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We calculate the transverse momentum Q? dependence of the helicity structure functions for the
hadroproduction of a massive pair of leptons with pair invariant mass Q. These structure functions
determine the angular distribution of the leptons in the pair rest frame. Unphysical behavior in the region
Q? ! 0 is seen in the results of calculations done at fixed order in QCD perturbation theory. We use
current conservation to demonstrate that the unphysical inverse-power and ln�Q=Q?� logarithmic
divergences in three of the four independent helicity structure functions share the same origin as the
divergent terms in fixed-order calculations of the angular-integrated cross section. We show that the
resummation of these divergences to all orders in the strong coupling strength �s can be reduced to the
solved problem of the resummation of the divergences in the angular-integrated cross section, resulting in
well-behaved predictions in the small Q? region. Among other results, we show the resummed part of the
helicity structure functions preserves the Lam-Tung relation between the longitudinal and double spin-flip
structure functions as a function of Q? to all orders in �s.

DOI: 10.1103/PhysRevD.76.074006 PACS numbers: 12.38.Bx, 12.38.Cy, 13.85.Qk

I. INTRODUCTION

Production of a massive pair of leptons of opposite
electric charge in hadronic interactions, h1 � h2 !
‘�‘�X, has revealed new narrow hadronic states, notably
the J=� and the �, and it continues to provide an impor-
tant complement to deep-inelastic lepton scattering and
other hard-scattering processes for probing the short-
distance dynamics of strong and electroweak interactions.
The assumption that the broad continuum of ‘�‘� pairs
originates from quark-antiquark annihilation through a
single virtual photon, as embodied in the Drell-Yan model
[1], implies that the angular distribution in the ‘�‘� rest
frame should be that of a transversely polarized photon,
�1� cos2��, where the polar angle � is the direction of the
lepton relative to the direction of the incident quark and
antiquark. Acceptance restrictions limit measurements of
the full angular distribution, but qualitative verification of
this expectation was one of the early tests that increased
confidence in the model [2].

In practice, massive lepton pairs are produced with
substantial transverse momentum Q?, supplied from a
theoretical perspective by higher-order processes in per-
turbative quantum chromodynamics (QCD). An interesting
challenge has been to predict how the angular distribution
should behave as a function of Q? [3–11]. Indeed, this
challenge is part of the more general ambition to predict
the fully differential cross section d�=dQdQ?dyd�,
where Q is the invariant mass of the lepton pair, y is its
rapidity, and d� � d cos�d� represents the differential

decay angular distribution in the pair rest frame with
respect to a suitably chosen set of axes.

In addition to the virtual photon, the W boson and the Z
boson also have important decay modes into pairs of
leptons. The angular distribution of these leptons, mea-
sured in the rest frame of the parent states, determines the
alignment (polarization) of the vector boson and, conse-
quently, supplies more precise information on the produc-
tion dynamics than is accessible from the spin-averaged
rate alone. An understanding of the changes expected in
the angular distribution as a function of the transverse
momentum Q? is a topic of considerable importance,
both for refined tests of QCD and for electroweak precision
measurements. An example of a QCD process is the flavor
dependence of W production in polarized hadron-hadron
scattering at the Brookhaven Relativistic Heavy Ion
Collider (RHIC) [12]. Better understanding of the expected
angular distributions will reduce the systematic uncertain-
ties on the determination of the W boson mass [13,14] and,
in turn, improve the bound on the mass of the Higgs boson
within the standard model of particle physics.

In this paper we consider the scattering of two hadrons
of momentum P1 and P2, respectively, producing a virtual
photon of four-momentum q, A�P1� � B�P2� ! ���q� �
X, that decays into a pair of leptons of momentum l and �l,
as sketched in Fig. 1. The ideas and techniques developed
here can be applied readily to the production of W and Z
bosons, as well as to other yet-to-be-observed massive
vector bosons that decay into a pair of leptons. They are
applicable also in semi-inclusive deep-inelastic scattering
(SIDIS).

The general formalism for the description of the angular
distribution in terms of helicity structure functions is de-
veloped for the Drell-Yan process in Ref. [4]. The differ-
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ential cross section may be expressed as [4]
 

d�

d4qd�
�

�2
em

2�2��4S2Q2 �WT�1� cos2��

�WL�1� cos2�� �W��sin�2�� cos��

�W���sin2� cos�2����: (1)

The four independent ‘‘helicity’’ structure functions WT ,
WL,W�, andW�� depend onQ,Q?, rapidity y, and on the
center-of-mass energy

���
S
p

of the production process. They
are defined in the virtual photon’s rest frame, and they
correspond, respectively, to the transverse spin, longitudi-
nal spin, single spin-flip, and double spin-flip contributions
to the Drell-Yan cross section.

The angular-integrated cross section is expressed in
terms of WT and WL as

 

d�

d4q
�

�2
em

12�3S2Q2 �2WT �WL�: (2)

An interesting relationship WL � 2W�� between the lon-
gitudinal and double-flip structure functions is derived in
Ref. [4] in the context of the parton model, and it has been
shown to hold at least approximately at higher orders in
perturbative QCD. Experimental tests of this relationship
are reported in Refs. [15–19].

Our principal focus in this paper is the prediction of the
full Q? dependence of the four structure functions, includ-
ing the region of small and intermediate Q? where the
cross section takes on its largest values. Many papers deal-
ing with various aspects of Drell-Yan angular distributions
have preceded ours. Explicit perturbative calculations were
done in the parton model [3,4], in perturbative QCD at
order �s [5–8] and �2

s [9], as well as in high twist formal-
isms [20,21]. When calculated at fixed order in QCD per-
turbation theory, the structure functions show unphysical
inverse-power Q�n? (n�1 or 2) or logarithmic ln�Q=Q?�
divergences, or both, asQ?!0. For the angular-integrated
cross section, d�=d4q, it is well established that similar
unphysical divergences can be removed after resummation
of the lnm�Q2=Q2

?�=Q
2
? singular terms from initial-state

gluon emission to all orders in �s [22–25].
Examinations of the singular logarithmic terms in

the helicity structure functions are reported in

Refs. [10,11,13,14]. Since only WT shows the
lnm�Q2=Q2

?�=Q
2
? divergence, previous resummation cal-

culations were carried out only for WT in the same way as
for the angular-integrated cross section. As shown in
Refs. [10,13,14], resummation removes the perturbative
power divergence in WT . One consequence of resumma-
tion of just WT is a large change in the relative size of WT
and the helicity structure functions for which no resumma-
tion is performed. This result is not quite consistent with
general expectations about the relative size of helicity
structure functions in the Collins-Soper frame. For ex-
ample, one expects W��=WT ! Q2

? as Q? ! 0 [26].
In Ref. [11], Boer and Vogelsang carefully investigate

the logarithmic behavior of the order �s perturbative con-
tributions to the helicity structure functions. At order �s,
they find that, like WT , both WL and W�� have a
ln�Q2=Q2

?� logarithmic divergence, but not the 1=Q2
?

power divergence seen in WT , and that W� has no loga-
rithmic divergence at this order in the Collins-Soper frame.
They notice that the logarithmic contribution to WL and
W�� from the quark-gluon (or gluon-quark) subprocess is
different from that for WT and does not fit the pattern
expected for the perturbative expansion of the Collins-
Soper-Sterman resummation formalism to order �s [25].
They also discuss the frame dependence of this logarithmic
contribution.

The present paper expands on our earlier short manu-
script on the same subject [27]. We start with the observa-
tions that the four helicity structure functions cannot be
independent at Q? � 0 and that the general tensor decom-
position in the virtual photon rest frame in Eq. (4) is ill
defined at Q? � 0. Then, guided by electromagnetic cur-
rent conservation, we construct a new asymptotic form for
the hadronic tensor with the right degrees of freedom as
Q? ! 0. We find that the leading logarithmic behavior
of the different helicity structure functions, WT , WL,
and W��, has a unique origin. We reduce the problem
of transverse momentum resummation for WT , WL,
and W�� to the known solution of transverse momentum
resummation for the angular-integrated cross section
[25], and we prove that the logarithmic divergences
in WT , WL, and W�� may be resummed to all orders in
the strong coupling strength �s, yielding well-behaved
predictions that satisfy the expected kinematic constraints
at small Q?. We emphasize three main results of our
research:

(i) Current conservation uniquely ties the perturbative
divergences as Q?=Q!0 of the otherwise indepen-
dent helicity structure functionsWT ,WL, andW�� to
the divergence of the angular-integrated cross
section.

(ii) The perturbative divergence in the angular-
integrated cross section is sufficient to remove all
leading divergences of the four individual helicity
structure functions.

22

11

µν
l l

q q

PP

PP

FIG. 1 (color online). Diagrammatic representation of had-
ronic dilepton production via a virtual photon of four-momentum
q.
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(iii) Transverse momentum resummation of the angular-
integrated cross section determines the resummation
of the large logarithmic terms of the helicity struc-
ture functions WT , WL, and W��, and the approxi-
mate Lam-Tung relation is an all-orders consequence
of current conservation for the leading perturbatively
divergent terms.

The rest of our paper is organized as follows. In Sec. II,
we define the helicity structure functions, and we derive the
QCD perturbative contributions at order �s. We work in
this paper entirely in the context of collinear QCD facto-
rization [28], meaning that Q? >�QCD, although Q?=Q
may be small. We examine in detail the leading behavior of
the perturbative contributions to the helicity structure func-
tions in the limit of small Q?=Q. In Secs. III and IV, we
investigate the generic singular structure of the perturba-
tive contribution to the Drell-Yan hadronic tensor, and we
derive an asymptotic current-conserving tensor that explic-
itly includes all the leading divergences of the perturba-
tively calculated helicity structure functions in the limit
Q?=Q! 0. We also explore the connection between cross
sections for incident parton states of fixed helicity and the
subleading perturbative contribution to the spin-averaged
helicity structure functions. We discuss all-orders trans-
verse momentum resummation for helicity structure func-
tions in Sec. V, obtaining well-behaved distributions as a
function of Q?. We show that the resummed part of the
helicity structure functions satisfies the Lam-Tung relation,
WL � 2W��, between the longitudinal and the double
spin-flip structure function to all orders in �s. Finally, in
Sec. VI, we offer a summary and our conclusions, and we
outline plans for future work on W and Z hadroproduction
and in semi-inclusive deep-inelastic scattering. Three ap-
pendixes are included in which we present detailed tech-
nical derivations of points discussed in the main body of
the text.

II. HELICITY STRUCTURE FUNCTIONS AND
PERTURBATIVE CONTRIBUTIONS

In this section, we define the helicity structure functions
of Eq. (1). We present the next-to-leading order perturba-
tive contributions to these functions and examine the struc-
ture of the singular behavior of each helicity structure
function Wi as Q?=Q! 0.

A. Definition and normalization

Helicity structure functions are defined in the virtual
photon’s rest frame. Let ��	 �q� be the virtual photon’s
polarization vector with three polarization states, 	 �
	1, 0. The helicity structure functions are

 WT � W�
�
��
1 �
1 ; WL � W�
�

��
0 �
0 ;

W� � W�
��
��
1 �
0 � �

��
0 �
1�=

���
2
p
;

W�� � W�
�
��
1 �
�1;

(3)

for the transverse spin, longitudinal spin, single spin-flip,
and double spin-flip contributions to the Drell-Yan cross
section, respectively. In the virtual photon rest frame (the
center-of-mass frame of the dilepton pair), the polarization
vectors can be expressed in terms of orthogonal unit vec-
tors in that frame, X�, Y�, and Z�, as ��	 � �
X

� �

iY��=
���
2
p

, ��0 � Z
 [4]. These unit vectors are normalized
as X2 � Y2 � Z2 � �1, and they are also orthogonal to
the current vector q�. They conserve the current, q�X� �
q�Y

� � q�Z
� � 0. Naturally, we can choose the fourth

unit vector for the ~q � 0 Lorentz frame to be T� � q�=Q

with T2 � 1 and Q �
�����
q2

p
. The full Drell-Yan hadronic

tensor can be written in terms of the helicity structure
functions and unit vectors in the virtual photon rest frame
as [4]

 

W�
 � ��g�
 � T�T
��WT �W��� � 2X�X
W��

� Z�Z
�WL �WT �W���

� �X�Z
 � X
Z��W�: (4)

Different choices of the axes lead to different ~q � 0 frames
[4]. We choose to work in the Collins-Soper frame [26],
whose unit vectors are defined as

 Z� �
2��������������������

Q2 �Q2
?

q �qP2
~P�1 � qP1

~P�2 �;

X� � �
�
Q
Q?

�
2��������������������

Q2 �Q2
?

q �qP2
~P�1 � qP1

~P�2 �;

Y� � ��
��T
Z�X�;

(5)

where the dimensionless current-conserving hadron mo-
menta are ~P�i � �P

�
i � �Pi � q�=q

2q��=
���
S
p

with i � 1, 2,
and qPi � Pi � q=

���
S
p

with i � 1, 2. We present our deriva-
tion and predictions on helicity structure functions in this
Collins-Soper frame. Transformation of our results to other
commonly used frames is simply a rotation around the Y
axis [4,11].

When the virtual photon mass Q and its transverse
momentum Q? are much larger than �QCD, we expect
QCD collinear factorization to be valid for the Drell-Yan
cross section [28]. Neglecting the transverse momentum of
partons participating in the hard collisions, we write the
incident parton momenta as

 p�1 � �1P
�
1 ; p�2 � �2P

�
2 : (6)

Neglecting all corrections suppressed by powers of
�QCD=Q or �QCD=Q?, we can factor the hadronic tensor
as
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 W�
 �
X
ab

Z d�1

�1



Z d�2

�2
�a��1��b��2�!

�

ab!��X��1; �2; q�; (7)

with incoming parton distributions �f��� of flavor f and
momentum fraction �. The short-distance partonic tensor
is
 

!�

ab!��X � S

X
jM�

ab!��Xj
�jM


ab!��Xj�2��
4


 
4�p1 � p2 � q�
X
x

px�
Y
x

d3px
�2��32Ex

: (8)

At the most basic level, a massive virtual photon arises
from quark-antiquark annihilation q� �q! �� in a colli-
sion of hadrons, and it is produced with Q? � 0. The
corresponding partonic tensor is
 

!�

q �q!�� �

1
3e

2
q� �n

�n
 � n� �n
 � g�
��1�2
��1 � x1�


 
��2 � x2��2��
4S
2�Q?�; (9)

with color factor 1=3 and fractional quark charge eq. The
unit vectors are �n� � 
�� and n� � 
��, and

 x1 �
Q���
S
p ey; x2 �

Q���
S
p e�y: (10)

The lowest order helicity structure functions from q �q!
�� are

 W�0�T �
X
q

1

3
e2
q�q�x1�� �q�x2��2��

4S
2�Q?�;

W�0�L � W�0�� � W�0��� � 0:

(11)

First-order gluon radiation supplies finite Q?, through the
quark-antiquark and quark-gluon subprocesses, q� �q!
�� � g and q� g! �� � q, as sketched in Figs. 2 and 3,
respectively. Perturbatively, these finite-order subprocesses
yield singular differential cross sections as a function of
Q? in the limit Q?=Q! 0. For the angular-integrated
cross section, d�=d4q, it is well established that this un-
physical divergence can be removed after resummation of
the singular terms from initial-state gluon emission to all
orders in �s [25]. The dependence of the helicity structure

functions on Q? is our central focus in the rest of this
manuscript.

B. Order �s contribution

In this section we present explicit expressions for the
contributions at order �s to the four helicity structure
functions from the two subprocesses q �q! ��g and qg!
��q. Although some of the perturbative results are avail-
able in the literature, we present for completeness, in
Appendixes B and C, the details of the perturbative calcu-
lation in a consistent notation for the spin-averaged and
‘‘polarized’’ contributions to the parton-level helicity
structure functions in the Collins-Soper frame.

To better identify the analytic behavior asQ?=Q! 0 of
the perturbative contributions, we express the results in
terms of two new variables,

 z1 �
x1

�1
; z2 �

x2

�2
: (12)

The parton-level Mandelstam variables defined in Eq. (B3)
in Appendix B are expressed as

 ŝ �
Q2

z1z2
; t̂ � �

Q2
?

1� z2

�������������������������
1�Q2

?=Q
2

q ;

û � �
Q2
?

1� z1

�������������������������
1�Q2

?=Q
2

q ;

(13)

and

 

1

t̂ û
�

1

ŝQ2
?

;
1

ŝ��t̂�
�

1

ŝQ2
?

�1� z2

�������������������������
1�Q2

?=Q
2

q
�:

In the following subsections, we present our calculation
for spin-averaged and polarized incident partons, with our
specification of polarized states presented below.

1. Spin-averaged quark-antiquark annihilation

As derived in Eq. (B5) in Appendix B, the contributions
to the parton-level helicity structure functions from the
quark-antiquark annihilation subprocess, after averaging
over the spins of the incident quark and antiquark, are

q

2
p

1
p

p2

q
1
p

FIG. 3. Feynman diagrams for quark-gluon scattering to pro-
duce a virtual photon plus a quark.

2

1
p

p

q
q

2

1
p

p

FIG. 2. Feynman diagrams for quark-antiquark annihilation to
a virtual photon plus a gluon.
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 wq �q
T � e2

q
8�2�s

3

�
Q2

Q2
?

�
CF�z

2
1 � z

2
2�

�
1�

1

2

Q2
?

Q2

�
S
z1z2


�ŝ� t̂� û�Q2�;

wq �q
L � e2

q
8�2�s

3
CF�z2

1 � z
2
2�

S
z1z2


�ŝ� t̂� û�Q2�;

wq �q
�� � e2

q
8�2�s

3

1

2
CF�z

2
1 � z

2
2�

S
z1z2


�ŝ� t̂� û�Q2� �
1

2
wq �q
L ;

wq �q
� � e2

q
8�2�s

3

�
Q
Q?

�
CF�z

2
1 � z

2
2�

S
z1z2


�ŝ� t̂� û�Q2�:

(14)

The color factor is written as 4=9 � �1=3� 
 CF,
with �1=3� being the color factor for the lowest order
contribution in Eq. (9), and CF � 4=3. With the ex-
change of z1 and z2 (or t̂ and û), Eq. (14) is also valid
for the antiquark-quark scattering subprocess, except
for w �qq

� which acquires an extra overall minus sign that
arises from the minus sign in the expression for w� in
Eq. (A12).

The phase space 
 function can also be expressed in
terms of the new variables as

 

S
z1z2


�ŝ� t̂� û�Q2��
1

x1x2


��

1�z1

������������������������
1�Q2

?=Q
2

q �




�
1�z2

������������������������
1�Q2

?=Q
2

q �
�Q2

?=ŝ
�
:

(15)

2. Spin-averaged quark-gluon scattering

As derived in Eq. (B8) in Appendix B, the contributions
from the quark-gluon subprocess, after an average over the
spins of the initial quark and gluon, are

 

wqgT � e2
q

8�2�s
3

�
Q2

Q2
?

��
1� z2

�������������������������
1�Q2

?=Q
2

q �
TR

�
�z2

2 � �z1z2 � 1�2� �
1

2

Q2
?

Q2 �z
2
2 � �z1 � z2�

2�

�
S
z1z2


�ŝ� t̂� û�Q2�;

wqgL � e2
q

8�2�s
3

�
1� z2

�������������������������
1�Q2

?=Q
2

q �
TR�z2

2 � �z1 � z2�
2�

S
z1z2


�ŝ� t̂� û�Q2�;

wqg�� � e2
q

8�2�s
3

�
1� z2

�������������������������
1�Q2

?=Q
2

q �
1

2
TR�z2

2 � �z1 � z2�
2�

S
z1z2


�ŝ� t̂� û�Q2� �
1

2
wqgL ;

wqg� � e2
q

8�2�s
3

�
Q
Q?

��
1� z2

�������������������������
1�Q2

?=Q
2

q �
TR�z2

1 � 2z2
2�

S
z1z2


�ŝ� t̂� û�Q2�:

(16)

The color factor is written as 1=6 � �1=3� 
 TR with TR �
1=2. With z1 and z2 switched, Eq. (16) is also true for the
gluon-quark scattering subprocesses, except for wgq� which
acquires an extra overall minus sign that arises from the
minus sign in the expression for w� in Eq. (A12).

3. Expressions for polarized incident partons

The behavior at small Q?=Q of the parton-level helicity
structure functions is sensitive to the helicity states of the
incoming partons. We present here the perturbative con-
tribution to the helicity structure functions from the q�
�q! �� � g and q� g! �� � q subprocesses with an
initial-state (anti)quark and gluon in a fixed helicity state.
For a quark of momentum p, the helicity projection op-
erator is

 P̂	�p� �
1
2� � p	

1
2� � p�5; (17)

where the first term on the right-hand side (RHS) corre-

sponds to the projection for a spin-averaged quark state,
while the second term corresponds to the projection for a
polarized quark state, defined as the state with incoming
quark polarization projected onto the difference of the
quark’s helicity states. Similarly, the helicity projection
operator for a massless gluon of momentum p moving in
either the light-cone ‘‘�’’ or ‘‘�’’ direction is

 P��	 �p� �
1
2d
�� 	 1

2i�
��; (18)

where the transverse tensor d�� � �g�� � �n�n� �
n� �n�, ��� � ����� �n�n�. The first term on the RHS again
corresponds to the projection for a spin-averaged and
physically polarized gluon state, while the second term
corresponds to the projection to a polarized gluon state,
defined as the state with incoming gluon polarization pro-
jected onto the difference of the gluon’s physically polar-
ized states.
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The contribution with a mixed unpolarized and a polar-
ized parton state leads to an antisymmetric contribution to
the hadronic tensor W�
, and it does not contribute to the
Drell-Yan angular distribution. The sum or difference of
our unpolarized and polarized contributions corresponds to
the contributions from initial-state partons of the same or
different fixed helicity state.

Equation (C1) in Appendix C shows that the polarized
quark-antiquark contributions to the helicity structure
functions are the same as the unpolarized contributions,

 �wq �q
T � wq �q

T ; �wq �q
L � wq �q

L ;

�wq �q
�� � wq �q

��; �wq �q
� � wq �q

� ;
(19)

with all unpolarized contributions given in Eq. (14).
In treating quark-gluon scattering, we present results

separately for the quark-gluon and gluon-quark initial
states. Equation (C5) in Appendix C provides the contri-
bution from the quark-gluon scattering subprocess with
polarized initial states:

 

�wqgT � e
2
q

8�2�s
3

�
Q2

Q2
?

��
1� z2

�������������������������
1�Q2

?=Q
2

q �
TR

�
�z2

2� �z1z2� 1�2� �
1

2

Q2
?

Q2 �z
2
2� �z1� z2�

2�

�
S
z1z2


�ŝ� t̂� û�Q2�;

�wqgL � e
2
q

8�2�s
3

�
1� z2

�������������������������
1�Q2

?=Q
2

q �
TR�z2

2� �z1� z2�
2�

S
z1z2


�ŝ� t̂� û�Q2�;

�wqg�� � e
2
q

8�2�s
3

�
1� z2

�������������������������
1�Q2

?=Q
2

q �
1

2
TR�z2

2� �z1� z2�
2�

S
z1z2


�ŝ� t̂� û�Q2� �
1

2
�wqgL ;

�wqg� � e
2
q

8�2�s
3

�
Q
Q?

��
1� z2

�������������������������
1�Q2

?=Q
2

q �
TR��z2

1�
S
z1z2


�ŝ� t̂� û�Q2�:

(20)

As shown in Eq. (C8) of Appendix C, the contribution from the gluon-quark scattering subprocess with polarized initial
states is

 

�wgqT � e
2
q

8�2�s
3

�
Q2

Q2
?

��
1� z1

�������������������������
1�Q2

?=Q
2

q �
TR

�
�z2

1� �z1z2� 1�2� �
1

2

Q2
?

Q2 �z
2
1� �z1� z2�

2�

�
S
z1z2


�ŝ� t̂� û�Q2�;

�wgqL � e
2
q

8�2�s
3

�
1� z1

�������������������������
1�Q2

?=Q
2

q �
TR�z2

1� �z1� z2�
2�

S
z1z2


�ŝ� t̂� û�Q2�;

�wgq�� � e
2
q

8�2�s
3

�
1� z1

�������������������������
1�Q2

?=Q
2

q �
1

2
TR�z2

1� �z1� z2�
2�

S
z1z2


�ŝ� t̂� û�Q2� �
1

2
�wgqL ;

�wgq� � e
2
q

8�2�s
3

�
Q
Q?

��
1� z1

�������������������������
1�Q2

?=Q
2

q �
TR�z

2
2�

S
z1z2


�ŝ� t̂� û�Q2�:

(21)

We note that, other than for �wgq� , the contributions
from the gluon-quark subprocess are effectively the same
as those from the quark-gluon subprocess, with z1 and z2

switched.

C. Limit of Q?=Q! 0

In this subsection, we examine the analytic behavior of
each parton-level helicity structure function as Q?=Q!
0. Keeping up to the leading power terms, we can simplify
the parton-level Mandelstam variables and the phase space

 function as

 ŝ)
Q2
?

�1� z1��1� z2�
; t̂) �

Q2
?

�1� z2�
;

û) �
Q2
?

�1� z1�
:

(22)

The expression for ŝ is an immediate consequence of the
phase space 
 function, which, in turn, can be expanded as

[29]

 

S
z1z2


�ŝ� t̂� û�Q2� )
1

x1x2

�

�1� z2�

�1� z1��
�

�1� z1�

�1� z2��

� 
�1� z1�
�1� z2� ln
Q2

Q2
?

�
:

(23)

The standard definition of ‘‘�’’ distribution is

 

Z 1

x
dz

f�z�
�1� z��

�
Z 1

x
dz
f�z� � f�1�
�1� z�

� f�1� ln�1� x�:

(24)

Substituting Eqs. (22) and (23) into Eqs. (14) and (16),
we obtain the analytic behavior of the perturbatively cal-
culated parton-level helicity structure functions as
Q?=Q! 0. For the quark-antiquark annihilation process,
these are
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 wq �q
T ) e2

q
8�2�s
3x1x2

�
Q2

Q2
?

��
Pqq�z2�
�1� z1� � Pqq�z1�
�1� z2� � 2CF
�1� z1�
�1� z2�

�
ln
�
Q2

Q2
?

�
�

3

2

��
;

wq �q
L ) e2

q
8�2�s
3x1x2

�
Pqq�z2�
�1� z1� � Pqq�z1�
�1� z2� � 2CF
�1� z1�
�1� z2�

�
ln
�
Q2

Q2
?

�
�

3

2

��
;

wq �q
�� )

1

2
e2
q

8�2�s
3x1x2

�
Pqq�z2�
�1� z1� � Pqq�z1�
�1� z2� � 2CF
�1� z1�
�1� z2�

�
ln
�
Q2

Q2
?

�
�

3

2

��
;

wq �q
� ) e2

q
8�2�s
3x1x2

�
Q
Q?

�
fCF�1� z2�
�1� z1� � CF�1� z1�
�1� z2�g:

(25)

For the quark-gluon subprocess, the small Q? behavior
is

 wqgT ) e2
q

8�2�s
3x1x2

�
Q2

Q2
?

�
Pqg�z2�
�1� z1�;

wqgL ) e2
q

8�2�s
3x1x2

Pqg��z2�
�1� z1�;

wqg�� )
1

2
e2
q

8�2�s
3x1x2

Pqg��z2�
�1� z1�;

wqg� ) e2
q

8�2�s
3x1x2

�
Q
Q?

�
TR�1� 2z2

2�
�1� z1�:

(26)

The parton-to-parton splitting functions are

 Pqq�z� � CF

�
1� z2

�1� z��
�

3

2

�1� z�

�
; (27)

 Pqg�z� � TR�z
2 � �1� z�2�: (28)

With z1 and z2 switched, Eq. (26) is also true for the gluon-
quark subprocess, except for wgq� which needs an extra
overall minus sign. Our results for the form of the helicity
structure functions for unpolarized incoming partons as
Q?=Q! 0 in Eqs. (25) and (26) are consistent with those
derived in Ref. [11].

Equation (19) allows us to conclude that, at this order,
the analytic behavior of the quark-antiquark annihilation
subprocess as Q?=Q! 0 is independent of whether in-
coming (anti)quarks are spin averaged or polarized. The
contributions to the parton-level helicity structure func-
tions are given in Eq. (25).

On the other hand, the polarized contributions from the
quark-gluon scattering subprocess are different from those
for ‘‘spin-averaged’’ initial parton states. From Eq. (20),
we obtain

 �wqgT ) e2
q

8�2�s
3x1x2

�
Q2

Q2
?

�
�Pqg�z2�
�1� z1�;

�wqgL ) e2
q

8�2�s
3x1x2

�Pqg��z2�
�1� z1�;

�wqg�� )
1

2
e2
q

8�2�s
3x1x2

�Pqg��z2�
�1� z1�;

�wqg� ) e2
q

8�2�s
3x1x2

�
Q
Q?

�
��TR
�1� z1��;

(29)

where �Pqg�z� is the leading polarized gluon-to-quark
splitting function

 �Pqg�z� � TR�z
2 � �1� z�2�: (30)

Similarly, based on Eq. (21), the small Q? behavior of the
polarized gluon-quark contribution is

 �wgqT ) e2
q

8�2�s
3x1x2

�
Q2

Q2
?

�
�Pqg�z1�
�1� z2�;

�wgqL ) e2
q

8�2�s
3x1x2

�Pqg��z1�
�1� z2�;

�wgq�� )
1

2
e2
q

8�2�s
3x1x2

�Pqg��z1�
�1� z2�;

�wgq� ) e2
q

8�2�s
3x1x2

�
Q
Q?

�
�TR
�1� z2��:

(31)

Clearly, the perturbatively calculated helicity structure
functions at order of �s and beyond are singular as
Q?=Q! 0: WT and W� have the power divergences,
Q2=Q2

? and Q=Q?, respectively, as well as ln�Q=Q?�
divergences, whereas WL and W�� show ln�Q=Q?� diver-
gences [10,11,13,14].

III. ASYMPTOTIC CURRENT-CONSERVING
TENSOR

In this section, we investigate the possible connection
between the logarithmic divergences of different helicity
structure functions, and we show that they have a common
origin. We observe that the four helicity structure functions
cannot be independent asQ? � 0 where the general tensor
decomposition in the virtual photon rest frame in Eq. (4) is
ill defined. We construct a new asymptotic hadronic tensor
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that has the right number of independent scalar functions as
Q? ! 0 by requiring that the singular contribution to the
hadronic tensor should satisfy electromagnetic current
conservation to all orders in �s. We show explicitly that
theQ?=Q! 0 singular contributions inWT ,WL, andW��

are related uniquely to the singular contribution of the
angular-integrated cross section.

The general arguments in Ref. [26] show that there
should be only two independent power-divergent scalar
functions as Q?=Q! 0 in the Collins-Soper frame. To
display the explicit dependence of the hadronic tensor on
Q?=Q, we rewrite the unit vectors of the Collins-Soper
frame in Eq. (5) as

 T� �
1���
2
p

�����������������
1�

Q2
?

Q2

s
�ey �n� � e�yn�� �

�
Q?
Q

�
n�?;

Z� �
1���
2
p �ey �n� � e�yn��;

X� �
1���
2
p

�
Q?
Q

�
�ey �n� � e�yn�� �

�����������������
1�

Q2
?

Q2

s
n�?;

(32)

with Y� uniquely fixed. By expanding the full Drell-Yan
hadronic tensor in Eq. (4) and using Eq. (32) in the limit
Q?=Q! 0, we obtain the following form for the singular
terms of the tensor [27,30]:

 

W�

Sing � ��g

�
 � �n�n
 � n� �n
�WAsym
2

�
1���
2
p

�
Q?
Q
�n�? �n
 � �n�n
?�e

y
�




�
WAsym

2 �
Q
Q?

WAsym
1

�

�
1���
2
p

�
Q?
Q
�n�?n


 � n�n
?�e
�y
�




�
WAsym

2 �
Q
Q?

WAsym
1

�
: (33)

At this point, there are two unspecified divergent scalar
functions: WAsym

2 / Q2=Q2
? and WAsym

1 / Q=Q? as
Q?=Q! 0. In Eq. (33), the unit vectors �n, n, n? specify
the center-of-mass frame of the hadron collision, defined in
Appendix A.

The singular tensor as Q?=Q! 0 in Eq. (33) is not
current conserving since q�W

�

Sing � 0. In order to resum

the singular terms of the hadronic tensor to all orders in �s,
we require a tensor that incorporates all the singular terms
and also conserves the current perturbatively at any order
of �s. We use the term asymptotic tensor for this current-
conserving tensor. We define it to be

 

W�

Asym � ��g

�
 � �n�n
 � n� �n
�WAsym
2

�
Q?
Q�

�
n�? �n
 � �n�n
? �

Q?
Q�

�n� �n

�



1

2

�
WAsym

2 �
Q
Q?

WAsym
1

�

�
Q?
Q�

�
n�?n


 � n�n
? �
Q?
Q�

n�n

�



1

2

�
WAsym

2 �
Q
Q?

WAsym
1

�
; (34)

where the components of the virtual photon momentum
Q� � q � n and Q� � q � �n are defined in Appendix A.
The asymptotic tensor in Eq. (34) is equal to the singular
tensor in Eq. (33) plus a minimal nonsingular term such
that q�W

�

Asym � 0.

The angular-integrated cross section is obtained from
the trace, d�=d4q / �g�
W

�
. The trace of the asymp-
totic tensor in Eq. (34) should therefore be fixed by the
asymptotic termWAsym of the angular-integrated Drell-Yan
transverse momentum distribution [25]. This statement
allows us to fix uniquely the asymptotically divergent
function WAsym

2 in Eq. (34). We obtain

 WAsym
2 � WAsym=2: (35)

The angular-integrated cross section fixes the value of
WAsym

2 , but it cannot fix the second scalar function WAsym
1

in Eq. (34). This second function represents the singular
perturbative behavior of the structure function W�. We
defer discussion of W� until Sec. V and concentrate on
transverse momentum resummation for the other three
helicity structure functions, WT , WL, and W��.

We reexpress the asymptotic tensor in terms of the
previously defined unit vectors in the Collins-Soper frame
as

 

W�

Asym �

�
��g�
 � T�T
� �

Q2
?=Q

2

1�Q2
?=Q

2 X
�X


�
1

1�Q2
?=Q

2 Z
�Z


�
WAsym

2

�
1

1�Q2
?=Q

2 �X
�Z
 � Z�X
�WAsym

1 : (36)

Upon comparison with Eq. (4), we immediately derive the
corresponding asymptotic helicity structure functions,
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 WAsym
T �

�
1�

1

2

Q2
?=Q

2

1�Q2
?=Q

2

�
WAsym

2
�
WAsym

2
;

WAsym
L �

Q2
?=Q

2

1�Q2
?=Q

2

WAsym

2
�
Q2
?

Q2

WAsym

2
;

WAsym
�� �

1

2

Q2
?=Q

2

1�Q2
?=Q

2

WAsym

2
�

1

2

Q2
?

Q2

WAsym

2
:

(37)

Equation (37) shows that current conservation relates the
Q?=Q! 0 divergent terms of the transverse, longitudinal,
and double spin-flip structure functions intimately to the
divergent part of the angular-integrated transverse momen-
tum distribution. The next key question, addressed affir-
matively in the next section, is whether the asymptotic
helicity structure functions in Eq. (37), as derived here,
are sufficient to remove all the leading divergences in the
perturbatively calculated structure functions order by order
in �s.

IV. PERTURBATIVE FINITE TENSOR

We show in this section that the three asymptotic helicity
structure functions presented in the last section include all
the Q?=Q! 0 leading divergent terms of the correspond-
ing perturbatively calculated helicity structure functions,
and therefore, that we can define a perturbatively finite
tensor from the difference,

 W�

Finite � W�


Pert �W
�

Asym; (38)

at any order of �s. This finite tensor conserves the current
since the asymptotic tensor conserves the current.

The Q?=Q! 0 divergent part of the angular-integrated
cross section is obtained from the trace of the hadronic
tensor g�
W�
. Applying this statement at the parton

level, we use the results of Sec. III to derive the Q?=Q!
0 asymptotic terms for the angular-integrated and spin-
averaged q �q! ��g and qg! ��q subprocesses. These
are

 

wAsym
q �q

2
� e2

q
8�2�s
3x1x2

Q2

Q2
?

�
Pqq�z2�
�1� z1�

� Pqq�z1�
�1� z2� � 2CF
�1� z1�


 
�1� z2�

�
ln
�
Q2

Q2
?

�
�

3

2

��
;

wAsym
qg

2
� e2

q
8�2�s
3x1x2

Q2

Q2
?

Pqg�z2�
�1� z1�;

wAsym
gq

2
� e2

q
8�2�s
3x1x2

Q2

Q2
?

Pqg�z1�
�1� z2�: (39)

Using Eq. (37) at the parton level, we find that as
Q?=Q! 0, the parton-level asymptotic terms in
Eq. (39) remove all divergent contributions of the corre-
sponding perturbatively calculated helicity structure func-
tions. For the quark-antiquark annihilation subprocess,

 wq �q
T �

�
1�

1

2

Q2
?=Q

2

1�Q2
?=Q

2

�wAsym
q �q

2
) O�Q0

?�;

wq �q
L �

Q2
?=Q

2

1�Q2
?=Q

2

wAsym
q �q

2
) O�Q2

?�;

wq �q
�� �

1

2

Q2
?=Q

2

1�Q2
?=Q

2

wAsym
q �q

2
) O�Q2

?�:

(40)

For the quark-gluon subprocess,

 

wqgT �
�
1�

1

2

Q2
?=Q

2

1�Q2
?=Q

2

�
wAsym
qg

2
) O�Q0

?�;

wqgL �
Q2
?=Q

2

1�Q2
?=Q

2

wAsym
qg

2
) e2

q
8�2�s
3x1x2


�1� z1��Pqg��z2� � Pqg�z2�� �O�Q2
?�;

wqg�� �
1

2

Q2
?=Q

2

1�Q2
?=Q

2

wAsym
qg

2
)

1

2
e2
q

8�2�s
3x1x2


�1� z1��Pqg��z2� � Pqg�z2�� �O�Q2
?�:

(41)

With z1 and z2 interchanged, Eq. (41) is also true for the
gluon-quark subprocess. Other than the nonlogarithmic
finite piece (as Q?=Q! 0) in the quark-gluon contribu-
tions to WL and W��, the asymptotic tensor completely
removes the leading term of the perturbatively calculated
helicity structure functions as Q?=Q! 0.

The parton-level asymptotic terms for the polarized
quark-antiquark, quark-gluon, and gluon-quark subpro-
cesses are

 

�wAsym
q �q

2
�
wAsym
q �q

2
;

�wAsym
qg

2
� e2

q
8�2�s
3x1x2

Q2

Q2
?

�Pqg�z2�
�1� z1�;

�wAsym
gq

2
� e2

q
8�2�s
3x1x2

Q2

Q2
?

�Pqg�z1�
�1� z2�:

(42)
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Since �!�

q �q � !�


q �q , and �wAsym
q �q � wAsym

q �q , Eq. (40) is true also for the polarized quark-antiquark subprocess.
The finite contributions in the parton-level helicity structure functions for polarized quark-gluon or gluon-quark

subprocesses are not the same as those for the corresponding unpolarized subprocesses. We find

 �wqgT �
�
1�

1

2

Q2
?=Q

2

1�Q2
?=Q

2

�
�wAsym

qg

2
) O�Q0

?�;

�wqgL �
Q2
?=Q

2

1�Q2
?=Q

2

�wAsym
qg

2
) e2

q
8�2�s
3x1x2


�1� z1���Pqg��z2� ��Pqg�z2�� �O�Q2
?�;

�wqg�� �
1

2

Q2
?=Q

2

1�Q2
?=Q

2

�wAsym
qg

2
)

1

2
e2
q

8�2�s
3x1x2


�1� z1���Pqg��z2� � �Pqg�z2�� �O�Q2
?�:

(43)

With z1 and z2 interchanged, Eq. (43) is also true for the
gluon-quark subprocess.

The uncanceled finite term in the helicity structure
functions WL and W�� is proportional to

 Pqg��z2� � Pqg�z2� � 4z2TR; (44)

for unpolarized initial partonic states, and to

 �Pqg��z2� � �Pqg�z2� � �4z2TR; (45)

for the polarized initial partonic states. Therefore, for the
scattering of two polarized hadrons with the same helicity
(both positive or negative), the quark-gluon contribution to
the perturbatively finite term of the helicity structure func-
tions WL and W�� vanishes as Q?=Q! 0. This result is
obtained because the perturbative contribution to the lon-
gitudinal and double spin-flip helicity structure functions is
proportional to Pqg��z2� � �Pqg��z2� in the limit of
Q?=Q! 0, the corresponding asymptotic term is propor-
tional to Pqg�z2� � �Pqg�z2�, and the difference vanishes
due to Eqs. (44) and (45). We also observe that, at this
order, the uncanceled term in the quark-gluon subprocess is
proportional to the helicity flipping splitting function,

 Pq�g��z� � Pq�g��z� � TR�1� z�2: (46)

The finite term as Q?=Q! 0 for the quark-antiquark
subprocess at this order is removed completely by the
asymptotic term since the helicity flipping splitting func-
tion for the quark vanishes at this order, Pq�q��z� �
Pq�q��z� � 0.

Our observations allow us to claim that transverse mo-
mentum dependent factorization for the full hadronic ten-
sor, which is the basis for the Collins-Soper-Sterman
b-space resummation, breaks at subleading power in the
Q?=Q expansion, but only in the helicity flipping channel.
The breaking seems not to supply leading logarithmic
terms.

The asymptotic current-conserving tensor introduced in
the last section is sufficient to remove all leading divergent
terms in the perturbatively calculated hadronic tensor. The
logarithmic terms in the perturbatively calculated helicity
structure functions, WT , WL, and W��, are shown here to

have the same origin as those in the angular-integrated
cross section. Therefore, for these helicity structure func-
tions we can obtain a perturbatively finite difference as

 WFinite
i � WPert

i �WAsym
i ; (47)

with i � T, L, ��.

V. FULL HADRONIC TENSOR INCLUDING
TRANSVERSE MOMENTUM RESUMMATION

In this section we present expressions for the transverse
momentum dependence of the structure functions incorpo-
rating resummation to all orders in �s of the singular
divergent behavior as Q?=Q! 0 and including the con-
tributions at order �s that are finite in the small Q? limit.
We begin first with a brief summary of the resummation
formalism developed for the angular-integrated cross
section.

As explained above, whenQ? � Q, theQ? distribution
of the helicity structure functions calculated in conven-
tional fixed-order perturbation theory receives a large loga-
rithmic term, ln�Q=Q?�, at every power of �s, which is a
direct consequence of the emission of soft and collinear
gluons from the incident partons. Therefore, when Q?=Q
is sufficiently small, the convergence of the conventional
perturbative expansion in powers of �s is impaired, and the
logarithmic terms must be resummed.

Resummation of the large logarithmic terms can be
carried out either in Q? space directly, or in the impact
parameter, b space, which is the Fourier conjugate of Q?
space. It was first shown by Dokshitzer, Diakonov, and
Troian that, in the double leading logarithm approxima-
tion, the dominant contributions in the smallQT region can
be resummed into a Sudakov form factor [22]. By impos-
ing transverse momentum conservation without assuming
strong ordering in the transverse momenta of radiated
gluons, Parisi and Petronzio introduced a b-space resum-
mation method which allows one to resum some sublead-
ing logarithmic terms [23]. Using a renormalization group
equation technique, Collins and Soper improved b-space
resummation to resum all terms as singular as
lnm�Q2=Q2

?�=Q
2
?, as Q? ! 0 [24]. Using this renormal-
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ization group improved b-space resummation, Collins,
Soper, and Sterman (CSS) derived a formalism for the
transverse momentum distributions of vector boson pro-
duction in hadronic collisions [25]. This CSS formalism,
developed originally for angular-integrated vector boson
production, casts the cross section in the following generic
form [25]:

 

d�

d4q
�

1

�2��2
Z
d2bei ~Q?� ~b ~W�b;Q; x1; x2�

� Y�Q?; Q; x1; x2�: (48)

The function ~W provides the dominant contribution when
Q? � Q, while the Y term supplies contributions that are
negligible for small Q? but become important, in practice,
whenQ? �Q. The function ~W in Eq. (48) incorporates all
powers of large logarithmic contributions from ln�1=b2� to
ln�Q2�. It has the following form [25]:

 

~W�b;Q; x1; x2� � e�S�b;Q� ~W�b; c=b; x1; x2�; (49)

where c is a constant of order 1 [25], and

 S�b;Q� �
Z Q2

c2=b2

d�2

�2

�
ln
�
Q2

�2

�
A��s���� � B��s����

�
:

(50)

Functions A��s� and B��s� may be calculated perturba-
tively in powers of �s [25]. Function ~W�b; c=b; xA; xB� in
Eq. (49) depends only on one momentum scale, 1=b, and it
may be calculated perturbatively as long as 1=b is large
enough. The large logarithms from ln�c2=b2� to ln�Q2� in
~W�b;Q; x1; x2� are completely resummed into the expo-

nential factor exp��S�b;Q��. The finite Y term is defined
to be the difference between the cross section calculated in
conventional fixed-order perturbation theory and the
asymptotic cross section which is equal to the perturbative
expansion of the resummed part of the cross section, the
first term on the RHS of Eq. (48).

The function ~W�b;Q; x1; x2� of the CSS b-space resum-
mation formalism in Eq. (48) is not exactly equal to the
Fourier transform of the transverse momentum distribu-
tion, but its Fourier transform reproduces all leading di-
vergences of the type lnm�Q2=Q2

?�=Q
2
? in the

perturbatively calculated transverse momentum spectrum
when Q?=Q! 0. Combined with the perturbatively finite

Y term, the Fourier transform of the resummed
~W�b;Q; x1; x2� gives a good description of heavy vector

boson production at collider energies [31,32].
The transverse momentum dependence of the angular

distribution of leptons from the Drell-Yan mechanism is
determined by the transverse momentum dependence of
the helicity structure functions. Only the transverse struc-
ture function WT has a leading divergence of the type
lnm�Q2=Q2

?�=Q
2
? as Q?=Q! 0. It might be natural to

consider the resummation of these large logarithms into
WT [10,13,14]. However, as we demonstrate in Eqs. (34)
and (36), electromagnetic current conservation requires
that the leading logarithmic divergences of the structure
functions WL and W�� share the same origin as those in
WT and those in the angular-integrated cross section. All
are included in one asymptotic function, WAsym.
Resummation of the large logarithmic terms of the Drell-
Yan helicity structure functions can therefore be accom-
plished in terms of the resummed contribution to the
angular-integrated Drell-Yan cross section. Referring to
Eq. (37), we obtain the resummed contribution to the
helicity structure functions in the Collins-Soper frame as

 WResum
T �

�
1�

1

2

Q2
?=Q

2

1�Q2
?=Q

2

�
WResum

2
;

WResum
L �

Q2
?=Q

2

1�Q2
?=Q

2

WResum

2
;

WResum
�� �

1

2

Q2
?=Q

2

1�Q2
?=Q

2

WResum

2
:

(51)

All depend on the same QCD resummed expression
WResum that pertains to the angular-integrated Drell-Yan
cross section [25]. By comparing Eq. (48) with Eq. (2), we
obtain

 

�2
em

12�3S2Q2
WResum �

1

�2��2
Z
d2bei ~Q?� ~b ~W�b;Q; x1; x2�:

(52)

In analogy to the CSS result for the angular-integrated
cross section in Eq. (48), the expressions for the full
transverse momentum distribution of the helicity structure
functions are

 WT �

�
1�

1

2

Q2
?=Q

2

1�Q2
?=Q

2

�
WResum

2
�

�
WPert
T �

�
1�

1

2

Q2
?=Q

2

1�Q2
?=Q

2

�
WAsym

2

�
;

WL �
Q2
?=Q

2

1�Q2
?=Q

2

WResum

2
�

�
WPert
L �

Q2
?=Q

2

1�Q2
?=Q

2

WAsym

2

�
;

W�� �
1

2

Q2
?=Q

2

1�Q2
?=Q

2

WResum

2
�

�
WPert

�� �
1

2

Q2
?=Q

2

1�Q2
?=Q

2

WAsym

2

�
(53)
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with the asymptotic term in these expressions equal to the
perturbative expansion of the resummed contribution in
powers of �s. As in the case of the angular-integrated cross
section, these expressions are applicable for Q * Q?.
Other effects must be considered when Q? � Q [33–35].

Substituting the expressions for the helicity structure
functionsWT andWL from Eq. (53) into Eq. (2), we obtain

 

d�

d4q
�

�2
em

12�3S2Q2 �W
Resum � �2WPert

T �WPert
L � �W

Asym�:

(54)

Using Eq. (48), we find that the perturbatively finite Y-term
is

 Y �
�2

em

12�3S2Q2 ��2W
Pert
T �WPert

L � �W
Asym�: (55)

A. Lam-Tung relation

The Lam-Tung relation states that the longitudinal and
the double spin-flip structure functions obey the equality
WL � 2W��. Based on Eqs. (37) and (51) and the defini-
tion in Eq. (53), we find that possible violation of the
relation can come only from the nonsingular finite piece
of the perturbative contribution. The resummed contribu-
tion is known to dominate the angular-integrated cross
section in the region of small and modest Q?, and, by
extension, we expect it to dominate the behavior ofWL and
W�� in the same region. We conclude that violation of the
Lam-Tung relation as a function ofQ? should be relatively
small, consistent with the results of perturbative calcula-
tions at order �2

s [9], but demonstrated here to all orders in
�s.

An alternative way to state the Lam-Tung relation is in
terms of the angular coefficients 	 and 
, defined in
Eq. (A15). It is expressed as 1� 	� 2
 � 0. We derive

 	 �
WT �WL

WT �WL
�
WResum
T �WResum

L

WResum
T �WResum

L

�
1� 1

2Q
2
?=Q

2

1� 3
2Q

2
?=Q

2
;


 �
2W��

WT �WL
�

2WResum
��

WResum
T �WResum

L
�

Q2
?=Q

2

1� 3
2Q

2
?=Q

2
:

(56)

The analytic expressions in Eq. (56) were derived first in
Ref. [8] based on the perturbative calculation of q �q!
��g. Our result is valid for all orders in �s if we retain
only the leading resummed contribution, and it is indepen-
dent of the type of incident hadrons.

A recent analysis of Fermilab data shows reasonable
agreement with the Lam-Tung relation for moderate values
of Q? [19], while early data with pion beams show some
violation [15–18].

B. Phenomenological example

As an example, we show in Fig. 4 an explicit numerical
evaluation of the helicity structure functions WT and WL
computed from Eq. (53). The double spin-flip structure
function W�� � WL=2 since both the resummed contribu-
tions and the finite perturbative contributions at order �s
satisfy this relationship. We choose the mass interval
8 GeV � Q � 9 GeV and Ebeam � 800 GeV in order to
compare with data from Fermilab experiment E772 [36].
The parameters we use are identical to those used for
Fig. 14 in Ref. [32].

The dashed and dot-dashed lines in Fig. 4 represent the
WT and WL contributions to the cross section, while the
total contribution is proportional to 2WT �WL. We remark
that the transverse momentum distribution after resumma-
tion is finite asQ? ! 0 forWT , but it becomes vanishingly
small in the case of WL.

C. Discussion of W�

As shown in Sec. III, the perturbative contribution to the
single spin-flip structure function W� is proportional to
Q=Q?, which is singular as Q?=Q! 0. Unlike the other
helicity structure functions, W� does not show a logarith-
mic divergence in the Collins-Soper frame, a feature that
seems special for this frame [11]. The absence of the
divergence could be a consequence of the symmetry of
the frame with respect to the hadron beam directions,
which requires W� /W 1e�2y �W 2e2y in Eq. (A9),
and the fact that the leading logarithms arise from the
region of phase space where z1 ! 1 and z2 ! 1.
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FIG. 4. The transverse momentum dependence of the angular-
integrated Drell-Yan cross section, obtained from the contribu-
tions of the helicity structure functions, WT and WL, in Eq. (53),
is shown as a solid line and compared with data from Fermilab
experiment E772 [36] for Q in the interval (8,9) GeV. The
dashed and dot-dashed curves show our calculations for the
contributions from WT and WL. The inset shows the WL con-
tribution on an expanded scale.
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In this frame, the quark-antiquark contribution to W� is
completely antisymmetric in z1 and z2 because of the
opposite sign between the W 1 and the W 2 terms above.
The quark-gluon (or gluon-quark) contribution is propor-
tional to 1� z2 [or �1� z1�]. The asymmetry in z1 and z2

strongly reduces the numerical size of these contributions
when Q? � 0.

The combination of the quark-antiquark and antiquark-
quark subprocesses gives the following perturbative con-
tribution to W�,

 Wq �q �W �qq / �qA��1� �qB��2� � �qA��1�qB��2���z
2
1 � z

2
2�:

(57)

This contribution vanishes in the central region for colli-
sions between hadrons of the same type. The quark-gluon
contribution also shows a similar asymmetry between z1

and z2,

 

Wqg �Wgq / qA��1�gB��2��z2
1 � 2z2

2�

� gA��1�qB��2��2z2
1 � z

2
2�: (58)

Collinear factorization in the perturbative calculation
ceases to be valid when Q? ��QCD or less. At Q? � 0,
the helicity structure function W� itself is ill defined. We
might still be able to test the physics of the single spin-flip
structure function in the small Q? region by introducing a
new observable, for example, the first moment of the
structure function,

 

~W ��QT;Q� �
Z QT

0
dQ?Q?W��Q?; Q�; (59)

which is perturbatively more stable if QT is large enough.
Is it possible that a different kind of resummation would

handle the nonphysical Q�1
? divergence at Q? � 0 in W�?

We do not have an answer to this question in the collinear
QCD factorization approach. However, we might gain in-
sight by investigating the angular distribution from another
perspective—starting with transverse momentum depen-
dent quark-antiquark annihilation [3,37].

VI. SUMMARY AND DISCUSSION

Massive virtual photons, the W boson, and the Z boson
have important decay modes into pairs of leptons. The
angular distribution of these leptons, measured in the rest
frame of the parent states, determines the alignment (po-
larization) of the massive vector boson and, consequently,
supplies more precise information on the production dy-
namics than is accessible from the angular-integrated rate
alone. An understanding of the expected angular distribu-
tion is also important for estimating corrections associated
with limited angular acceptance in typical experiments.
The changes expected in the angular distribution as a

function of the transverse momentum Q? of the vector
states is a topic of considerable interest, both for refined
tests of QCD and to reduce systematic uncertainties on the
determination of the W boson mass [13,14].

In this paper, we calculate the transverse momentumQ?
dependence of the four helicity structure functions for the
production of a massive pair of leptons with pair invariant
mass Q. These structure functions determine the angular
distribution of the leptons in the pair rest frame. We work
within the QCD collinear factorization approach valid for
Q? >�QCD. Our goal is the prediction of the full Q?
dependence of the four structure functions, including the
region of small and intermediate Q? where the cross
section takes on its largest values.

As also noted by others, when calculated at fixed order
in QCD perturbation theory, the structure functions show
unphysical inverse-power Q�n? (n � 1 or 2) or logarithmic
ln�Q=Q?� divergences, or both, as Q? ! 0. For the
angular-integrated cross section, d�=d4q, it is well estab-
lished that similar unphysical divergences can be removed
after resummation of the lnm�Q2=Q2

?�=Q
2
? singular terms

from initial-state gluon emission to all orders in �s [22–
25].

We begin our analysis with the observation that the four
helicity structure functions cannot be independent atQ? �
0. The general tensor decomposition in the virtual photon
rest frame in Eq. (4) is ill defined at Q? � 0. Then, we
employ electromagnetic current conservation to construct
a new asymptotic hadronic tensor that has the right degrees
of freedom as Q? ! 0 and embodies the minimal diver-
gent behavior present at fixed order in QCD perturbation
theory. We find that the leading logarithmic behavior of
three of the helicity structure functions, WT ,WL, andW��,
has a unique origin. Its origin is the same as that of the
divergence in the angular-integrated cross section. We are
able, therefore, to reduce the problem of transverse mo-
mentum resummation for WT , WL, and W�� to the known
solution of transverse momentum resummation for the
angular-integrated cross section [25]. We prove that the
small Q? logarithmic divergences in WT , WL, and W��

may be resummed to all orders in the strong coupling
strength �s, yielding well-behaved predictions for the
Q? dependences that satisfy the expected kinematic con-
straints at small Q?. The fourth structure function, W�,
requires a different treatment, as discussed in Sec. V C.

The main results of our research include the fact that
electromagnetic current conservation uniquely ties the
perturbative divergences as Q?=Q! 0 of the otherwise
independent helicity structure functions WT , WL, and W��

to the divergence of the angular-integrated cross section.
Second, the perturbative divergence in the angular-
integrated cross section is sufficient to remove all leading
small Q? divergences of the individual helicity structure
functions. Third, transverse momentum resummation of
the angular-integrated cross section determines the resum-
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mation of the large logarithmic terms of the helicity struc-
ture functions WT , WL, and W��. Finally, the approximate
Lam-Tung relation between the longitudinal and the
double spin-flip structure functions is an all-orders conse-
quence of current conservation for the leading perturba-
tively divergent terms.

In further work, we intend to examine the Q? depen-
dence ofW and Z boson production, where parity violating
terms introduce additional helicity structure functions.
Decay of these intermediate bosons into their dilepton
channels supplies accurate measurements of the masses
of the bosons. ForW production, more accurate predictions
for the angular distribution of the single observed lepton
should complement the missing energy technique and lead
to an improved determination of the mass. The mass of the
W boson provides an electroweak observable that bounds
the mass of the Higgs boson within the framework of the
standard model of particle physics [38].

The use of current conservation to establish connections
between the divergences of different helicity functions at
Q? ! 0 in the Drell-Yan process may have immediate
application for improving QCD resummation and predic-
tions for particle production or other observables in SIDIS.
Unlike the Drell-Yan process, the lepton angles in SIDIS
cannot be integrated over fully because the measurement of
the DIS kinematic variables xB and Q2 requires specifica-
tion of the production angle of the lepton in the final state.
Like the Drell-Yan cross section, the different helicity
structure functions in SIDIS have a lnm�Q2=q2

?� perturba-
tive divergence at small values of the particle transverse
momentum q?, defined in the frame where the vector
boson and the colliding hadron are aligned with each other.
All helicity structure functions contribute to particle pro-
duction in SIDIS. Only the leading singular
lnm�Q2=q2

?�=q
2
? logarithms are resummed in existing

QCD calculations [29,39]. Inclusion of the effects of re-
summation for the individual structure functions, as de-
scribed in this paper, should lead to more accurate
predictions for SIDIS observables, such as particle energy
flow and rapidity dependence, that could be sensitive to the
relative size of the different helicity structure functions.
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APPENDIX A: DRELL-YAN CROSS SECTION AND
ANGULAR DISTRIBUTION

In this appendix, we summarize the basic formalism for
calculating the cross section for dilepton production in the
Drell-Yan model and the angular distribution of the lep-
tons. The expressions in this appendix also establish our
notation.

We consider the scattering of two hadrons of momentum
P1 and P2, respectively, that produces a virtual photon of
four-momentum q, A�P1� � B�P2� ! ���q� � X, that in
turn decays into a pair of leptons of momentum l and �l,
as sketched in Fig. 1. The cross section for this Drell-Yan
production process can be expressed as

 

d�

d4qd�
�

�2
em

2�2��4S2Q4 L�
W
�
: (A1)

The leptonic tensor is

 L�
 � 2�l� �l
 � l
 �l� � l � �lg�
�; (A2)

and the hadronic tensor is defined as
 

W�
 � S
X
X

hP1P2jJ
y
��0�jXihXjJ
�0�jP1P2i�2��

4


 
4

�
P1 � P2 � q�

X
x

�px�
�

� S
Z
d4zeiq�zhP1P2jJy��0�J
�z�jP1P2i; (A3)

where J� is the electromagnetic current. Electromagnetic
current conservation, q�W�
 � 0, and the fact that elec-
tromagnetic and strong interactions are invariant under the
parity and time-reversal transformation, allows us to ex-
press the Lorentz tensor,W�
, in terms of four independent
Lorentz scalar functions [4]. We choose the following four
frame-independent scalar functions,
 

W�
 � ~P�1 ~P
1W 1 � ~P�2 ~P
2W 2 �
1
2�

~P�1 ~P
2 � ~P�2 ~P
1�W 3

� ~g�
W 4: (A4)

The dimensionless current-conserving tensor and the vec-
tors are defined as

 ~g �
 � g�
 �
q�q


q2 ; ~P�1 � ~g�
P1
=
���
S
p
;

~P�2 � ~g�
P2
=
���
S
p
;

(A5)

with q�~g�
 � 0. Our choice of the four frame-
independent scalar functions is slightly different from
that in Ref. [4]. We find that this choice is convenient for
connecting to the parton-level perturbative calculation dis-
cussed below.

By contracting the leptonic tensor L�
 and hadronic
tensor W�
 in Eq. (A1), we can express the Drell-Yan
cross section in terms of the four scalar functions W i
and the measured hadron and lepton momenta.
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The physical meaning of the scalar functions can be
appreciated if we express them in terms of the four inde-
pendent helicity structure functions, Wi with i � T, L, �,
and ��, corresponding to the transverse spin, longitudinal
spin, single spin-flip, and double spin-flip contributions to
the Drell-Yan cross section [4]. The helicity structure
functions are defined in the dilepton center-of-mass frame
(the virtual photon’s rest frame).

The full hadronic tensor in Eq. (A4) can also be written
in terms of the helicity structure functions and unit vectors
in the virtual photon rest frame as in Eq. (4) [4]. In this
frame, the lepton momenta are

 l� �
Q
2
�1; sin� cos�; sin� sin�; cos��;

�l� �
Q
2
�1;� sin� cos�;� sin� sin�;� cos��:

(A6)

Substituting the hadronic tensor in Eq. (4) and the leptonic
tensor in Eq. (A6) into Eq. (A1), one gets the differential
cross section of Eq. (1).

The frame-independent structure functions and the he-
licity structure functions are uniquely related to each other
once we make a choice of the coordinate system, or the unit
vectors, in the virtual photon rest frame. The unit vectors
for the Collins-Soper frame are chosen as [26]

 Z� �
2��������������������

Q2 �Q2
?

q �qP2
~P�1 � qP1

~P�2 �;

X� � �
�
Q
Q?

�
2��������������������

Q2 �Q2
?

q �qP2
~P�1 � qP1

~P�2 �;

Y� � ��
��T
Z�X�:

(A7)

The dimensionless current-conserving hadron momenta,
~P�1 and ~P�1 , are defined in Eq. (A5), and qPi � Pi � q=

���
S
p

with i � 1, 2. The hadron and the virtual photon momenta
can be expressed in the center-of-mass frame of the colli-
sion as

 P�1 �

���
S
2

s
�n�; P�2 �

���
S
2

s
n�;

q� � Q� �n� �Q� �n� �Q?n
�
?;

(A8)

with total center-of-mass collision energy
���
S
p

, Q� �����������������������������
�Q2 �Q2

?�=2
q

ey, and Q� �
����������������������������
�Q2 �Q2

?�=2
q

e�y. In
Eq. (A8), �n� � 
��, n� � 
��, and n�? � 
�? are unit
vectors that specify the light-cone coordinates of the col-
lision center-of-mass frame, with n2 � �n2 � 0, n2

? � �1,
n � �n � 1, and n? � n � n? � �n � 0. In the Collins-Soper
frame, the helicity structure functions can be expressed in
terms of the frame-independent structure functions in
Eq. (A4) as
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Q2
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4
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W 3

�
;
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1

4
�W 1e�2y �W 2e�2y� �
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4
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4
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W 3

�
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Q?
Q

�
1

4
W 1e�2y �

1

4
W 2e�2y

�
: (A9)

From the QCD collinear factorization formalism for the
hadronic tensor in Eq. (7) we obtain similar factorized
relations for structure functions,

 Wi �
X
ab

Z d�1

�1

Z d�2

�2
�a��1��b��2�wi��1; �2; q�;

(A10)

with i � T, L, ��, �; and

 W i �
X
ab

Z d�1

�1

Z d�2

�2
�a��1��b��2�!i��1; �2; q�;

(A11)

with i � 1 2, 3, 4. Using Eq. (A9), we derive the corre-
sponding relation between the short-distance parton-level
structure functions:
 

wT � !4 �
1

2

Q2
?

Q2

�
1

4
�!1e�2y �!2e�2y� �

1

4
!3

�
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wL �
1
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�!1e�2y �!2e�2y� �

1

4
!3 �!4;
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1

2

Q2
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Q2

�
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4
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1

4
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�
;

w� �
Q?
Q

�
1

4
!1e�2y �

1

4
!2e�2y

�
: (A12)

Integration over the solid angle of the decay leptons
gives the angular-integrated Drell-Yan cross section,

 

d�

d4q
�

�2
em

12�3S2Q2 �2WT �WL�

�
�2

em

12�3S2Q2 ��g�
W
�
�: (A13)

One can write the normalized Drell-Yan angular distribu-
tion as
 

dN
d�
�

�
d�

d4q

�
�1 d�

d4qd�

�
3

4�

�
1

	� 3

��
1� 	cos2��� sin�2�� cos�

�


2

sin2� cos�2��
�
; (A14)

with the coefficients of the angular dependence given by
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 	 �
WT �WL

WT �WL
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W�

WT �WL
;


 �
2W��

WT �WL
:

(A15)

APPENDIX B: PERTURBATIVE CONTRIBUTIONS
FROM UNPOLARIZED PARTONIC STATES

In this appendix we summarize the perturbative contri-
butions to the parton-level helicity structure functions for
unpolarized initial-state partons.

Using the definition in Eq. (7), we derive the contribu-
tion to the parton-level hadronic tensor from the quark-
antiquark annihilation diagrams in Fig. 2, with unpolarized
initial parton states.
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where 4=9 � �1=3�2
P
ATr�tAtA� is the color factor with

SU(3) generator tA, and 8�2�s � �2��g2
s . The factor

�2�� comes from the phase space expression
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The parton-level Mandelstam variables are

 ŝ � �p1 � p2�
2 � �1�2S;

t̂ � �p1 � q�2 � Q2 � 2�1P1 � q;

û � �p2 � q�
2 � Q2 � 2�2P2 � q:

(B3)

Using Eqs. (A12) and (B1), we obtain the parton-level
frame-independent structure functions
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!q �q
2 �

4

9
e2
q

8�2�s
t̂ û
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and the corresponding parton-level helicity structure func-
tions in the Collins-Soper frame,
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��2
1e�2y � �2

2e2y�

�
1

2
SQ2
?

�
S
�ŝ� t̂� û�Q2� �

1

2
wq �q
L ;

wq �q
� �

4

9
e2
q

8�2�s
t̂ û
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From the quark-gluon scattering diagrams in Fig. 3 with
unpolarized initial parton states, we derive the quark-gluon
contribution to the parton-level hadronic tensor,
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where 1=6 � �1=3��1=8�
P
A Tr�tAtA� is the color factor. We

obtain the parton-level frame-independent structure func-
tions
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ŝ��t̂�

��8�1�2Q2S�S
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ŝ��t̂�

��2
1e�2yS�Q2 �Q2

?�

� �Q2 � �1�2S�2�S
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and the corresponding contribution to the parton-level
helicity structure functions in the Collins-Soper frame,
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Similarly, we derive the contributions to the parton-level
hadronic tensor from the gluon-quark scattering diagrams.
They are the same as those from the quark-gluon scattering
diagrams with the momenta p1 and p2 (or equivalently
with t̂ and û, and �1 and �2) interchanged.

APPENDIX C: PERTURBATIVE CONTRIBUTIONS
FROM POLARIZED PARTONIC STATES

In this appendix we summarize the perturbative contri-
butions to the parton-level helicity structure functions for
polarized initial-state partons, defined as the states with
incoming parton polarization projected onto the difference
of the parton helicity states.

Based on the same quark-antiquark annihilation dia-
grams in Fig. 2, we find at this order that the contribution
to the parton-level hadronic tensor from the scattering of a
polarized incoming quark and antiquark is the same as that
from the scattering of an unpolarized quark and antiquark,
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q �q : (C1)

On the other hand, the quark-gluon scattering diagrams
in Fig. 3 with polarized quark and gluon initial states give a
contribution to the parton-level hadronic tensor that differs
from that for scattering of an unpolarized quark and gluon,
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We derive
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The contributions to the parton-level frame-independent
structure functions are
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�ŝ� t̂� û�Q2�: (C4)

The corresponding contributions to the parton-level helic-
ity structure functions in the Collins-Soper frame are
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Similarly, we derive the contribution from the polarized gluon and quark scattering process,
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The contributions to the parton-level frame-independent structure functions are
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�!gq
4 �

1

6
e2
q

8�2�s
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The corresponding contributions to the parton-level helicity structure functions in the Collins-Soper frame are
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ŝ��û�
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