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A procedure is developed for using soft collinear effective theory (SCET) to generate fully exclusive
events, which can then be compared to data from collider experiments. We show that SCET smoothly
interpolates between QCD for hard emissions, and the parton shower for soft emissions, while resumming
all large logarithms. In SCET, logarithms are resummed using the renormalization group, instead of
classical Sudakov factors, so subleading logarithms can be resummed as well. In addition, all loop effects
of QCD can be reproduced in SCET, which allows the effective theory to incorporate next-to-leading and
higher-order effects. We also show through SCET that in the soft/collinear limit, successive branchings
factorize, a fact which is essential to parton showers, and that the splitting functions of QCD are
reproduced. Finally, combining these results, we present an example of an algorithm that incorporates the
SCET results into an event generator which is systematically improvable.
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I. INTRODUCTION

To test a model of particle physics we must be able to
describe the distribution of particles it predicts. Only a
fully exclusive distribution is truly useful, since in order
to obtain a meaningful comparison between theory and
experiment, the theory must undergo a detector simulation
and be subjected to the same cuts as the experimental data.
However, high energy colliders produce events with thou-
sands of particles in each event. There is no easy way to
describe even the phase space for such complicated final
states, and therefore Monte Carlo simulations have become
essential for the analysis of every high energy experiment.
Practically speaking, the current generation of
Monte Carlo tools has been able to reproduce the standard
model remarkably well. But with the onset of the LHC,
new energy scales and new kinematical configurations,
such as events with many high pT jets, may appear, and
these tools will be pushed beyond their validity. So it is our
task to help these simulations incorporate as much infor-
mation from analytical calculations as possible, including
loop corrections and the cancellation of infrared divergen-
ces when appropriate, while still having them produce
exclusive events.

The problem with current techniques is that a number of
not necessarily good approximations are forced by practi-
cal considerations. For example, it is unreasonable to
calculate the analytic expression for a thousand-particle
amplitude, and so event generators resort to the parton-
shower approximation. This approximation starts with an
event resulting in, say, two quarks. These quarks then
branch into quarks and gluons, and evolve down in energy
until they hadronize at some low infrared (IR) scale. The
branching is treated as a classical Markov process with
emissions governed by splitting functions derived in the

strict collinear limit; thus any quantum mechanical inter-
ference effects are lost. A lot of work has gone into
improving the results from Monte Carlo simulations.
Mostly, it has been directed towards incorporating
higher-order QCD effects to improve the distributions in
regions where the parton shower cannot be trusted. And,
generally, quite good agreement with data has been
achieved. However, it remains an extremely important
open question to estimate the errors in these techniques,
and to be able to reduce those errors systematically. It goes
without saying that comparing theoretical predictions to
data, or comparing the output of different Monte Carlo
schemes, is not the ideal method of estimating error when
searching for new physics.

Part of the difficulty in simulating QCD is that it be-
comes strongly coupled at large distances. But even when
QCD is weakly coupled, there is not an obvious perturba-
tion expansion. Of course, we can expand a differential
cross section as

 d� �
X
n

�
�s
�

�
n
d��n�: (1)

But when there are multiple scales in the event, such as the
relative momentum of pairs of final state partons, large
logarithms may appear at any order. Typically,

 d��n� �
X
m<2n

c�n�m logm
pi
Q
; (2)

where pi is some kinematical variable, and Q is a fixed
reference scale, such as the center-of-mass energy of the
collision. Even if �s � 1 we may have �slog2�p=Q� � 1
and so the perturbation expansion breaks down. In this
case, the large logarithms need to be resummed. Parton
showers do this resummation, but without the right frame-
work, it is easy to lose track of which terms are accounted
for and which are not. The right framework is an effective
field theory which can sum the logarithms, incorporate
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finite �s corrections, and be extended with power correc-
tions to fully reproduce QCD to any desired accuracy. Such
an effective theory description was introduced in [1], and
in this work we will give more details and expand on that
approach.

An effective theory for event generation should not
disturb the infrared properties of QCD, where strong dy-
namics and hadronization take place. Infrared divergences
in QCD, such as a logarithmic dependence on the jet
resolution scale, can be physical and must be reproduced.
These divergences are either soft, for example, when a
gluon’s energy goes to zero, or collinear, such as when a
quark emits a possibly hard gluon in almost the same
direction. (SCET) [2–5]. In this paper, we show how
SCET can be implemented in an event generator so that
the results are systematically improvable. We will demon-
strate how at leading order, SCET is equivalent to the
traditional parton-shower approach. Parton showers write
the probability for a branching as

 d� � ����P��; z�; (3)

where P��; z� is a splitting function and ���� a Sudakov
factor

 ���� � exp
�
�
Z
dzP��; z�

�
: (4)

The splitting function represents the probability of a parton
to split, and the Sudakov factor accounts for the fact that if
a parton splits at a scale �, it should not have already split.
We will see the splitting function derived from collinear
emissions in SCET and the Sudakov factor reproduced
from renormalization group (RG) evolution. One of the
important facts of QCD, which gives rise to parton showers
and which allows Monte Carlo techniques simulate mul-
tiple branchings, is that a given cross section factors into a
product of probabilities, namely, the probability to create
an initial final state, multiplied by the probabilities to have
subsequent splittings. This will be rederived from SCET.

Besides justifying the parton-shower approach, SCET
can be used to improve it. The problem of how to properly
combine QCD matrix elements with parton showers is first
cast in the language of scale separation. When the loga-
rithms appearing in the differential cross section are large,
the scales are widely separated, and the effective theory
can be matched at the higher energy scale, and run down to
the lower scale. The splitting functions used in the parton
shower describe the long distance behavior of QCD (and of
SCET), while the short distance physics is different in the
two theories. Although the short distance physics of QCD
is not fundamentally part of SCET, it can be fully repro-
duced through a consistent matching procedure. Thus
SCET is valid at all scales, in contrast to QCD or the parton
shower separately.

We would like this paper to be self-contained and gen-
erally readable by both SCET and the Monte Carlo com-
munities, as well as people familiar with neither field. So

we attempt to incorporate a terse and incomplete review of
event generators in Sec. II and of SCET at the beginning of
Sec. IV and in Appendix A. Section III gives a schematic
presentation of the general idea of event generation in
SCET. As much as possible, we sequester the detailed
calculations to Sec. IV, which is the heart of the paper.
The results of Sec. IVare applied in various ways in Sec. V.
We show first how Sudakov factors are reproduced from
the renormalization group in SCET. A discussion is in-
cluded of next-to-leading log resummation. We then dis-
cuss how the splitting functions and the factorization of
successive branchings are understood from SCET. Next,
we explore next-to-leading order (NLO) effects, which
include the cancellation of infrared divergences in physical
observables. We show that SCET reproduces the perturba-
tive QCD result for the total inclusive cross section at
NLO. Finally, we use the SCET results to calculate some
observables from parton-level results. We present the thrust
distribution for 3-parton states, and the 2-jet fraction �2.
Section VI first summarizes how differential cross sections
are calculated, and then describes a simple algorithm that
can use these cross sections to distribute events in a
Monte Carlo program. Finally we present our conclusions
and outlook. We also include in Appendix B some kine-
matical relations and conventions that are used throughout
the paper.

II. INTRODUCTION TO PARTON SHOWERS AND
EVENT GENERATORS

In this section we review some aspects of how parton
showers and event generators work, with an eye towards
comparing to the SCET approach. This section contains no
new information, and readers familiar with the subject can
safely skip this section.

An event is typically generated in three phases [6–9].
First a simple hard process is selected at the parton level,
with a probability proportional to its production cross
section calculated using the standard Feynman diagram
methods. Second, the partons, which are taken to be highly
off shell at the hard scale, radiate additional partons and
‘‘evolve’’ down.

Parton showers use classical evolution to describe the
emissions of particles: they assign a probability for one
particle to split in two. This probability depends on two
kinematical variables. The first variable, �, is chosen to be
a measure of the virtuality of the initial particle, and tends
to zero if the two final particles are collinear. The second
variable, z, measures the relative energy between the two
final particles. Using that the splitting is independent of
azimuthal angle, and that the branching probability is
linearly divergent as � goes to zero, the probability is
proportional to

 P��; z� �
�s
2�

Pab�z�
�

(5)

CHRISTIAN W. BAUER AND MATTHEW D. SCHWARTZ PHYSICAL REVIEW D 76, 074004 (2007)

074004-2



up to terms of order �0. Here, P��; z� is our notation, while
Pab is the traditional spin averaged splitting function, with
a, b indexing the final state particles. For example, the
quark splitting function in QCD is

 Pqg�z� � CF
1� z2

1� z
; (6)

where CF �
4
3 .

In order to calculate the classical probability of an initial
particle with virtuality �1 to branch at a particular value �2,
one needs to include the probability that no branching has
occurred at a larger value of �. This is similar to the well-
known case of nuclear beta decay, where this no-branching
probability is responsible for the exponential decay rate.
The probability of no-emission from �1 to �2 is then given
by an integral, known as a Sudakov factor

 ���2; �1� � exp
�
�
Z �2

�1

d�
�

Z
dz
�s����; z	�

2�
Pab�z�

�
:

(7)

Here, the scale � at which �s is evaluated can depend on
both � and z. As an example, consider a quark-antiquark
pair with virtuality Q. The probability that a branching
occurs at a scale � is given by the probability that neither
quark branched at a scale greater than �, times the proba-
bility for either of the two to branch at that scale. Thus the
differential cross section to have three final state partons is
given by the cross section for two final state particles,
multiplied by a Sudakov factor and the sum of the two
splitting functions for quark and antiquark emission

 d�3 � d�2��Q; ��2�P��; z� � P0��; z�	; (8)

where P0 is the equivalent of P for the antiquark emission.
Parton showers rely on two crucial assumptions. First,

one neglects the interference between the emissions off the
various particles, and second, the intermediate states are
taken on shell when deriving the splitting functions. For
example, in the emission of a gluon off a quark-antiquark
pair, the square of the full matrix element in QCD is
replaced by a sum of two independent emission graphs

(9)

Both of these assumptions can be justified in the limit �!
0, which implies that the virtuality of the branching particle
is small compared to its energy. In that limit the branching
particle becomes almost on shell and the interference
between the two QCD diagrams becomes subdominant.

Note that the two diagrams on the right-hand side are not
gauge invariant and thus not well defined. The parton
shower circumvents this problem by summing only over
physical polarizations, which restores gauge invariance,

ipso facto. The splitting functions are well defined because
the residue of the pole is gauge invariant and does not get a
contribution from interference. But the �0 and higher-order
pieces depend on conventions. For example, take the
square of the relative transverse momentum between the
two final state particles, p2

T , as the measure of the virtuality
�. The branching probability is then proportional to P��; z�
with � � p2

T . Now consider the different choice � � t,
where t denotes the invariant mass of the two final state
particles t � �pi � pj�2=Q2. These two variables are re-
lated by

 p2
T �

t�z� t� tz��1� z� tz�

�t� 1�2
� tz�z� 1� �O�t2�:

(10)

Using this to change variables in P�t; z�, we reproduce the
same pole terms as in P�p2

T; z�, however the higher-order
terms differ. Thus we cannot define the higher-order terms
in splitting functions in a consistent way.

From the discussion so far we have learned that parton
showers give simple expressions for the emission of par-
tons. These can easily be turned into powerful computer
algorithms using Monte Carlo techniques, which can be
used to generate final states with many partons. One starts
with a cross section for a process with a limited number of
particles in the final state. In practice, event generators
often start with processes with only two final state partons.
The virtuality of these two partons is chosen to be compa-
rable to the hard scale of the interaction Q, and all addi-
tional partons in the final state are generated by the
classical probabilities of particles to split into two particles
with lower virtuality. This can be cast in a Markov Chain
process, evolving the system from high to low virtuality,
adding additional particles through the splitting functions.
Different parton-shower algorithms all use the physics
described above, but they differ in which next-to-leading
order effects they incorporate. First, they use different
choices for the evolution variable � [10,11]. Second, they
use different choices for the scale � at which �s��� is
evaluated in (7). Finally, for each emission in a parton
shower, z and � are distributed over phase space assuming
that the partons are on shell. But subsequent branchings
require the partons to be off shell, so there is an ambiguity
in how to assign the kinematics [12]. All of these effects
only contribute at next-to-leading order, but they can give
rise to considerable differences between the different pro-
grams in certain cases.

Another aspect of QCD that has to be taken into account
carefully arises for the emission of a soft parton [13,14].
The analog of the Chudakov effect from QED is that, when
integrated over azimuth, soft emissions at large angle are
sensitive only to the aggregate color charge of all the
contributing partons. The result is that large angle soft
emissions are suppressed. This is generally incorporated
into parton showers by either using an evolution variable
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which corresponds to angle (as in Herwig [7]) or by
explicitly vetoing emissions which are not angular ordered
(as in some versions of Pythia [15]).

The assumptions of parton showers restrict their validity
to regions of phase space where each successive emission
has to have virtuality much smaller than any previous one,
Q
 �1 
 �2 
 . . . . Regions of phase space with ��Q
are only correctly described by the full QCD matrix ele-
ments. Thus, only an event generator which combines both
the full QCD matrix elements with the parton showers will
yield predictions which are correct to a given fixed order in
perturbation theory, while also summing the leading loga-
rithms correctly and allowing for the additional production
of partons with small transverse momenta. Several tech-
niques have been developed which allow such a combina-
tion of QCD matrix elements with parton showers,
including original work which has been implemented in
Pythia and Herwig [16–18] and some more recent develop-
ments [10,19–23]. One popular example is the CKKW
procedure [19], which provides a way to combine tree-
level QCD matrix elements with parton-shower evolution.
The idea is to compute the exact tree-level QCD matrix
element for an event, including interference, but with a
lower cutoff �0 on the virtuality between any two particles.
One then reconstructs the dominant diagram using the kT
algorithm [24] and reweights the event by multiplying with
appropriate Sudakov factors. Parton showers are then
added to these matrix elements, vetoing all emissions
with � > �0. This avoids double counting between the
emissions contained in the QCD matrix elements and those
generated by the parton showers. This algorithm has been
tested against data, and overall the procedure seems to
work very well [22].

A truly accurate next-to-leading order calculation would
also incorporate loop diagrams. To obtain the matrix ele-
ments at NLO requires calculating the one-loop correction
to the lowest order matrix element and combining it with
the matrix element which describes the radiation of one
additional parton. The difficulty in going to NLO is that
both the virtual contributions at one loop and the real
emission have infrared divergences, which only cancel
when both diagrams are combined to calculate an
infrared-safe observable [25,26], and this cancellation is
difficult to encode numerically. MC@NLO [27] provides
one solution (see also [28–34]). It uses the fact that the first
splitting in the parton shower reproduces the IR divergence
of the real QCD emission, and can thus be used to devise a
subtraction from both the real and virtual diagrams that
render both these contributions finite. This yields two
separate matrix elements, which are both finite and can
be used as starting conditions for a traditional parton
shower. The initial results appear promising [35]. One
problem is that MC@NLO works at the level of cross
sections, not matrix elements, so it runs up against the
possibility of having negative weights. It is also not clear
how to generalize the procedure to higher orders.

III. JET DISTRIBUTIONS FROM SCET:
SCHEMATICS

As we have seen in the previous section, the traditional
Monte Carlo method uses splitting functions and Sudakov
factors to generate a fully showered event. An event gen-
erator typically starts with an underlying hard process
calculated using matrix elements of the full theory. The
splitting functions then generate additional partons from
these simple final states. The Sudakov factor, which is the
probability of no-branching, is included, and it resums the
large logarithms at leading order. The traditional
Monte Carlo method uses splitting functions and
Sudakov factors to generate a fully showered event. Both
splitting functions and Sudakov factors can be derived in
the limit of small transverse momentum, and parton show-
ers are only correct in the limit where each successive
branching has pT much smaller that any previous branch-
ing: Q
 p�1�T 
 p�2�T . . . . Thus, only events with widely
separated momentum scales can be described using parton-
shower techniques. The occurrence of these widely sepa-
rated scales makes it natural to reformulate the problem in
the language of effective field theory. The appropriate
effective theory for this problem is the soft collinear effec-
tive theory (SCET), which is designed to reproduce exactly
long distance physics in the limit of collinear or soft
radiation. SCET is a simplified version of QCD where
only collinear and soft degrees of freedom are kept and
all others have been integrated out. Any calculation using
effective field theories requires three steps. First, one needs
to match the effective theory onto the underlying theory.
Matching determines coefficients in the effective theory
such that at some short distance scale it exactly reproduces
the underlying theory. This ensures that the effective theory
below that scale contains the same information as the
underlying theory. The scale for this matching calculation
is typically chosen to coincide with the hard scale in the
problem, for example, the center-of-mass energy of the
collision. This ensures that the resulting short distance
coefficients do not contain any large logarithms. Second,
the effective theory is evolved to the lower scales arising in
the process one wants to describe. This is achieved tech-
nically using renormalization group (RG) evolution, which
sums logarithmic terms of the ratio of the low to the high
scale. Finally, the matrix elements of the operators in the
effective theory are calculated at the low scale.

As we will show in this paper, these steps naturally
correspond to the ingredients in traditional parton showers
mentioned above. The matching calculation encodes the
hard underlying process which we want to study. The
solution to the RG evolution gives rise to evolution kernels,
which are equivalent to appropriate combinations of
Sudakov factors. And the resulting matrix elements in
SCET have the property that in the collinear limit their
squares simplify to squares of simpler operators, multiplied
by the splitting functions of QCD.
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The first step is to match the full theory onto the effective
theory at the hard scale Q. To match, we introduce opera-
tors in SCET and choose their coefficients such that the
matrix elements in QCD and SCET are the same. The
matching can be done perturbatively in �s to any order.
Once we have matched at the hard scale, we no longer need
QCD. To be more specific, consider the process e�e� !
hadrons. In the standard model, this is mediated by a
current

 J � �q�q; (11)

where � � �� in the case of an intermediate photon or
� � gV�� � gA���5 if the Z boson is included. The
current has a nonvanishing matrix element in many final
states, and we can compute hJ jp1 � � �pni �
h0jJ jp1 � � �pni for any number of partons. In SCET, the
process is mediated by operators which are constructed out
of the fundamental objects of SCET: soft and collinear
gluons, collinear quarks, and Wilson lines. Wilson lines are
required to ensure gauge invariance of SCET, and each
collinear field needs to be multiplied with Wilson lines in
the appropriate SU(3) representation. For example, col-
linear fermions and collinear gluons always come in the
combinations

 �n � Wn�n; A�
n �

1

�n � p
Wn� �n �D;D

�	Wyn : (12)

In the SCET literature A� is commonly written as B?� . To
reproduce the production of two collinear back-to-back
partons one requires an operator in SCET which contains
two collinear fields, one for each of the directions:

 O �n; �n�
2 � ��n�� �n: (13)

Each operator comes with a set of labels, corresponding to
the directions ni of its collinear fields. We write

 O �n�
j �O�n1;n2�

2 ;O�n1;n2;n3�
3 ; � � � ; (14)

where nj are the label momenta. The labels identify the
degrees of freedom which cannot change—all the hard
degrees of freedom which could have changed the collinear
momentum in the full theory are integrated out of SCET.
Note that there can be many operators with the same labels
but different tensor structure (for example, the operators
O3 and O�2�3 we will define later on). For notational sim-
plicity, we will often omit the labels (ni) when there is no
ambiguity.

The matching between QCD and SCET implies that we
want to choose coefficients Cj for these operators such that
the sum over all the operators reproduces the current of
QCD

 J � C2O2 � C3O3 � C4O4 � � � � : (15)

Since the Wilson coefficients Cj only encode short distance
physics, they are independent of the choice of states used in

the calculation of matrix elements. So, to satisfy this
equation, we can take matrix elements in convenient states,
and build up the Cj systematically. First, we take matrix
elements with two quarks in the final state, which gives the
matching condition

 hJ jq �qi � C2hO2jq �qi; (16)

as no other higher-order operators have matrix elements in
a 2-quark state. This allows us to determine C2. Next, we
take matrix elements with two quarks and one gluon

 hJ jq �qgi � C2hO2jq �qgi � C3hO3jq �qgi; (17)

and it allows us to determine C3. The Wilson coefficients
Cj with j > 3 are determined analogously. In order to
correctly match QCD with up to m well-separated partons
requires operators Oj with n  m in SCET. The next step
is running. The matching determines the Wilson coeffi-
cients at the matching scale, Cj�� � Q� and the running
will allow us to obtain them at lower scales. The Wilson
coefficients at these two scales are related by

 C n��� � Cn�Q��n�Q;��: (18)

The calculation of the evolution kernel �n is a straightfor-
ward application of the renormalization group, and it in-
volves calculating the anomalous dimensions of the
operators in SCET. Because the interactions in SCET are
simpler than in QCD, the anomalous dimensions are fairly
easy to compute. In fact, we will compute a closed form,
algebraic expression, for the LL anomalous dimension of
any Oj.

The interactions in SCETallow for collinear gluons to be
radiated off collinear quarks and gluons, or collinear glu-
ons to split into two collinear quarks. However, since
SCET only describes the collinear or soft limit of QCD,
the transverse momentum between the resulting particles
has to be small. How small depends on the renormalization
scale at which the emission is calculated, and the require-
ment is typically p? & �. As an example consider the
matrix element of O2 in a three-parton final state with
specific momenta jq �qgi. Let pT be the transverse momen-
tum of the gluon with respect to a quark.1 If the renormal-
ization scale satisfies �> pT , then gluon emission in
SCET can give rise to a gluon in the final state, and a
nonvanishing matrix element. If, however, �< pT , then
the SCET emission is not able to produce a gluon in the
final state, and the matrix element of O2 vanishes. For
theory to be continuous across pT , matrix elements at the
scale � � pT � 	 must be equal to matrix elements at
� � pT � 	. More precisely, we require that

1Our notation is that p? is SCET notation for the perpendicu-
lar momentum label on a collinear field, while pT refers to the
transverse momentum between two four-vectors.
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 �C2hO2i � C3hO3i � � � �	��pT�	

� �C2hO2i � C3hO3i � � � �	��pT�	: (19)

To compensate for the discontinuity of hO2i at� � pT , we
only need to change C3hO3i; all other matrix elements are
continuous across the threshold. So we derive the matching
condition

 �C2hO2i	��pT�	 � �C
�2�
3 hO

�2�
3 i	��pT�	: (20)

We call this matching threshold matching and it is done
wholly within SCET. Note that the operator O�2�3 in Eq. (20)
is different from the operator O3 arising in the hard match-
ing at � � Q. To distinguish these operators we add a
superscript, which labels the number of partons present at
the hard matching scale. For simplicity, we omit the super-
script for the operators matched at Q: Oj � O�j�j . Let us
apply these results and calculate the SCET expressions for
a three jet final state, with the transverse momentum of the
emitted gluon given by pT . After matching QCD onto
SCET at the hard scale � � Q we find

 hSCETiQ � C2�Q�hO2i � C3�Q�hO3i � hQCDi: (21)

Using the RG evolution, we can obtain this at a lower scale
�

 hSCETi� � C2�Q��2�Q;��hO2i � C3�Q��3�Q;��hO3i:

(22)

Finally, at the � � pT we have to perform the threshold
matching to obtain
 

hSCETipT � C2�Q��2�Q;pT�hO
�2�
3 i

� C3�Q��3�Q;pT�hO3i: (23)

This last step of matching is not required to obtain three jet
final states, but we did include it here for completeness. To
calculate a differential cross section, we need to square this
matrix element and sum over final state spins and polar-
izations. Using the Feynman rules in SCET we will show
later that emissions in SCET factorize. In particular,

 jhO�2�3 jq �qgij2 � jhO2jq �qij2P�pT; z�; (24)

where z � Eq=�Eg � Eq�. The function P�pT; z� is equiva-
lent to a splitting function of QCD, up to power correc-
tions, in the collinear limit.

We can now show that SCET agrees with QCD for large
pT and the parton shower for small pT . First, consider the
limit pT �Q. Then, �n�Q;pT� � 1 up to higher-order
corrections. So Eq. (23) reduces to Eq. (21) and we repro-
duce QCD. Next, take the limit pT � Q. Then we are in
the collinear limit, and so the matrix element of O2 is very
similar to that of QCD. Thus, hO3i � 0, since O3 is the
difference between QCD and SCET. So d��
C2�Q��2

2hO
�2�
3 i

2. Now, the kernel �2, is equivalent to the

Sudakov factor, and as shown in Eq. (24), the matrix
element reproduces a splitting function, therefore the
SCET differential cross section in this limit reduces to
the parton-shower result (8).

IV. REQUIRED CALCULATIONS IN SCET

In this section we present details of the SCET calcula-
tions required to implement the scheme from the previous
section. As we have seen in the previous section, there are
three steps in the SCET calculations required to obtain jet
distributions. First, we need to calculate the matching from
QCD to SCET at some hard scale ��Q. Second, the
renormalization scale of the operators is lowered using
the renormalization group evolution. Third, a threshold
matching is required when the renormalization scale gets
lowered past the transverse momentum of one of the
partons in the final state. Each of these three steps will
be addressed in its own subsection. We will try to keep
results as general as possible, but sometimes it will be
necessary to choose a particular example. In this section
we assume that the reader is familiar with the basic idea of
SCET. For a quick review of SCET we refer the reader to
Appendix A and the original literature [2–5]. This is the
most technical section of the paper, and for readers not
interested in the details, we will briefly summarize the
results obtained in this section. This will make it possible
to skip this section and still be able to follow the rest of the
paper.

The SCET results at O��s� are as follows. The full QCD
current is reproduced in the effective theory by operators
On, such that

 J � C2O2 � C3O3 � C�2�3 O�2�3 � � � � : (25)

The operators are given by

 O 2 � ��n�� �n; (26)

 O 3 � gs ��nq

�
6Ang
6n �q

2

1

n �q � P
y

�� �
1

nq � P

6nq
2
6Ang

�
�n �q

;

(27)

 O �2�
3 � gs ��nq

�
6Ang

�6n �q

2

1

�n �q � P
y

�� �
1

�nq � P

�6nq
2
6Ang

�
�n �q

;

(28)

and for the Wilson coefficients required to NLO we find

 C 2�Q� � 1�
�sCF

4�

�
8�

7�2

6
� 3�i

�
; (29)

 C 3�Q� � 1; (30)

 C �2�3 �pT� � C2�pT�: (31)
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The Wilson coefficients Cn satisfy the RG equation

 �
d
d�

Cn��� � �n���Cn���: (32)

The anomalous dimensions are

 �2 � �
�s
�

�
CF log

��2

Q2 � CF
3

2

�
; (33)

 �3 � �
�s
�

�
CF

�
log

��2

�pq � p �q�
2 �

3

2

�
�
CA
2

�

�
log

��2�pq � p �q�
2

�pq � pg�2�p �q � pg�2
�

1

6

��
; (34)

 �n � �
�s
�

��nq
2
CF �

ng
2
CA

�
log
�2

Q2 � Bn

�
: (35)

The Wilson coefficients evolve through the kernels �n:

 C n��1� � Cn��2��n��2; �1�: (36)

For a general anomalous dimension

 �n � �
�s
�

�
�n log

�2

Q2 � Bn

�
(37)

we can solve �n explicitly
 

�n�Q;�� � exp
�

8�


2
0�s�Q�

�n

�
log
�s�Q�
�s���

� 1�
�s�Q�
�s���

�

�
2


0
Bn log

�s�Q�
�s���

�

� 1�
�s�Q�

4�

�
�nlog2 �

2

Q2 � 2Bn log
�2

Q2

�

� � � � ; (38)

where

 �s��� �
�s�Q�

1� 
0

4��s�Q� log�
2

Q2

; 
0 �
11

3
CA �

2nf
3
:

(39)

Only the piece proportional to �n is the leading-log re-
summation, the Bn resums a subset of next-to-leading logs.

A. Matching from QCD to SCET

The first step is matching from QCD to SCET. As
discussed in Sec. III, the matching condition is

 J � C2O2 � C3O3 � C4O4 � � � � ; (40)

and we want to choose Wilson coefficients in the effective
theory such that QCD is reproduced at the scale Q to a
given order in perturbation theory. QCD matrix elements
with up to n well-separated partons appear at O�gn�2

s � in

perturbation theory. In order to correctly reproduce these
matrix elements, we require operators in SCETwith up to n
collinear fields. In the remainder of this section, we will
explicitly perform the matching onto operators O2 and O3,
and comment on how to extend these calculations to op-
erators with four or more collinear fields. As discussed
above, each operator Oj depends on j labels for the direc-
tions of the j collinear fields. For each set of labels a
different Wilson coefficient exists, so that in principle
each product of operator and Wilson coefficient in
Eq. (40) represents an infinite sum over the various labels.
We will carefully treat the label dependence in the two-jet
matching, but will then neglect the label dependence in the
further discussions.

1. Matching onto O2 at tree level

The first step is to ensure that matrix elements with two
quarks are correctly reproduced. Since the operators Oj

with j > 2 have at least 3 collinear fields, they do not
contribute to these matrix elements. Thus we need to
choose Wilson coefficients C�n�2 so that

 hJ jq �qi �
X
ni

Cn1n2
2 hO�n1;n2�

2 jq �qi; (41)

where

 O �n1;n2�
2 � ��n1

��n2
(42)

is a general basis of operators with 2 collinear fermion
fields. To evaluate matrix elements on the right-hand side
of (41), we need to know how jets �n act on quark states
jqi. The simplest prescription is

 �njqi � �n�;n�q ; (43)

where n�q � p�q =Eq. If J produces two quarks, they must
be back-to-back in the center-of-mass frame. So with this
prescription, only the operators with n2 � �n1 get a nonzero
coefficient. With these conventions, the matrix elements of
the operator O2 is identical to the matrix element of the
QCD current J and we thus obtain

 C n; �n
2 � 1; Cn1;n2

2 � 0; n1 � �n2: (44)

SCET fields also have labels corresponding to their p?
momenta, but we choose to turn off any operator with
p? � 0. Other choices for collinear fields acting on quark
states are possible, and in fact (43) is by itself ambiguous.
We can always write �n as a jet in a different direction n0

using (A7)

 �n �
6n �6n
4

�
1�

6p?
�n0 � p

�6n0

2

�
�n0 ; (45)

where p? is transverse to n0. Thus it would seem that
�njqi � 0 even if q is not aligned with n. This ambiguity
is resolved at higher order. Note that n � n0 � p2

?, thus as
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long as n � n0 � 1 the two fields are equivalent up to power
corrections. This implies that any operator ��n1

��n2
with

n1 � n2 � 1 could be used as the operator O2. Of course, in
order to determine the matrix element of the operator O2

requires knowledge of how a SCET field with a given
direction n creates or annihilates a final state with momen-
tum in a direction n0. Any choice other than Eq. (43) will
make the required calculations more difficult, so for sim-
plicity we will stick to (43) for the rest of this paper.

2. Matching onto O3 at tree level

Now that we have determined the matching onto the
operator O2 we can proceed to match with 3-parton final
states. The matching condition reads

 hJ jq �qgi � C2hO2jq �qgi � C3hO3jq �qgi: (46)

The left-hand side is given by the matrix elements for real
emission in QCD from the quark and the antiquark leg

 hJ jq �qgiq � gs � q
6A�6pq � 6pg�

�pq � pg�2
� �q;

hJ jq �qgi �q � �gs � q�
�6p �q � 6pg�6A

�p �q � pg�
2  �q:

(47)

For the right-hand side, the operator O2 and its Wilson
coefficient were determined in the previous section, but we
need to evaluate the three-parton matrix element for O2. In
principle, the additional gluon can be either collinear or
soft. We will first choose the gluon to be collinear and later
check that the resulting matching condition is satisfied in
the soft limit as well. The collinear emissions in SCET can
come out of either a vertex from the Lagrangian or from a
Wilson line. The matrix elements are extracted from the
interaction vertices, and simplify with the equations of
motion �6n� �n � ��n 6n � 0.

 hO2jq �qgiLq � gs
�n � �pq � pg�

�pq � pg�2
��nA�

�
n� �

6p?q �
�
?

�n � pq
�
��?�6p

?
q � 6p

?
g �

�n � �pq � pg�
�

6p?q �6p
?
q � 6p

?
g �

�n � pq �n � �pq � pg�
�n�
�

�� �n;

hO2jq �qgiL �q � �gs
n � �p �q � pg�

�p �q � pg�
2

��n�
�

�n� �
��?6p

?
�q

n � p �q
�
�6p?�q � 6p

?
g ��

�
?

n � �p �q � pg�
�

�6p?�q � 6p
?
g �6p?�q

n � �p �q � pg�n � p �q
n�
�
A�� �n;

hO2jq �qgiWq � gs ��n
�n � A
�n � pg

�� �n; hO2jq �qgiW �q � �gs ��n�
n � A
n � pg

� �n:

(48)

As the SCET Lagrangian is constructed to be gauge
invariant, the matrix elements should satisfy a Ward iden-
tity. It is a straightforward check to see that hO2jq �qgiW �
hO2jq �qgiL vanishes when A� � p�g . This holds separately
for the quark and antiquark emissions, as it must since
SCET is invariant under gauge transformations of the col-
linear fields in each direction separately. There are several
issues that have to be resolved before we can use the above
results to determine the matching of the operator O3. First,
note that the collinear emission from a Wilson line gives a
divergence if the large label momentum ( �n � pg for hO2i

Wq

and n � pg for hO2i
W �q) becomes small. In SCET, the col-

linear phase space integration involves summing over the
large momentum labels, as well as integrating over the
residual part of the momentum. However, in the sum
over collinear momenta the value �n � p � 0 and p? � 0
has to be omitted [36]. Thus, the phase space integration
will never reach a value for the label momentum such that
the unphysical divergence is realized. However, keeping
track of the condition �n � p � 0 in the phase space inte-
gration can be difficult, and we therefore propose a scheme
which will allow us to integrate the phase space naively,
without having to worry about small label momenta. In this
scheme one neglects the emissions from the collinear
Wilson lines all together, and ensures gauge invariance
by summing over only transverse polarizations when
squaring the resulting matrix elements. By neglecting the

hO2i
W contributions, we subtract the divergences at small

�n � p. Any appropriate prescription will modify the effec-
tive theory only at short distances, and therefore differ-
ences in prescription can be absorbed by appropriately
adjusting the Wilson coefficients in the matching condi-
tion. In practice, however, we have to evaluate matrix
elements at finite momenta, which are neither exactly at
the hard scale where the matching is done, nor in the strict
collinear limit, where the different prescriptions coincide.
Therefore the physical results may differ. However, these
differences are beyond leading order in the SCET expan-
sion, i.e. they are power corrections.

The second issue is that emissions in SCET cannot
change the directions of the fermions. Since the operators
O2 that were matched on in the two-jet matching have the
two fermions in back-to-back directions, the matrix ele-
ment of O2 can only give rise to final state with back-to-
back fermions. But if momentum is to be conserved when
we include the gluon, the directions of the quark and
antiquark momenta can never satisfy nq � �n �q exactly.
This implies that in order to insist on (43), we need to
change the direction of at least one of ��n or � �n using (45),
otherwise we could never get a nonvanishing matrix ele-
ment with three partons in different directions. There are
again various possibilities to deal with this, and all of them
will lead to the same results up to power corrections. The
choice we will adopt here is that directions of collinear
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fields which are not involved in the emission do not
change. Then we rotate the emitting field into the direction
of its final state. In other words, we use

 

�� n���� �n	 ! ��nq
6n �q

�6n �q

4
����n �q

	;

� ��n�	�� �n ! � ��nq�	�
�6nq 6nq

4
�n �q

;

(49)

where � is some arbitrary operator. This equation shows
how to replace a fermion in SCET with a fermion in QCD,
which is necessary to compare matrix elements in the same
external states. We now see that two different operators

O
�n �q �n �q�

2 and O
�nq �nq�
2 contribute to the same final state.

Pictorially,

The first will turns O2 into O�3�3 when the quark emits, and
the second when the antiquark emits. We want to empha-
size again that this is just a convention, and equivalent to
any other convention up to power corrections.

The transverse momenta are measured with respect to
the directions n and �n. This implies that when the quark
emits, p?q � p?g � 0 and when the antiquark emits, p?�q �
p?g � 0. Using these results together with (49), the quark
emission and antiquark emission contributions to the ma-
trix element of O2 can be simplified to

 hO2jq �qgiLq � gs
n �q � �pq � pg�

�pq � pg�
2

��nq 6A
�6n �q

2
��n �q

;

hO2jq �qgiL �q � �gs
nq � �p �q � pg�

�p �q � pg�2
��nq�

�6nq
2
6A�n �q

:

(50)

Using the results of the SCET matrix elements given in
Eq. (50) and the QCD matrix elements given in Eq. (47),
their difference reduces to the simple form [1]
 

hJ jq �qgiq � hO2jq �qgiLq

� gs
�n �q � �pq � pg�

�pq � pg�
2

��nq 6A
6n �q

2
��n �q

;

hJ jq �qgi �q � hO2jq �qgiL �q

� �gs
�nq � �p �q � pg�

�p �q � pg�2
��nq�
6nq
2
6A�n �q

: (51)

The final step in the matching is to choose a basis for the
3-jet operators O�n�3 . The standard convention is to have
C3 � 1 at tree level, so we take O3 � J �O2. Thus, we
arrive at

 

O3 � gs ��nq

�
6Ang
6n �q

2

1

n �q � P
y

�� �
1

nq � P

6nq
2
6Ang

�
�n �q

;

C3 � 1; (52)

where A�
n was defined in Eq. (12). Note that O3 is the

difference between the QCD and SCET emissions. Since
the operator O2, together with the SCET emission of an
additional gluon describes the infrared physics of QCD, the
operator O3 only has contributions for large values of the
transverse momentum. If the gluon is soft instead of col-
linear, there are two emission diagrams in SCET. The
matrix elements are

 hO2jq �qgiSq � gs ��n
n � A
n � pg

�� �n;

hO2jq �qgiS �q � �gs ��n�
�n � A
�n � pg

� �n:

(53)

This can be compared with the collinear results given our
convention of dealing with label momenta going to zero. In
that scheme we only keep the matrix elements hOiL and
sum only over transverse polarizations of the gluons.
Taking the soft limit of hO2jq �qgi (by taking pg �
�n � pq, n � p �q) we find

 hO2jq �qgiLq ! gs ��n
n � A
n � pg

�� �n;

hO2jq �qgiL �q ! �gs ��n�
�n � A
�n � pg

� �n:

(54)

Thus, the soft limit of the collinear Lagrangian emission is
identical to the soft gluon emission. However, care has to
be taken about the second part of the convention, namely,
the fact that we only sum over transverse polarizations.
Since for gauge invariant amplitudes the longitudinal po-
larizations do not contribute to physical processes, the soft
gauge invariance of SCET is enough to ensure that the sum
over transverse polarizations is equivalent to the sum over
all polarizations. SCET is by construction gauge invariant,
but one can also see the invariance trivially from Eq. (54).
Replacing A� ! p�g , the two contributions are equal and
opposite in sign and thus cancel. Thus, the amplitude
satisfies the Ward identity and is gauge invariant. With
these two observations it is obvious that the collinear
emission reproduces the soft emission properly. In sum-
mary, we have chosen the conventions

(i) All fields appearing in operators have labels for col-
linear momenta only; in our basis, all p? momentum
components are zero.

(ii) Emissions are calculated with the collinear emission
from the SCET Lagrangian only. Wilson line emis-
sion and soft emission are discarded.

(iii) To maintain gauge invariance, we include only trans-
verse polarizations of the gluons.

(iv) Fermions in SCET are rotated to a direction aligned
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with their 4-momentum before matrix elements are

taken, i.e. �n !
6n �6n
4 �nq , where n�q � 1

Eq
q� for mass-

less fields.
All other conventions are equivalent up to power
corrections.

3. Matching onto O4 at tree level

We can outline the calculation for matching 4-jet opera-
tors O4. These will make up for the difference between
what SCET predicts when we have used only 3-parton
QCD results, and the true 4-parton QCD prediction.
Starting from q �q, a 4-parton state can be either qgg �q or
q �qq �q. We need to solve

 hJ j4i �
X
�n�

C�n�2 hO
�n�
2 j4i � C�n�3 hO

�n�
3 j4i � C�n�4 hO

�n�
4 j4i:

(55)

Let us take the jq �qq �qi state as an example. Then there are
two QCD diagrams which contribute

(56)

On the SCET side, the O2’s can contribute

(57)

as well as O3

(58)

and of course O4:

(59)

Using the results for O2 and O3 obtained previously, we
can determine C4 and O4. In a similar way, the tree-level
matching for n jets can be worked out. Note that since we
have already set the conventions for evaluating matrix
elements, there is no additional ambiguity when we match
to operators with 4 or more collinear fields.

4. 2-jet matching at NLO

So far, we have performed the matching calculations at
tree level, and the normalization of the operators was
chosen such that all Wilson coefficients are unity. In this
subsection, we will determine the Wilson coefficient C2 at
O��s�, which will be required to describe jet distributions
at NLO. The matching condition is still given by Eq. (41),

but the matrix elements need now be evaluated at one loop.
Loop diagrams are in general both IR and UV divergent,
and we regulate IR divergences by adding quarks and
gluon virtualities p2

j , while using dimensional regulariza-
tion with d � 4� 2	 for the UV divergences. As always,
the UV divergences are removed with counterterms, and
the IR divergences cancel in the matching. For renormal-
ization we will use modified minimal subtraction, with �
as the MS renormalization scale.

The one-loop QCD vertex correction [37] is

(60)

We draw the photon explicitly, because this graph depends
on choosing � � ��.

The SCET diagrams involve collinear gluons [2]:

(61)

(62)

and soft gluons:

(63)

We have not assumed the quarks are back to back in
computing any of these diagrams; nq � n �q appears in the
final result only through Q2. The SCET graphs do not
depend on the choice of �. The sum of the three SCET
diagrams gives
 

A�2�
O � �

�sCF
4�

�
�

2

	2 �
4

	
�

2

	
log
�Q2

�2

� 2 log
p2
q

Q2 log
p2

�q

Q2 � 2 log
p2
q

Q2 � 2 log
p2

�q

Q2

� log2�Q
2

�2 � 4 log
�Q2

�2 � 8�
5�2

6

�
: (64)
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Note how the 1
	 logp2

j pieces, which are UV and IR diver-
gent, drop out of the sum. This is a consistency check, as
such divergences cannot be removed with counterterms.

We can see explicitly that the entire dependence on the
IR regulators p2

q and p2
�q is the same in A�2�

J and A�2�
O , as

expected. Taking the difference between the QCD and the
SCET amplitude we find

 A �2�
J �A�2�

O � �
�sCF

4�

�
2

	2 �
3

	
�

2

	
log
�Q2

�2

� log2�Q
2

�2 � 3 log
�Q2

�2 � 8�
�2

6

�
:

(65)

The 1=	 UV divergences are canceled by counterterm
contributions, and matching at � � Q, we get

 C 2�Q� � 1�
�sCF

4�

�
8�

7�2

6
� 3�i

�
: (66)

To determine the counterterms of the operator O2 we
need the wave function renormalizations as well. For the
matching, these were not required, since they are exactly
the same in QCD an in SCET [3]. One finds

 Z� � 1�
�sCF

4�

�
1

	
� log

�p2

�2 � 1
�
: (67)

Combining this with the vertex diagram gives the result
that the UV divergences in the full theory cancel, as is
expected for a conserved current. We find that the renor-
malization constant in QCD is just 1, while in SCET

 Z2 � 1�
�s���CF

4�

�
2

	2 �
2

	
log
��2

Q2 �
3

	

�
: (68)

5. 3-jet matching at NLO

We can also match QCD onto 3-jet operators at NLO.
We will not perform the calculation here, but merely out-
line what is required and make some qualitative comments.
The 3-jet NLO matching involves calculating the differ-
ence between QCD diagrams such as

(69)

and SCET diagrams, such as

(70)

There are also contributions from the same diagrams re-
quired for �3, below. As for the 2-jet operators at NLO, the

QCD calculation and the SCET calculation are separately
divergent, but the divergences all cancel in the difference.

Note, however, that in this case, there is no reason to
expect the structure of the operator which results to be the
same as O3. So we must add a new operator to the theory
whose Wilson coefficient starts at O��s�. This operator,
when squared (or interfered with O3), will produce a
differential distribution for 3-jet events which has a differ-
ent shape than the tree-level 3-parton distribution. In this
way, all the shape changes from loop corrections in QCD
can be reproduced in SCET. We will return to this discus-
sion in Sec. V C.

B. Running

While the operators in SCET reproduce the long dis-
tance physics of QCD, their short distance behavior is
completely different. In particular, the operator O2 is di-
vergent in the UV, while the full QCD current �q��q is not.
The matching performed in the previous section ensured
that at some particular scale the matrix elements in SCET
reproduce the matrix elements of QCD exactly at a given
order in perturbation theory. All the difference between the
short distance behavior of QCD and SCET above the
matching scale� � Q is absorbed in the precise numerical
value of the Wilson coefficients Cn�Q�. If the matching
would have been performed at a different scale, the differ-
ence between QCD and SCET matrix elements would have
been different, since the amount of short distance physics
that has to be accounted for is different in that case. Thus,
the Wilson coefficients Cn must depend on the value of the
matching scale �. Since � is just a renormalization scale,
it has no observable physical effect and our final answer
should be independent of this scale. This implies that the
matrix elements in the effective theory should satisfy a RG
equation
 

�
d
d�
�C2���O2��� � C3���O3��� � . . .

� Cn���On���	 � 0: (71)

Since each operator On contains a different number of
labeled collinear fields and interactions in the effective
theory cannot change this number, each contribution has
to separately satisfy the RG equation2

 �
d
d�
�Cn���On���	 � 0: (72)

The � dependence enters the operator On only through its
renormalization constant Zn. The anomalous dimension of
an operator is defined as

2Beyond leading order, there may be mixing among operators.
In this case the anomalous dimensions would be matrices, but we
stick to the case without mixing for simplicity.
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 �n �
1

Zn���
�

d
d�

Zn���: (73)

This allows us to write the RG equation in its final form

 �
d
d�

Cn��� � �n���Cn���: (74)

This differential equation can be written as an integral
equation

 �n��2; �1� �
Cn��1�

Cn��2�
� exp

�
�
Z �2

�1

d�
�
�n���

�
: (75)

We call �n the RG evolution kernel. It determines the
change of a Wilson coefficient Cn as the scale changes.
Thus, if we have calculated the Wilson coefficients Cn at
one scale, we can use this kernel to obtain its value at any
other scale. The anomalous dimensions will have the form

 �n � �
�
�s���
�

��1�n �
�
�s���
�

�
2
��2�n � . . .

�
log
�2

Q2

�

�
�s���
�

B�1�n �
�
�s���
�

�
2
B�2�n � . . .

�
: (76)

The first term in brackets is often called the cusp anoma-
lous dimension. It multiplies an explicit, linear dependence
on log�. This term arises because of the double 1=	2 poles
in the renormalization constants Zn, which in turn can be
traced back to the fact that full QCD has overlapping soft
and collinear divergences. Such a term in the anomalous
dimension is not problematic if no higher powers of loga-
rithms appear, because it can be resumed. And in fact, it
has been shown that at any order in perturbation theory the
anomalous dimension contains at most a linear dependence
on such a logarithm [37].

As a practical matter, it is helpful to have an explicit
form for the evolution kernel (75). At leading order in �s

 �n��� � �
�s���
�

�
�n log

�2

Q2 � Bn

�
; (77)

where �n and Bn do not depend on �. The integral over �
can then be performed explicitly, and we find
 

�n�Q;�� � exp
�

8�


2
0�s�Q�

�n

�
log
�s�Q�
�s���

� 1�
�s�Q�
�s���

�

�
2


0
Bn log

�s�Q�
�s���

�
: (78)

From the integrated expression, it is easy to see that the Bn
piece is subleading to �n; the latter has an additional log
enhancement. Moreover, when we change the reference
scale �R then the coefficient of log�2=�1 will shift, show-
ing that there are additional contributions at NLL of the
same order as Bn. Thus, only the cusp anomalous dimen-
sion is required for leading-log resummation.

We will now determine the anomalous dimensions �2

and �3 at O��2� and the cusp anomalous dimension for �n.

1. Calculating �2

The counterterm of the operator O2 was already ob-
tained in the previous section as a byproduct of the calcu-
lation of C2 at one loop. We found in Eq. (68)

 �2��� � �
�s���CF

�

�
log
��2

Q2 �
3

2

�
: (79)

This has the form (76) as expected. We can then plug into
(78) with

 �2 � CF and B2 � CF

�
3

2
� �i

�
: (80)

Note that the anomalous dimension is complex. This is due
to a physical effect. Because degrees of freedom have been
integrated out, some fields which would go on shell when
we cut a QCD diagram are no longer around. But for the
theories to be the same, the imaginary parts of the cuts
must be made up for somewhere else, and so they show up
in the anomalous dimension.

2. Calculating �3

To get the anomalous dimension for O3, we need to
calculate its renormalization constant. We will again regu-
late the UV by dimensional regularization, and add a
virtuality to all external particles to regulate the collinear
and soft IR physics. The collinear graphs involving the
fermions are the same as for O2, and given in (61) and (62).
The collinear graph involving the gluon is [38]

(81)

The soft graph across the fermions is the same as (63), up
to group theory factors:

(82)

The soft graph between gluons and quarks are

(83)
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(84)

Finally, we need the renormalization factor ZA for the
collinear gluon and Zg for the coupling gs which appears
in the definition of O3;

 Z�1
g �

������
ZA

p
� 1�

�s
4�

��
5

6
CA �

nf
3

��
�

1

	
� log

�p2
g

�2

��
:

(85)

However, since Zg
������
ZA
p

� 1, these factors drop out of Z3.
Adding up the diagrams, the 1

" logp2 terms cancel, as
they must. We find the renormalization factor for O3 at one
loop is

 Z3 � 1�
�s
4�

�
CF

�
2

"2 �
3

"
�

2

"
log
��pq � p �q�

2

�2

�

� CA

�
1

"2 �
1

6"
�

1

"
log
��pq � pg�2�p �q � pg�2

�2�pq � p �q�
2

��
;

(86)

and the anomalous dimension is

 �3 � �
�s
�

�
CF

�
log

��2

�pq � p �q�
2 �

3

2

�
�
CA
2

�

�
log

��2�pq � p �q�
2

�pq � pg�
2�p �q � pg�

2 �
1

6

��
: (87)

This is of the form (76), with

 �3 � CF �
1
2CA; (88)

 

B3 � CF

�
3

2
� log

��pq � p �q�
2

Q2

�

�
CA
2

�
1

6
� log

��pq � pg�2�p �q � pg�2

Q2�pq � p �q�
2

�
: (89)

Again, for leading-log resummation, only the cusp anoma-
lous dimension �3 is relevant.

3. Calculating the leading contribution to �n
As we have discussed earlier, only the cusp anomalous

dimension is required for a LL resummation. The cusp
anomalous dimension is the coefficient of the 1="2 coun-
terterm and gets contributions from both soft and collinear
diagrams. However, for every 1="2 divergent term in a
particular diagram there is a term proportional to
�logp2�=" which cannot be absorbed into a renormaliza-
tion constant. As we found in the 2-jet matching at NLO,
this term is canceled once the collinear and soft contribu-

tions are added. For the cancellation to occur, the total 1="2

terms from collinear diagrams have to be (� 2) times the
total 1="2 term of the soft diagrams. This implies that the
LL contribution to the anomalous dimension �n can be
obtained from collinear diagrams alone. Collinear fields in
different directions do not interact with each other at lead-
ing order in SCET, thus the one-loop diagrams from col-
linear gluons only involve one collinear direction at a time.
For example, the collinear diagrams required for the re-
normalization of O2 were a diagram involving only the
collinear quark (Eqs. (61) and (67)), and the antiquark
(Eqs. (62) and (67)). For the operator O3 an additional
diagram involving the collinear gluon were required
(Eq. (81) and (85)). Note the wave function graphs do
not have 1="2 poles.

Combining these results, 1="2 poles in the counterterm
of a general operator On with nq quark fields and ng gluon
fields is

 Zn � 1�
�s
4�

�nqCF � ngCA
"2

�
(90)

which gives the anomalous dimension at LL order

 �n � �
�s
2�
�nqCF � ngCA	 log

�2

Q2 : (91)

Therefore, the cusp anomalous dimension for any operator
in SCET is simply

 �n �
nq
2
CF �

ng
2
CA: (92)

C. Threshold matching

Each collinear field from which the operators On are
constructed can produce additional particles through inter-
actions described by the Lagrangian of SCET. This implies
that an operator On can contribute to final states with more
than n partons. For example, we have used in the matching
from QCD onto the operator O3 that the 3-parton matrix
element of the operator O2 is nonvanishing, and it gave the
dominant contribution for small values of pT . However, in
SCET only emissions which keep all external and internal
partons near their mass shell are included, with the amount
of virtuality allowed depending on the resolution scale of
the effective theory. Since virtuality and transverse mo-
mentum are related, we use that only emissions with pT <
� are allowed in SCET. This implies that if the scale� gets
lowered below the pT of one of the final partons in the final
state, the original matrix element no longer contributes to
the final state, and a threshold matching onto an operator
with an additional collinear field needs to be performed.
The threshold matching condition for the operator O2 was
already given in Eq. (20), and for a general operator O�j�n

EVENT GENERATION FROM EFFECTIVE FIELD THEORY PHYSICAL REVIEW D 76, 074004 (2007)

074004-13



 �C�j�n hO
�j�
n i	��pT�" � �C

�j�
n�1hO

�j�
n�1i	��pT�": (93)

We now work out explicitly the matching of O2 onto O�2�3 .
The threshold matching of O2 onto O�2�3 occurs at a scale

pT . Actually, there are two relevant pT scales for the
branching: the transverse momentum of the gluon with
respect to the quark, pqT , or to the antiquark, p �q

T .
However, since the SCET results are only valid in the limit
pT � Q, the two pT’s are interchangeable up to power
corrections. So we use pT � min�pqT; p

�q
T�. We might also

consider pgT , the transverse momentum the quark (or anti-
quark) with respect to the gluon. But if pgT is the smallest
transverse momentum, we are well outside of the validity
of SCET, and this kinematical configuration is taken care
of by the original matching to QCD. In fact, taking pT �
min�pqT; p

�q
T; p

g
T� is equivalent up to power corrections, and

this quantity, to which spherocity reduces for 3-parton
kinematics, has the added property of being infrared safe.

Above the scale � � pT , the 3-parton matrix element of
O2 is given by the sum of the two terms in Eq. (50)

 hO2jq �qgi � gs ��nq

�
6A

�6n �q

2

n �q � �pq � pg�

�pq � pg�
2 �

� �
nq � �p �q � pg�

�p �q � pg�2

�6nq
2
6A
�
�n �q

: (94)

Note that the n � �p� q�=�p� q�2 � 1= �n � �p� q� terms
in Eq. (94) are due to the nonlocality of the intermediate
quark propagator. However, the propagator scales as
Q=p2

T , and for �< pT the nonlocality of the propagator
is less than the resolution of the theory. Thus, we can think
of the matching of O2 onto O�2�3 at � � pT as serving to
keep the theory local by adding a label. This matrix ele-
ment can be reproduced by the matrix element of an
operator O�2�3 , defined as

 O �2�
3 � gs ��nq

�
6Ang

�6n �q

2

1

�n �q � P
y

�� �
1

�nq � P

�6nq
2
6Ang

�
�n �q

;

(95)

where �n is the same quark jet appearing in O2, and A�
n is

a gluon jet, that is a collinear gluon field wrapped in Wilson
lines, as defined in (12). To satisfy the threshold matching
condition we then find that the Wilson coefficient C�2�3
vanishes for �> pT , and for � � pT it is equal to the
Wilson coefficient of the operator O2

 C �2�3 �pT� � C2�pT�; C2
3��> pT� � 0: (96)

Using previous results, we can write

 C �2�3 ��� � C2�Q��2�Q;pT��3�pT;����pT ���: (97)

Threshold matching is just another way of saying that
O2 emits a gluon at � � pT and turns into O�2�3 . But it is

important to understand the emission process as matching,
so that it is improvable. For example, it would not be hard
to do the threshold matching at next-to-leading order. This
would involve calculating one-loop corrections to both the
O2 emissions and to O�3�2 . The NLO matching would allow
us to go beyond the strongly ordered limit p1

T 
 p2
T 


� � � 
 pnT , to which the parton shower is restricted, to
correctly describe configurations with p1

T 
 � � � 


pjT; p
j�1
T 
 � � � 
 pnT .

V. UNDERSTANDING THE SCET RESULTS

In the previous section, we worked out in detail some
matching coefficients and evolution kernels in SCET. The
important results were summarized in the beginning of that
section. In this section, we will show how those results can
be combined to obtain differential jet distributions and
show that we agree with traditional perturbative calcula-
tions. We concentrate on the process e�e� ! partons,
whose kinematics are reviewed in Appendix B. If we
work to order �s we can have at most three partons in
the final state (quark, antiquark, and gluon), and we can
thus obtain the differential decay rate d�=�dsdt�. We begin
by showing the Sudakov factors used in parton showers are
reproduced in SCET, and discuss the NLL resummation.
We then show that the splitting functions are reproduced in
the collinear limit. As a corollary, we derive within SCET
the classical factorization that parton showers assume. We
then discuss NLO results, and compare to QCD. Finally,
we display results from SCET for the thrust distribution
and the 2-jet fraction.

A. Sudakov factors from renormalization group
evolution

First, we compare the RG evolution kernels obtained in
the effective theory to the Sudakov factors which arise in
traditional parton showers. We will show that to leading-
log accuracy the evolution kernels coincide with traditional
Sudakov factors. To start, suppose we just match from
QCD to 2-jet operators. Then, according to (44), at � �
Q, Cn; �n

2 � 1 and all other Wilson coefficients vanish. For
an emission at a scale pT , we need to run C2 down to � �
pT . Using the 2-jet anomalous dimension we find

 C �n; �n�2 ��� � C2�Q��2�Q;��; (98)

with the RG kernel given by

 �2�Q;�� � exp
�
CF
�

Z Q

�

d�0

�0
�s��

0�

�
log
��02

Q2 �
3

2

��
:

(99)

This result can be compared with the expression for the
Sudakov factor in traditional parton showers given in
Eq. (7). The precise form of the Sudakov factor depends
on the choice of evolution variables used, and on the
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precise value of the argument of �s that is used. Most
Sudakov factors use for the scale of �s an approximation
to transverse momentum given by

 � � z�1� z�t � p2
T: (100)

As an example, we will consider the so-called NLL
Sudakov [10,19,24], which also uses � as the evolution
variable. The limits of phase space are

���
�
p
=Q < z < 1����

�
p
=Q. Thus the Sudakov factor becomes

 �NLL
q ��2; �1� � exp

�
�
CF
2�

Z �2

�1

d�0

�0
�s�

����
�0
p
	

�
Z 1��

���
�0
p

=Q����
�0
p

=Q
dz

1� z2

1� z

�
: (101)

The z integral can be evaluated analytically. Substituting
� �

����
�0
p
� pT gives

 

�NLL
q �Q;�� � exp

�
CF
�

Z Q

�

d�0

�0
�s��

0�

�
log
�02

Q2

�
3

2
�O

�
�0

Q

���
: (102)

Because the integral is dominated for small values of�, we
can drop the power law �0=Q terms, as is done in the
literature. Comparing (102) to (99) we see that the O��s�
evolution kernel reproduces this Sudakov factor exactly.

The 3=2 term in (102) gives rise to subleading loga-
rithms after integrating over �, hence the name NLL
Sudakov factor. However, there are additional subleading
terms which are not included consistently. For example,
changing the reference scale �R at which the renormalized
�s is defined gives rise to subleading terms which are also
NLL. The optimal value of�R cannot be determined to the
order we are working. Moreover, different Sudakov fac-
tors, based on different evolution variables, give a different
constant term [10]. In other words, the Sudakov factor only
gives the leading logarithms reliably, and the 3=2 term may
be dropped.

To illustrate this point, we show in Fig. 1 the 2-parton
evolution kernel (Sudakov factor) �2 with various NLL
effects included. The light band shows the effect of varying
the 3=2 term from 0 to 3. The darker band shows the effect
of adding a NLL factor proportional to �2�

2
s=��

2��
log�02=Q2 to the integrand in Eq. (99), varying �2 be-
tween 2 and �2. Note that the effect of the 3=2 term and
the NLL �2 term are comparable at small�. Since small�
is precisely where the Sudakov factors become important,
it will be important to include all the NLL resummation in
the Sudakov factors consistently. Later on, we will explore
the NLL effects on the thrust distribution for 3-parton
events (see Fig. 2).

For consistency we will therefore work only at leading-
log accuracy, and drop the 3=2 term. At LL all acceptable
definitions of the Sudakov factors will give

 �LL
q �Q;�� � exp

�
CF
�

Z Q

�

d�0

�0
�s��

0� log
�02

Q2

�
; (103)

which is the LL SCET prediction as well. Analogously, the
gluon Sudakov factor (the probability for a gluon not to
branch) is given by [19]

 �LL
g �Q;�� � exp

�
CA
�

Z Q

�

d�0

�0
�s��

0� log
�02

Q2

�
: (104)

In SCET, the evolution kernel �n for an operator with n
collinear fields is given by

 �n�Q;�� � exp
�
�
Z Q

�

d�0

�0
�n��

0�

�
; (105)
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FIG. 1 (color online). Errors on the RG kernel (Sudakov
factor) �2 from next-to-leading log uncertainties. The light
band comes from one NLL effect, varying the B1

2�s term in
the anomalous dimension, from 0< B1

2 < 3. The dark band is
from another NLL effect, the �2

2�
2
s log term in �2, varying �2

2

between �2 and 2. We normalize so that � � 1 corresponds to
1 TeV. The LO RG kernel is the lowermost curve in the figure.
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FIG. 2 (color online). Thrust distribution from 3-parton states,
at ECM � 1 TeV. QCD (dashed red line), parton-shower ap-
proximation (dotted blue line), and SCET (solid black line) are
shown. The gray band is a representation of NLL uncertainties,
by varying the B1

2 and B1
3 terms in �2 and �3, between 0 and their

true values.
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where �n��� is the anomalous dimension for the operator,
given in Eq. (35). Comparing Eqs. (35) and (105) with
Eqs. (103) and (104), we find that at LL accuracy the RG
evolution kernel and the Sudakov factors are related ac-
cording to

 �2
n�Q;�� � �

nq
q �Q;���

ng
g �Q;��; (106)

where nq (ng) are the number of collinear quark (gluon)
fields in the operator On. Thus SCET reproduces all the
classical Sudakov no-branching probabilities at leading log
through the renormalization group flow of an effective
theory.

B. Splitting functions from collinear emissions

In this section we will show how the couplings in SCET,
when put into cross sections, reproduce the splitting func-
tions of QCD.

For a 3-parton final state, once � has run below pT , the
2-jet operator can no longer contribute and the threshold
matching turns O2 into O�2�3 . If we are not concerned with
additional emissions, the differential cross section for
emission will be

 

d�
dsdt

�
�0

64�2

X
phys pols

jC�2�3 hO
�2�
3 jq �qgij2; (107)

where

 �0 �
4��e
3Q2 CA

X
Q2
j : (108)

We have already seen that jC�2�3 j
2 encodes the Sudakov

factor, so now let us look at the matrix elements. Using the
explicit form of O�2�3 given in Eq. (28), we can perform the
sum explicitly. According to the conventions of Sec. IV, we
find

 jhO�2�3 ij
2 � 8g2

sCF

�
s
t
u2 �Q2

�s� t�2
�
t
s
u2 �Q2

�s� t�2

�
4Q2u2

�t� u��s� u��s� t�2

�
: (109)

The first term comes from the square of the diagram with
the quark emitting, the second from the square of the
diagram with the antiquark emitting, and the third from
interference.

Rewriting the amplitude in terms of t and z, and taking
the limit where the gluon becomes collinear with the quark,
so p �q

T ! 0 and t! 0, the amplitude approaches

 

d�
dsdt

�
�0

64�2 jhO
�2�
3 ij

2 � �0
�sCF

2�
1

t
1� z2

1� z
� � � � ;

(110)

where the � � � are higher order in pT=Q. So we reproduce
the QCD splitting function (6), as required.

Note that the interference term (the third term in
Eq. (109)) does not have an s or t pole, so it is finite as
pT ! 0 and represents a pure power correction. Since the
interference is higher order in the SCET expansion, we
may simply drop it. Recall that dropping interference terms
is one of the approximations used in the parton shower, and
so we see that it is justified by SCET. However, the
interference term should be included following our con-
ventions for evaluating matrix elements—if we dropped it,
we would not reproduce QCD at the hard scale. Because
we match at the matrix element level, it is important to
keep the interference terms in. Note also that at leading
order, we do not need to distinguish pqT from p �q

T . We only
know that pqT , p �q

T � Q, which is where the SCET ampli-
tude can be trusted.

We can also show that another element of parton show-
ers, namely, that successive branchings factorize and may
be treated classically, can be justified within SCET.
Consider a general operator

(111)

where � contains any additional collinear fields and the
Dirac structure of the operator. For example, for the op-
erator O2 we would have � � �� �n. Now consider the
emission of a collinear gluon off the collinear fermion
�n. The amplitude for this process is given by

(112)

where the emission E� can be obtained from the Feynman
rules of SCET. Explicitly,

 E � � igsTA
� n��q
n �q � pg

�
1

�n �q � �pq � pg�

�
�n��q �

6p?q �
�
?

n �q � pq

��
:

(113)

The first term comes from the Wilson line emission3 and
the second from the vertex in the SCET Lagrangian. An
important property of E� is that its square has trivial Dirac
structure. In fact,

 E y�E
� � 2g2

sCF
2u�Q2 � s� � t2

stu
� id4x4

! 8g2
sCF

1

z
1

t
1� z2

1� z
� id4x4: (114)

The arrow represents the collinear t! 0 limit, where we
see that QCD splitting function P�t; z� appears (cf. Eq. (5)),
with an extra factor of 1=z. Now, consider squaring the
amplitude A and summing over spins. The spin sum gives a

3We include the Wilson line emission here, in contrast to our
previous conventions, to insure gauge invariance. The same
results hold if we ignore the Wilson line but only sum over
physical polarizations.
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factor of 6pq, which in the collinear limit is 6pq � z6n, which
commutes with E�. So,

 jAj2 � Trf6qE���yEy�g � zTrfEy�E
� 6n��yg:

Since Ey�E
� is proportional to the identity matrix in spinor

space, we can pull it out of the trace to obtain the final
result

 jAj2 � 64�2P�t; z�TrfOOyg: (115)

This shows that, in the collinear limit, the amplitude for a
quark to branch into a quark and a gluon is independent of
the other fields in the process, and that the probability for
branching is given by a splitting function.

Having considered a single emission of a gluon, we can
go one step further and allow for multiple emissions. If we
call p�j�T the transverse momentum of the emitted gluon
with respect to its mother particle, the multiple emissions
can be treated as a succession of threshold matchings if

 p�1�T 
 p�2�T 
 p�3�T 
 . . . : (116)

This ordering of transverse momenta is called the strongly
ordered limit. In that case, the first emission is encoded in
the threshold matching from O2 onto O�2�3 , the next emis-
sion in the matching from O�2�3 onto O�2�4 , and so on. Since
in the above calculation we have assumed a general opera-
tor ��n�, the results can be applied recursively to the
square of the final operator O�2�n that is obtained after all
the threshold matchings are performed. Thus, the square of
the final operator in the strongly ordered limit can be
written as the square of the original operator O2, multiplied
by products of splitting functions. This is precisely the
result that a parton-shower algorithm would give for the
same process, proven within SCET.

C. Comparison with full QCD perturbative results

In this section, we will show how the SCET results
produce cross sections which agree with QCD at next-to-
leading order. We begin by calculating the most inclusive
of quantities, the total cross section for e�e� ! partons, at
NLO. This will incorporate the NLO matching of C2 and
the 2-jet anomalous dimension. It shows that all the O��s�
information from QCD is in fact contained in the effective
theory. Then we consider the differential decay rate
d��e�e� ! q �qg�, also at NLO [39– 47]. First, we repro-
duce the 1=" and 1="2 divergences in this rate from the
counterterms in SCET. Then we show that at O��s� all of
the large logarithms, which appear in the limit pT � Q,
are resummed.

We begin with the total cross section at NLO. This total
cross section receives contributions from both 2- and 3-
parton final states, and the 2-parton states have to be
calculated to one-loop accuracy, while for the 3-parton
final states only tree level is required [25,26]. In the effec-
tive theory this means that to work consistently at order �s

we need the one-loop matching for C2 and the tree-level
matching for C3. We also need the one-loop matrix element
for O2 and tree-level matrix element for O3. Both the 2-
and 3-parton cross sections �2 and �3 are infrared diver-
gent, but these infrared divergences cancel in the sum of
the two terms.

We begin by calculating the 3-parton cross section�3. In
SCET it is obtained by squaring the amplitude
C2hO2jq �qgi � C3hO3jq �qgi. Because of the matching con-
dition (46), this amplitude is exactly equal to the QCD
amplitude. Thus, regulating the IR divergence in dimen-
sional regularization, the 3-jet rate is

 �SCET
3 �

Z
d�"3

� �"2
�sCF

2�

�
2

"2 �
3

"
�

2

"
log
�2

Q2 � log2 �
2

Q2

� 3 log
�2

Q2 �
19

2
�

7�2

6

�
; (117)

where we have written the result in terms of the O��0
s� 2-

parton cross section with dimensionally regulated phase
space

 �"2 � �0

�
4�

Q2

�
" 3�1� "���2� "�
�3� 2"���2� 2"�

: (118)

For the 2-parton cross section we require both the
Wilson coefficient C2 and the matrix element hO2jq �qi at
one loop. Since the 3-parton rate above was calculated for
an arbitrary renormalization scale � we need the Wilson
coefficient at that scale. Combining Eqs. (66) with
�2�Q;�� we find

 C 2��� � C2�Q��2�Q;��

� 1�
�sCF

4�

�
8�

�2

6
� log2��

2

Q2 � 3 log
��2

Q2

�
:

(119)

We also need the matrix element of the operator O2 at one
loop. In pure dimensional regularization, the one-loop
contribution to the bare matrix element vanishes, since in
the effective theory all large scales have been removed
from the theory and all infrared scales are set to zero. Thus,
the only contribution to the matrix element comes from the
renormalization factor, given in Eq. (68)

 Z2 � 1�
�sCF

4�

�
2

"2 �
3

"
�

2

"
log
��2

Q2

�
: (120)

Combining these results, the 2-parton cross section is
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 �SCET
2 � �"2jC2hO2jqqij2 � �"2

��������C2
1

Z2
hO2jqqibare

��������
2

� �"2

�
1�

�sCF
2�

�
2

"2 �
3

"
�

7�2

6
� 8� 2

log�
2

Q2

"

� log2 �
2

Q2 � 3 log
�2

Q2

��
;

where we have used hOni � Z�1
n hOni

bare.
The sum of the 2-parton and 3-parton contributions is

finite, and we find for the total cross section to order �s

 �tot � �SCET
2 � �SCET

3 � �0

�
1�

3�s
4�

CF

�
; (121)

which is the standard QCD result, reproduced in SCET.
There is an easy way to see why�2 came out the same as

in QCD. In QCD, the virtual contribution to the 2-parton
cross section is UV finite. Thus, in dim reg, all the "
dependence comes from IR divergences. But the IR diver-
gences in QCD are the same as in SCET. In SCET, no
divergences appear at all when using dim reg, because
there are no scales in the problem. Equivalently, in SCET
the UV and IR divergences precisely cancel. So the IR
divergences are equal to the UV divergences which can be
extracted from the counterterm. Thus, the counterterm in
SCET has all the information about the full dimensionally
regulated QCD answer, up to finite terms. And these finite
terms are precisely what is calculated in the matching. Just
as SCET reproduces the virtual contribution to �2 from
QCD, it is also capable of reproducing the NLO contribu-
tion to d�3. In QCD, this computation involves all one-
loop contributions to e�e� ! qqg. Again, there are IR
divergences, which are canceled when �4, the integral of
tree-level 4-parton emission, and the 2-loop contribution to
�2 are added. In this paper, we have not included all of the
relevant computations to reproduce �3 at NLO completely,
however we have enough information to reproduce all of
the infrared divergences, as well as the dominant large
logarithms in the finite part.

The next-to-leading order QCD result for the dimen-
sionally regularized 3-parton differential cross section can
be found in [39,40]. Consider first the divergent terms.
They are all proportional to the tree-level cross section
and are contained in

 d�QCD1
3 � d�"3

�s
2�

�
4��2

Q2

�
"
�
�
CA � 2CF

"2 �
1

"

�
3CF

�

0

2
� 2CF log

u

Q2 � CA log
st

uQ2

��
� � � �

(122)

The SCET prediction for the 3-parton cross section comes
from

 

d�SCET � PS"3 � jC2�2�Q;pT��3�pT;��hO
�2�
3 jq �qgi

� C3�3�Q;��hO3jq �qgij2; (123)

where PS"3 refers to the dimensionally regulated 3-parton
phases space. The 1="2 and 1=" poles in QCD come from
soft and/or collinear IR divergences in the matrix elements.
In pure dim reg, the bare matrix elements vanish in SCET,
since the UV and IR divergences cancel. Therefore all the
poles show up as UV divergences contained in the renor-
malization constants. Expanding,

 hO3jq �qgi /
1

Z3
hgsq �qgjq �qgibare �

Zg
Z3
gshq �qgjq �qgibare:

(124)

Thus, at NLO, the poles are extracted from Eq. (123) by
using Zg and Z3 at O��s� and setting �2 � �3 � C2 �

C3 � 1. At order O��s�, the counterterms pulled from
Eqs. (85) and (86), give
 

Zg
Z3
� 1�

�s
4�

�
2CF � CA

"2 �
1

"

�
3CF �


0

2
� 2CF log

�u

Q2

� CA log
�st

uQ2 � �2CF � CA� log
��2

Q2

��
: (125)

As expected, jZ�1
3 j

2 reproduces all of the divergences of
the QCD expression. Note that the matrix elements for O3

and O�2�3 reproduce QCD, by the matching conditions, so
we get the same d�"3 factor in both cases. The other part of
the QCD expression we should be able to reproduce are the
dominant large logarithms. For the logs to be large, we
need pT � Q. In this limit, SCET is a good approximation
to QCD, and hO3jq �qgi � 0. Then the large logs should be
resummed in the Wilson coefficients, through the �2

factor. To order �s,

 �2�Q;�� � 1�
�sCF

4�

�
log2 �

2

Q2 � �3� 2i�� log
�2

Q2

�
:

(126)

For pT � Q, � � pT �
�����
stu
p

Q2 (see Appendix B) and the

kinematical structure of the SCET cross section is that of
a splitting function. Thus,
 

d�SCET
3

dsdt
�

�0

64�2 jC2�Q��2�Q;pT�hO2jq �qgij2 � � � �

� �0P�t; z�
�

1�
�sCF

2�

�
log2 stu

Q6
� 3 log

stu

Q6

��

� � � � (127)

To compare to the QCD result, we need to extract all the
relevant terms from the NLO QCD expression [39]. Since
we can only reproduce the logarithmically enhanced terms
at this order, we will work in the kinematic limit t� s, u
and expand the full QCD result in powers of t. First, there is
a contribution from the pieces with the kinematics of the
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tree-level cross section. This includes the finite piece from
Eq. (122), evaluated at � � stu, and an additional finite
piece from [39]. All the terms from these expressions with
logt are
 

d�QCD1
3

dsdt
� �0

�sCF
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s2 � t2 � 2uQ2

st
�s
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�

�
CF
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log2 stu

Q6
� 3 log

stu

Q6

�

� log
stu

Q6

�
�

0

2
� �2CF � CA� log

u

Q2

��
: (128)

Next, there is a part of the QCD expression which is not
proportional to d�3, but has a splitting function as its
collinear limit. Its large logs are
 

d�QCD2
3

dsdt
� �0

�sCF
2�

u2 � �s� u�2

st
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��2CF � CA� log
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Q2 log
u

Q2

�
: (129)

Finally, there is a contribution from the running of �s. The
SCET expression is evaluated with �s��� while the QCD
expression with �s�Q�. Changing the scale for the QCD
expression gives an extra factor:
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�s���CF
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: (130)

Taking the t! 0 limit of these three expressions and add-
ing them we find
 

d�QCD
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dsdt
� �0

�sCF
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�sCF
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Q6
� 3 log

stu
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��
; (131)

which matches the SCET expression in Eq. (127). Thus
SCET resums all the large logarithms.

There are terms in the full QCD expression with logs of
u=Q2. In configurations with u� Q either the quark and
antiquark are back to back, or one of them soft. These
configurations do not come from soft or collinear emission
from O2, and thus the large logs of u=Q2 are not resummed
by �2. However, large logs of u are resummed in �3; and
once SCET incorporates all the one-loop matching, all of
these terms, as well as all of the finite terms in the QCD
expression, should be accounted for.

D. Interpolating between QCD and parton showers

A useful way to explore the SCET prediction is by
looking at infrared-safe observables. We will compare
QCD, parton showers, and SCET. Since we only worked
out results for e�e� to 2 or 3 partons, we can only compute

observables that depend on the 3-parton differential distri-
bution. Once SCET is incorporated into a full event gen-
erator, more complicated events can be produced. But the
results of this section are sufficient to show, at least con-
ceptually, how SCET interpolates between QCD and the
parton shower. So we take our observables to be functions
of the 3-parton kinematics: f�s; t�. For example, thrust is

 T�s; t� � 1�
1

Q2 minfs; t; 1� s� tg: (132)

Now, let us consider the 3 cases in turn.
First, take tree-level QCD prediction. Thrust is com-

puted as

 

1

�0

d�QCD

dT
�
�sCF

2�

Z
dsdt

s2� t2� 2uQ2

st
��T� T�s; t��:

(133)

The prediction for QCD at NLO would be the same, but
normalized to the NLO total cross section �0�1�

�s
� � in-

stead of just �0.
The parton-shower (PS) prediction, which resums the

leading logs, is given by

 

1

�0

d�PS

dT
�
Z

dsdt���Q;pqT�
2P�t; z�

� ��Q;p �q
T�

2P�s; z0�	��T � T�s; t��; (134)

where P�t; z� is the splitting function from the quark emis-
sion, and P�s; z0� is the splitting function from the anti-
quark emission (here, z � Q2�s

Q2�t
and z0 � Q2�t

Q2�s
).

Finally, the SCET prediction is

 

1

�0

d�SCET

dT
�

1

64�2

Z
dsdtjC2�2�Q;pT�hO

�2�
3 jq �qgi

� C3�3�Q;pT�hO3jq �qgij2��T � T�s; t��:

(135)

To evaluate this we use the evolution kernels �2 and �3

from Eq. (38) with Eqs. (33) and (34) and the matrix
elements. The matrix element forO�2�3 is given in Eq. (109):

 jhO�2�3 ij
2 � 8g2

sCF

�
�s2 � t2��u2 �Q2�

st�s� t�2

�
4Q2u2

�t� u��s� u��s� t�2

�
: (136)

The others (evaluated with the conventions of Sec. IV) are

 jhO3jq �qgij2 � 16g2
sCF

u2�s2 � t2�

�t� u��s� u��s� t�2
; (137)

 

hq �qgjO�2�3 ihO
y
3 jq �qgi � H:c:

� �16g2
sCF

u2�s2 � t2� � 2stu

�t� u��s� u��s� t�2
: (138)
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Note that the only term that has infrared s or t poles is
Eq. (136). The others are finite, and not genuine predic-
tions of SCET. They depend only on our conventions. If it
were possible to choose consistent conventions so that
hO3jq �qgi � 0, then only hO�3�2 jq �qgi would contribute to
the distribution, and because of the matching, it would be
the same as QCD. In this case, our distribution would be a
Sudakov factor, �2

2 multiplying the QCD cross section,
which is just the prescription of CKKW [19]. So our
prediction, at this order, is equivalent to theirs, up to power
corrections. Nevertheless, we cannot simply choose
hO3jq �qgi � 0, because we need a consistent set of con-
ventions which allow us to go to higher orders.

The thrust distribution for these three approaches is
shown in Fig. 2. We also include in this figure the NLL
uncertainties as a gray band. This band corresponds to
varying the B2 and B3 terms in the anomalous dimensions
between 0 and their true values. Although the true value is
known, this variation represents the NLL uncertainty from
the �2

2 and �2
3 terms, which multiply �2

s log� in �2 and �3,
and which is not known. Confer Fig. 1 as well.

There are two important features of Fig. 2 worth observ-
ing. First, note how SCET interpolates between QCD and
PS. Small thrust, which corresponds to large pT , is popu-
lated by events with hard jets. In this region, we expect
QCD to be a good approximation, as there are no large
logarithms, and PS to be a bad approximation, as we are
away from the collinear limit where splitting functions are
derived. Note that SCET approaches QCD in this region. In
contrast, large thrust is determined by events with soft or
collinear partons. Here, tree-level QCD is inaccurate, be-
cause of large logarithms, while the PS is closer to reality.
SCET matches the parton shower here. So SCET smoothly
interpolates between QCD and PS.

The second feature worth noting is the effect of the NLL
resummation. Notice how the gray band is large for T � 1,
which is where the PS is supposed to be accurate. Thus it
seems the PS is valid neither at small T, where hard
emissions dominate, nor at large T, where NLL resumma-
tion is important. In contrast SCET is valid at small T, but
also, once all NLL effects are consistently incorporated, it
has the potential to be accurate in all regimes. This shows
that resumming next-to-leading logs may be crucial to get
accurate distributions.

Next we compute the 2-jet rate. To do this we need a jet
definition [48]. We will use the kT (Durham) algorithm
[24]. It defines for any two partons a and b

 yab �
2

Q2 minfE2
a; E2

bg�1� cos�ab�> ycut: (139)

We then use

 y � minfyqg; y �qg; yq �qg: (140)

For a 3-parton configuration, if y > ycut, there are more
than 2 jets, otherwise there are only 2. Thus we compute

the 2-jet rate by integrating the distributions for QCD,
SCET, and parton showers, over the appropriate range.
We avoid the infrared singularities by integrating over
events with kT > ycut. For example,
 

�QCD
2 �ycut� � �tot�

�sCF
2�

�
Z

dsdt
s2� t2� 2uQ2

st
��y� ycut�: (141)

The results for this observable are shown in Fig. 3. The
effect of the Sudakov suppression can be seen on the left
side, at small ycut. Here, the tree-level QCD prediction
drops below zero, showing that its estimate of �2 is no
longer trustworthy. Both the PS and the SCET curves are
still positive at low energy, implying that they give a better
estimate of the 2-jet cross section. For large ycut, the 2-jet
rate should be accurately given by QCD. The PS gets the
rate wrong, because it is integrating over hard emission
where it is not valid. The finite difference between the PS
and SCET curves comes from the integral over large pT ,
where the PS cannot be trusted.

VI. TOWARDS SCET EVENT GENERATION

We have shown in the previous section that SCET
reproduces parton showers, Sudakov suppression, and
NLO QCD results, and that it smoothly interpolates be-
tween the hard and soft regimes where QCD and parton
showers are valid. In this section we will illustrate how the
SCET formalism is naturally suited to implementation in
an event generator. It has the capacity to produce particle
distributions with several high pT jets, while summing the
leading logarithms. And it is at least as powerful as parton
showers for recursively adding additional soft or collinear
partons. What we are after is the differential cross section
d� for events with an arbitrary number of final states. In an
event generator, this amounts to computing the weight, or
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FIG. 3 (color online). Percentage of events which have 2 jets,
as a function of cutoff, using the kT algorithm. Shown is QCD
(dashed red line), the parton-shower approximation (dotted blue
line), and SCET (solid black line). The gray band is the NLL
uncertainty, as in Fig. 2.
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probability, of an event, given the kinematics of the parti-
cles in the event. We will review schematically the ana-
lytical expressions required and give a simple algorithm to
obtain events distributed according to these distributions.

A. Analytical distributions

Suppose we want the weight for an event with r particles
from a production process at center-of-mass energy Q. To
calculate this, the SCET approach requires a sequence of
matching and running steps. First QCD is matched onto
SCET at the scale� � Q by requiring that matrix elements
with a given number of particles are correctly reproduced
by the effective theory. In practice, how many particles we
include depends on the number of matrix elements that it is
feasible to compute in full QCD (and in SCET). This will
in general be much less than r. Let m be the maximum
number of partons which are matched. So the matching
turns on operators O2 through Om at � � Q. After the
matching, each of the operators is evolved to lower scales
using the renormalization group equations. To do this, we
need the threshold matching scales, p�i�T , which can be
derived from the event’s momenta, for example, with the
kT algorithm [24]. So we have p�1�T > p�2�T > � � �> p�r�T . At
�� p�1�T a threshold matching is performed where the
operator O2 is matched onto an operator O�2�3 . The set of
operators is then evolved to the scale �� p�2�T , at which
scale the operators O3 and O�2�3 are matched onto O�3�4 and
O�2�4 . This continues until the scale � reaches the scale
� � �IR. The differential cross section is then (up to phase
space factors)

 d�r �
��������
Xm
j�2

C�j�r ���O
�j�
r

��������
2

� j�C2�Q��2�3 � � ��r	O
�2�
r

� �C3�Q��3 � � ��r	O
�3�
r � � � �

� �Cm�Q��m � � ��r	O
�m�
r j2: (142)

Note that since only operators Oj with j  m were in-
cluded in the matching onto SCET, this expression will
only reproduce the full QCD results exactly with up to m
partons in the final state. All additional partons are de-
scribed by radiation in SCET and thus rely on an expansion
in pT . As we have shown, after squaring the matrix ele-
ments, the SCET radiation is equivalent to the splitting
functions used in parton showers. So,

 d�r>m � d�m � parton shower: (143)

This distribution will be valid if the pT satisfy

 p�1�T ; � � � ; p
�m�
T 
 p�m�1�

T 
 � � � 
 p�r�T : (144)

So if we want the distribution for r hard jets, we should aim
for m � r.

B. A sample algorithm

Now let us consider how to incorporate these results into
an event generator. This means we need an algorithm for
sampling the phase space and unweighting events. We do
not intend to present a complete or ideal solution, but rather
sketch one possibility. Suppose that we have QCD and
SCET matrix elements for up to m partons, then an algo-
rithm might look like

(1) Start with a hadronic event at center-of-mass energy
Q, according to as accurate calculations of total
cross sections as are available.

(2) Pick a configuration of m partons with probability
proportional to d�m in Eq. (142).

(3) If the minimum pT of the configuration, p�m�2�
T is

more than IR cutoff �IR, then we have an event with
m or more partons.

(i) Start a parton shower at� � p�m�2�
T , using the

SCET RG kernels as Sudakov factors.
(4) Otherwise, we have an event with less than m par-

tons.
(a) Pick momenta for m� 1 partons with proba-

bility proportional to d�m�1 in Eq. (142).
(b) If the minimum pT of this configuration,

p�m�3�
T is more than the IR cutoff �IR, then

we have an event with m� 1 partons.
(i) Do not shower. Go straight to hadroni-

zation with this kinematics. Or, equiv-
alently, shower starting at � � �IR.

(c) Otherwise, we have an event with less than m� 1
partons. Return to step (a) with m! m� 1.

There are several points worth elaborating on here. First,
note that the differential distributions in SCET do not
diverge as two partons become collinear or one becomes
soft. This is because we are not using the QCD amplitude
and correcting with Sudakov factors later on, but using the
SCET amplitude which has the Sudakov suppression built
in. Since the Sudakov factor vanishes exponentially in
either of these limits, it overcomes the linear power diver-
gence present in the full QCD amplitude.

Second, although we need to use some type of jet
definition to sort the pT in the kinematics, there will be
only a very weak dependence on this definition in the final
results. The strongest dependence on the jet definition
should cancel from matching to the hadronization routine.
The detailed sorting of pT only has an effect on momenta
which are strongly ordered, in which case all infrared-safe
jet definitions should agree. There may be a subleading
effect, which amounts to power corrections, and is beyond
the order we are working. Also note that because the
amplitude is finite even for small pT , we do not need to
employ an intermediate jet cutoff scale in the theory,
between Q and �IR. We emphasize that this algorithm
produces fully exclusive events, independent of jet defini-
tion. For observables with jets, the events can be combined
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using whatever algorithm is desired, and if the same algo-
rithm is used on the data there should be good agreement.

Third, if we are working to a consistent order in �s, the
distribution in step VI B should really be done at NLO for
m� 1 partons, and NNLO for m� 2 partons, etc. As we
have shown, all the NLO information from QCD can be
reproduced in SCET, but one still needs to integrate over
the regulated phase space for m partons in the singular
region to cancel the NLO divergences for the m� 1 parton
event. The details of the implementation of the NLO
effects will be left for future work. Finally, the reason we
do not just skip step VI B is as follows. The distribution of
m partons, from steps 1 through 3, is as accurate as possible
with the information given. But because of the Sudakov
suppression, the amplitude to produce fewer than m jets is
probably very small. In fact, in steps 1 to 3, we make a
Monte Carlo estimate of the m-or-more parton cross sec-
tion. The distribution at small pT is also sensitive to sub-
leading logarithms, and so we probably cannot trust it.
Therefore, step 4 recalculates the distribution from the
hard scale, which should be a better estimate of the m�
1 parton event shape.

VII. CONCLUSION

We have shown how to construct an event generator
based on effective field theory. The correct effective theory
reproducing all collinear and soft divergences of QCD is
SCET, and we have shown that SCET at leading order is
equivalent to a conventional parton shower. The advantage
over the parton shower is that an effective theory is sys-
tematically improvable order by order. In particular, we
have shown that by matching SCET onto QCD matrix
elements with up to three partons allows to obtain cross
sections which smoothly merge the parton-shower ap-
proximation with more accurate matrix elements for events
with large transverse momentum. Since we have a consis-
tent effective field theory framework for the shower, we
know precisely to what order we are working. We can
therefore estimate errors, and then incorporate higher-
order corrections if necessary when comparing to data.
There are five places where higher-order corrections can
be incorporated

(1) Matching to QCD for higher multiplicity matrix
elements.

(2) Matching to QCD at higher loop order.
(3) Higher loop running.
(4) Matching within SCET across the emission thresh-

old, at higher order.
(5) Power corrections from the SCET expansion.

The first three we have already discussed at length in this
paper. Of these the higher loop running may be the most
important to work out and implement. We showed in
Figs. 1 and 2 an estimate of NLL resummation. It is clearly
a large effect for small pT . Item (4) is not necessarily worth
doing. We know that leading order SCET, like the parton

shower, is best when p�1�T 
 p�2�T 
 � � � 
 p�n�T . So if two
successive emissions occur at similar pT’s, the rate will be
untrustworthy. However, a large pT emission will appear as
another jet, and so we really should do the higher-order
matching to QCD, as in (1) and (2) to get the rate right.
Item (5) is certainly important, but it may be prohibitively
difficult to implement.

Our results were collected in the last two sections, and
we have indicated how SCET might be used to construct an
event generator. We have also investigated the uncertain-
ties in traditional parton showers. For large values of pT ,
these uncertainties arise from higher order in pT=Q, which
are not included due to the approximations required to
derive parton showers. For small values of pT on the other
hand, the subleading logarithms which are not properly
summed in the Sudakov factors give rise to large uncer-
tainties as well. So, parton showers have relatively large
uncertainties in most regions of phase space. Thus, while
parton showers are very useful to populate phase space of
events with many particles, it is very difficult to obtain
results with small well-defined theoretical uncertainties.
Since SCET is able to improve the precision in all regions
of phase space, we showed how SCET might be used to
produce events with controllable errors. Our prescription
was to produce an initial m-parton distribution at high
accuracy, including resummation of large logarithms
within SCET, and then to use the parton shower and
hadronization routines, which are constrained by unitary,
to fill out the jets with particles. One can go further, for
example, by using the properties of SCET, the accuracy of
the shower routines could be improved, in principle, to any
accuracy desired. Since effective field theories resum logs
and are systematically improvable they have the potential
to greatly improve our theoretical understanding of particle
distributions.
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APPENDIX A: INTRODUCTION TO SCET

SCET is an effective theory containing only soft and
collinear degrees of freedom, which can propagate over
long distances. Since all long distance physics in massless
QCD is determined by either soft or collinear particles,
SCET is reproducing the long distance behavior of QCD,
while all short distance physics can be encoded in short
distance Wilson coefficients. SCET is essentially a simpli-
fied version of QCD in which all the IR degrees of freedom,
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that is, the soft and collinear fields, are the same, but the
UV structure is simplified. In particular, fields which are
neither soft nor collinear are integrated out. The notation
used in SCET emphasizes the nature of the SCET fields.
Let n� be a lightlike direction n� � �1;ni�, n2 � 1. Any
four-vector can be decomposed with respect to n� and
�n� � �1;�ni� as

 p� � 1
2� �n � p�n

� � 1
2�n � p� �n

� � p�?: (A1)

So we can define

 ��? � �� � 1
2
�6nn� � 1

26n �n�; (A2)

and derive useful identities, such as

 n � �n � 2; 6n6n � 0; f �6n; 6ng � 4; f6n; 6p?g � 0;

(A3)

 p2 � �n � p�� �n � p� � p2
?: (A4)

We also denote the normalized four-vector in the direction
of p by np. An operator P is often used to project out label
momenta. For example,

 

1

�n � P
�n �

1

�n � p
�n: (A5)

A field is colliner to n if its momentum satisfies jp?j<
 �n � p, where  is a small number giving the expansion
parameter in SCET. The momentum of a collinear field
scales like �n � p; �n � p; p?� � �2; 1; �, where we have
used (A4) with p2 � 0. A field is soft4 if its momentum
scales like p� �2; 2; 2�. Note that the sum of two col-
linear momenta in the same direction is collinear, so col-
linear interactions are allowed. But if two fields are
collinear to different directions, n1 and n2, they scale
differently and interactions are forbidden. A Dirac fermion
 p with momentum p can be decomposed into collinear
fermions �n and � �n as

  p �
6n �6n
4
 p �

�6n6n
4
 p � �n � � �n: (A6)

The difference betwen  p and �n is that on shell,  p
satisfies 6p p � 0 while �n satisfies 6n�n � 0. When n is
aligned with p,  p � �np , but in general 6p�n � 0. The
SCET Lagrangian is derived from the QCD Lagrangian by
integrating out the small components � �n [2]. Then, using
the scaling properties of the quarks and soft and collinear
gluons, the Feynman rules are worked out as an expansion
in . They can be found in [2–5].

SCET has the curious property that no information is
lost when � �n is integrated out, even if only the first order

terms in the  expansion are kept. There are a few ways to
see this. First, note that � �6n6n�=4 and �6n �6n�=4 are projectors,
in that they are orthogonal and complete. However, we can
regain  p from just �n or � �n using the identity

 �n1
�

�
1�

6p? �6n1

2 �n1 � p

�
�n2
; (A7)

and that  p � �np . One should keep in mind that SCET is a
boosted version of QCD [2], and any interactions between
collinear fields in the same directions are thus given by full
QCD. Whenever there are fields collinear to different
directions, however, their interactions will be different
from in QCD. It is in this situation that SCET is useful.

Since collinear fields in different directions do not in-
teract with one another, there should be a separate collinear
gauge invariance for each direction n. To ensure this gauge
invariance, however, requires that each collinear fermion is
multiplied by a collinear Wilson line, making the resulting
field gauge invariant by itself

 �n � Wn�n; Wn � exp
�
gs

�n � A
�n � pA

�
: (A8)

Each collinear fermion is therefore wrapped in collinear
Wilson lines, and it is these collinear ‘‘jets’’ which are the
basic building blocks of operators in SCET. For example,
an operator with two jets would be

 O �n1;n2�
2 � ��n1

��n2
; (A9)

where � is some tensor structure. Because n1 and n2 are
different labels, no collinear fields can couple to both jets.
Collinear gluons can couple one jet to itself, and soft
gluons can be exchanged between jets. Diagrams in
SCET are usually computed in MS dimensional regulari-
zation. It is also helpful to regulate IR divergences by
giving the quarks and gluons small virtualities. These
virtualities must drop out of physical calculations, and it
is a helpful check on the theory to show that they do.
Sample calculations can be found in [4]. Physical quark
masses can easily be accounted for in SCET [49], but for
simplicity we take all fields to be massless.

APPENDIX B: 3-PARTON KINEMATICS

For the three-parton final state, label the momenta of the
quark, antiquark, and gluon p�q , p��q , and p�g , respectively.
There are two independent invariants we can construct.
However, it is convenient to go between a number of
kinematic variables. Let Q be the center-of-mass (COM)
energy of e�e�. Then, we have

 s � �p �q � pg�2 � Q2�1� xq�;

t � �pg � pq�2 � Q2�1� x �q�;

u � �pq � p �q�
2 � Q2�1� xg�:

(B1)
4Sometimes these fields are called ultrasoft, with soft denoting

p� �; ; �. These ‘‘soft’’ fields are not relevant for the current
considerations as they cannot interact with either collinear or
ultrasoft fields.
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The invariants satisfy s� t� u � Q2 and xq � x �q � xg �
2. The xq are half the energy of the corresponding particle,
in the COM frame. We also define the four lightlike vectors
pointing in the directions of the three particles as nq, n �q,
and ng. So

 p�q �
Q
2
xqn

�
q ; p��q �

Q
2
x �qn

�
�q ; pg �

Q
2
xgn

�
g :

(B2)

For each particle, we will also need the lightlike vectors
pointing in the opposite direction

 ni � �1;ni� ) �ni � �1;�ni�: (B3)

The scalar products between different ni can be obtained
from (B1), and we also have

 �n i � �nj � ni � nj; �ni � nj � 2� ni � nj: (B4)

We can also derive

 �n �q � �pq � pg� �
t
Q
; n �q � �pq � pg� � Q (B5)

and its permutations.
In the COM frame, the transverse momentum of the pg

or p �q with respect to pq, pq or p �q with respect to pg, and
p �q or pg with respect to p �q are given, respectively, by

 pqT �

�������
stu
p

xqQ
2 ; pgT �

�������
stu
p

xgQ
2 ; p �q

T �

�������
stu
p

x �qQ
2 : (B6)

We will also define pT as

 pT � min�pqT; p
�q
T; p

g
T�: (B7)

Note that for pT � Q,

 p2
T �

stu

Q4 : (B8)

Finally, it is helpful when discussing splitting functions, to
use variables defined with respect to only two partons. If
we are considering the quark and gluon, then we can use
the invariant mass of the pair, and the energy fraction of the
gluon

 t � Q2�1� x �q�; z �
xq

xg � xq
: (B9)

Some useful relations between these variables and the
others are

 x �q � 1�
t

Q2 ; xq � z
�

1�
t

Q2

�
;

xg �
�
1�

t

Q2

�
�1� z�:

(B10)
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