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The exclusive decay of � to a vector plus pseudoscalar charmonium is studied in perturbative QCD.
The corresponding branching ratios are predicted to be of order 10�6 for the first three � resonances, and
one expects these decay modes should be discovered in the prospective high-luminosity e�e� facilities
such as the Super B factory. As a manifestation of the short-distance loop contribution, the relative phases
among strong, electromagnetic, and radiative decay amplitudes can be deduced. It is particularly
interesting to find that the relative phase between strong and electromagnetic amplitudes is nearly
orthogonal. The resonance-continuum interference effect for double charmonium production near various
� resonances in e�e� annihilation is addressed.
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I. INTRODUCTION

Very rich J= decay phenomena have historically served
as an invaluable laboratory to enrich our understanding
toward the interplay between perturbative and nonpertur-
bative QCD [1,2]. By contrast, much fewer decay channels
of � are known to date. It would be definitely desirable if
more knowledge about bottomonium decay can be gleaned.

The typical branching fraction for a given hadronic
decay mode of � is in general much smaller than that of
J= . It is partly due to the smaller QCD coupling at the b
mass scale than at the c scale, and more importantly, it is
because the branching ratio gets diluted by a scaling factor
of �mc=mb�

n when descending from charmonium to botto-
monium (here n is some number no less than 4). These
might intuitively explain why very few exclusive decay
modes of bottomonia have been seen so far.

Because of the rather large bmass, � not only can dema-
terialize into light hadrons, it also can decay to charmful
final states. In this work, I plan to study the exclusive decay
of � into double charmonium, or more specifically, J= 
( 0) plus �c (�0c). The hard scales set by b and c masses in
this type of process justify the use of perturbative QCD
(pQCD). Since the involved mesons are all heavy quarko-
nium, it is natural to employ the nonrelativistic QCD
(NRQCD) factorization approach [3]. This work consti-
tutes a continuation of previous studies on bottomonium
decay to double charmonium, namely, �b, �b!J= J= 
[4,5]. Although these decay modes have not yet been seen,
some experimental information has already been available
for the inclusive J= ( 0) production rate from � decay
[6–8]:
 

B���1S� ! J= � X� � �6:5� 0:7� 	 10�4;

B���1S� !  0 � X� � �2:7� 0:9� 	 10�4;

B���2S� ! J= � X�< 6	 10�3;

B���4S� ! J= � X�< 1:9	 10�4:

(1)

These inclusive decay ratios set upper bounds for the
exclusive processes. It is worth noting that �! J= �c
violates the hadron helicity conservation [9,10]. It is thus
natural to expect that the corresponding branching frac-
tions are very suppressed.

One important impetus of this work is from the double
charmonium production at the ��4S� resonance measured
by Belle in 2002 [11]. The observed cross section is usually
entirely ascribable to the continuum contribution because
of the rather broad ��4S� width. Nevertheless for a full
understanding, it is worth knowing precisely the impact of
the resonant decay on the measured double charmonium
cross section. Furthermore, stimulated by Belle’s discov-
ery, a natural question may arise—what is the discovery
potential for double charmonium production in e�e� ex-
periments operated at lower � peaks? Since the first three
� resonances are much narrower than ��4S�, the resonant
decay contribution should dominate over the continuum
one. This study is motivated to answer this question.

One interesting problem in exclusive decays of a vector
quarkonium is to know the relative phase between the
strong and electromagnetic amplitudes. For example, the
corresponding relative phase in J= ! PV (P, V stand for
light 0�� and 1�� mesons) has been extensively studied
and found to be nearly orthogonal [12–17]. In this case, the
relative phase naturally emerges as a short-distance effect
and thus is perturbatively calculable. Curiously, it is also
found to be approximately orthogonal.

The rest of the paper is organized as follows. In Sec. II, I
present the lowest-order NRQCD calculation for the decay
process �! J= � �c, including strong, electromag-
netic, and radiative decay channels. In Sec. III, I present
the predictions to the branching fractions for various �
decays to double charmonium, and conclude that the dis-
covery potential of these decay modes is promising in the
prospective Super B experiment. I also discuss the relative
phases among three amplitudes, putting particular empha-
sis on the nearly orthogonal relative phase between strong
and electromagnetic amplitudes. The connection between
my results and the previous discussions on the nearly 90
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relative phase in J= decays is remarked upon. In addition,
I also study the impact of the resonance-continuum inter-
ference on J= � �c production cross sections at various
� resonances in e�e� experiments. I summarize and give a
brief outlook in Sec. IV. In the appendixes, I illustrate how
to analytically derive some loop integrals that appear in
Sec. II.

II. COLOR-SINGLET MODEL CALCULATION

The process �! J= � �c can proceed via three
stages: the b �b pair first annihilates into three gluons, or
two gluons plus a photon, or a single photon; in the second
step, these highly virtual gluons/photon then convert into
two c �c pairs, which finally materialize into two fast-
moving S-wave charmonium states. Because of the heavy
charm and even much heavier bottom, both the annihila-
tion of b �b and creation of c �c pairs take place in rather short
distances; it is thereby appropriate to utilize pQCD to study
this hard exclusive process.

This process is somewhat similar to the widely studied
J= ! PV decay, but bears the virtue that applicability of
pQCD should be more reliable. It is commonly believed
that some nonperturbative mechanisms should play a
dominant role in many charmonium exclusive decay pro-
cesses, where the credence of pQCD seems rather ques-
tionable. This consensus is exemplified by the notorious
�� puzzle [2,18].

While it is customary to use the light-cone approach to
deal with hard exclusive processes involving light mesons
(for a recent attempt to study J= ! �� from this per-
spective, see Ref. [19]), it is for my purpose most proper to
employ an approach embodying the nonrelativistic nature
of quarkonium. NRQCD factorization is a widely accepted
effective-field-theory framework to describe the quark-
onium inclusive production and decay processes, which
systematically incorporates the small velocity expansion
[3]. Although a rigorous formulation for exclusive quark-
onium decay has not yet been fully achieved within this
scheme, one may still be well motivated to work with
models akin to the NRQCD ansatz.

The color-singlet model can be viewed as a truncated
version of the NRQCD approach, in which one still as-
sumes a factorization formula, i.e., the decay rate can be
separated into the perturbatively calculable part and uni-
versal nonperturbative factors, however only with the con-
tribution from the color-single channel retained. I do not
know how to include the possible color-octet contributions
in a clear-cut way, but it is plausible to assume their effects
are unimportant for reactions involving only S-wave
quarkonium as in my case. Notice that NRQCD and
color-singlet model are often referring to the same tool in
literature, so I will also use them interchangeably.

Let Q, P, and ~P signify the momenta of �, J= , and �c,
respectively. In the color-singlet model calculation, one
starts with the parton process b�pb� �b�p �b� ! c�pc� �c�p �c� �

c�~pc� �c�~p �c�, then projects this matrix element onto the
corresponding color-singlet quarkonium Fock states. This
work is intended only for the zeroth order in relativistic
expansion, hence I can neglect the relative momenta inside
each quarkonium, i.e., set pb � p �b � Q=2, pc � p �c �
P=2, and ~pc � ~p �c � ~P=2. For the b �b pair to be in a
spin-triplet and color-singlet state, one simply replaces
the product of the Dirac and color spinors for b and �b by
the projection operator
 

u�pb� �v�p �b� !
1

2
���
2
p �Q6 � 2mb�"6 �

	

�
1�������
mb
p  ��0�

�
�

1c������
Nc
p : (2)

For the outgoing J= and �c, one makes the following
replacements:
 

v�p �c� �u�pc� !
1

2
���
2
p "6 �J= �P6 � 2mc�

	

�
1������
mc
p  J= �0�

�
�

1c������
Nc
p ; (3)

 

v�~p �c� �u�~pc� !
1

2
���
2
p i�5�

~6P� 2mc�

	

�
1������
mc
p  �c�0�

�
�

1c������
Nc
p : (4)

Here "�� and "�J= are polarization vectors for � and J= .
Nc � 3, and 1c stands for the unit color matrix. The non-
perturbative factors  ��0�,  J= �0�, and  �c�0� are
Schrödinger wave functions at the origin for �, J= , and
�c, which can be inferred either from phenomenological
potential models or extracted from experiments. By writing
(2)–(4), the way they are, it is understood that M� � 2mb
and MJ=  M�c � 2mc have been assumed.

Before moving into the concrete calculation, I recall first
that since both strong and electromagnetic interactions
conserve parity, the decay amplitude is then constrained
to have the following Lorentz structure:

 M �A���	
"
�
�"
��
J= Q

	P
: (5)

Apparently, J= must be transversely polarized in the �
rest frame. All the dynamics is encoded in the coefficient
A, which I call the reduced amplitude. My task in the
remaining section then is to dig out its explicit form.

A. Three-gluon amplitude

I begin with the strong decay amplitude. Some typical
lowest-order diagrams are shown in Fig. 1, which starts
already at one-loop order. Using the projection operators in
(2)–(4), I can write down the corresponding amplitude:
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M3g � 2N�3=2
c tr�TaTbTc� tr�TafTb; Tcg�g6

s
 ��0� J= �0� �c�0�

16
���
2
p
m7=2
b mc

Z d4k1

�2��4
1

k2
1

1

k2
2

�
tr��Q6 � 2mb�"6 ������k6 2 �mb����

k2
2 �m

2
b

�
tr��Q6 � 2mb�"6 ��

���k6 1 �mb��
����

k2
1 �m

2
b

�
mb tr�Q6 � 2mb�"6 ��

���k6 2 �mb��
��k6 1 �mb��

��

�k2
1 �m

2
b��k

2
2 �m

2
b�

�

	
tr�"6 �J= �P6 � 2mc����p6 c � k6 1 �mc����5�

~6P� 2mc����

�pc � k1�
2 �m2

c
; (6)

where two internal gluons carry momenta k1 and k2, re-
spectively, which are subject to the constraint k1 � k2 �
Q
2 . Some elaboration is in order. Because � has charge
conjugation quantum number �1, three intermediate glu-
ons must arrange to form the color-singlet state
dabcjaijbijci [dabc (fabc) represents the totally (anti)sym-
metric structure constants of the SU�Nc� group]. The re-
striction of C-invariance removes all the possible O�g6

s�
diagrams involving a three-gluon vertex as well as a four-
gluon vertex. As a result, I only need retain those Abelian
diagrams in which each of three gluons is connected be-
tween the b and c quark lines in both ends. There are in
total 12 such diagrams, but it turns out that for each of
diagrams, there is another one generating an exactly iden-
tical amplitude, which explains the prefactor 2 in the right-
hand side of (6). Among the six diagrams needed to be
considered, one can further divide them into two groups:
one carries a color factor / tr�TaTbTc� tr�TaTcTb�,
whereas the other carries that / tr�TaTbTc� tr�TaTbTc�.
These two groups yield identical reduced amplitudes ex-
cept this difference. Thus I only need consider three dia-
grams with distinct topologies, as depicted in Fig. 1, and
incorporate the following color factor:

 tr �TaTbTc� tr�TafTb; Tcg� �
1

8
dabcdabc

�
�N2

c � 1��N2
c � 4�

8Nc
; (7)

which ensures that only those intermediate gluons with
overall C � �1 can contribute to this process.

Straightforward power counting reveals that the loop
integrals in (6) are simultaneously ultraviolet and infrared

finite. In absence of the need for regularization, I have
directly put the spacetime dimension to four.

After completing the Dirac trace in (6), I end up with
terms in which the Levi-Civita tensor is entangled with the
loop momentum variable. Since all these terms will finally
conspire to arrive at the desired Lorentz structure as dic-
tated in (5), I may exploit this knowledge to get rid of the
antisymmetric tensor prior to performing the loop integral
[20]. First I identify the amputated amplitude M�� through
M � M��"

�
�"
��
J= . Equation (5) then demands

 M�� �A���	
Q	P
: (8)

Contracting both sides of (8) with �����Q�P�, one can
extract the reduced amplitude using

 A �
1

2M2
�jPj

2 �
����M��Q�P�; (9)

where jPj � ��Q � P�2 �Q2P2�1=2=M� is the modulus of
the momentum of J= (�c) in the � rest frame.

After this manipulation is done, I end in a concise
expression

 A 3g �
2
���
2
p
�N2

c � 1��N2
c � 4�

N5=2
c

	
�	3

s

m7=2
b jPj

2
 ��0� J= �0� �c�0�f

�
m2
c

m2
b

�
; (10)

where f � f1 � f2 � f3, and

FIG. 1. Three representative lowest-order diagrams that contribute to �! 3g! J= � �c.
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 f1 �
Z d4k1

i�2

�m2
b � 4m2

c��k2
2 �m

2
b� � k1 � �3Q� P�k1 � P� �1�m2

c=m2
b��k1 �Q�2

k2
1k

2
2�k

2
2 �m

2
b��k

2
1 � k1 � P�

; (11)

 f2 �
Z d4k1

i�2

�m2
b � 4m2

c��k2
1 �m

2
b� � k2 � Pk2 � ~P� �m2

c=m2
b��k2 �Q�2

k2
1�k

2
1 �m

2
b�k

2
2�k

2
1 � k1 � P�

; (12)

 f3 � m2
b

Z d4k1

i�2

k1 � �Q� 2P��k2
1 � k1 � ~P� � 2�m2

b � 4m2
c�k1 � k2

k2
1�k

2
1 �m

2
b�k

2
2�k

2
2 �m

2
b��k

2
1 � k1 � P�

: (13)

Since fi is dimensionless, it can depend upon mb and mc only through their dimensionless ratio m2
c=m

2
b. These loop

integrals can be worked out analytically, and the results are
 

Ref��� � 3�
2����

3
p � 4�1� 2��

�
1

1� 

ln
�

1� 

2

�
�

1

1� 

ln
�

1� 

2

��
� 2�1� 2��

�
1

�1� 
�2
ln
�

1� 

2

�

�
1

�1� 
�2
ln
�

1� 

2

�
�

1

4�

�
�

1� 2�



�
2tanh�1
 ln�� 2 Li2

�
1� 


2

�
� 2 Li2

�
1� 


2

�
� Li2

�

� 1


� 1

�

� Li2

�

� 1


� 1

��
�

4�



�
2�
3

tan�1�
���
3
p

� � 2tanh�1
 ln�1� 3�� � Li2

�
2


1� 


�
� Li2

�
2


� 1

�

� Li2

�

�
� 1�


� 1

�
� Li2

�

�1� 
�

1� 


�
� Li2

�

�1� 
�
2�1� 3��

�
� Li2

�

�
� 1�

2�1� 3��

�
� Li2

�
�

�1� 
�2

4�1� 3��

�

� Li2

�

�1� 
�2

4�1� 3��

�
� 2 Re

�
Li2

�
�
�1� i

���
3
p
�


1� i
���
3
p



�
� Li2

�
�1� i

���
3
p
�


1� i
���
3
p



���
; (14)

 Im f��� � �
�
1�

2�1� 2��tanh�1




�
; (15)

where Li2 is the dilogarithm function, and 
 �
���������������
1� 4�
p

. I
will illustrate in Appendix A how to obtain this result. The
emergence of the imaginative part of f characterizes the
contribution from two on shell internal gluons. The shapes
of the real and imaginary parts of f are displayed in Fig. 2.

It is instructive to know the asymptotic behavior of f in
the �! 0 limit. This can be readily read out from (14) and
(15),

 Re f��� �
1

2
ln2��

3

2
ln�� 1�

�2

6
�

2����
3
p �O�� ln��;

(16)

 Im f��� � ��ln�� 1� �O�� ln��: (17)

Note both the real and imaginary parts blow up logarithmi-
cally in the limit �! 0, as can be clearly visualized in
Fig. 2. These (quadratically) logarithmical divergences in
the mc ! 0 limit are obviously of infrared origin.
Nevertheless, this does not pose any practical problem,
since a nonrelativistic description for a zero-mass bound
state, as well as the resulting predictions, should not be
trusted anyway. It is interesting to note that, provided that �
is not overly small, say, � > 10�4, then �Imf is always
bigger than jRefj, or more precisely phrased, � 3�

4 <
argf <� �

4 .

B. Two-gluon–one-photon amplitude

I next turn to the contribution through the radiative
decay channel. C-parity conservation demands that one
end of the photon line must be attached to the b quark.
Those diagrams obtained from replacing one gluon by one
photon in Fig. 1 do contribute, however their magnitudes
are much less important than the diagrams shown in Fig. 3,
which essentially proceed as �! gg�! �c� � ��!
J= �. This is because in the latter case, the J= is created
via the photon fragmentation, which thereby receives a
m2
b=m

2
c enhancement relative to the former. I will only

10
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ξ

0

5
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ξ
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1
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- Im f

Re f

- Re g

- Im g

FIG. 2 (color online). Real and imaginary parts of f��� and
g���.
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consider the latter case, in which the lowest-order contribution also starts at one loop. Using the projection operators in
(2)–(4), it is straightforward to write down the corresponding amplitude:

 M gg� � 2N�1=2
c tr�TaTb� tr�TaTb�ebece

2g4
s
 ��0� J= �0� �c�0�

8
���
2
p
m1=2
b m2

c

Z d4k1

�2��4
1

k2
1

1

k2
2

	

�tr��Q6 � 2mb�"6 �"6 �J= �P6 � p6 b �mb����p6 b � k6 1 �mb����

��P� pb�
2 �m2

b���pb � k1�
2 �m2

b�

�
tr��Q6 � 2mb�"6 ����k6 2 � p6 b �mb����p6 b � P6 �mb�"6 �J= �

��P� pb�
2 �m2

b���pb � k2�
2 �m2

b�

�
tr��Q6 � 2mb�"6 ����k6 2 � p6 b �mb�"6 �J= �p6 b � k6 1 �mb����

��pb � k1�
2 �m2

b���pb � k2�
2 �m2

b�

�
tr��5�

~6P� 2mc����~6pc � k6 1 �mc����

�~pc � k1�
2 �m2

c
; (18)

where the momenta carried by two internal gluons are labeled by k1, k2, which satisfy k1 � k2 � ~P. The factor 2 in the
right side of (18) takes into account the identical contributions from other three crossed diagrams.

Following the same shortcut adopted in the 3g channel, I can derive the desired reduced amplitude with recourse to
Eq. (9),
 

Agg� �
4
���
2
p
�N2

c � 1�

N1=2
c

ebec�		2
sm

1=2
b

�m2
b � 2m2

c�jPj2m2
c
 ��0� J= �0� �c�0�g

�
m2
c

m2
b

�
; (19)

where the dimensionless function g is defined by

 g
�
m2
c

m2
b

�
�
Z d4k1

i�2

�2m2
c=m2

bQ � r�P � r� ~P � r� 2�m2
b� 4m2

c�r2

k2
1k

2
2�k

2
1� k1 �Q��k

2
2� k2 �Q�

: (20)

For convenience, I have introduced a new internal momentum variable r, which is defined through k1 � ~P=2� r and
k2 � ~P=2� r. Note that the integrand is symmetric under r! �r, reflecting the symmetry k1 $ k2. A gratifying fact is
that the charm propagator has now been canceled in the denominator. I dedicate Appendix B to a detailed derivation of this
loop integral. Like its counterpart f in the three-gluon channel, the function g is both ultraviolet and infrared finite. Its
analytic expression reads

 Re g��� � �1� 2�� ln�2� 4�� � 4
�������������������
��1� ��

p
tan�1

������������
�

1� �

s
� �


�
4tanh�1
 ln�2�� � 2 Li2��
� � 2 Li2�
�

� Li2

�

� 1


� 1

�
� Li2

�

� 1


� 1

�
� Li2

�
2


�1� 
�2

�
� Li2

�
�

2


�1� 
�2

��
�
�1� 2��2




�
Li2�
� � Li2��
�

� 2 Re
�
Li2

�
�1� 
�2 � 4i

�������������������
��1� ��

p
4�1� 2��

�
� Li2

�
�1� 
�2 � 4i

�������������������
��1� ��

p
4�1� 2��

�

� Li2

�
�

�1� 
�2 � 4i


�������������������
��1� ��

p
4�1� 2��

�
� Li2

�

�1� 
�2 � 4i


�������������������
��1� ��

p
4�1� 2��

���
; (21)

 Im g��� � �2��
tanh�1
: (22)

The shapes of the real and imaginary parts of g are
displayed in Fig. 2. Note that �Reg is always bigger

than�Img for any �, or put in another way,��< argg <
� 3�

4 . Apparently, the imaginary part of g vanishes as �!
0, whereas the real part of g approaches the following
asymptotic value:

FIG. 3. Three representative lowest-order diagrams that contribute to �! gg�! J= � �c, where the J= comes from the photon
fragmentation.
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 Re g��� � �
�2

4
� ln2�O�� ln��: (23)

In contrast to f, both of the real and imaginary parts of g
admit a finite value in the �! 0 limit. Not surprisingly, the
asymptotic behavior of this function is quite similar to the
analogous one in the �! �c� process [20].

C. Single-photon amplitude

Let us now consider the electromagnetic contribution via
the annihilation of b �b into a single photon, with some
typical diagrams shown in Fig. 4. This process is closely
related to the continuum J= � �c production in e�e�

annihilation, which has recently aroused much attention
since the measurements were first released by Belle col-
laboration [11]. Rather unexpectedly, it is shortly found
that the leading-order NRQCD prediction to the production
cross section falls short of the data by about 1 order of
magnitude [21,22], which subsequently triggered intensive
theoretical efforts to resolve this alarming discrepancy
[23–30].

In the Born order, one can directly import the timelike
electromagnetic form factor of S-wave charmonium first
deduced in Ref. [21] to here, and the corresponding lowest-
order one-photon amplitude reads
 

A� � �
16

���
2
p
�N2

c � 1�

N1=2
c

�2ebec		s
m11=2
b

	  ��0� J= �0� �c�0�
�

1�
N2
c

2�N2
c � 1�

e2
c	m2

b

	sm
2
c

�
;

(24)

where the second term in the parenthesis represents the
pure QED contribution in which J= arises from photon
fragmentation, as is represented by Fig. 4(b).

Recent calculations indicate that the J= � �c electro-
magnetic form factor is subject to large perturbative and
relativistic corrections at B factory energy [28,30]. It seems
that the disturbing discrepancy between B factories mea-
surements and NRQCD predictions have been largely re-
solved once these large corrections are taken into account.
Motivated by this, from now on I will replace the entities in

the parentheses in (24) by a positive constant K (> 1),
which presumedly encompasses all the radiative and rela-
tivistic corrections.

D. Decay width and asymptotic scaling behavior

It is now time to lump three different contributions
together. Plugging (10), (19), and (24) into the formula

 ���! J= � �c� �
jPj3

12�
jA� �A3g �Agg�j

2; (25)

I then obtain the desired decay partial width. Note the
cubic power of momentum reflects that J= and �c are
in relative P wave. This formula has already taken into
account the spin average of � and the polarization sum
over J= . The result is
 

���! J= � �c� � ���! e�e��
220�2e2

c	2
s jPj3

9M9
�

	  2
J= �0� 

2
�c�0�ja� � a3g � agg�j2;

(26)

where a� � K,

 a3g � �
5	2

s

72�ebec	
m2
b

jPj2
f
�
m2
c

m2
b

�
; (27)

 agg� � �
	s
4�

m6
b

�m2
b � 2m2

c�jPj2m2
c
g
�
m2
c

m2
b

�
; (28)

and ���! e�e�� � 16�e2
b	

2 2
��0�=M

2
� is the electronic

width of �.
It is instructive to deduce the asymptotic behaviors of

these three different contributions. Because I am more
concerned about the power-law scaling, I will take f, g�
O�1� for simplicity since they vary with quark masses
logarithmically at most. Assuming  J= �0� �  �c�0� �
�mcvc�

3=2 (vc is the typical relative velocity between c
and �c), from (26) I find

 

���! �� ! J= � �c�
���! e�e��

� 	2
s
m6
c

m6
b

v6
c; (29)

 

���! 3g! J= � �c�
���! e�e��

�
	6
s

	2

m6
c

m6
b

v6
c; (30)

 

���! gg�! J= � �c�
���! e�e��

� 	4
s
m2
c

m2
b

v6
c: (31)

The first interesting observation is that both (29) and (30)
exhibit the 1=m6

b scaling behavior. This is as expected from
the celebrated helicity selection rule in perturbative QCD,
which is applicable for both single-photon and three-gluon
processes [9]. The reason is as follows. The final-state J= 
must be transversely polarized, in line with the parity and
Lorentz invariance; the hadron helicity conservation

(a) (b)

FIG. 4. Two representative lowest-order diagrams that contrib-
ute to �! �� ! J= � �c. There are in total four diagrams in
class (a) and two in class (b).
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J= � �c � 0 is violated by one unit, hence the ratio is
suppressed by an extra 1=m2

b relative to the leading-twist
1=m4

b scaling. In contrast, the corresponding ratio in the
gg� channel, (31), though suppressed by coupling con-
stants with respect to the other two subprocesses, never-
theless enjoys a much milder (� 1=m2

b) kinematical
suppression, because the J= directly comes from the
photon fragmentation. Simple power counting implies
that these three different contributions may have compa-
rable strengths for the physical masses of b and c.

Another noteworthy fact is that there are relative phases
among the three amplitudes, which are encoded in the f
and g functions. Since all these phases originate from the
loop integrals, one can regard them of short-distance
origin.

III. PHENOMENOLOGY

A. Determination of K from B factories measurement

First I want to determine the value of K in (26), which
characterizes the magnitude of higher-order corrections to
the single-photon amplitude. For the sake of simplicity, I
will assume the K factors are equal in this case and in
J= � �c production through e�e� annihilation to a vir-
tual photon. Of course, this is just an approximation,
because virtual gluons connecting the b quarks and final-
state c quarks, as well as the relativistic correction in �,
which will emerge in my process accounting for the radia-
tive and relative corrections, are absent in the double
charmonium production in continuum. Fortunately, there
are sound reasons to believe these additional corrections
are insignificant. For example, due to color conservation,
there are no such nonfactorizable corrections to the single-
photon amplitude in the next-to-leading order in 	s.

First recall the continuum double charmonium cross
section in the lowest order in 	s and v2

c [21,22]:
 

�cont�e�e� ! J= � �c� � �����
220�2e2

c	
2
s

9

jPj3

s9=2

	  2
J= �0� 

2
�c�0�; (32)

where ����� �
4�	2

3s . For simplicity, the pure QED con-
tribution where J= is produced via photon fragmentation
(the analogous diagram to Fig. 4(b)) has been neglected.

In this work, I extract the wave functions at the origin for
vector charmonium states from their measured electric
widths. I will use the formula incorporating the first order
perturbative correction
 

��J= !e�e���
4�e2

c	2

m2
c

 2
J= �0�

�
1�

8	s�2mc�

3�

�
2
: (33)

Heavy quark spin symmetry is then invoked to infer the
wave functions at origin for the corresponding 1S0 char-
monium states. All the involved charmonium wave func-
tions at origin are tabulated in Table I.

If I choose mc � 1:5 GeV, 	s � 0:22, I then obtain
from (32) the tree level continuum J= � �c cross section
at

���
s
p
� 10:58 GeV to be 4.74 fb. This theoretical predic-

tion can be contrasted with the most recent B factories
measurements [32,33]:
 

��e�e� ! J= � �c� 	B�c
>2

� 25:6� 2:8�stat�

� 3:4�syst� fb; Belle

��e�e� ! J= � �c� 	B�c
>2

� 17:6� 2:8�stat��1:5
�2:1�syst� fb; BABAR

(34)

where B�c
>2 represents the branching ratio of �c decay to

more than 2 charged tracks, hence should be less than 1.
With large uncertainties, both measurements seem to be
marginally consistent with each other.

If I assume the measured �cont�e
�e� ! J= � �c� to

be 23 fb, and expect that large radiative and relativistic
corrections to (32) can bring the leading-order NRQCD
prediction to this value, I then require K �

�����������������
23=4:74

p


2:2. This K factor is roughly consistent with what is
obtained through actual higher-order NRQCD calculations
[28,30]. Although I extract this constant through the
��4S� ! J= � �c process, I will assume it is universal
in all other double charmonium decay channels of ��nS�.

TABLE I. Experimental inputs for ��nS� and S-wave charmonium (taken from Ref. [31]). The
last column lists the wave functions at the origin for various S-wave charmonium states,
retrieved from the measured electric width through (33) by assuming mc � 1:5 GeV and
	s�2mc� � 0:26.

H Mass (GeV) �tot (keV) �e�e� (keV)  H�0� (GeV3=2)

��1S� 9.460 54:02� 1:25 1:340� 0:018 -
��2S� 10.023 31:98� 2:63 0:612� 0:011 -
��3S� 10.355 20:32� 1:85 0:443� 0:008 -
��4S� 10.579 20500� 2500 0:272� 0:029 -
J= 3.097 - 5:55� 0:14 0.263
�c 2.980 - - 0.263
 0 3.686 - 2:48� 0:06 0.176
�0c 3.638 - - 0.176
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B. Exclusive decay of ��nS� to double S-wave
charmonium

To date, � exclusive decays to double charmonium have
not yet been experimentally established. To make concrete
predictions from (26), I need to specify the values of all the
input parameters. I fix mc to be 1.5 GeV, but take mb as a
variable—for each ��nS� decay process, I approximate it
as half of M��nS�. The magnitude of jPj is determined by
physical kinematics. I assume K � 2:2 for all decay chan-
nels, and take the values of the wave functions at the origin
for various charmonium from Table I. As for the coupling
constants, I take 	 � 1=137 and 	s�mb� � 0:22. The un-
certainties of the predictions are estimated by sliding the
renormalization scale from 2mb to mb=2 (corresponding to
varying 	s from 0.18 to 0.26). It should be cautioned that
the ambiguity of the input b mass, especially for higher �
excitations, can bring even more severe uncertainty due to
the higher powers of mb appearing in (26).

The predictions of the partial widths and branching
ratios for all decay channels are listed in Table II. One
clearly sees that the branching fractions for all decay
processes [except for ��4S�] are about 10�6, which are
perfectly compatible with the measured inclusive J= 
production rates from ��nS� decay, Eq. (1). It is interesting
to note that the hadronic decay processes have even smaller
branching ratios than the radiative decay �! �c� (B 
3	 10�5) [20]. This may be partly understood by ���!

�c��=���! e�e�� � 	4
s
	

m2
c

m2
b
v3
c, which has a milder 1=m2

b

scaling behavior compared to the 1=m6
b suppression in my

processes, as manifested in Eqs. (29) and (30).
Between 2000 and 2003, CLEOIII has recorded about

20	 106, 10	 106, and 5	 106 decays of ��1S�, ��2S�,
and ��3S�, respectively [8]. So there should be a few to
tens of produced events for each double charmonium
mode. Unfortunately, because the cleanest way of tagging
J= is through the dimuon mode, only a 6% fraction of the
produced events can be reconstructed. Further taking into
account the acceptance and efficiency to detect �, it seems
rather difficult to observe these double charmonium pro-
duction events based on the existing CLEOIII data sample.

By contrast, the high-luminosity e�e� colliders such as
Belle and BABAR have already collected a enormous
amount of data at the ��4S� peak. If they could dedicate
some significant period of run at the lower � resonances, it
is feasible for them to discover these decay channels un-
ambiguously. Needless to say, the discovery potential is
very promising for the planned super-high-luminosity
e�e� facility like the Super B factory.

It is important to understand the interference pattern
among the three different amplitudes. In this case, the
phase in each amplitude manifests itself as a short-distance
effect arising from loop, and is perturbatively calculable.
Let me take ��1S� ! J= � �c as an example. Taking
� � 4m2

c=M2
�  0:10 and 	s � 0:22, I find from (27) and

(28)

 a3g � 3:89e�i105
 ; agg� � 0:44ei24
 : (35)

Curiously, the strong decay amplitude is almost orthogonal
to the electromagnetic amplitude, while the radiative decay
amplitude is almost in phase with the electromagnetic one.
It is also obvious to see that the strong decay amplitude has
the most prominent strength, the electromagnetic one the
next, and the radiative decay amplitude the least.

In digression, it may be instructive to know the relative
strengths of the three different channels in inclusive �
decay. From the following experimental inputs [34–36]:

 R �
���! �� ! X�
���! �����

� 3:56� 0:07;

R� �
���! ggg�

���! �����
� 39:11� 0:4;

R� �
���! gg��
���! ggg�

� 0:027� 0:003;

(36)

I can infer

 B ��! ggg�:B��! �� ! X�:B��! gg��

� 82:7%:7:5%:2:2%; (37)

where these three branching ratios sum up to

TABLE II. Predicted partial widths and branching ratios for various decay channels of ��nS� to vector plus pseudoscalar
charmonium.

Decay channels � (eV) B Decay channels � (eV) B

��1S� ! J= � �c 0:208�0:302
�0:126 3:9�5:6

�2:3 	 10�6 ��2S� ! J= � �c 0:082�0:119
�0:050 2:6�3:7

�1:6 	 10�6

��1S� ! J= � �0c 0:109�0:185
�0:074 2:0�3:4

�1:4 	 10�6 ��2S� ! J= � �0c 0:042�0:067
�0:027 1:3�2:1

�0:9 	 10�6

��1S� !  0 � �c 0:093�0:127
�0:054 1:7�2:4

�1:0 	 10�6 ��2S� !  0 � �c 0:037�0:051
�0:022 1:1�1:6

�0:7 	 10�6

��1S� !  0 � �0c 0:045�0:073
�0:030 0:8�1:4

�0:6 	 10�6 ��2S� !  0 � �0c 0:017�0:028
�0:011 0:5�0:9

�0:4 	 10�6

��3S� ! J= � �c 0:054�0:079
�0:033 2:7�3:9

�1:6 	 10�6 ��4S� ! J= � �c 0:031�0:046
�0:019 1:5�2:2

�0:9 	 10�9

��3S� ! J= � �0c 0:027�0:043
�0:018 1:3�2:1

�0:9 	 10�6 ��4S� ! J= � �0c 0:015�0:025
�0:010 0:7�1:2

�0:5 	 10�9

��3S� !  0 � �c 0:024�0:034
�0:014 1:2�1:7

�0:7 	 10�6 ��4S� !  0 � �c 0:014�0:019
�0:008 0:7�1:0

�0:4 	 10�9

��3S� !  0 � �0c 0:011�0:018
�0:007 0:6�0:9

�0:4 	 10�6 ��4S� !  0 � �0c 0:007�0:010
�0:004 0:3�0:5

�0:2 	 10�9
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1�
P

B��! l�l�� � 92:5%, as they should.1 A very
simple expectation is that each amplitude in an exclusive
process scales with the corresponding

����������
Bincl

p
. The relative

strengths of the three amplitudes in (35) roughly respect
this scaling rule if one assumes K � 1. Nevertheless, the
truly important point is that the orders of the strengths of
three amplitudes are the same for both inclusive and ex-
clusive decays.

I can gain more intuition about the interference pattern
by examining the individual contribution to the partial
width. Had I retained only a� in (26), the partial width
for ��1S� ! J= � �c would be only 0.065 eV. If I kept
a3g only, the width would instead be 0.204 eV. If I include
both a� and a3g but discard agg�, the width would become
0.210 eV, which is rather close to the full answer listed in
Table II, 0.208 eV. This numerical exercise clearly corrob-
orates my expectation about the relative importance of
these three different channels.

The phase structures in (35) also hold for other decay
channels of ��nS� to double charmonium. I take ��4S� !
J= � �c as a second example to verify this point. Taking
� � 4m2

c=M2
��4S�  0:08, I obtain

 a3g � 4:20e�i102
 ; agg� � 0:52ei20
 : (38)

It has been of great interest to decipher the interference
pattern between the strong and electromagnetic amplitude
in J= decays. The relative phase between 3g and �
amplitude in J= ! PV has been determined to be around
��106� 10�
 [12–17]. This is surprisingly close to my
finding in the �! J= �c process. Suzuki has argued that
the large relative phase in J= decay must arise from long-
distance rescattering effect, and emphasized that it is im-
possible for the perturbative quark-gluon process to gen-
erate it [16]. However, my calculation provides an explicit
counterexample against such a claim, at least for � ex-
clusive decay, showing that the short-distance contribution
alone suffices to generate such a large relative phase.

It is worth mentioning that some years ago, Gerard and
Weyers argued there should be universal orthogonality
between the strong and electromagnetic amplitude for
each J= exclusive decay mode [37]. This assertion may
seem to be backed by numerous phenomenological evi-
dences.2 They have attributed this orthogonality simply to
the orthogonality of gluonic and one-photon states.
Inspecting their arguments carefully, one finds that they
only prove the incoherence between three-gluon and
single-photon decays at inclusive level, whose validity

crucially relies on summing over all possible decay chan-
nels. Since there is no room for such a summation for
exclusive J= decay, there is not any simple reason to
believe why strong decay amplitude should be orthogonal
to the electromagnetic amplitude channel by channel.

Because their reasoning is based on rather general
grounds, one may test it in � exclusive decay. As a matter
of fact, I can directly present a counterexample. Imagine a
fictitious world with an extremely heavy b quark, saymb �
MPlanck, but with an ordinary charm quark. For this would-
be � decay to J= ��c, I then find from (16) and (17) that
the phase of f is very close to zero, so is the relative phase
between a3g and a�. We may further sharpen our argument.
If the underlying logic of Ref. [37] is plausible, one should
expect that a�, a3g, and agg� in any exclusive vector quar-
konium decay process are mutually orthogonal because of
the orthogonality between one-photon, three-gluon, and
two-gluon–one-photon states. It is clearly impossible for
three vectors in a complex plane to accomplish this.

One may wonder why Gerard and Weyers’s assertion
seems to enjoy considerable success when applied to J= 
decays, even though it looks theoretically ungrounded. One
possible explanation is that, due to some specific dynamics,
the relative strength and phase between the electromag-
netic and strong amplitudes are roughly identical for each
J= exclusive decay mode, preserving the same pattern as
in the inclusive decay. This approximate scaling between
exclusive and inclusive channels is exemplified in the
discussion following (37). This regularity may not neces-
sarily hold for other vector quarkonium decay modes.

It is straightforward to see that the approximate �90


phase between the strong and electromagnetic amplitude in
the �! J= �c process is simply a consequence of the
not-too-tiny mass ratio m2

c=m
2
b  0:1 and the opposite sign

between the electric charges of c and b [see the left panel
of Fig. 3 and (27)]. It may seem to be a marvellous
coincidence that the relative phase determined in this
case is very close to that in J= ! PV, especially regard-
ing that the latter process should be largely dictated by
nonperturbative long-distance dynamics. I do not know
exactly which nonperturbative mechanism should be re-
sponsible for the universal orthogonal phase in various J= 
decay modes. It is fun to notice that, however, in the
constituent quark model, the masses of u, d, and s quarks
are several hundreds of MeV; consequently m2

u;d;s=m
2
c 

m2
c=m2

b, so my formalism seems to be able to explain the
nearly orthogonal phase in J= ! PV entirely within the
short-distance quark-gluon picture.

Lastly I stress that the phases determined in (35) and
(38) are subject to large uncertainties. Since they are
determined only at the lowest-order accuracy, it is con-
ceivable that they may receive large modifications by in-
cluding radiative and relativistic corrections. Moreover, for
simplicity I have assumed the radiative correction to the
electromagnetic amplitude does not introduce an imagi-

1I have not included the contribution from the radiative
transition �! �b�, which is supposed to have a completely
negligible branching ratio.

2Besides the 1�0� mode, other two-body decays of J= seem
to also have a nearly orthogonal relative phase between a� and
a3g, such as 0�0� [15,38], 1�1� [1,15,38], 1�0� [39], and N �N
[15,40]. Moreover in  0 decays, the 1�0� [41] and 0�0� modes
[42,43] seem also compatible with a large relative phase.
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nary part. One should realize this is just an (decent though)
approximation. Despite this alertness, I still expect the
qualitative feature, i.e., the large relative phase can with-
stand all these uncertainties.

C. Continuum-resonance interference for double
charmonium production

For a given final state in an e�e� annihilation experi-
ment near a vector meson resonance, it is always produced
via two inseparable mechanisms—resonant decay and
continuum production. A rough indicator of the relative
strength of the resonant electromagnetic amplitude to the
continuum amplitude is characterized by 3Be�e�=	. For
the first four � resonances, this factor is 10.2, 7.9, 8.9, and
0.0055, respectively. Therefore, for the three lower �
resonances, the J= � �c production are dominated by
the resonant decay, whereas for the ��4S�, which has a
width about 3 orders of magnitude broader, one expects
that the continuum contribution plays an overwhelmingly
important role.

I am interested to know the impact of the resonance-
continuum interference on the observed cross sections.
Assuming a� and ac differ by a Breit-Wigner propagator,
one can express the full cross section near � peak as
 

�full�e�e� ! J= � �c�

� �����
220�2e2

c	2
s

9

jPj3

s9=2
 2
J= �0� 

2
�c�0�

��������K
�

3	�1 ���
s
p

�e�e�

s�M2
� � iM��tot

�K � a3g � agg��
��������2
; (39)

where �e�e� and �tot are the electric and total width of �. If
the continuum term is dropped, this formula then reduces
to the standard Breit-Wigner form

 �BW�e�e� ! �! J= � �c�

�
12��e�e����! J= � �c�

�s�M2
��

2 �M2
��2

tot

: (40)

In Table III I have enumerated various contributions to
the J= � �c cross sections at ��nS� peaks. One can
clearly see the inclusion of the continuum contribution
will reduce the peak cross sections by about 10% for the
first three � states, whereas including the resonant contri-

bution will reduce the continuum cross section by about
2% for ��4S�. This destructive interference can be attrib-
uted to the approximate 180
 relative phase between a3g

and ac.
The interference with the continuum contribution also

slightly distorts the Breit-Wigner shape of the production
cross sections for the first three � resonances. However,
one has to bear in mind that, for a thorough analysis, one
has to carefully take the beam spread and radiative correc-
tions into account, which requires lots of extra work, and I
leave them to the experimentalists.

Thus far, the measured double charmonium production
in B factories has been assumed to be entirely initiated by
the continuum process, as represented in (32).
Experimentally, the resonant decay, despite its small mag-
nitude, is encapsulated in the observed cross sections. It is
interesting to know how the line shape of J= � �c near
��4S� peak would be affected by including this contribu-
tion. In Fig. 5, I have shown the various line shapes, with
the contributions from several different sources juxta-
posed. An interesting feature is that a dip is developed
right on the ��4S� peak, which is again due to the destruc-
tive interference between the resonant strong decay and
continuum amplitudes. Furthermore, I am reassured again
that the radiative decay amplitude is unimportant. It will be
great if someday experimentalists can do an energy scan
and pin down this dip structure. To achieve this goal, the
cross section must be measured very precisely, of course a
very challenging task. I finally remark that, due to the
aforementioned destructive interference, the true contin-
uum cross sections should be slightly larger than the values
quoted in (34), which are in fact the full cross sections
measured experimentally.

IV. SUMMARY AND OUTLOOK

In this work, I have performed a comprehensive study on
� exclusive decays to vector plus pseudoscalar charmo-

TABLE III. The Breit-Wigner, continuum, and full cross sec-
tions (in units of fb) for e�e� ! J= � �c at various ��nS�
resonances. All the input parameters are the same as in Sec. III B
except 	s is fixed to be 0.22.���
s
p

(GeV) �BW �cont �full

9.460 15678 47.1 14158
10.023 7165 32.7 6317
10.355 7948 26.4 7141
10.579 0.0026 22.9 22.5

10.52 10.54 10.56 10.58 10.6 10.62

s
1/2

 (GeV)

22

23

24

25

σ 
(f

b)

continuum
γ

res
 + cont.

(γ + 3g)
res

+ cont.

full

FIG. 5 (color online). The line shape of e�e� ! J= � �c
near

���
s
p
� M��4S�.
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nium in NRQCD factorization framework. These exclusive
decay modes can proceed via three-gluon, one-photon, and
two-gluon–one-photon, each of which has been thor-
oughly analyzed. The relative phases among these ampli-
tudes naturally arise as a consequence of the short-distance
loop contribution. A particularly interesting finding is that
the relative phase between the strong and electromagnetic
amplitude is nearly orthogonal, which is the same as that in
various J= decay modes.

The typical branching fractions of these decays are
predicted to be of order 10�6 for the low-lying ��nS�
states (n � 1, 2, 3). Future dedicated high-luminosity
e�e� facilities, e.g., the Super B experiment, should be
able to discover these decay channels readily.

I have also investigated the impact of the continuum-
resonance interference on the J= � �c production cross
sections at different � peaks. I find this interference will
reduce the peak cross sections for the first three � states by
about 10%. I predict there is a small dip in the line shape on
the ��4S� peak. The current experiments are too rough to
discern this delicate structure; perhaps the future Super B
experiment can verify this prediction.

A natural extension of this work is to investigate other
exclusive double charmonium production processes from
� decay. For example, �! �cJJ= are particularly inter-
esting channels to study, since the inclusive bounds for
�! �cJ � X have already been experimentally available
[8]. Besides these double charmonium decay modes, one
may also be tempted to apply the same formalism devel-
oped in this work to the processes ��J= � ! PV. For the
scarcity of theoretical investigations to these decay modes
from the angle of pQCD, this study will offer us something
worth learning. Although it will no longer be as theoreti-
cally well-grounded as the processes considered in this
work, it should be viewed as an approach rooted in the
time-tested constituent quark model, which has witnessed
many phenomenological successes over years.
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Note added in proof.—After this paper was submitted,
the author noticed a work by Irwin, Margolis, and Trottier,
who also investigated the �! J= �c process in the
NRQCD factorization framework [45]. They primarily
focused on the contribution from the three-gluon channel,
without including the electromagnetic and radiative decay
channels in their analysis, so they did not study the relative
phases among these different amplitudes. These authors
used some numerical recipe to evaluate loop integrals.
Their prediction to the branching ratio of �! J= �c is
also of order 10�6, which seems consistent with mine. In
addition, they further considered the analogous decay pro-

cesses J= ! PV and �! D�D in the context of the
constituent quark model.

APPENDIX A: DERIVING ANALYTICAL
EXPRESSION FOR f

In this appendix I illustrate how to simplify f effectively,
so that I can obtain their analytical expressions. Repeatedly
using kinematical relations stemming from the constraint
k1 � k2 �

Q
2 , plus fractional decomposition, I can reduce

each fi in (11)–(13) into the sum of two-point tensor and
three-point scalar integrals:
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(A3)
where � � m2

c=m2
b. While the two-point functions can be

trivially handled, working out the three-point scalar inte-
grals is more laborious but still straightforward. Here I just
give their analytic forms:
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It may be worth mentioning that if the well-known master
formula for a massive three-point scalar integral (i.e.,
Eq. (5.6) in [44]) is employed, one seems unable to obtain
the correct expression for C2. To be specific, using that
formula would render C2�

1
4� � 0, which diametrically con-

flicts with the true value 4 ln2� 2�=
���
3
p

. One can check
my result is correct.

I now can express fi as follows:
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Adding these three functions together then reproduces (14)
and (15).

APPENDIX B: DERIVING ANALYTICAL
EXPRESSION FOR g

In this appendix I illustrate how to reduce the one-loop
four-point function in (20) to the sum of simpler two- and
three-point scalar integrals. With the aid of the kinematical
identities arising from the constraint k1 � k2 � ~P, I can
disentangle this integral into three pieces:

 g��� � g1��� � g2��� � g3���; (B1)
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b, and
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Here I give the analytical expressions of two needed
scalar 3-point integrals:
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Therefore I have
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One then readily reproduces the analytic results shown in
(21) and (22).
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