �I�B
0B�M

�0N;�N
�

X
B;B0;M

X
�;�0;�00

Z
dyB

Z d2pB?
2�2��3

h~pB � ~q; �0; B0jJ�B j~pB; �; Bi�
�N�N;BM�
�00� �yB;kB?�	�

�0N�N;B
0M�

�00�0 �yB;k0B0?�

�; (20)

where kB? � pB? � �1� yB�q?=2 and k0B0? � pB? � �1� yB�q?=2.
Analogously, the contribution from the meson in the BM fluctuation is described by diagram (c) in Fig. 1 and reads

 

�I�M
0M�B

�0N;�N
�

X
B;M;M0

X
�;�0;�00

Z
dyM

Z d2pM?
2�2��3

h~pM � ~q; �0;M0jJ�j~pM; �;Mi�
�N�N;BM�
�00� �1� yM;�kM?�

� 	�
�0N�N;BM

0�

�00�0 �1� yM;�k0M0?�

�; (21)

with kM? � pM? � �1� yM�q?=2 and k0M0? �
pM? � �1� yM�q?=2.

As a result, the contribution from the BM components in
Eqs. (20) and (21) is obtained by folding the current matrix
elements of the baryon and meson constituents with the
probability amplitudes describing the distributions of these
constituents in the dressed initial and final nucleon. In
general, the current matrix elements h~p� ~qjJ�j~pi appear-
ing inside the integrals depend on the internal momentum
of the baryon-meson state. However, as discussed in
Ref. [60], the kinematical nature of a light-front boost
allows us to transform these matrix elements to a frame
with ~p � 0, with the result

 I�0��Q2� � h~p� ~q; �0jJ�j~p; �i � hMq?; �jJ�jM0?; �i:
(22)

As a consequence, the current matrix elements in Eqs. (20)
and (21) factor out of the internal momentum integration,
and one finds

 �I�B
0B�M

�0N;�N
�

X
B;B0;M

X
�;�0;�00

IB
0B

�0� �Q
2�

�
Z

dyB
Z d2pB?

2�2��3
��N�N;BM�
�00� �yB;kB?�

� 	�
�0N�N;B

0M�
�00�0 �yB;k0B0?�


�; (23)

 

�I�M
0M�B

�0N;�N
�

X
B;M;M0

X
�;�0;�00

IM
0M

�0� �Q
2�
Z

dyM
Z d2pM?

2�2��3

���N�N;BM�
�00� �1� yM;�kM?�

� 	�
�0N�N;BM

0�

�00�0 �1� yM;�k0M0?�

�: (24)

We also note that the sum in Eq. (19) over all the possible
BM configurations leads to contributions from both the
diagonal current matrix elements with the same hadrons in
the initial and final state [B0 � B and M0 � M in Eqs. (23)
and (24), respectively], and the current matrix elements
involving the electromagnetic transition between different
hadron states [i.e. the terms with B0 � B and M0 � M in
Eqs. (23) and (24), respectively].

Finally, the current matrix element for the bare hadron
states can be calculated as overlap integrals of the hadron
LCWF (see, e.g., Refs. [53,61]):
 

h~p0H0 ; �
0
H0 ; H

0jJ�V j~pH; �H;Hi

�
X
j

ej
X
�i

Z
	dx
	d2k?
	�

H0;	f

�0
H0
�fxi;k0?i;�i; �igi�;1;...;N�


�

��H;	f

�H
�fxi;k?i;�i; �igi�;1;...;N�; (25)

where k0?j � k?j � �1� xj�q? for the struck quark, and
k?i � xiq? for the spectator quarks.

The convolution formulas derived for the electromag-
netic form factors can be extended to the calculation of the

N

(a)

N

M

’

(b)

BN N

B B

N N

M M’

(c)

FIG. 1. Electromagnetic interaction vertex for a bare nucleon
(a), and virtual baryon (b) and meson (c) components of a
dressed nucleon.
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proton axial form factor GA�Q
2�. In this case we need to

consider the diagonal matrix element of the axial current
J�A , i.e.

 GA�Q
2� � h~p� ~q; 1

2jJ
�
A j~p;

1
2i: (26)

The structure of Eqs. (18), (19), (23), and (24) applies
also for the axial matrix elements, with the difference that
the active mesons in the �I�M

0M�B contribution can only be
vector mesons. Furthermore, the LCWF overlap represen-
tation of the axial matrix elements between bare hadron
states reads

 h~p0H0 ; �
0
H0 ; H

0jJ�A j~pH; �H;Hi �
X
j

�j
X
�i

sign��j�
Z
	dx
	d2k?


� 	�H0;	f

�0
H0
�fxi;k0?i;�i; �igi�;1;...;N�


��H;	f

�H
�fxi;k?i;�i; �igi�;1;...;N�: (27)

IV. RESULTS AND DISCUSSION

As we are interested in studying the effects of the meson
clouds that notoriously manifest themselves at low values
of Q2, the three free parameters of the model, �, 	 in
Eq. (13) and the quark mass m, are fixed by fitting 8
experimental values of the proton and neutron form factors
at lowQ2. In the fit procedure we have used the Sachs form
factors defined in terms of Dirac and Pauli form factors as

 GE�Q
2� � F1�Q

2� �
Q2

4M2
N

F2�Q
2�;

GM�Q
2� � F1�Q

2� � F2�Q
2�:

(28)

The electric form factors are normalized as usual, i.e.
Gp
E�0� � 1, Gn

E�0� � 0, and the magnetic form factors at
Q2 � 0 are normalized to the nucleon magnetic moments,
i.e. Gp;n

M �0� � �p;n. We have chosen to fit �p, �n, the
proton axial coupling constant gA � GA�0�, Gn

E at Q2 �
0:15 GeV2, and Gp

E and Gp
M at Q2 � 0:15 and 0:45 GeV2.

A 5% uncertainty was allowed in the fitting procedure.
The multidimensional integration required for the numeri-
cal computation was implemented in a parallel computa-
tion using the parallelized version of the VEGAS routine of
Ref. [62].

The fitted values are 	 � 3:21, � � 0:489 GeV, and
m � 0:264 GeV. These values differ from the original
set of parameters in Ref. [51], used for the calculation of
the nucleon electromagnetic form factors in a three-va-
lence-quark model of the nucleon. They were fitted only
to the anomalous magnetic moments of the proton and

neutron to obtain 	 � 3:5, � � 0:607 GeV, and m �
0:263 GeV.

In Table II the values of �p, �n, and gA found in
Ref. [51] are compared with those obtained here and the
experimental values [58]. As in Ref. [51] and quite gen-
erally in the light-front formalism (see, e.g.,
Refs. [37,61,63–65]), it is always difficult to reproduce
all the three quantities simultaneously, so that some com-
promise has to be accepted. A significant improvement is
obtained for �n by taking into account the meson
cloud. One may appreciate that the two contributions in
the baryon-meson fluctuation with the active particle
being a meson (

P
B;B0;M�I

�B0B�M) or a baryon
(
P
M;M0;B�I

�M0M�B) add up coherently in the right direction
bringing the values of�p,�n, and gA closer to experiment.

The resulting electromagnetic form factors of both the
proton and neutron are shown in Fig. 2 in comparison with
the world data considered in the analysis of Ref. [26] and
the recent JLab data [19]. A rather good fit is obtained in
the proton case in the whole range of available data, while
in the neutron case the fit is less satisfactory. In any case,
the contribution from the meson cloud is smooth and
mainly significant for Q2 < 0:5 GeV2 with a maximum
at Q2 � 0. Therefore, in agreement with dispersion rela-
tion analyses [27–29], this model is unable to produce the
bump/dip structure advocated in Ref. [26] around Q2 �
0:2–0:3 GeV2. At higher Q2 the explicit meson-cloud con-
tribution dies out, but indirectly affects the bare nucleon
contribution through the normalization factor Z [34],
which is equal to 0.91 in our calculation.

TABLE II. Values of the form factors at Q2 � 0 in the calculation of Ref. [51] (first column),
from the bare nucleon contribution to the current matrix elements (second column), from the
contribution of the baryon (third column) and meson (fourth column) state in the BM component
of the dressed nucleon. The column labeled TOT gives the total result in the meson-cloud model,
while in the last column (labeled Exp.) are given the experimental values.

Ref. [51] ZIN
P
B;B0;M�I

�B0B�M P
M;M0;B�I

�M0M�B TOT Exp. [58]

�p 2.78 2.52 0.18 0.17 2.87 2.793
�n �1:69 �1:51 �0:12 �0:17 �1:80 �1:913
gA 1.24 1.12 0.075 0.002 1.20 1.2670
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The results plotted in Fig. 2 are all obtained starting from
an instant-form wave function �H;	c


� in Eq. (12) containing
a totally symmetric S-wave part in the quark momenta. In
order to improve the result for the neutron electric form
factor, it is known that the presence of a small admixture
(1%–2%) of mixed-symmetry S0-wave components is
most important [66–70]. Following [69], we assume the
mixed-symmetry S0-wave component to be represented by
an appropriate combination of mixed-symmetry spin-
isospin wave functions with two radial wave functions of
mixed symmetry of the form

 �N;	c

s �p;q� �N s

p2 � q2

p2 � q2 �N;	c
�fkigi�1;3�;

�N;	c

a �p;q� �N a

p � q
p2 � q2 �N;	c
�fkigi�1;3�;

(29)

where �N;	c
�fkigi�1;3� is the symmetric S-wave function
(13), N s and N a are normalization factors, and p and q
are the Jacobi coordinates:

 p � �
��
3
2

q
�k1 � k2�; q �

��
1
2

q
�k1 � k2�: (30)

The consequences of including a small percentage of such
mixed-symmetric contribution to the neutron electric form
factor are illustrated in Fig. 3. Even a percentage as small
as 1% is able to produce a quite good result compared to
data. As anticipated in Ref. [69], the same calculation
leaves the other nucleon form factors almost unaffected.

The slope of the electric form factor at Q2 � 0 deter-
mines the nucleon charge radius, i.e.

 r2
p;n � �6

dGp;n
E �Q

2�

dQ2

��������Q2�0
: (31)

The corresponding values for proton and neutron obtained
using an SU(6) symmetric or a mixed-symmetric instant-
form wave function are reported in Table III, where also
the partial contributions are indicated when one considers
either the bare nucleon or the contribution of the cloud with
an active baryon or meson. Rather good values of rp and rn
are obtained in the latter case. For the proton the charge
radius is mostly due to the valence quarks, i.e. the bare
proton. The meson cloud brings a contribution of about 5%
which leads to a final value of 0.877 fm, in close agree-
ment with the experimental value 0:8750 0:0068 [58].
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FIG. 2. The four nucleon electromagnetic form factors compared with the world data considered in the analysis of Ref. [26] and the
recent JLab data [19] using Gp

E � ��
pGp

E=G
p
M�=�1�Q

2=0:71 GeV2�2 (open squares). Dotted (dashed) line for the contribution of the
meson cloud (valence quarks). Solid line for the total result.
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Including the mixed-symmetry S0-wave component, the
charge radius of the bare proton is 0.837 fm. The cloud
adds a small contribution, which makes the total value
slightly overestimated. In the neutron case the bare con-
tribution is quite small, as expected. In contrast, both the
cloud and the mixed symmetry are equally important. The
contribution of the active meson in the cloud is substantial
and with the right sign. Including also the mixed-symmetry
S0-wave component r2

n becomes quite close to the experi-
mental value �0:1161 0:0022 [58].

In Fig. 4 the electric to magnetic form factor ratio
�pGp

E=G
p
M is shown for the proton. The model follows

the observed trend of data taken in polarized elastic elec-
tron scattering with a steepest falloff at values of Q2 much
larger than those involved in the fit to determine the model
parameters. This is due to the combined effect of a slightly
overestimated Gp

M and a slightly underestimated Gp
E at

large values of Q2 (see Fig. 2), where in practice only the
valence quarks contribute. The result is only slightly modi-
fied when including a mixed-symmetry contribution in the
nucleon wave function.

The predicted axial form factor of the proton is shown in
Fig. 5. The axial form factor has been normalized by its

0
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Q2 (GeV2)

G
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Q2 (GeV2)
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FIG. 3. The electric form factor of the neutron. Data points and solid line as in Fig. 2. Dashed (dotted) line with 1% (2%) mixed-
symmetry S0-state in the bare neutron wave function.

TABLE III. The different contributions (in fm2) to the proton and neutron mean square charge
radii, r2

p and r2
n respectively, from the bare nucleon and when the baryon or the meson is active in

the cloud. The column labeled TOT is the total result. The lines labeled SU(6) (mixed symmetry)
refer to the symmetry of the bare nucleon wave function of the bare nucleon.

Bare nucleon Active baryon Active meson TOT

r2
p SU(6) 0.64 0.065 0.061 0.77

r2
p Mixed symmetry 0.70 0.065 0.061 0.82

r2
n SU(6) �0:0097 0.0085 �0:063 �0:064

r2
n Mixed symmetry �0:058 0.0085 �0:063 �0:112
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FIG. 4. The electric to magnetic form factor ratio �pGp
E=G

p
M

for the proton. Data points as in Fig. 2.
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value at Q2 � 0, i.e. by the fitted value of the axial cou-
pling constant gA. Also in this case the meson-cloud con-
tribution is only significant at low values of Q2, although
not sufficient to bring gA in complete agreement with
experiment. However, the observed dipole form of the
axial form factor, i.e. GA�Q2�=GA�0� � 1=�1�Q2=M2

A�
2

with MA � 1:069 GeV, is well reproduced.
Neglecting relativistic corrections, in the Breit frame the

radial distribution of the nucleon charge (�ch) and magne-
tization (�m) are given by the Fourier-Bessel transform of
the nucleon electromagnetic Sachs form factors, i.e.

 �p;nch �r� �
2

�

Z
dQQ2j0�Qr�G

p;n
E �Q

2�; (32)

 �p;n�p;nm �r� �
2

�

Z
dQQ2j0�Qr�G

p;n
M �Q

2�: (33)

The corresponding results are shown in Fig. 6 together with
the partial contributions from the bare nucleon and when
the baryon or the meson is active in the cloud. In all cases,
the meson-cloud contribution is rather smooth and dies out
beyond 2 fm. With the exception of the neutron charge
density, when the baryon is active its contribution is peaked
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FIG. 6. The proton and neutron charge and magnetization densities. Dashed, dot-dashed, and dotted lines for contributions from the
bare nucleon, the active baryon, and the active meson in the cloud. Solid line for the total result.
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FIG. 5. The axial form factor of the proton. Dotted (dashed)
line for the contribution of the meson cloud (valence quarks).
Solid line for the total result. Dot-dashed line for the phenome-
nological dipole form. Data points are the world data considered
in Ref. [71].
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at approximately the same position as the bare-nucleon
contribution, while the active meson is peaked at �1 fm.
Thus, the meson cloud manifests itself as a slight extension
of the radial distribution up to �2 fm as suggested by the
analysis of Ref. [26]. In the case of the neutron charge
distribution, the two components of the meson cloud be-
have differently. The active baryon, a proton or a ��, gives
a positive contribution of the same shape as the bare proton
and is appropriately scaled by the corresponding vertex
functions. The contribution of the active meson, a ��, is
opposite and peaked at �1:3 fm. The resulting charge
distribution shows a positive core surrounded by a negative
surface charge pushed outwards by the meson cloud and
peaking at �0:8 fm, in agreement with the analysis of
Ref. [25] and the expectation based on the picture of a
hadron’s periphery caused by the pion cloud [72].

The effect of including the mixed-symmetry S0-wave
component in the neutron case can be appreciated from
Fig. 7. The inner positive core is more pronounced and the
negative surface charge is even more pushed outwards.
Consequently, the (negative) mean square radius ap-
proaches the experimental value (see Table III).

The direct relationship between Sachs form factors and
the static charge and magnetization densities is lost when
relativity is considered because there is a variation withQ2

of the Breit frame and electron scattering measures tran-
sitions matrix elements between nucleon states that have
different momenta. Therefore one has to apply appropriate
boosts that in a relativistic composite system such as the

nucleon depend on the interaction among its constituents.
The problem of finding a suitable prescription to relate
Sachs form factors to the static charge and magnetization
densities was recently addressed in Ref. [25] taking into
account the Lorentz contraction of the densities in the Breit
frame relative to the rest frame. The consequences are that
relativity tends to pull the density inward and to amplify
oscillations at large radii. This has been confirmed in the
model of Ref. [38]. The same effect should be expected
also here. In any case in the present analysis the meson
cloud is responsible for a long-range contribution to the
nucleon charge and magnetization densities.

The problem of unambiguously determining the charge
density can be solved by looking at the charge density ��b�
of partons in the transverse (impact parameter) plane with
respect to the direction of the three-momentum transfer
[30]. This is possible because in the transverse plane boosts
are purely kinematical, i.e. in the light-front framework
they form a Galilei subgroup of the Poincaré group [73,74].
Then ��b� is the two-dimensional Fourier transform of the
Dirac form factor F1:

 ��b� �
1

2�

Z 1
0

dQQJ0�Qb�F1�Q
2�; (34)

where J0 is a cylindrical Bessel function.
The corresponding charge densities for the proton and

the neutron are plotted in Fig. 8. As in Ref. [30] the
densities are concentrated at low values of bwith a positive
peak for the proton and a negative peak for the neutron.

These nucleon charge densities can be related to quark
transverse distributions. Assuming that only up and down
quarks are in the nucleon and invoking isospin symmetry,
we have

 �p�b� � 4
3u�b� �

1
3d�b�; (35)

 �n�b� � �2
3u�b� �

2
3d�b�; (36)

where u�b� is the transverse distribution for an up quark in
the proton or a down quark in the neutron, and d�b� is the
transverse distribution for a down quark in the proton or an
up quark in the neutron. Both u�b� and d�b� are normalized
to 1. They can be obtained using

 u�b� � �p�b� � 1
2�

n�b�; (37)

 d�b� � �p�b� � 2�n�b�: (38)

The resulting distributions are shown in Fig. 9 in the two
cases of a permutationally symmetric momentum wave
function of the bare nucleon and of an included mixed-
symmetric component. The central up quark density turns
out to be larger than that of the down quark by about 40%
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FIG. 7. The neutron charge density with a mixed-symmetry
S0-wave component in the neutron wave function. Dashed, dot-
dashed, and dotted lines for contributions from the bare nucleon,
the active baryon, and the active meson in the cloud. Solid line
for the total result.
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in the symmetric case and by about 25% including the
mixed symmetry. Quite similar results (about 30%) have
been obtained in Ref. [30] using phenomenological pa-
rametrizations of the Sachs form factors and deducing F1

in terms of GE and GM.

The probability �q�b; �;�� to find a quark with trans-
verse position b and light-cone helicity ��� 1� in the
nucleon with longitudinal polarization ��� 1� can be
expressed as the Fourier transform of the combination of
the quark contributions to the Dirac and axial form factors
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FIG. 9. Transverse distributions of up (solid lines) and down (dashed lines) quarks in the proton as a function of the impact parameter
b with a permutationally symmetric momentum wave function of the bare nucleon (left panel), and with a mixed-symmetric
component (right panel).
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[75], i.e.
 

�q�b; �;�� �
1

2

Z
d2q?	F

q
1 �Q

2 � q2
?�

� ��Gq
A�Q

2 � q2
?�
e

iq?�b

�
1

4�

Z
dQQJ0�Qb�	F

q
1�Q

2� � ��Gq
A�Q

2�


�
1

2
	�q�b� � ���q�b�
; (39)

where �q�b� was already defined in Eq. (38) and �q�b� is
the Fourier transform of Gq

A�Q
2�. Assuming a positive

proton helicity (� � 1), the resulting probability is shown
in the right panels of Fig. 10. The axial contributions �u�b�
and �d�b� for up and down quarks (left panels), respec-
tively, have opposite sign. When suitably combined with
the corresponding transverse distributions u�b� and d�b�
given in Fig. 9, we see that the positive helicity up quarks
in the proton are preferentially aligned with the proton
helicity, while the opposite occurs for down quarks. This
result is in total agreement with that shown in Fig. 7 of
Ref. [75], where quite a different radial distribution of the
axially symmetric spin density was presented for up and
down quarks in the transverse plane.

V. CONCLUDING REMARKS

The meson-cloud model, as revisited in Ref. [47] to
study generalized parton distributions and including
baryon-meson configurations with the baryon being a nu-

cleon or a � and the meson being a pion as well as a vector
meson such as the � or the!, has been used to describe the
electroweak structure of the nucleon. Light-cone wave
functions for the bare nucleon were constructed starting
from the momentum wave function (13) taken from
Ref. [51] and depending on three parameters, the scale
�, the parameter 	 for the power-law behavior, and the
quark mass m. They are determined by fitting 8 experi-
mental values of the proton and neutron form factors at low
Q2. No other free parameters enter the model calculations,
since all other ingredients are fixed from the beginning on
the basis of previous analysis.

An overall good fit to the electromagnetic form factors is
obtained, with the exception of the neutron electric form
factor where it is essential to also include a mixed-
symmetry S0-wave momentum component, in agreement
with earlier findings [66–70]. This component only
slightly affects the other form factors. In any case, the
meson-cloud contribution is smooth and only significant
below Q2 � 0:5 GeV2. Therefore, as in analyses based on
dispersion relations [27–29], also in this model no possi-
bility exists to reproduce the bump/dip structure discussed
in Ref. [26]. A similar smooth contribution arises in the
proton axial form factor.

Charge and magnetization densities are deduced as a
function of both the radial distance from the nucleon center
and the transverse distance (impact parameter) with respect
to the direction of the three-momentum transfer.

The meson cloud produces a slight extension of the
radial distribution of the static charge and magnetization
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FIG. 10. Transverse distribution of up and down quarks in a longitudinally polarized proton as a function of the impact parameter b.
Left panels: the axial contributions �u and �d for up and down quarks, respectively. Right panels: total contribution for quarks
polarized in the longitudinal direction, either parallel (solid lines) or antiparallel (dashed lines) to the proton helicity.
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up to �2 fm. It is confirmed that the neutron charge
distribution shows a positive core surrounded by a negative
surface charge [25,30]. It is pushed outwards by the long-
range meson cloud with opposite contributions from the
active baryon and meson in the baryon-meson component
of the nucleon wave function.

As a function of the impact parameter a central negative
charge is found for the neutron. A similar result has been
obtained in Ref. [30] starting from a phenomenological fit
of the electromagnetic form factors. This result can be
explained invoking isospin symmetry and observing that
the up quark transverse distribution in the proton is larger
than the down quark one, a result consistent with deep
inelastic scattering data.

The up and down quark distributions associated with the
Fourier transform of the axial form factor have opposite
sign, with the consequence that the probability to find an up
(down) quark with positive helicity is maximal when it is
(anti)aligned with the proton helicity, in close agreement
with the radial distribution of the axially symmetric spin
density studied in Ref. [75].

In conclusion, the meson-cloud model appears to give a
satisfactory description of the electroweak properties of the
nucleon with interesting information about its structure in
the nonperturbative regime of QCD.
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APPENDIX: VERTEX FUNCTIONS

In this Appendix we work out the case of the B! B0V
transitions in the light-front formalism, with the baryon
states B being a nucleon or a �, and the vector mesons V
corresponding to !, or �. The vertex functions for the
coupling of baryons with pseudoscalar mesons are given
in Appendix C of Ref. [47]. The vertex functions for
transitions to vector mesons can be found in several places
(see, e.g., Refs. [35,48,54]), and the longitudinal-
momentum distributions corresponding to the integration
over the transverse momentum of the squared vertex func-
tions are explicitly given in Refs. [76–78]. The quoted
results are controversial, in the sense that they differ
although the formalism is exactly the same. In particular,
we agree with the results for the longitudinal-momentum
distributions of Refs. [77,78], and differ from Ref. [76],
while for the vertex functions we agree with the conclu-
sions drawn in the Appendix of Ref. [78], where the origin
of the differences from Refs. [35,48,54] is explained in
details. However, Kumano et al. [78] do not give explicit
analytical expressions for the vertex functions, and we find
convenient to show here their derivation and, in particular,

their dependence on the transverse momentum which en-
ters in the convolution formulas for the form factors.

The light-front vectors are defined as

 A� � �A�; A�;A?�; (A1)

with

 A � A0  A3; A? � �A1; A2�: (A2)

We also use the notations AR;L � A1  iA2 and ~A �
�A�;A?�.

The light-front nucleon spinors u��~p� are given by

 

u1=2�~p� �
1���������

2p�
p

p� �m

pR
p� �m

pR

0
BBBBB@

1
CCCCCA;

u�1=2�~p� �
1���������

2p�
p

�pL
p� �m

pL
m� p�

0
BBBBB@

1
CCCCCA:

(A3)

The gamma matrices are defined as in Ref. [79].
A similar expansion for the � field involves the Rarita-

Schwinger spinors given by

 

u�3=2�~p� � ���1�~p�u1=2�~p�;

u�1=2�~p� �
��
2
3

q
��0 �~p�u1=2�~p� �

��
1
3

q
���1�~p�u�1=2�~p�;

u�
�1=2�~p� �

��
2
3

q
��0 �~p�u�1=2�~p� �

��
1
3

q
���1�~p�u1=2�~p�;

u�
�3=2�~p� � ���1�~p�u�1=2�~p�;

(A4)

where the polarization vectors are given by

TABLE IV. Vertex functions for N ! N0V and particle helic-
ities 1

2! �0N , �V in prescription A.
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(A5)

The vertex function for the transition N ! BV with the
baryon B being one of the octet states is given by

 V�N�0B;�V
� ~��V � ~TFNBV�y; k?�

�

�
g �u�p0B; �

0
B�	

�u�pN; �N�"
�
�;�V

�
f

2MN
�u�p0B; �

0
B�i

��p�;V"
�
�;�V

�
; (A6)

where FNBV is the vertex form factor, and the isospin factor
is defined as

 hBj ~��V � ~TjNi � ��1��V
hTBjjT̂kTNi������������������

2TB � 2
p hTN�N1� �V jTB�Bi;

(A7)

with TB �
1
2 , and h12 kT̂k

1
2i �

���
6
p

.
In the vertex function of Eq. (A6), there is an off-shell

dependence introduced by the derivative coupling, leading
to a freedom in defining the vertex momentum. One can
consider the following two possibilities [54]:

 �A� p�V � �EV; ~pV�; with EV �
�������������������
m2
V � ~p2

V

q
;

�B� p�V � pN � p0B � �EN � E
0
B; ~pV�:

(A8)

In the following we will list the results for the vertex
functions corresponding to both prescriptions, although
the calculation of the nucleon form factors is performed
using the off-shell condition (B), as suggested in Ref. [54].

TABLE VI. Vertex functions for N ! �V and particle helic-
ities 1

2! �0, �V in prescription A.
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TABLE V. Vertex functions for N ! N0V and particle helicities 1
2! �0N , �V in prescription B.
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TABLE VII. Vertex functions for N ! �V and particle helic-
ities 1

2! �0, �V in prescription B.
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The results of the calculation for the particle helicities
1
2! �0N, �V are given in Table IV for prescription A and in
Table V for prescription B.

The corresponding results for helicity down of the nu-
cleon are given by

 V��1=2��N;BV�
�0;�V

�y;k?� � ��1�1=2��0��VV1=2�N;BV�
��0;��V

�y; k̂?�;

where k̂? � �kx;�ky�.
The vertex function for the transition N ! BV with the

baryon being one of the decuplet states is given by
 

V��0;�V �
~��V � ~TFNBV�y; k?�

f
MV

�u��~p0B; �
0�	5	�

� u�~pN; ��	p
�
V"

��
�V
� p�V"

��
�V

; (A9)

where the isospin factor is defined as in Eq. (A7), with
TB �

3
2 and h12 kT̂k

1
2i � 2.

The explicit results for particle helicities 1
2! �0, �V are

given in Table VI for prescription A and in Table VII for
prescription B.

The corresponding results for helicity down of the nu-
cleon are given by

 V��1=2��N;BV�
�0;�V

�y;k?� � ��1�3=2��0��VV�1=2��N;BV�
��0;��V

�y; k̂?�:
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