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We study a Lagrangian formalism that avoids double counting in effective field theories where distinct
fields are used to describe different infrared momentum regions for the same particle. The formalism leads
to extra subtractions in certain diagrams and to a new way of thinking about factorization of modes in
quantum field theory. In nonrelativistic field theories, the subtractions remove unphysical pinch singu-
larities in box-type diagrams, and give a derivation of the known pullup mechanism between soft and
ultrasoft fields which is required by the renormalization group evolution. In a field theory for energetic
particles, the soft-collinear effective theory (SCET), the subtractions allow the theory to be defined with
different infrared and ultraviolet regulators, remove double counting between soft, ultrasoft, and collinear
modes, and give results which reproduce the infrared divergences of the full theory. Our analysis shows
that convolution divergences in factorization formulas occur due to an overlap of momentum regions. We
propose a method that avoids this double counting, which helps to resolve a long-standing puzzle with
singularities in collinear factorization in QCD. The analysis gives evidence for a factorization in rapidity
space in exclusive decays.
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I. INTRODUCTION

Many problems of interest in quantum field theory have
several momentum scales, and are efficiently treated using
effective field theory (EFT) methods. One constructs a
sequence of effective field theories which focus on one
scale at a time. This greatly simplifies the calculations,
partly because new symmetries emerge, and partly because
Feynman graphs in each effective theory are much simpler
to evaluate than the multiscale integrals of the full theory.
More recently, theoretical methods have been developed
which allow one to analyze field theories with several small
momentum scales which are coupled by the dynamics. In
these theories, it becomes necessary to treat the coupled
momentum scales simultaneously within a single effective
theory, rather than sequentially in a series of several differ-
ent effective theories. Examples of theories with coupled
scales are the soft-collinear effective theory (SCET) for
energetic particles [1–4], and any nonrelativistic theory
where the kinetic energy is a relevant operator, examples
being nonrelativistic QED (NRQED) [5] and nonrelativis-
tic QCD (NRQCD) [6–10].

We wish to discuss an issue in the separation of infrared
(IR) regions which appears at first to be a technical
subtlety, but turns out to have important physical ramifi-
cations. It results in a tiling theorem for IR modes in
quantum field theory. In the examples we discuss, it has
to do with the proper treatment of soft modes in NRQCD/
NRQED and of collinear and soft modes in SCET. In
NRQED, the photon field of the fundamental QED theory
is replaced by two fields, describing soft and ultrasoft
(usoft) photons with energies of order mv and mv2 respec-
tively, where v� 1 is the typical fermion velocity in the
nonrelativistic bound state. The soft and usoft NRQED

gauge fields are A�p �x� and A��x�, where p is a label
momentum of order mv, and k, the Fourier transform of
x, is of ordermv2 [8]. The two fields describe photons with
momenta p� k and k, respectively. In the special case that
p � 0 (the zero-bin), the soft photon becomes ultrasoft,
and there is a double counting of modes. To avoid double
counting, the soft sector of the theory must have the addi-
tional constraint that p � 0. This paper explores the con-
sequences of implementing zero-bin constraints for soft
modes in NRQED/NRQCD, and the analog for collinear
modes in SCET. In loop graphs, for example, the sum over
soft intermediate states should be

P
p�0 rather than the

conventional
P
p. The difference, as we discuss in detail, is

that conventional results have to be modified by zero-bin
subtractions.

The zero-bin subtraction solves a number of problems in
NRQCD and SCET, and also resolves the long-standing
puzzle of divergent convolutions in QCD factorization
formulas. We discuss several applications:

(1) Soft box graphs in NRQCD have unphysical pinch
singularities in the energy integral,

 

Z dk0

�k0 � i0����k0 � i0��
f�k0�; (1)

which make them ill defined, even in dimensional
regularization. In previous computations, it has been
argued that these pinch singularities should be
dropped in evaluating box graphs at any order in v
[9,11,12]. Pinch singularities are also a problem for
the method of regions [13]. A direct application of
the method of regions for d4k leads to ill-defined
integrals, so it was defined to apply to NRQCD only
after first doing the energy integrals. The zero-bin
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subtraction modifies the soft box graphs so that
pinch singularities are absent, and the graphs are
well defined.

(2) The zero-bin subtraction automatically implements
the previously studied pullup mechanism in
NRQCD [14,15], which was shown to be a neces-
sary part of the definition of this type of theory with
multiple overlapping low energy modes. Through
the pullup, infrared (IR) divergences in soft dia-
grams are converted to ultraviolet (UV) divergences
and contribute to anomalous dimensions.

(3) There is a similar pullup mechanism at work in
SCET for collinear diagrams. The anomalous di-
mensions of the SCET currents for end point B!
Xs� and B! Xu‘ �� were computed in Refs. [1,2]
from the 1=� and 1=�2 terms. Some of these terms in
the collinear graphs are actually infrared divergen-
ces. The zero-bin subtraction converts these infrared
divergences to ultraviolet divergences so that IR
logs in QCD can be resummed as UV logs in the
effective theory. This formally justifies the results
used for anomalous dimensions in these computa-
tions, and in subsequent work for other processes
with similar anomalous dimensions, e.g. [16–21].

(4) In high energy inclusive production such as �� !
q �qg, there is a potential double counting at the
edges of the Dalitz plot in SCET, which is resolved
by properly taking into account the zero-bin in both
fully differential and partially integrated cross
sections.

(5) As a by-product of our analysis, we give definitions
for NRQCD and SCET that are independent of the
UV and IR regulators. We also demonstrate a link
between power counting and reproducing infrared
divergences in the EFT. Exploiting this link, we
demonstrate that a choice exists for the degrees of
freedom in NRQCD and SCET which is complete,
covering all infrared regions for a broad class of
physical situations. For these cases, no new modes
are required at any order in �s or in the power
expansion.

(6) In high energy exclusive production, such as �� !
�� or �� ! ��, there are unphysical singularities
in convolution integrals of some hard kernels with
the light-cone wave functions ���x�. For example,

 

Z 1

0
dx
���x�

x2 ; (2)

which is divergent at x! 0 if ���x� vanishes line-
arly as x! 0. The same is true for exclusive light
meson form factors at large Q2, as well as processes
like B! �‘ �� and B! �� for E� � �QCD. The
zero-bin subtraction removes the singularity, and
induces a corresponding UV divergence. After re-
normalization we have a finite convolution with
���x�, and the kernel behaves as a distribution we

call �:
 Z 1

0
dx
���x�

x2 !
Z 1

0
dx
���x�

�x2��

�
Z 1

0
dx
���x� ����0� � x�

0
��0�

x2

� ~�� <1: (3)

The ~��-type term involves a ln�E�� and is induced
by UV renormalization in rapidity space. These
terms are discussed in the body of the paper. Thus
using SCET finite amplitudes are obtained for ap-
parently singular hard-scattering kernels.

(7) The zero-bin procedure gives insight into factoriza-
tion formulas which separate modes in rapidity
space rather than by scale separation in their invari-
ant mass. For example, two hadrons both built of
nonperturbative modes with p2 	�2

QCD can have
their modes factorize by being in different corners of
phase space or rapidity. We discuss this by applying
the zero-bin technique to the formulation of degrees
of freedom in SCETII with Wilson lines on the light
cone. The separation between soft and collinear
regions is controlled by perturbation theory with
dependence on a rapidity parameter.

Examples of processes where end point singularities in
convolution integrals have been encountered include the
pion form factor at large Q2 and subleading twist [22], the
�� � form factor [23], the B! �‘ �� form factor [24],
form factor terms in B! �� [25], the Pauli nucleon form
factor F2 [26], color-suppressed B-decays involving light
isodoublets, such as �B0 ! D0 �K0 and �B0 ! DsK� [27],
and annihilation contributions in two-body B-decays
[28–30]. End point singularities also appear in nonexclu-
sive processes such as semi-inclusive deep inelastic scat-
tering at low transverse momentum [31,32]. When the
zero-bin procedure is applied to these cases, individual
pieces of the amplitudes exhibit dependence on a rapidity
parameter.

In the work of Collins and Soper [33,34], factorization
formulas involving a rapidity parameter were derived for
fragmentation in e�e� ! A� B� X where A and B are
hadrons. The separation of degrees of freedom in SCETII

gives finite amplitudes that appear to indicate that rapidity
dependent factorization also occurs in other two-hadron
processes, including purely exclusive ones. Our finite am-
plitudes are shown to be a direct consequence of defining
the degrees of freedom in SCETII carefully. We will not
give a complete derivation of an exclusive rapidity facto-
rization formula here, because in our analysis we will make
the simplifying assumption that the renormalization of
rapidity space effects and invariant mass effects can be
carried out independently.

It is useful to have a physical understanding of why
resolving the double-counting issue also resolves the sin-
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gularity problems. A hint comes from the fact that neither
the pinch singularities nor end point singularities are
present in the full QCD computations, as pointed out for
SCET in [35] in the context of B! �‘ ��. For case (1)
above, the soft pinch singularities are removed by the
kinetic energy of the quarks, 1=
k0 � k2=�2m��. In case
(7) above, the end point singularities are soft limits of the
full theory diagrams and are removed by �QCD, or in
nonrelativistic systems [36], by the binding energy. An
improper interpretation of the singularities can occur by
not being careful about taking double limits. In (1) the
singularity arises from first taking k0 � k2=�2m� and then
k0 ! 0. The k0 � k2=�2m� limit gives soft quarks which
cannot properly describe the potential-quark region where
k0 	 k2=�2m�. Likewise, in (7) the end point singularity
comes from first taking k� � k?, k� and then taking
k� ! 0. The collinear particles obtained from k� � k?,
k� do not properly describe the soft particle region where
k� 	 k?; k�. To avoid double counting we must ensure
that the soft quarks do not double count the potential region
in case (1), and that the collinear quarks do not double
count the soft region in (7). In the effective theory imple-
mentation of the expansion of QCD these singular limits
are properly described by other degrees of freedom. Once
we avoid the double counting, the unphysical singularities
never appear because the potential limit of the soft quarks
and the soft limit of the collinear quarks are rendered
harmless. It should be emphasized that the pinch and end
point singularities we are discussing are unphysical arti-
facts of certain approximations, and are reflected by the
double-counting problem that must be fixed in the effective
field theory (EFT). They are not the same as the classifi-
cation of physical IR divergences from the Landau equa-
tions (see e.g. [37,38]) which go by similar names. The true
IR structure of the full theory is properly reproduced by
contributions from the full set of EFT degrees of freedom.

It is important to note that the zero-bin subtractions
avoid double counting independent of the choice of UV
and IR regulators in effective theory computations. Our
implementation of zero-bin subtractions is unique up to
possible finite scheme dependent contributions, and pro-
vides an explicit connection to methods which introduce
hard factorization cutoffs. It also provides a definition of
the modes in these effective theories independent of di-
mensional regularization (and with some work could be
used, for example, to take the cutoff formulation of SCET
described below and implement it on the lattice). Since the
proper formulation of an EFT should not depend on the
choice of IR regulator used in perturbative computations,
this is not surprising.1 Physical results in QCD are IR finite

with divergences removed by quantities like �QCD, binding
energies, or cancellations between real and virtual dia-
grams, and the same is true in the EFT.

The outline of the paper is as follows. In Sec. II we give a
brief introduction to NRQCD and SCET which serve as our
main examples. The tiling of IR regions with modes is
discussed in Sec. III, and the zero-bin subtraction is for-
mulated in Sec. IV. Our discussion is in the context of
NRQCD and SCET, but is general enough to be readily
adapted to other physical situations. In Sec. V we give
examples in NRQCD to show that the zero-bin removes
pinch singularities, implies the pullup mechanism, and
avoids double-counting problems. In Sec. VI we give
examples in SCETI which demonstrate the regulator inde-
pendence of the zero-bin method, and the removal of
double counting in loop integrals and in inclusive phase
space computations. Finally, in Sec. VII we give examples
in SCETII which is formulated with zero-bin subtractions
and only soft and collinear modes. The zero-bin subtrac-
tion resolves the end point singularity issue in exclusive
processes to leave finite amplitudes, and require the intro-
duction of a rapidity parameter. Conclusions are given in
Sec. VIII.

II. NRQCD AND SCET

NRQCD is an effective theory for nonrelativistic quark-
antiquark (Q �Q) bound states, where the typical relative
fermion velocity, v, is small, v� 1. The relevant scales in
NRQCD are the quark mass, m, momentum p	mv, and
energy E	mv2, with E� p� m. The energy and mo-
mentum are not independent; they are coupled via the
quark equation of motion, 2mE � p2.

SCET describes the interaction of energetic particles;
examples include the inclusive decay B! Xs� at large E�
via the partonic decay b! s�, inclusive jet production, or
exclusive semileptonic decays such as B! �‘ ��. It is
convenient to orient the coordinate system in the direction
of the energetic jet or hadron, for example, by introducing
null vectors n � �1; 0; 0; 1� and �n � �1; 0; 0;�1�, and use
light-cone coordinates with p� � n  p, p� � �n  p for
any four-vector p. Energetic particles moving near the n
direction have momenta p� 	Q, p� 	Q	2, and p? 	
Q	, where 	� 1 and Q� �QCD. Q is the large energy
scale, and is of order mb for B-decays. Often the choice

		
������������������
�QCD=Q

q
is made for inclusive processes in SCETI,

but parametrically larger choices for this small parameter
are allowed. For exclusive processes in SCETII, we use 

rather than 	 for the expansion parameter to avoid con-
fusion, since here 
	�QCD=Q. The p�, p�, and p?
scales are coupled by the on-shell condition p�p� �
p2
?, and despite the hierarchy p� � p? � p�, the effec-

tive theory must simultaneously deal with the low energy
scales associated with p? and p�.

1The choice of IR or UV regulators can make it more difficult
to perform the power counting, for example, by leading to
integrals that are not homogeneous and require power counting
violating counterterms to give back a power counting for the
renormalized graphs.
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A. Comparison with the NRQCD method of regions

One can evaluate Feynman integrals in NRQCD using
the method of regions [13] (also called the threshold ex-
pansion), which divides up an integral into hard, soft,
potential, and usoft contributions based on scaling for the
loop momentum. The idea is that in dimensional regulari-
zation the sum of these contributions exactly reproduces
the full theory diagram, so

 Afull�pi� �
Y
j

Z
ddkj F�pi; kj�

�
X

regions ‘

Y
j

Z
ddkj F�‘��pi; kj�: (4)

Dimensional regularization is required here because there
are cancellations between UV and IR divergences from
different regions, which occur if �IR � �UV � �.
Equation (4) does not define an effective field theory, but
it is sometimes taken as a way of defining EFT contribu-
tions to amplitudes, by demanding that in dimensional
regularization each mode in the effective Lagrangian
should reproduce a term from a region on the right-hand
side (rhs). Although Eq. (4) is quite powerful, a few points
must be treated carefully: (i) The division of regions is
gauge dependent.2 (ii) The requirement that scaleless in-
tegrals be set to zero, 1=�UV � 1=�IR � 0, does not allow
all UV divergences to be treated by counterterms, nor a
verification that every IR divergence has a correspondence
with the full theory. (iii) In Eq. (4) one must sum over all
possible momentum routings in loops to determine the
relevant regions (or consider the scaling of all combina-
tions of loop momenta and external momenta). This is
because it is individual propagators in the EFT that belong
to a region rather than the loop momenta.

In the remainder of this section we will explore how the
terms �1=�UV � 1=�IR� allow a residual freedom in asso-
ciating amplitudes with degrees of freedom beyond that in
Eq. (4). The treatment of these terms effects the correspon-
dence of the EFT modes with physical regions. Let us
consider a one-loop graph in NRQCD with contributions
from different regions. The soft contribution depends on
external soft scales such as the momentum transfer r, and
has the (schematic) form

 Isoft �
A
�UV
�

B
�IR
� f�r; ��: (5)

As the momentum in the soft graphs vanishes, the graph
matches on to an usoft diagram, with the (schematic)
structure

 Iusoft � �
B
�UV
�

C
�IR
� g�E;��; (6)

where the coefficient B is the same as in Eq. (5). The usoft
graph depends on external usoft scales such as the energy
E. The IR divergences in the usoft sector are true IR
divergences. They arise if one is computing an IR divergent
quantity such as an on-shell Green’s function, but cancel in
measurable quantities such as physical scattering cross
sections and bound state energies.

The IR divergence in the soft graphs and the ultraviolet
divergence in the usoft graph are at the intermediate scale
mv and cancel each other; they are not true divergences of
the theory. Since in the method of regions a rule is applied
that scaleless integrals are set to zero, one is free to con-
sider the B=� terms canceling in the sum of Eqs. (5) and (6)
to give

 Isoft � Iusoft �
A
�UV
�

C
�IR
� f�r; �� � g�E;��: (7)

This interpretation leads to the picture shown in Fig. 1(a),
where the IR soft effects and UV ultrasoft effects meet at
mv. Thus, this particular mapping of the method of regions
with effective theory amplitudes does not lead to simulta-
neously having degrees of freedom for soft and usoft
gluons at a scale �, but instead in the renormalization
group the soft contribution covers the momentum region
between m and mv and the usoft contribution covers the
region between mv and mv2.

In an effective field theory, the low energy effective
Lagrangian is usually required to reproduce all the IR
effects of the original theory from the start. In NRQCD,
this plus a manifest power counting in v requires that the
effective theory include soft and usoft degrees of freedom
at the same time to reproduce the dependence of the full
theory on the momentum transfer r	mv and the energy
E	mv2, which are considered IR scales at � � m where
the effective Lagrangian is constructed, as found in
Ref. [8]. This happens because the power counting links
the scales mv and mv2. A similar result holds for SCET—
the SCET Lagrangian at the hard scale Q must simulta-
neously include collinear and usoft degrees of freedom to
correctly reproduce the IR behavior of QCD with a power

m

mv

mv 2

soft

ultrasoft
E

p,εIR

a)

m

mv

mv2

soft

ultrasoft
E

p

b)

FIG. 1. Comparison of two setups for the soft and usoft con-
tributions to an NRQCD Feynman graph. In (a) the 1=� diver-
gences at the intermediate scale mv cancel between the soft and
usoft contributions. In (b) there are no IR divergences at this
intermediate scale.

2A well-known example in NRQCD is applying the method of
regions to potential and soft contributions. Another example is
the division between �E;p� 	 �m;m� and a new region �E;p� 	
�m;mv� that shows up at fourth order in the v expansion in
Coulomb gauge.
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counting in 	 [1,2]. In the effective theory, counterterms
must be added for all 1=�UV divergences, including those
from scaleless integrals as is familiar from the study of
heavy quark effective theory (HQET) [39–41]. The coun-
terterm structure cannot depend on the choice of IR
regulator.

The above line of reasoning gives the picture Fig. 1(b),
rather than Fig. 1(a). In NRQCD this picture has been
implemented in the past by a procedure referred to as a
pullup mechanism [14,15]. One modifies Fig. 1(a) by pull-
ing up the usoft modes to the scale m, and then subtracting
the usoft contribution from the soft contribution in the
region between m and mv. The picture now looks like
Fig. 1(b). This modification leaves the usoft contribution
Eq. (6) with the same form, but it must now be included in
the theory between the scales m and mv2. The usoft
integral in the region between m and mv has the form

 I0 � �
B
�UV
�

B
�IR

; (8)

so it corresponds to a �1=�UV � 1=�IR� that we are free to
move between amplitudes from the point of view of
Eq. (4). When Eq. (8) is subtracted from Eq. (5), it gives
the modified soft contribution

 Isoft �
A
�UV
�

B
�UV
� f�r; ��: (9)

The IR divergent parts of the soft graphs have been re-
moved. There is no need for any cancellation of divergen-
ces between the soft and usoft degrees of freedom, and they
can be renormalized separately. This is important, because
it is known that the soft and usoft degrees of freedom have
independent coupling constants, and the cancellation of
divergences between the two can be problematic in renor-
malization group improved perturbation theory. One of the
consequences of the pullup mechanism is that the anoma-
lous dimensions in the soft sector are given by Eq. (9), and
are proportional to A� B. As a shortcut, one can compute
the anomalous dimension from the original form in
Eqs. (5) and (6) by treating the IR divergence as though
it were a UV divergence in Eq. (5), and taking the UV
divergence in Eq. (6) to be at the hard scale. This is the
procedure that has been followed in previous NRQCD and
NRQED computations [8,10,14,15,42–45], and is known
to be necessary to correctly reproduce the high-order loga-
rithmic terms in Lamb shifts and hyperfine splittings which
are determined from independent fixed order QED compu-
tations. We will see that the zero-bin subtraction automati-
cally gives the final result implied by the pullup
mechanism, so that the soft integrals with the zero-bin
subtraction have the form in Eq. (9), rather than that in
Eq. (5). Thus the zero-bin formulation no longer requires
implementing a pullup by hand.

An alternative setup has been explored in Refs. [46– 49],
which keeps Fig. 1(a) but postpones obtaining power
counting in v. In this setup, one starts by matching onto

a purely soft theory with a power counting in 1=m and
constrains states to E � 0 so the IR divergences are prop-
erly reproduced. The power counting in v is not yet mani-
fest in this theory. The soft theory is then matched at a soft
cutoff scale �s onto an usoft theory, pNRQCD, where E �

0 and the velocity power counting is restored. The key is to
maintain �s as a variable in the usoft theory so that when
required it can be run down from the scale m including the
required correlation with the usoft scale. While this setup
seems to differ from the pullup, in several cases it has been
shown that both methods give equivalent final answers for
observables with log summation.

Note that so far an analogous setup that would avoid
simultaneously introducing usoft and collinear modes does
not exist for SCETI. It is known that one can avoid simul-
taneously introducing hard-collinear p2 	Q�QCD and
collinear p2 	�2

QCD modes, by matching SCETI onto
SCETII as discussed in Ref. [35]. This postpones obtaining
the final power counting until one matches onto SCETII,
and the (hard-collinear)-(collinear) setup is similar to the
soft-usoft setup in pNRQCD. Just as in pNRQCD, one
must in general maintain the matching scale as a free
parameter with this method of matching SCETI onto
SCETII. Alternatively, one can match QCD directly onto
SCETII [4,50].

B. Summing logarithms

The dynamical relations p2 � 2mE and p�p� � p2
?

have implications for the summation of logarithms using
renormalization group evolution. In NRQCD and NRQED,
one must simultaneously run from m! p and m! E in
the soft and usoft sectors of the theory [8]. This is imple-
mented in practice by using the velocity renormalization
group [8]. Graphs in the theory are evaluated using two
different� parameters,�S for soft and potential loops, and
�U for usoft loops. One then sets �S � m�, �U � m�2,
and runs from � � 1 to � � v. This procedure is also
referred to as one-stage or correlated running [51], and
corresponds to Fig. 1(b). In NRQED, this correlated run-
ning is required to correctly compute the �8ln3� Lamb
shift and �7ln2� hyperfine splittings for hydrogen and
positronium, as well as the �3ln2� positronium widths
[43,51]. It has also been shown to be necessary to properly
implement counterterms in subdivergences at three loops
[44,52]. In some cases, correlated running is not essential,
and one can follow an alternative procedure called two-
stage or uncorrelated running, in which �S is scaled from
m to mv, and �U from mv to mv2, corresponding to
Fig. 1(a).3 The summation of logarithms for the 1=m2

3See Ref. [51] for the precise relation between these two
methods. The anomalous dimensions have different definitions
in the two approaches, so the single ln terms agree. There is a
difference only for ln2 and higher terms if the anomalous
dimension does not factor into separate soft/potential and usoft
pieces.

ZERO-BIN AND MODE FACTORIZATION IN QUANTUM . . . PHYSICAL REVIEW D 76, 074002 (2007)

074002-5



QCD potentials can be done with or without the correlated
running [42,47,53]; both methods give the same result.

So far no examples where correlated running is essential
have been encountered in SCET.4 This does not mean that
correlated running is not necessary in SCET. In NRQED,
correlated running is first required for computations of
recoil corrections at order v3 (me=mp terms in the Lamb
shift), because it is at this order that the potential and usoft
divergences are tied together. Until this order, both corre-
lated and uncorrelated running give the same result, and it
is the Lamb shift computation which shows that, in gen-
eral, one should use correlated running. Thus, it is very
likely that only the running of subleading factorization
formulas in SCET will demonstrate the manner in which
correlated running is required.

III. INFRARED MODES IN NRQCD AND SCET

In its region of validity, an effective field theory needs to
systematically reproduce the IR structure of the full theory
order by order in its power expansion. In both NRQCD and
SCET, a strict interpretation of this requirement makes it
necessary to include distinct fields for different moment
regions of the same physical particle. These distinct fields
have different power counting. Multiple gluon fields were
first introduced in Ref. [54] for potential and usoft gluons
in NRQCD, with energy and momentum scaling of order
�E	mv2; p	mv� and �E	mv2; p	mv2�, respec-
tively. We will not introduce fields for potential gluons
since they are not propagating degrees of freedom. In
NRQCD it is also necessary to introduce soft gluons with
momentum scaling �E	mv; p	mv� [13,55]. We use the
NRQCD Lagrangians defined as in [9,54] with potential
quarks and usoft gluons/quarks, and also soft quarks. We
treat soft gluon vertices with a soft-HQET effective
Lagrangian, rather than integrating out the soft quarks as
in Ref. [54]. At two loops and beyond, it is important to
keep track of the i0� in the soft quark propagators 1=�v 
k� i0�� and leaving them in an action facilitates this. In
SCET, one requires both collinear and usoft gluons in a
theory often called SCETI or collinear and soft gluons in a
theory called SCETII. We use the Lagrangians from
Ref. [4] for these theories.

One might expect that introducing multiple fields for the
same particle would lead to double-counting problems. In
constructing effective theories, one needs to know not only
the power counting for the degrees of freedom, but also
understand the range of scales for which these modes are
included in the effective Lagrangian. If degrees of freedom
overlap in some region of momentum space, an under-
standing of how their definitions avoid double counting
is necessary. In the effective theories we study, loop inte-

grals are dominated by external momenta by construction,
so the power counting guarantees that fields give contribu-
tions that can overlap only in UVor IR limits.5 As a simple
toy example consider Fig. 2. We imagine that there are
two relevant momentum coordinates p1 and p2, and
that physically there are four interesting sets of mo-
menta labeled qa, qb, qc, and qd which could be set kine-
matically or by bound state dynamics. The hard cutoffs �1

and �2 distinguish the momentum regions dominated by
these q’s.

Consider first the simplified case where we ignore the p2

axis, and only have qa and qb. This situation applies to
many physical problems, including that of integrating out
massive particles like the W-boson or b-quark. Here qb
denotes hard fluctuations that are integrated out into
Wilson coefficients C, while qa denotes low energy IR
modes. To simplify the renormalization group evolution
and leave symmetries unbroken, it is convenient to trade
�1 for a scaleless regulator such as dimensional regulari-
zation. The low energy theory has C � C�qb;��, where �
is the dimensional regularization parameter. The effective
theory for qa with a scaleless regulator takes �1 ! 1, and
thus overlaps with the hard region of momentum space, but
only through ultraviolet effects. In the effective theory this
double counting is removed by UV counterterms / 1=�, as
well as through finite terms in the Wilson coefficients.

Now consider both the p1 and p2 axis. Here qd denotes
hard fluctuations, and qa, qb, and qc are all low energy
modes because they border a region where one or both of
p1;2 can be zero. Using dimensional regularization for each
of these modes effectively takes �1;2 ! 1 for qa; �1 ! 0,
�2 ! 1 for qb; and �2 ! 0, �1 ! 1 for qc. Again there
is double counting in the UV which is taken care of by
counterterms. However, there is now also a double count-
ing in the IR. For example, taking �1 ! 0 for qb runs into

p
1

p
2

qb
qa

qc
qd

Λ1

Λ2

0
0

FIG. 2. Toy model to illustrate the scales captured by an
effective theory with multiple low energy modes (here qa, qb,
and qc).

4See the discussion in Ref. [18] on the equivalence of corre-
lated and uncorrelated running at leading order for B! Xs� and
e�e� ! J= X.

5The statement actually holds for any renormalization proce-
dure that respects the power counting, or at worst requires power
counting violating counterterms.
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the region for qa. The �1 ! 0 limit is necessary for any
scaleless regulator. In fact, this limit is actually important
physically, because we would like to define qb without
reference to qa in order for it to be possible that contribu-
tions from qa and qb can factorize into independent well-
defined objects. This double counting in the IR is removed
by the pullup mechanism, which as we will demonstrate, is
a consequence of a proper treatment of the zero-
momentum bin, namely p2 � 0 for qc and p1 � 0 for
qb. In pure dimensional regularization these zero-bin con-
tributions amount to a correct interpretation of terms /
1=�UV � 1=�IR. For example, 1=�UV terms must be can-
celed by counterterms while 1=�IR terms match up with IR
divergences from the full theory.

We now turn to realistic effective theories and their zero-
bins. For NRQCD, the modes are shown in Fig. 3. The hard
scale is E	m or p	m. We have propagating soft and
usoft gluons/light quarks with power counting E	 p	
mv and E	 p	mv2 respectively, and potential heavy
quarks with E	mv2 and p	mv, and soft heavy quarks
with E	 p	mv. Hard cutoffs �, �1, and �2 have been
introduced to facilitate the discussion. Here �	m is an
ultraviolet scale below which one uses the effective theory,
and �1;2 divide up the low energy modes. These cutoffs
will be removed exactly as in the toy example above. First
consider the soft and usoft gluons. In a theory with both
present, the energy/momentum regions we want them to
cover are

 soft gluons : �� mv * �s;

usoft gluons: �� mv2 * �u;
(10)

where �s and �u are soft and usoft scales denoted by the
box and star in Fig. 3. These scales are usually set by
external variables such as the momentum transfer or en-
ergy of the quarks, or by the nonperturbative scale �QCD.
In order to reproduce all possible IR effects associated with
E	mv2, the EFT necessarily must have usoft modes just
below the UV scale �. The division in Eq. (10) also implies
that the UV divergences associated with soft and usoft

modes contribute to the same anomalous dimension. This
setup corresponds to the result obtained from the same
limits for the cutoffs �1;2 as discussed in the toy model
above. Now double counting must be avoided in the region
between � and �s, between the IR of the soft gluons and
the ultraviolet of the usoft gluons (i.e. when virtual mo-
menta for the soft gluons becomes comparable to virtual
momenta for the usoft gluons in loops).

A line of reasoning that gets close to seeing how this is
achieved is to start with soft gluons over the interval ��
mv	�1 and usoft gluons over �1 � mv2 	�u, where
we set �2 � �1. Here �1 is considered as an intermediate
factorization scale [46–48]. Next one adds a pullup con-
tribution to the usoft gluons and simultaneously subtracts
the same contribution from the soft gluons as described in
Refs. [14,15]. This pulls the upper limit �1 for the usoft
gluons all the way up to the scale �, while at the same time
avoiding double counting between m and mv. The pre-
pullup setup is shown in Fig. 1(a) and post-pullup in
Fig. 1(b). Taking into account the zero-bin gives the
post-pullup setup. With the pullup, the contributions from
soft and usoft gluons are now as in Eq. (10). If the cutoffs
had been swapped for a scaleless regulator, this would
amount to a proper interpretation of 1=� poles as discussed
in Ref. [15].

In this paper we show that Eq. (10) is obtained auto-
matically by carefully considering the zero-bin in the
NRQCD effective Lagrangian. The usoft gluons are de-
fined all the way up to �, and the subtraction for the soft
gluons is associated with properly removing their zero-
momentum bin. Thus the effective Lagrangian gives the
full procedure for the evaluation of Feynman graphs and is
decoupled from the additional choice of which regulators
to use. With the zero-bin taken into account there is no
longer a need to implement a separate pullup.

A second type of division between potential and soft IR
modes in NRQCD is also shown in Fig. 3. In this case the
distinction is solely in the energy variable p0. Potential
gluons are not propagating degrees of freedom since they
have p0 � p, and so potential gluon fields should not be
introduced (they would have problems with gauge invari-
ance, for example). The matching of soft gluons onto four-
quark operators with potential coefficients can be thought
of in a similar manner to integrating out a massive particle
[56]. On the other hand, a zero-bin subtraction is necessary
to distinguish soft and potential quarks. Their momentum
regions and propagators are

 soft quarks : �p0: �>p0 	mv>�s�;

soft propagator:
i


p0 � i0��
;

potential quarks: �p0: �> p0 	mv2 >�u�;

potential propagator:
i


p0 � p2

2m� i0
��
:

(11)p 0

p

p

Λ1

Λ2

0
0

u

s

Λ

Λ

hardm

mv

mv2

mmvmv2

NRQCD

FIG. 3. Scales and momentum modes for nonrelativistic field
theories like NRQCD. Here s, p, and u denote soft, potential, and
usoft, respectively.
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Without the zero-bin, double counting occurs when p0 !
0 in the soft propagator, and this reveals itself through the
presence of pinch singularities in soft loop diagrams with
quarks and antiquarks, which have the form

 

Z
dp0 1


p0 � i0��
�p0 � i0��   
: (12)

Here we will show that the zero-bin subtraction removes all
pinch singularities in the soft regime. At the same time it
avoids double counting of soft and potential contributions.
It is useful to recall that the same is not true in the method
of regions [13], where the method used to avoid the pinch
singularities is to consider the expansion only after doing
the p0 integral by contours.

Note that in NRQCD there is no issue of a possible
potential-usoft overlap for quarks since propagating usoft
quarks are light quarks and therefore of a different flavor
from the potential quarks.

So far the discussion was for NRQCD, but similar logic
holds for SCETI. In this case the hard scale is set by Q and
the expansion parameter is 	. Below the scale Q we have
usoft and collinear gluons with power counting
�p�; p�; p?� 	Q�	2; 	2; 	2� and Q�	2; 1; 	� respectively.
These gluons cover the regions
 

usoft gluons: �p�: �� Q	2 * �u�;

�p?: �� Q	2 * �u�;

collinear gluons: �p�: �>Q	0 * �c
��;

�p?: �� Q	 * �c
?�;

(13)

and a common region for p�: �� Q	2 * �u. These
regions are denoted by a circle and star in Fig. 4(a), where
we have also included a second collinear region c �n for later
convenience. In Eq. (13) we have used a common UV scale
� and a common usoft IR scale �u in the � and ?
components which have power counting 		2. In SCETI,
we see that we must avoid double counting in the region �
to �c

� for the p� momenta, and the region � to �c
? for the

p? momenta.6 As in NRQCD, this is achieved by a proper
treatment of the zero-momentum bin for collinear fields
(which implements a pullup in SCET).

Finally, we can consider the theory SCETII which has
soft and collinear gluons with power counting
�p�; p�; p?� 	Q�
;
;
� and Q�
2; 1; 
� respectively,
for 
	�QCD=Q. Here the regions are
 

soft gluons: �p�: �� Q
 * �s�;

�p�: �� Q
 * �s�;

collinear gluons: �p�: �>Q
0 * �c
��;

�p�: �� Q
2 * �c
��;

(14)

and for convenience a common region for p?: �� Q
 *

�s. Both soft and collinear modes describe nonperturba-
tive fluctuations close to the mass shell, p2 	Q2
2 	

�2
QCD. Interactions between these modes are off shell [4]

by an amount, p2
hc 	Q

2
, and dependence on this mo-
mentum is integrated out, appearing in the coefficient
functions for mixed soft-collinear operators. Here double
counting in SCETII occurs when a collinear momentum
overlaps the soft region, and when a soft momentum over-
laps the collinear region. This case differs from our dis-
cussion of NRQCD and SCETI because here the
overlapping modes have the same p2, but differ in their
rapidity y, or more conveniently their value of

 �p � e2y �
p�

p�
: (15)

The n-collinear modes have �p � 1, the soft modes have
�p 	 1, and the �n-collinear modes have �p � 1. Consider
a process for which �n-collinear modes are irrelevant.
Double counting is avoided by a proper treatment of the
zero-bins: the ‘‘p� � 0 bin’’ for n-collinear modes and the
‘‘p� � 0 bin’’ for soft modes. However, here double

p +

cn

Λ1

Λ2

0
0

u

Λ

Λ
hard

λ2

2

(a) p-

Q

λQ 0

cn

λQ λQ 0

SCETI

p +

cn

Λ1

Λ3

0
0

Λ

Λ
hard

η2

2

(b) p-

Q

ηQ 0

cn

ηQ ηQ 0

SCETII

sηQ

ηQ Λ2

Λ4

FIG. 4. (a) Scales and momentum modes for SCETI. Here cn, c �n, and u denote collinear-n, collinear- �n, and usoft modes,

respectively, and 		
�������������������
�QCD=Q

q
. (b) Scales and momentum modes for SCETII. Here cn, c �n, and s denote collinear-n, collinear- �n,

and soft modes, respectively, and 
	�QCD=Q.

6For typographical convenience we use �� although a super-
script, ��, would be more appropriate.
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counting of a physical IR region in QCD requires a corre-
lated change in the� and�momenta: p� gets small while
p� gets big for collinear, and p� gets big while p� gets
small for soft. The implementation of zero-bins in SCETII

is discussed further in Sec. VII.
The treatment of the zero-bin ensures that the double

counting is removed in the infrared, and that the overlap in
the ultraviolet is properly handled by renormalization in
the effective theory irrespective of the choice of regulator.
If dimensional regularization is used to regulate both the IR
and UV, then the added contributions are scaleless loop
integrals that appear to be zero. In logarithmically diver-
gent integrals, this occurs because the integral is the dif-
ference of UV and IR divergences, 0 � 1=�UV � 1=�IR,
since there is only one �. If these added contributions are
ignored, then one must be careful to properly interpret the
divergences as UV or IR. This conversion of IR to UV
divergences has been used implicitly in much of the
NRQCD and SCET literature. However, if one wants to
fully understand the physical significance of certain diver-
gences or use another regulator in the UV or IR, then
explicitly including the subtractions discussed here is
necessary.

IV. ZERO-BIN SUBTRACTIONS

We start by reviewing how the relevant momentum
scales are separated in the effective theory using labeled
fields. In NRQCD, one first removes the large mass m of
the quark (and antiquark) from the problem just as in
HQET [57]. The total momentum of the quark, P�, is
written as the sum P� � mv� � q�, where v� �
�1; 0; 0; 0�. This subtracts m from all the energies. The
residual momentum q� is much smaller than m, and con-
tains the nonrelativistic energy E	mv2 and momentum
p	mv of the particle, where v is a scaling parameter of
order the typical relative velocity between the heavy
quarks. This mixes different powers of v. As shown in
Ref. [8], it is useful to make a further division of q�, q� �
p� � k�, where p� is of ordermv, and k� is of ordermv2.
This second separation allows the power counting in v to
be manifest in the effective theory. The breakup of q� is

shown schematically in Fig. 5(a). One breaks momentum
space into a discrete variable p of order mv, and a con-
tinuous variable k� of order mv2. Often k is referred to as
the residual momentum. The discrete label p does not have
a time component for quarks, since the energy is of order
mv2. The entire q� momentum space is covered by inte-
grating over k� and summing over the labels p. Quarks are
described by fields  p�x�, with an explicit label p, and the
momentum k� is the Fourier transform of x. Similarly, soft
gluons with energy and momentum of order mv are de-
scribed by gauge fields A�p �x� with a four-vector label p�.
Ultrasoft gluons with energy and momentum of order mv2

are described by gauge fields A��x�. Those unfamiliar with
how the field theory with label and residual momenta
works are referred to Ref. [54] or the example in the next
section.

An analogous procedure was applied to SCET in
Refs. [2,3]. In SCET, one breaks up the collinear momen-
tum into a label and residual momentum, P� � p� � k�.
The label p contains the Q and Q	 pieces of the momen-
tum, and the Fourier transform of the coordinate x is the
Q	2 part of the momentum k. Unlike NRQCD, the col-
linear interactions can still change the large label momen-
tum 	Q. In a theory referred to as SCETI, one has
collinear quark and gluon fields �n;p�x� and A�n;p�x�, where
the label p has minus and ? components, and usoft quark
fields A��x� which have energy and momentum of order
Q	2. The SCETI decomposition is shown schematically in
Fig. 5(b). In a theory called SCETII, one has collinear
quarks and gluons, �n;p, A�n;p with p� label momenta,
and soft quarks and gluons, qs;k, A

�
s;k with k� label mo-

menta. Here soft fields have plus momenta much bigger
than their collinear counterparts, and collinear fields have
minus momenta larger than their soft counterparts.

The quark and soft gluon fields in NRQCD and the
collinear quark and gluon fields in SCET will be referred
to as labeled fields. As is clear from Fig. 5, labeled fields
must have a nonzero value for their label, i.e. they must be
outside the zero-bin. Otherwise, they cover the same mo-
mentum region as the usoft fields. This is implemented at
the level of the effective theory Lagrangian by requiring

m v

2m v

m v

p

k

a)

p

 Q

Q λ2

p

kQ λ

b)

p

p

FIG. 5 (color online). Label and residual momenta for (a) NRQCD quarks and (b) SCETI. In both cases p denotes a large
momentum, and labels a particular box, whereas k is a small momentum, and gives the final momentum location relative to the
reference momentum point in the box labeled by p.
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that all labeled fields in the Lagrangian have a nonzero
value for the label. Terms in the effective theory
Lagrangian have sums over the field labels, and all such
sums are over nonzero values of the labels. One then has to
carefully derive the rules for effective theory graphs in-
cluding this constraint on the labels.

In loop integrals, one finds expressions which involve a
sum over labels and an integral over the residual momen-
tum, which can be converted to an integral over the entire
momentum space [8],

 

X
p

Z
dk!

Z
dp; (16)

as is clear from Fig. 5. Here the label p denotes a generic
label, such as p for NRQCD quarks, � �n  p;p?� for col-
linear SCET quarks, etc. One residual momentum is re-
moved for each sum over a label momentum.7 Any
remaining residual momenta appear as integrals in their
own right, providing a proper implementation of the multi-
pole expansion.8 In using equations such as Eq. (16), one
should imagine using Fig. 5 with explicit bins (i.e. hard
cutoffs) for the k integrals. Once the final expressions are
derived, one can evaluate the integrals in dimensional
regularization, treating the bin sizes as infinite as discussed
in Sec. III. Equation (16) is only true if we sum over all p,
including p � 0. The replacement in Eq. (16) is what we
will call the result for the naive integral, generically de-
noted with a tilde, ~I.

We can finally formulate the zero-bin subtractions men-
tioned at the beginning of this article. The sum on p in
Eq. (16) is over p � 0 because the effective Lagrangian
terms are a sum over p � 0. The restriction p � 0 in
Eq. (16) modifies the right-hand side. In a Feynman graph,
let F�fpig; fkig� be the integrand, including all the momen-
tum conserving -functions and label preserving
Kronecker-’s at the vertices, where i runs over all the
internal propagators. When integrating over a function F,
the correct form of Eq. (16) is actually

 X
_fpi�0g

Z Y
i

dki F�fpig; fkig�

!
Z Y

i

dpi

�
F�fpig� �

X
j2U

Fsub
j �fpig�

�
: (17)

On the left-hand side, the sum is over all label momenta
avoiding the zero-bins, pi � 0. On the rhs, we integrate pi
over all of momentum space and the second term subtracts

the contributions from regions j 2 U where one or more pi
vanish. The set of such regions U can be broken up into Ui
where pi � 0, Uij where pi � 0 and pj � 0, etc. The
subtractions over U are defined iteratively by first subtract-
ing over each Ui, then adding back Uij, subtracting Uijk,
etc. Note that, since the pi � 0 constraint comes from the
fields in the Lagrangian, it is implemented at the level of
propagators in a graph, i.e. for each internal line, not for
each loop momentum. Once the momentum conserving
delta functions are accounted for, the subtractions are
implemented at the level of the full integrand.9

Each of the pi � 0 terms in Eq. (17) represent the full
label on a field, which, for example, will be a four-vector
for soft gluons in NRQCD, q�, and the q� � q�n�=2�
q�? components for a collinear quark in SCETI. The proper
subtraction integrand Fsub is obtained from F by assigning
a scaling to all the pi appropriate for the zero-bin region,
and expanding in powers of the momentum which vanishes
in the zero-bin (as we scale towards this region with the
power counting parameter in the sense of a standard OPE).
For example, if we sum over q� � 0 for a soft momentum
(i.e. order mv) in NRQCD, then we define Fsub by an
expansion of the integrand F in powers of q� by assuming
that q� 	 v2, i.e. by assuming, for the purposes of the
expansion, that q� is usoft. This subtraction is done at
the level of the integrand. The expansion is done to high
enough order that the resulting integrand F� Fsub van-
ishes in the zero-bin, i.e. vanishes as q� ! 0.

Note that there is a freedom to define a scheme which
leaves a finite integrand in the scaling limit since this just
moves finite pieces around between the matching and
matrix elements. We will use the scheme where all singu-
larities are removed but not finite pieces. Also note that in a
given subtraction some terms will be power divergences
which in dimensional regularization are set to zero. This
implies that if we had subtracted additional polynomial
pieces they would not change the result of loop graphs in
dimensional regularization since they integrate to zero.

To show that the rhs of Eq. (17) provides the proper
implementation of the zero-bin independent of imposing
hard momentum cutoffs, we use a logic similar to Sec. III
in discussing Figs. 2–4. The

P
p�0 can be turned into a full

integral if we add the p � 0 bin, but we must subtract it
again. The subtraction term has only an integral over
residual momentum, but when we send the hard cutoffs
on the sides of the zero-bin to 1 the subtraction is also
integrated over all momentum. Thus we end up subtracting
terms derived from the scaling limit of the original inte-
grand integrated over all of momentum space. The full

7From the reparametrization invariance [58] in splitting p� k,
it is equivalent to think of this as first fixing the lattice of p’s and
adding the integrals over k, or as using the freedom in the choice
of p’s to fix k and then extending the sum over p’s to an integral.

8See [59] for why this is relevant to power counting in
NRQCD.

9If there are less sums over label momenta pi than integrals
dki, then these extra integrals over k’s will appear on the rhs with
corresponding dependence in F. These extra k’s are momenta
that are truly small for the physical process, see Ref. [54]. For
simplicity this complication was suppressed in writing Eq. (17),
since it is not the most important aspect.

ANEESH V. MANOHAR AND IAIN W. STEWART PHYSICAL REVIEW D 76, 074002 (2007)

074002-10



integrand on the rhs of Eq. (17) ensures that we do not
double count the zero-bin because the integrand vanishes
when the loop momentum is sent towards the zero-bin
momenta. This ensures there is no double counting in the
IR. Any double counting in the UV is taken care of by
Wilson coefficients and renormalization as usual.

It is worth emphasizing that the result in Eq. (17) applies
equally well to the use of scaleless regulators like dimen-
sional regularization, and to the case where hard Wilsonian
cutoffs are applied to distinguish modes. For the Wilsonian
case, consider the cutoffs as �-functions multiplying the
integrand. In this situation the regulator ensures that the
integrand is zero in the scaling limit so the subtraction
terms all turn out to be zero, and the naive replacement in
Eq. (16) with the cutoffs gives the correct answer.

The result in Eq. (17) applies to NRQCD or SCET or any
other quantum field theory of this type. It is necessary to
avoid double counting the zero-bin momenta which corre-
spond to different degrees of freedom in the effective
theory. It provides a means for tiling the infrared regions
of a quantum field theory with different degrees of freedom
while avoiding double counting. In the following sections
we explore the difference between Eqs. (16) and (17), and
its consequences, with the help of several examples.

Before leaving the general discussion, it is worth em-
phasizing that Eq. (17) together with the definition of the
NRQCD and SCET degrees of freedom given in Figs. 3 and
4 give complete coverage of all momentum regions where
IR divergences can occur. We used multiple degrees of
freedom to cover these IR regions because this facilitates
setting up the proper EFT power counting expansion. In
general, one can look at combining regions together to
describe a larger region with only a single degree of free-
dom. Doing so comes at the expense of making the power
counting expansion difficult to formulate. In many cases it
is actually unknown how to formulate the EFT expansion
when regions are combined, thus necessitating multiple
modes. We see that in general, the concepts of (i) an EFT
having a complete set of degrees of freedom to reproduce
all IR divergences, and (ii) the EFT having a valid power
counting expansion, are tied together. We use this freedom
to define NRQCD and SCET to cover the IR regions with
our chosen degrees of freedom, so they reproduce the IR
divergences. In this case proving that these EFT’s are
complete is equivalent to proving that their power counting
expansions do not break down at any order. Demonstrating
this is easier, since the power counting can only break
down if we have missed a relevant operator at leading
order in the expansion of some observable. All subleading
operators are treated as insertions and do not upset the
power counting. Thus, we see that constructing a complete
EFT is equivalent to identifying the proper physical de-
grees of freedom in the leading order action, which is
related to identifying the set of physical processes for
which the EFT applies.

V. ZERO-BIN SUBTRACTIONS IN NRQCD
(NONRELATIVISTIC PROCESSES)

In this section we consider examples of the use of
Eq. (17) for nonrelativistic field theories. The results are
quite general, applying whether the nonrelativistic parti-
cles are quarks, nucleons, ions, or quasiparticles. The fields
generating the potential are different in these cases, but the
same momentum regions are important. To be definite we
use a gauge theory, and so take our examples from non-
relativistic QCD (NRQCD).

A. NRQCD soft crossed-box graph

It is helpful to consider a concrete example to study the
consequences of Eq. (17)—we will start with the crossed-
box graph in NRQCD. The full theory integral contains
hard, soft, and usoft contributions, and we examine the soft
crossed-box graph in the effective theory shown in Fig. 6.
Here p1 and p2 are the external momenta, with r � p2 �
p1 the momentum transfer, and 2mE � p2

1 � p2
2. The mo-

mentum of all the particles has been denoted as (label
energy, residual energy; label momentum, residual mo-
mentum), and the external particles have been chosen to
have zero residual momentum.

In Feynman gauge the propagator for a soft gluon with
momentum �p0; k0; p;k� is 1=
�p0�2 � p2 � i0��, and for
a soft quark with momentum �p0; k0; p;k� is 1=
p0 � i��.
We neglect overall factors such as color Casimirs and
coupling constants, and focus on the integral for this graph:

 Icross
S �

X
p0�0;p��0;p���0;r�

Z dDk
�2��D

1

p0 � i0�
1

p0 � i0�

�
1

�p0�2 � p2 � i0�
1

�p0�2 � �p� r�2 � i0�
:

(18)

These soft propagators do not depend on the residual
momentum components and so the propagator takes differ-
ent values at each grid site in Fig. 3, but the same constant

(0,E;p1 p;E,0()0, 2,0)

(0,E;-p1 p-;E,0()0, 2,0)

(p0,E+k0;p1+p,k)

(p0,E+k0;p-p2,k)

(p0,k0;p,k) (p0,k0;p-r,k)

FIG. 6. Soft crossed-box graph in the effective theory. The
zigzag lines are soft gluons, the double lines are soft quarks,
and the single lines are potential quarks. For each line we show
(label energy, residual energy; label momentum, residual mo-
mentum).
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value for all the points in each box. Thus there is no change
to the integrand when the label and residual momenta are
combined into a continuous integration using Eq. (16),
which gives

 

~Icross
S �

Z dDp
�2��D

1

p0 � i0�
1

p0 � i0�
1

�p0�2 � p2 � i0�

�
1

�p0�2 � �p� r�2 � i0�
: (19)

However, Eq. (19) still includes the zero-bin contribution,
which must be subtracted out. A more careful analysis
taking account of the zero-bin for each soft particle propa-
gator, and instead using Eq. (17) implies that the value of
the soft crossed-box graph is not Eq. (19) but rather

 Icross
S � ~Icross

S � Icross
1 � Icross

2 ; (20)

where the subtractions are: (a) I1 from the region �p0 �
0;p � 0� and (b) I2 from the region �p0 � 0;p � r�:
 

Icross
1 �

Z dDp
�2��D

1

p0 � i0�
1

p0 � i0�
1

�p0�2 � p2 � i0�

�
1

��r�2 � i�
;

Icross
2 �

Z dDp
�2��D

1

p0 � i0�
1

p0 � i0�
1

�r2 � i0�

�
1

�p0�2 � �p� r�2 � i0�
: (21)

By the shift symmetry in p we have Icross
1 � Icross

2 .
The Icross

1 subtraction comes from the region where the
�p0; k0; p;k� gluon is usoft. Similarly, the Icross

2 subtraction
comes from the region where the other gluon becomes
usoft. Subtractions from the region where the quark is
potential (p0 � 0) vanish, as do the double subtractions
where the regions for I1;2 overlap with p0 � 0. This is
because for the crossed box all the p0 poles are on the same
side of the contour of integration.

The subtraction Icross
1 avoids double counting the usoft

graph shown in Fig. 7(a) and similarly Icross
2 avoids double

counting the usoft graph Fig. 7(b). The usoft graphs depend
on external usoft variables such as the energy. If these are
set to zero, then the integral Fig. 7(a) is Icross

1 , including the
omitted color factors. The reason that Icross

1 does not de-
pend on external usoft variables, but Fig. 7(a) could, is
because Icross

1 is obtained by considering a soft graph, and
then taking its usoft limit. The effective field theory
Feynman rules require that all usoft momentum be ex-
panded out while considering soft diagrams. Thus Icross

1 is
the same as Fig. 7(a) with the external usoft variables
expanded out.

Prior to the subtraction, the soft crossed-box integral in
dimensional regularization is

 

~I cross
S � �

i

4�2r2

�
1

�IR
� ln

�
�2

r2

��
: (22)

The total subtraction Icross
1 � Icross

2 gives

 Icross
1 � Icross

2 � �
i

4�2r2

�
1

�IR
�

1

�UV

�
; (23)

so the final result for the crossed-box integral is

 Icross
S � ~Icross

S � Icross
1 � Icross

2

� �
i

4�2r2

�
1

�UV
� ln

�
�2

r2

��
: (24)

The subtractions have converted the 1=�IR divergence in
~Icross
S into a 1=�UV ultraviolet divergence. In Refs. [14,52],

it was argued that 1=�IR divergences in soft graphs should
be converted to ultraviolet divergences by a pullup mecha-
nism and included in the computation of anomalous di-
mensions. We see that the zero-bin subtraction
automatically implements this conversion. An important
feature for NRQCD is that the soft graph defined with the
zero-bin subtraction is infrared finite, and has a well-
defined renormalized value independent of any cancella-
tion with usoft graphs.

A similar conversion from infrared to ultraviolet diver-
gences also occurs for collinear graphs in SCETI as we
show in Sec. VI.

B. NRQCD box graph

The zero-bin subtraction has another important conse-
quence—it gets rid of pinch singularities. Consider the soft
box graph in NRQCD, shown in Fig. 8, and follow the
same procedure as for the crossed-box graph. The only
difference from the crossed box is the replacement

 

1

p0 � i0�
1

p0 � i0�
!

1

p0 � i0�
1

�p0 � i0�
(25)

in Eqs. (18)–(21) due to the change in momentum routing
through the antiquark line. The integrals analogous to those
in Eqs. (19) and (21) are

(a) (b)

FIG. 7. Ultrasoft corrections to potential scattering related to
the crossed-box graph.
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~Ibox
S �

Z dDp
�2��D

1

p0 � i0�
1

�p0 � i0�
1

�p0�2 � p2 � i0�

�
1

�p0�2 � �p� r�2 � i0�
;

Ibox
1 �

Z dDp
�2��D

1

p0 � i0�
1

�p0 � i0�
1

�p0�2 � p2 � i0�

�
1

��r�2 � i�
;

Ibox
2 �

Z dDp
�2��D

1

p0 � i0�
1

�p0 � i0�
1

�r2 � i0�

�
1

�p0�2 � �p� r�2 � i0�
: (26)

where the usoft subtractions Ibox
1;2 are for �p0 � 0;p � 0�,

�p0 � 0;p � r� respectively. In addition, one also has a
potential subtraction for p0 � 0,

 Ibox
3 �

Z dDp
�2��D

1

p0 � i0�
1

�p0 � i0�
1

�p2 � i0�

�
1

��p� r�2 � i0�
: (27)

Now this p0 � 0 subtraction overlaps with the usoft sub-
tractions, so we have to add back the double subtractions,
the (p0 � 0) limit of Ibox

1;2 :

 Ibox
4 �

Z dDp
�2��D

1

p0 � i0�
1

�p0 � i0�
1

�p2 � i0�

�
1

�r2 � i0�
;

Ibox
5 �

Z dDp
�2��D

1

p0 � i0�
1

�p0 � i0�
1

�r2 � i0�

�
1

��p� r�2 � i0�
:

(28)

The complete expression for the soft box graph is

 Ibox
S � ~Ibox

S � Ibox
1 � Ibox

2 � Ibox
3 � Ibox

4 � Ibox
5 : (29)

Both ~Ibox
S and Ibox

3 have pinch singularities in the p0

integral, from the poles at p0 � �i0�, and are ill defined.
However, for the result in the effective theory, we do not
need the separate integrals, but only the difference ~Ibox

S �
Ibox

3 , which has no pinch. We have
 

~Ibox
S � I

box
3 �

Z dDp
�2��D

1

p0� i0�
1

�p0� i0�

�

�
1

�p0�2� p2� i0�
1

�p0�2� �p� r�2� i0�

�
1

p2� i0�
1

�p� r�2� i0�

�
: (30)

One can evaluate the p0 integral in Eq. (30) using contour
integration. The result is the same as doing Eq. (19) by
contours and dropping the pinch pole at p0 � 0, since the
integrand of Eq. (30) has no p0 pole and the subtraction
term does not introduce new poles in p0. This prescription
for the soft box graph is what was used in
Refs. [9,11,12,42,49,60], but we now see how the effective
theory automatically gives this result.10

The double subtractions Ibox
4 and Ibox

5 remove the pinch
poles at p0 � 0 for the subtractions Ibox

1 and Ibox
2 respec-

tively, so that Ibox
1 � Ibox

4 and Ibox
2 � Ibox

5 are free of pinch
singularities. This justifies ignoring the p0 � 0 pole in the
calculation of these integrals. The Ibox

1;2 usoft subtractions
convert the infrared divergences in ~Ibox

S into ultraviolet
divergences, just as they did for the crossed box. Prior to
the subtraction, the soft box integral in dimensional regu-
larization is

 

~I box
S � Ibox

3 �
i

4�2r2

�
1

�IR
� ln

�
�2

r2

��
: (31)

The total subtraction is

 Ibox
1 � Ibox

4 � Ibox
2 � Ibox

5 �
i

4�2r2

�
1

�IR
�

1

�UV

�
; (32)

so the final result for the box integral is

 Ibox
S � ~Ibox

S � Ibox
1 � Ibox

2 � Ibox
3 � Ibox

4 � Ibox
5

�
i

4�2r2

�
1

�UV
� ln

�
�2

r2

��
: (33)

The subtractions have converted the 1=�IR divergence in
~Ibox
S into a 1=�UV ultraviolet divergence just like the cross

box. The zero-bin subtraction has removed the infrared
divergences and the pinch singularities, since these regions
are properly taken care of by usoft and potential graphs,

(0,E;p1 p;E,0()0, 2,0)

(0,E;-p1 p-;E,0()0, 2,0)

(p0,E+k0;p1+p,k)

(-p0,E-k0;-p1-p,-k)

(p0,k0;p,k) 0,k0;p-r,k)(p

FIG. 8. Soft box graph in the effective theory. The zigzag lines
are soft gluons, the double lines are soft quarks, and the single
lines are potential quarks. For each line we show (label energy,
residual energy; label momentum, residual momentum).

10At one-loop there are many prescriptions that lead to the same
result, that the pinch is dropped in the contour integration.
Examples include split dimensional regularization and the prin-
cipal value prescription. The formula in Eq. (17) can be applied
at any order, and makes adopting a prescription moot.
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respectively. The properly defined soft box graph is infra-
red finite, and has no pinch singularity.

The use of Eq. (17) with the zero-bin subtraction works
at higher orders as well. One can check explicitly that the
subtractions remove the pinch singularities in the double
box. If the loop momenta for the two single-box subgraphs
are called p and ‘, the subtracted double box is given by
subtracting the region where p0 � 0 and where ‘0 � 0,
and adding back the region where p0 � ‘0 � 0. This gives
an expression for the double box which is free of both
single and double pinch singularities. We have checked
that the subtracted three gluon exchange graphs give the
correct contribution to the two-loop static potential [61] in
Feynman gauge.

The standard computation of the Coulomb potential at
O��2

s� in QCD is free of IR singularities for a different
reason, because the IR divergences in the box and crossed
box cancel against the vertex and wave function diagrams.
With the zero-bin subtractions, the scaleless soft vertex and
wave function diagrams are set to zero, and the box and
cross box together with the non-Abelian vacuum polariza-
tion and Y-graphs give the complete IR finite answer. At
this order there is also no overall usoft contribution to this
four point function, and the same is true for the Coulomb
potential at two-loop order [61,62]. At three loops the zero-
bin subtraction removes the ADM singularity in the
Coulomb potential [15,63,64]. A one-loop example at
O�v2� where the subtractions do not cancel in the sum of
diagrams is discussed in the next section.

C. Results for the box and crossed box at order O�v2�

In this section, we study the soft box and crossed-box
graphs to second order in the v expansion, i.e. to the same

order as the spin-orbit, Darwin, and tensor-force contribu-
tions to the Q �Q potential. At order v2, the naive soft box
and crossed box have IR divergences and there are also
nontrivial contributions from usoft diagrams. We will sum-
marize results for these graphs to illustrate how the zero-
bin subtractions work. This example also illustrates a case
where Fsub

j in Eq. (17) involves a series of terms.
Prior to any subtractions, the necessary diagrams are

simply given by all quark-antiquark scattering diagrams
that are derived using the HQET Lagrangian up to 1=m2.
The full integrands are lengthy and we refer the reader to
Refs. [9,42]. After using standard tricks to trivialize the
numerator momenta we are left with the basic integrals:

 J��;�� �
X
p2Zc

Z dDk

�2��D
1

�p0� i0�����p0� i0���

�
1


�p0�2�p2� i0��
�p0�2� �p� r�2� i0��
;

(34)

where Zc � fp0 � 0; p� � 0; p� � �0; r�g. The subtrac-
tions that account for p0 � 0 and remove the pinch singu-
larity from the first two denominators involve  derivatives
of the second two denominators where  is the nearest
integer � ��� ��. For this particular computation this is
equivalent to ignoring these poles in the contour integral.

As in the previous section the removal of the remaining
constraints is similar, with or without the pinches, so we
will consider the case � � 0 for simplicity. The naive
integral and its subtractions for fp� � �0; r�; p� � 0g re-
spectively are

 

~J��; 0� �
Z dDp
�2��D

1

�p0 � i0���
�p0�2 � p2 � i0��
�p0�2 � �p� r�2 � i0��
;

J1��; 0� �
Z dDp

�2��D
1

�p0 � i0���
�p0�2 � �p� r�2 � i0��

X��2

k�0


�2�p� r�  r�k


�r2�k�1
;

J2��; 0� �
Z dDp
�2��D

1

�p0 � i0���
�p0�2 � p2 � i0��

X��2

k�0


�2p  r�k


�r2�k�1
:

(35)

where in J1 and J2 we have dropped terms that are obvi-
ously zero. Note that here removing the zero-bin requires a
series of subtractions obtained from expanding the naive
integrand about the zero-bin values. By translation invari-
ance in dimensional regularization the two subtraction
integrals are equal, J1��; 0� � J2��; 0�.

For � � 1, the subtractions are zero, J1 � J2 � 0,
and ~J�1; 0� is finite. For any other odd �, both the
naive integral and subtractions give zero. For even � �
0, ~J��; 0� is UV divergent and the subtractions give zero.
Finally for even� � 2 the base integral is IR divergent and
the subtractions convert this to a UV divergence for
J��; 0� � ~J��; 0� � J1��; 0� � J2��; 0�. As an example,

consider � � 4. The naive integral is

 

~J�4; 0� �
i

16�2

�
�

16

3r4

��
1

�IR
� ln

�
�2

r2

�
� 2

�
; (36)

and the subtractions J1 � J2 are given by
 

J2�4; 0� �
Z dDp
�2��D

1

�p0 � i0��4
�p0�2 � p2 � i0��

�

�
�

1

r2 �
2p  r

r4 �
4�p  r�2

r6

�

� 0� 0�
i

16�2

�
�

16

3r4

��
1

�IR
�

1

�UV

�
: (37)

Thus the full integral is J�4; 0� � ~J�4; 0� � 2J2�4; 0� giving
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 J�4; 0� �
i

16�2

�
�

16

3r4

��
1

�UV
� ln

�
�2

r2

�
� 2

�
; (38)

which does not have an IR pole. The same is true for all
even � � 2.

Let us consider the sum of all order v2 NRQCD soft
exchange diagrams (boxes, cross boxes, and triple gluon
graphs), and the vertex and wave function graphs, all
computed in Feynman gauge with equal mass quarks and
antiquarks. Using the naive ~J integrands, we find11

 

~Sexchange �
i�2

s

m2

��
C1�1 � 1� �

Cd
4
�TA � TA�

��
1

�UV
�

4

3�IR

�
� CA�T

A � TA�
��

13

4�UV
�

1

3�IR

�

�
�p2 � p02�

2r2

�
�

5

3�UV
�

14

3�IR

�
��

�
1

2�UV
�

3

�IR

�
� S2

�
�

11

18�UV
�

2

3�IR

�
� T

�
�

1

36�UV
�

1

6�IR

���
;

~Svertex�w:fn: �
i�2

s

m2 �T
A � TA�

�
4

3

�
CF �

CA
2

�
� 2CA

�
p2 � p02

2r2 �
S2

3
�

3�

2
�

T

12

���
1

�UV
�

1

�IR

�
(39)

for the pole structure. We used the notation in Ref. [9]
where in SU�Nc� the color coefficients C1 � �N

2
c �

1�=�4N2
c�, Cd � Nc � 4=Nc, CA � NC, CF � �N2

c �
1�=�2Nc�, there are two color structures �1 � 1� and �TA �
TA�, and �, S2, and T are spin and momentum dependent
structures,

 S �
�1 � �2

2
; � � �i

S  �p0 � p�
r2 ;

T � �1  �2 �
3r  �1r  �2

r2 :

(40)

The sum of diagrams with naive integrands is

 

~S �
i�2

s

m2

�
C1�1 � 1�

�
1

�UV
�

4

3�IR

�

� �TA � TA�
�

4CF
3

�
1

�UV
�

1

�IR

�
� Cd

�
1

4�UV
�

1

3�IR

��

� CA�TA � TA�
��

31

12�UV
�

1

�IR

�
�
�p2 � p02�

2r2

�

�
�

11

3�UV
�

8

3�IR

�
��

�
7

2�UV

�
� S2

�
1

18�UV

�

� T
�

5

36�UV

���
: (41)

After subtracting the zero-bin contributions to get the
proper integrals J��;��, we find

 

S �
i�2

s

m2

�
C1�1 � 1�

�
7

3�UV

�
� Cd�TA � TA�

�
7

12�UV

�

� CA�T
A � TA�

��
43

12�UV

�
�
�p2 � p02�

2r2

�
�19

3�UV

�

��
�

7

2�UV

�
� S2

�
1

18�UV

�
� T

�
5

36�UV

���
: (42)

At O�v2� there are also UV divergences from the usoft
graphs which can be found from Ref. [42]. Using dimen-
sional regularization for both the UV and the IR, they give

 

U �
i�2

s

m2

�
1

�UV
�

1

�IR

��
4C1

3
�1 � 1� �

�
CA �

4CF
3
�
Cd
3

�
8CA

3

�p2 � p02�
2r2

�
�TA � TA�

�
: (43)

We see explicitly that the usoft graphs have UV divergen-
ces which match up with the fake IR divergences from the
unsubtracted soft computation in ~S. The true soft compu-
tation gives an IR finite result and the usoft contribution
exactly matches the IR divergences in the full theory
computation, see Ref. [9]. To interpret the UV divergence
in Eq. (43) as occurring at the hard scale, it is crucial to
make the zero-bin subtractions to avoid double counting in
the soft region.

VI. ZERO-BIN SUBTRACTIONS IN SCETI
(INCLUSIVE PROCESSES)

SCET is another theory with correlated scales, and with
multiple fields for the same particle. As a result, one
expects the zero-bin subtraction to also apply in this theory
(yielding a pullup here too). In this part, we consider
examples of the application of Eq. (17) to SCETI which
has collinear fields appropriate for the description of per-
turbative energetic jets, and nonperturbative usoft fields.12

The new feature of SCETI is the appearance of double-
logarithmic divergences at one-loop order. In the following
discussion we show how the zero-bin subtraction works in
this case.

12These collinear modes are sometimes called hard collinear,
and the usoft modes are then called soft.

11For the purpose of this example we have set Wilson coef-
ficients in the HQET Lagrangian to their tree-level values. For
the summation of logs in Refs. [42,47,53], their renormalization
group evolution of course had to be kept.
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We first consider the heavy-to-light vertex diagram in
Fig. 9, which appears in processes such as the b! s�
transition magnetic moment operator needed to compute
inclusive B! Xs� decays. In Sec. VI A we work on shell
with finite cutoffs and demonstrate that the infrared diver-
gences of the full theory are reproduced in SCETI. The
subtraction from Eq. (17) in the collinear diagram is re-
quired for this to be true. To demonstrate that Eq. (17) is
independent of the choice of ultraviolet and infrared regu-
lator, in Sec. VI B we consider the more standard choice of
dimensional regularization with an offshellness infrared
regulator, and explain how the zero-bin subtraction works
for this case. In Sec. VI C we treat the example of the
current relevant for inclusive two-jet production where we
have collinear fields in two directions, n and �n, and usoft
fields. The

P
p�0 are also important at tree level and for

phase space integration as demonstrated by the �� ! q �qg
example that we take up in Sec. VI D.

A. On-shell integrals and a cutoff regulator for
B! Xs�

For b! s� at lowest order in �QCD=E�, we have the
SCET current [2]

 J�0� � C�!�
� ��nW�!�hv�: (44)

After making the decoupling field redefinition [4] on the
collinear fields this becomes

 J0�0� � C�!�
� ��nW�!��Yyhv��: (45)

We start by making use of the current in Eq. (44) and will
discuss the equivalence of using (45) at the end of this
section. The incoming heavy quark momentum is p�b �
mv� with v2 � 1 and the outgoing light quark momentum
is p� � p�n�=2 where n2 � 0 and p� � �n  p. Both the
incoming and outgoing quarks are taken on shell.

In this section we first demonstrate the effect of the
pullup on collinear diagrams, prior to making a specific
choice of regulator. We then use infrared cutoffs �? and
�� on p? and p� in both the full and effective theories, so
that the loop momenta are restricted to the region q2

? �

�2
? and q2

� � �2
�. For the usoft graphs, we use a ultra-

violet cutoff ��, while for the collinear graphs, we use an
ultraviolet cutoff �?. Hard cutoffs make the computation
of anomalous dimensions more difficult and in more ge-
neric diagrams would require gauge violating (and power
counting violating) counterterms to restore these symme-
tries. Our focus is on showing how the IR divergences are
reproduced for a particular example where these problems
do not occur, so for the purpose of this computation these
issues are not a concern.

The part of the full theory diagram in Fig. 9(a) with the
double-logarithmic infrared divergence involves the inte-
gral

 Ib!s�full �
Z dDq
�2��D

�
4pb p

�q2� i0���q2�2pb q� i0���q2�2p q� i0��
;

(46)

which is ultraviolet finite. Taking pb � mb�n� �n�=2 and
0<p� <mb, we use the identity dDq � d�n  q�d� �n 
q�dnq?=2 to write the measure in light-cone variables,
where here the exponent n � D� 2 is the dimension of
the ? -space, not to be confused with the lightlike vector
n�. Next we perform the n  q integral by contours. There
are poles for

 n  q � �
q2
?

�n  q
� i0�sign� �n  q�;

n  q � �
�q2
? �mb �n  q�

�n  q�mb
� i0�sign� �n  q�mb�;

n  q � �
q2
?

�n  q� �n  p
� i0�sign� �n  q� �n  p�;

(47)

which gives three poles above the axis for q� <�mb, one
moving below in the region �mb < q� <�p�, two be-
low and one above for �p� < q� < 0, and all below for
q� > 0. Thus only the middle two regions contribute. We
will drop the integral over the interval �m< �n  q <
�p�, since it is finite in the UV and IR. This gives

 

Ib!s�full �
i

2�

Z 0

�p�
d �n  q

dnq?
�2��n

�n  q


q2
? � � �n  q�

2��q2
?�

� finite; (48)

The usoft graph in SCETI is shown in Fig. 9(c) and just
has an integral over residual momentum. It is important to
recall that the leading order SCET Lagrangian involves a
momentum space multipole expansion for the residual
momentum [2], so that only the residual n  k momentum
appears in the collinear quark propagator. The integral is

 

Ib!s�us �
Z dDk
�2��D

1

�k2 � i0���v  k� i0���n  k� i0��

�
i

2�

Z 0

�1
d �n  k

dnk?
�2��n

�n  k


k2
? � � �n  k�

2��k2
?�
: (49)

For the collinear graph, Fig. 9(b), we have the label loop
momentum ~q� � �n  qn�=2� q�? and residual loop mo-
mentum q�r , and we will denote q� � ~q� � n  qr �n�=2.
The original integral is
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 Ib!s�C �
X

~q�0;~q��~p

Z dDqr
�2��D

�
2 �n  �q� p�

� �n  q� i0���q2 � 2p  q� i0���q2 � i0��
:

(50)

Equation (17) is used to take into account the subtractions
from the zero-bins. For ~q � 0 we examine the scaling
~q� 	 	2, for which case the loop-measure scales as 
	8�
and combines with the integrand to give 
	8�=
�	2��	2��
�	4�� 	 	0, so there is a nontrivial subtraction for this
region. For ~q � �~p we examine q� � p� 	 	2, q? 	
	2 and have: 
	8�=
�	0��	4��	2�� 	 	2, so this zero-bin
can be ignored. When we combine the sum over label
momentum with the integral over residual momentum we
get the naive result ~IC and a subtraction I0 from Eq. (17):

 

~Ib!s�C �
Z dDq
�2��D

2 �n  �q�p�

� �n q� i0���q2�2p q� i0���q2� i0��

�
i

2�

Z 0

�p�
d �n q

dnq?
�2��n

�n  �q�p�

� �n q�� �n p��q2
?�
;

Ib!s�0 �
Z dDq
�2��D

2 �n p

� �n q� i0���n q �n p� i0���q2� i0��

�
i

2�

Z 0

�1
d �n q

dnq?
�2��n

�n p

� �n q�� �n p��q2
?�
: (51)

Here the zero-bin subtraction Ib!s�0 is obtained from the
q� ! Q	2 scaling limit of the Ib!s�C integrand and avoids
double counting for the usoft region of momentum space.
To double-logarithmic accuracy the �n  q in the numerator
of ~Ib!s�C can be dropped so

 Ib!s�C � ~Ib!s�C � Ib!s�0

�
i

2�

Z �1
�p�

d �n  q
dnq?
�2��n

1

� �n  q��q2
?�
�    : (52)

We see that the subtraction integral changes an infrared
divergence in IC at �n  q � 0 into a ultraviolet divergence
for �n  q! �1. Since we can see this at the level of the
integrand, it is obviously independent of the choice of
ultraviolet and infrared regulators.

With the prescribed cutoff regulators and ? -spacetime
dimension n � 2, these integrals can be evaluated to give

 

Ib!s�full �
i

8�2

�
Li2

�
��2

?

�2
�

�
� ln

�
��
p�

�
ln
�
��p�

�2
?

��
�    ;

Ib!s�us �
i

8�2

�
Li2

�
��2

?

�2
�

�
� ln

�
��
��

�
ln
�
����

�2
?

��
;

~Ib!s�C �
i

8�2

�
� ln

�
�2
?

�2
?

�
ln
�

��
p�

��
�    ;

Ib!s�0 �
i

8�2

�
� ln

�
�2
?

�2
?

�
ln
�

��
��

��
: (53)

The full result for the collinear graph is therefore

 Ib!s�C � ~Ib!s�C � Ib!s�0

�
i

8�2

�
� ln

�
�2
?

�2
?

�
ln
�
��
p�

��
�    ; (54)

and we see that the zero-bin subtraction Ib!s�0 has con-
verted an IR divergence ln���� for the q� variable in
~Ib!s�C into a UV divergence, ln����. The sum of the
SCETI effective theory contributions gives
 

Ib!s�us � Ib!s�C �
i

8�2

�
Li2

�
��2

?

�2
�

�
� ln

�
��
p�

�
ln
�
��p�

�2
?

�

� ln2

�
�?
p�

�
� ln2

�
�?
��

��
�    : (55)

The first two terms on the rhs contain the infrared diver-
gences and exactly reproduce these divergences in the full
theory result Ib!s�full . Furthermore, the last two terms in
Eq. (55) depend only on the ultraviolet cutoffs and the
large label momentum p� and can be compensated by a
counterterm for the current in SCETI. If Ib!s�0 in Eq. (54)
had been left out, then we would not properly reproduce
the IR divergences in the full theory result. Furthermore,
without Ib!s�0 , the ultraviolet cutoff dependent term would
have cross terms ln���� ln��

2
?� and ln��2

?� ln���� and it
would not be possible to cancel the cutoff dependence by a
counterterm independent of the IR regulator.

The above calculation was performed for the current J�0�

in Eq. (44). Since our regulator leaves all external lines on
shell, we obtain exactly the same results if we had started
with the current J0�0� in Eq. (45), which is obtained after
making a field redefinition involving the Wilson line Y.
Since we work on shell the two forms of the current are
equivalent, and the Feynman rule from the Wilson line Y
give exactly the same integral in Eq. (49). Thus our im-
plementation of a cutoff IR regulator does not destroy the
eikonal factorization embodied by the field redefinitions
involving the Wilson line Y. This property of the field

a) b) c)

FIG. 9. Heavy-to-light vertex diagrams. (a) full theory, (b) SCETI collinear graph, and (c) SCETI usoft graph.
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theory is not maintained with the offshellness IR regulator
which we consider in the next section. This should be
considered as a fault of this IR regulator as pointed out
in Ref. [65]. In Ref. [65] an energy dependent gluon mass
regulator was studied which also preserves the field
redefinition.13

B. Off-shell regulator with dimensional regularization
for B! Xs�

We now repeat the calculation of the effective theory
diagrams in the previous section but keep p2 � 0 to regu-
late the infrared and use dimensional regularization for the
ultraviolet, D � 4� 2�. The full theory integral is

 Ib!s�full �
Z dDq
�2��D

4pb  p

�q2 � i0���q2 � 2pb  q� i0
��
�q� p�2 � i0��

: (56)

The SCET integrals are

 Ib!s�us �
Z dDk
�2��D

1

�k2 � i0���v  k� i0���n  k� p2= �n  p� i0��
;

~Ib!s�C �
Z dDq
�2��D

2 �n  �q� p�

� �n  q� i0��
�q� p�2 � i0���q2 � i0��
;

Ib!s�0 �
Z dDq
�2��D

2 �n  p

� �n  q� i0���n  q �n  p� p2 � i0���q2 � i0��
:

(57)

Again, one can see that as �n  q! 0 the difference ~Ib!s�C � Ib!s�0 does not have an infrared divergence from this region.
However in IC alone, there is an infrared divergence from this region that is not regulated by p2 � 0. It is regulated by
dimensional regularization, and so contributes to the 1=� singular terms. Evaluating the above integrals we find

 Ib!s�full � �
i

16�2

�
ln2

�
�p2


 �n  p�2

��
�    ; Ib!s�us � �

i

16�2

�
1

�2
UV

�
2

�UV
ln
�
� �n  p

�p2

�
� 2ln2

�
� �n  p

�p2

��
�    ;

~Ib!s�C � �
i

16�2

�
�

2

�IR�UV
�

2

�IR
ln
�
�2

�p2

�
� ln2

�
�2

�p2

�
�

�
2

�IR
�

2

�UV

�
ln
�
�

�n  p

��
�    ;

Ib!s�0 � �
i

16�2

��
2

�UV
�

2

�IR

��
1

�UV
� ln

�
�2

�p2

�
� ln

�
�

�n  p

���
;

(58)

where we have distinguished between ultraviolet and in-
frared divergences. Here we see that the zero-bin contri-
bution Ib!s�0 is responsible for canceling IR divergences in
~Ib!s�C that were not regulated by the offshellness,

 

Ib!s�C � ~Ib!s�C � Ib!s�0

� �
i

16�2

�
�

2

�2
UV

�
2

�UV
ln
�
�2

�p2

�
� ln2

�
�2

�p2

��

�    : (59)

Therefore the sum of the SCETI contributions gives

 Ib!s�us � Ib!s�C � �
i

16�2

�
�

1

�2
UV

�
2

�UV
ln
�
�

�n  p

�

� 2ln2

�
�

�n  p

�
� ln2

�
�p2


 �n  p�2

��
�    :

(60)
The last term reproduces the infrared structure of the full
theory result. The first two terms are canceled by a counter-
term. The third term contributes a finite contribution to the
hard Wilson coefficient of the heavy-to-light current in
matching onto the full theory. Again we see that the con-
tribution from Ib!s�0 is necessary in order for the infrared
divergences in the full and effective theories to match up.
The ellipses in Eq. (60) denote 1=�, single log, and finite
terms that we have not bothered to display in the quoted
results, but which have the same desired properties.

The computation of SCET anomalous dimensions in
Ref. [2] and all subsequent papers used the entire 1=�
divergent terms in ~Ib!s�C to compute the anomalous dimen-
sion. As we have shown above, some of these divergences
are, in fact, infrared divergences. The pullup mechanism is
needed to convert these into ultraviolet divergences which
can then be canceled by local counterterms in the effective

13Reference [65] also argued that the �n  k! 0 divergence
must be treated as a UV in the EFT since it comes from angles
opposite to the collinear direction. The renormalizability prop-
erties of field theory only appear for large momenta, and the
zero-bin turns this divergence into a true UV divergence. One
must be careful about the distinction between angles for particle
and antiparticle poles when determining that the �n  k! 0
divergence is IR.
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theory, and so properly contribute to the anomalous
dimension.

One can see the problem with having ~Ib!s�C and no
subtraction term in another way. Consider adding a very
small gluon mass to the collinear calculation, where m2 �
p2. The gluon mass can only affect the IR, and we should
obtain the same form for the 1=�UV divergences if we
expand in m2 before or after the integration. If we consider
expanding after the integration, then performing the q�

integral by contours followed by the q? integration gives
 

~Ib!s�C �
2i�����2�

16�2

Z 0

�p�

dq�

q�

�
m2 �

p2q�

p�

�
��

�

�
1�

q�

p�

�
��
;

Ib!s�0 �
2i�����2�

16�2

Z 0

�1

dq�

q�

�
m2 �

p2q�

p�

�
��
: (61)

Thus with m2 � 0 the IR singularity at q� ! 0 is no
longer regulated by dimensional regularization in ~Ib!s�C

or Ib!s�0 , however the difference Ib!s�C � ~Ib!s�C � Ib!s�0

remains well defined. Here the 1=� terms in ~Ib!s�C do not
give the correct counterterm structure even if we set �IR �
�UV. Letting q� � �xp� gives
 

Ib!s�C �
�2i�����2�

16�2

�Z 1

0

dx
x
�1� x����m2 � xp2���

�
Z 1

0

dx
x
�m2 � xp2���

�

�
�2i�����2�

16�2

�
�2�

6
�
Z 1

1

dx
x
�m2 � xp2���

�

� �
i

16�2

�
�

2

�2
UV

�
2

�UV
ln
�
�2

�p2

�
� ln2

�
�2

�p2

�

� 2Li2

�
�m2

p2

�
�   

�
; (62)

and in the limit m2 � p2 this reproduces Eq. (59). Thus

with the zero-bin subtractions the 1=�UV divergences in the
effective theory are independent of the choice of IR
regulator.

Note that in this section it was crucial to use the current
J�0� in order that taking p2 � 0 provides the same IR
regulator in the full and effective theories. For the SCET
current J0�0� this is no longer possible. Working with this
current, only on-shell IR regulators should be considered.
This happens because the field redefinitions involving Y’s
modify the LO collinear Lagrangian, rather than just sub-
leading terms, and are therefore sensitive to regulation of
the propagator.

C. Production of n- �n jets

As another example of the zero-bin subtractions in
SCETI, we consider the one-loop diagrams contributing
to two-jet production, �� ! q �q. The degrees of freedom
required in SCETI are those pictured in Fig. 4(a). In this
case we have subtractions for both the n-collinear and
�n-collinear fields, which ensure that they do not overlap
with the usoft region. The leading order SCETI current is
[66]

 J�0� � C�!;!0�� ��nWn�!�
��Wy�n � �n�!0 : (63)

If we make the decoupling field redefinition [4] which
encodes the eikonal coupling to all collinear quarks and
gluons, then J�0� becomes J0�0� � C�!;!0�� ��nWn�!�

Yyn Y �n���W
y
�n � �n�!0 . Below we work with the current J�0�

since we will use an offshellness IR regulator.
The one-loop vertex graphs are shown in Fig. 10. Wave

function graphs are not shown, but in Feynman gauge the
collinear gluon wave function renormalization for a col-
linear quark is equal to the full theory result and the usoft
gluon contribution vanishes. Working to double-
logarithmic order and breaking up the collinear terms
into the naive result and subtractions, the relevant integrals
are

 Iprod
full �

Z dDq
�2��D

�4p  �p


q2 � i0��
�q� �p�2 � i0��
�q� p�2 � i0��
;

Iprod
usoft �

Z dDq
�2��D

2� �n  p���n  �p�


q2 � i0��
 �n  pn  q� p2 � i0��
�n  �p �n q� �p2 � i0��
;

~Iprod
n �

Z dDq
�2��D

2 �n  p


 �n  q� i0��
�q� p�2 � i0��
q2 � i0��
;

Iprod
n0 �

Z dDq
�2��D

2 �n  p


 �n  q� i0��
 �n  pn  q� p2 � i0��
q2 � i0��
;

~Iprod
�n �

Z dDq
�2��D

2��n  �p�


n  q� i0��
�q� �p�2 � i0��
q2 � i0��
;

Iprod
�n0 �

Z dDq
�2��D

2��n  �p�


n  q� i0��
�n  �p �n q� �p2 � i0��
q2 � i0��
:

(64)
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We have kept offshellnesses p2 � 0 and �p2 � 0 to regulate
the IR and will use dimensional regularization for the UV.
Much like the heavy-to-light computation, this does not
regulate all the IR divergences in the naive collinear inte-
grands, ~Iprod

n and ~Iprod
�n . Note that we took �n  �p� q� !

�n  p in the numerator of the collinear graphs since we only
examine the double logarithms and have made a corre-
sponding approximation in Iprod

full . Evaluating the full theory
integral we find14

 Iprod
full � �

i

8�2 ln
�
p2

Q2

�
ln
�

�p2

Q2

�
�    : (65)

The usoft loop graph in the effective theory gives
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�
: (66)

For the n-collinear naive integral and subtraction, we find
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; (67)

so the full n-collinear result is

 

Iprod
n � ~Iprod
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�    : (68)

Just as in the b! s� example, the subtraction terms
remove the 1=�IR poles, and the IR in the complete col-
linear integral is regulated by the offshellness. The ellipses
denote 1=�, single log, and finite terms that we have not
bothered to display in the quoted results. The results for the
�n-collinear terms are similar
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Adding up the SCETI integrals, Iprod
scet � Iprod

usoft � I
prod
�n �

Iprod
n , we find
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In the last line, the first two terms are removed by a
counterterm in MS and the third term contributes to the
Wilson coefficient Cprod in the one-loop matching, see
Ref. [19]. The fourth term exactly reproduces the IR di-
vergences in the full theory result.

In the above computation, there was an interplay be-
tween the usoft loop and the n and �n collinear loops which
combine to reproduce the IR of the full theory. The exact
way in which these IR divergences combine depends on the
choice of IR regulator as we saw in the b! s� example.
Again we see that the zero-bin subtractions are important
to correctly reproduce the IR divergences once we distin-
guish between �UV and �IR.

a) p

p

b)
n

n

n

n

c)
n

n

FIG. 10. Vertex diagrams for n� �n production. (a) full theory,
(b) SCETI collinear graphs, and (c) SCETI usoft graph.

14In the computation of the cross section in the full theory, the
ln�p2� IR divergences are canceled by analogous IR divergences
in the bremsstrahlung graphs.
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D. �� ! q �qg: The zero-bin at tree level and for phase
space integrals

In this section we show how the zero-bin is kept track of
in tree-level computations. One has to consider it even at
tree level because in SCET multiple fields are present for
the same physical particle. We will demonstrate how
double counting is avoided in fully differential cross sec-
tions and how the zero-bin subtraction affects phase space
integrations. In the context of proving factorization in
Drell-Yan, subtractions which avoid overcounting in phase
space regions have been considered in Ref. [67].

Consider the high energy process ���q� !
q�p1� �q�p2�g�p3� in the rest frame of the �� with q2 �

Q2 � �2
QCD. This is a basic ingredient in two-jet and

three-jet production, which were considered in SCET in
Refs. [68–70]. We take the full theory production current,
J � � �� . The external lines have p2

i � 0 and we define
dimensionless momentum fractions xi � 2q  pi=q

2 so
that momentum conservation reads 2 � x1 � x2 � x3.
Computing the phase space integrals in (4� 2�)-
dimensions, the standard full theory cross section from
the bremsstrahlung graphs is

 

1

�0

d�full

dx1dx2
�
CF�s

2�
�2�

q2�

1

��1� ���x1 � x2 � 1��

�
x2

1 � x
2
2 � ��2� x1 � x2�

2

�1� x1�
1���1� x2�

1�� ; (71)

where �0 is the Born cross section in dimensional regu-
larization, �0 � �4��2=Q2�

P
fe

2
f �O��� with a sum over

the quark charges ef � 2=3 or �1=3.
Taking x1 and x2 as the independent variables, we have

the phase space shown in Fig. 11. In SCET the different
regions of the phase space plot are described by distinct
EFT diagrams with the particles being created by either a
collinear or usoft field. The relevant limits are

 

A: x1;2 ! 1;

B: x1 ! 1; x2 	 x;

C: x1 ! 1; x2 ! 0;

D: x1 � x2 ! 1; x1;2 	 x;

E: x1 ! 0; x2 ! 1;

F: x2 ! 1; x1 	 x;

G: x1; x2; x1 � x2 	 x;

(72)

where x denotes generic values not near the two ends. In
Fig. 11 the SCET graphs for regions A, B, and C are shown.
We will compute the sum of the square of SCET diagrams
for each region and compare them with the full theory
result for the double differential cross section and a single
differential cross section. In the �� rest frame with 2q� �
Qn� �Q �n�, there is still a rotational freedom in the ?
-plane which we can fix in performing the calculations. For
A, B, and C we take p?1 � 0, while for E and F it is more
convenient to take p?2 � 0.

Computing these SCET graphs with the phase space
integrals in dimensional regularization, we find cross sec-
tions in each of the regions R:

 

d�R
�0dx1dx2

�
CF�s

2�
1

��1� ���1� x1�
��1� x2�

��x1 � x2 � 1��
jAR�x1; x2�j

2: (73)

Here AR is the amplitude in region R divided by Z � 2g
������������������
2�1� ��

p
. From the tree-level diagrams we find
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; (74)
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FIG. 11 (color online). Regions R � A� G for �� ! q �qg
where the particles become usoft and collinear. For regions A,
B, and C the graphs in SCET are shown. The soft regions are
slightly exaggerated for visibility.
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and

 jADj
2

�������� x1 � x2 � 2
x1;2 � 0

�
1� �x1 � x2�

2

2x1x2
�O���; jAEj

2

�������� x1 � 1� x2
x2 � 0

�
1� �
�1� x2�

;

jAFj
2

�������� x1 � 1� x2
x1 � 1x2 � 0

�
1� x2

1

�1� x1��1� x2�
�
��1� x1�

�1� x2�
; jAGj

2

�������� x1 � x2 � 1
x1;2 � 1

�
x2

1 � x
2
2

�1� x1��1� x2�
�O���:

(75)

Here un, u �n, and u are an n-collinear spinor, an �n-collinear
spinor, and an usoft spinor, respectively, all with relativistic
normalization. For the regions A, B, and C, we explicitly
show the amplitudes that follow from the SCET Feynman
diagrams in Fig. 11 and include �-dependent terms in the
results. The amplitudes for A and B follow from the LO
Lagrangians and LO SCET production current in Eq. (63).
The result for C requires an insertion of the subleading
Lagrangian L�1��q � �qusW

y
�n igB6

�n
?� �n � H:c: [71], where the

field strength igB6 �n
? � 
i �n D

c
�n; iD6

�n
?�. In Eq. (73) we have

translated the zero-bin restrictions on the large momenta of
collinear particles to restrictions on x1 and x2 as shown on
the rhs of the equations.

It should be obvious from the form of AA �AG that
one cannot simply add the SCET diagrams to reproduce
the doubly differential cross section in Eq. (71). The
point is that the effective theory results do not overlap, as
made explicit by the sums which exclude the zero-bins,
and constrain the valid region of phase space. Given an
x1 and x2, only one of the effective theory expressions
is relevant. It is straightforward to determine which
one once we specify parametric definitions of the scaling
limits in Eq. (72), and pick values for x1 and x2.15 The
SCET diagrams in this region reproduce the full theory
double differential cross section order by order in the
expansion. Thus, it is crucial to take the zero-bin into
account even at tree level in order to avoid double
counting.

Often we would like to deal with a less differential cross
section which involves integrating over kinematic varia-
bles. In this case we should implement the zero-bin sub-
tractions in the phase space integrals using Eq. (17) to
avoid double counting when combining regions. As an
example of the zero-bin subtractions in phase space inte-
grals, we consider the �� ! q �qg cross section d�=dx1 for
fixed x1 � 1�  with 	 	2 and nonzero. In the full
theory the single differential cross section for x1 ! 1 is
obtained by integrating Eq. (71) over 1� x1 < x2 < 1 and
expanding about :

 

1

�0

d�full
brem

dx1

��������x1!1
�
CF�s
�

�2�

q2�

1

�1� x1�
1����1� ��

Kfull;

Kfull �

�
�

1

�IR
�

3

4
�O��

�
; (76)

where the IR divergence was regulated by dimensional
regularization. To reproduce this result from the SCET
computation requires adding contributions from regions
A, B, and C. By using Eq. (16) we can add these contri-
butions and still integrate over the full phase space in x2.
For each region we can also expand the prefactor in
Eq. (73) in the appropriate manner without effecting the
LO results. Since x1 is fixed we need not worry about
subtractions involving this variable. Overlap occurs from
jABj

2 with region C if x2 � 0 and with region A if x2 � 1,
so we find two zero-bin subtractions for these contribu-
tions. We multiply by �1� x1�

1�� to give the same nor-
malization as Eq. (76). The regions with a soft particle are
unsubtracted and give
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2
�O��: (77)

For region B with three collinear particles, the naive con-
tribution and its two subtractions (x2 � 1, x2 � 0) are
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(78)

15The particles in the final state can be treated as observed, by a
measurement of the final state. For each final state particle, one
can assign a label p and residual momentum k as given by the
binning of momentum space, and classify particles as collinear
or usoft depending on whether p � 0.
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For the collinear integral we therefore find

 KB � ~KB � KB
1 � K

B
2 � �

5
4�O��: (79)

This result is IR finite as expected from the fact that the IR
divergence comes from the soft region A in Fig. 11 and not
from the collinear region B.

Adding the contributions from the three regions we find

 KA � KB � KC � �
1

�IR
�

3

4
; (80)

in agreement with the result for Kfull at this order. Thus
with the zero-bin subtractions the sum of SCET diagrams
reproduces the expected result for the 1=�1� x1� brems-
strahlung term in the cross section d�=dx1 as x1 ! 1.

Finally, we briefly remark as to whether we could have
turned the phase space computation into the imaginary part
of a loop graph that we already know how to deal with from
zero-bin examples in previous sections. One might think
that the total cross section can be obtained by computing a
forward scattering loop diagram in SCET and taking the
imaginary part. However, in some cases the optical theo-
rem must be applied with care due to the momentum
scaling of different types of SCET fields. A simple ex-
ample is the Born cross section for �� ! q �q which we can
consider computing from Im
i

R
d4x exp��iq  x��

h0jJ�0�Jy�x�j0i�. In the full theory there is a contribution
with hard loop momentum and the imaginary part contrib-
utes to the total-�. In the SCET we are focusing on corners
of phase space like back-to-back jets in the n and �n
directions. The product of LO currents J�0� allows for a
loop with usoft momentum, shown in Fig. 12(a), without
violating momentum conservation. However this graph
evaluates to zero due to the multipole expansion on col-
linear lines,

 

Z dDk
�2��D

1

�n  �k� p��� �n  �k� p�
� 0: (81)

The product of currents does give a nonzero contribution,
just not from the imaginary part of this usoft loop in SCET.
Instead, the SCET fields give the imaginary part of two
propagators as in Fig. 12(b), yielding an integrand for the
phase space integral that is accurate in the desired phase
space region for each line. Because the matrix element
factorizes into a product of two matrix elements, Fig. 12(b)
is not a disconnected contribution that can be discarded.
This reduces the problem back to squaring the current, as
depicted in Fig. 12(c). It also gives a hint as to why the

derivation of factorization formulas from SCET is more
predictive than requiring a strict OPE in QCD, much as for
diagrammatic factorization [38,72–74].

VII. ZERO-BIN SUBTRACTIONS IN SCETII
(EXCLUSIVE PROCESSES)

In this section, we consider an SCET with degrees of
freedom which are suitable for describing exclusive QCD
processes with both energetic and soft hadrons. This theory
is usually called SCETII, and contains fields that describe
nonperturbative collinear and soft momenta as pictured in
the p�-p� plane shown in Fig. 13.16 It is also necessary to
include these momentum regions when considering mixed
inclusive and exclusive processes. We begin with a dis-
cussion of the ways in which SCETII differs from the
SCETI and NRQCD examples discussed previously.

In perturbation theory with massless particles, physical
IR divergences occur as p2 ! 0 either with collinear scal-
ing �p�; p�� 	Q�
2; 1� or soft scaling �p�; p�� 	
Q�
;
� for small dimensionless power counting parame-
ters 
 and a large momentum scale Q. This is well known
from the study of the Landau equations and use of the
Coleman-Norton theorem [72,76]. In QCD, IR divergences
either cancel between diagrams or are cut off by the non-
perturbative effects that generate confinement at a scale
p2 	�2

QCD. In Fig. 13 we show the confinement scale by a
red solid line. To formulate the power counting for these
nonperturbative momenta, we take 
	�QCD=Q. The col-
linear and soft fields represent distinct IR sectors as given
by their momentum scaling, and together cover all ap-
proaches to the solid (red) curve in the p�-p� plane.17

The different sectors are separated by perturbative rapidity
gaps.

The distinction between soft and collinear regions can
be made with the variable

 �p �
p�

p�
; (82)

which provides a measure along the solid red curve in
Fig. 13. For the different regions we have
 

n� collinear: �p 	 
�2 � 1;

soft: �p 	 
0 	 1;

�n� collinear: �p 	 
2 � 1:

(83)

Thus to avoid double counting, we must make sure that in
the variable �p the n-collinear mode does not double count
the soft mode and vice versa, and also that the �n-collinear

n

n

n

na) b) c)

2n

n

FIG. 12. Contraction of fields in the time-ordered product of
LO SCET currents, TfJ�0�; J�0�yg.

16We do not need messenger or soft-collinear modes [75] for
the reasons discussed in Sec. VII A.

17In this paper we do not consider processes which have
important contributions from potential momenta for forward
n- �n scattering, k�k� � k2

?, which are sometimes referred to
as Glauber modes.
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mode does not double count the soft mode and vice versa,
etc. Note that the variable �p provides a way of distinguish-
ing the modes and at the same time allows us to maintain
the boost-inversion symmetry [75,77]. The boost-inversion
symmetry allows one to swap the soft and n-collinear
fields, etc. when setting up the modes for the description
of a physical process.

As discussed in Ref. [4], momentum conservation
strongly constrains the form of soft-collinear interactions
in SCETII. Adding a soft mode ps 	Q�
;
;
� to a col-
linear mode pc 	Q�


2; 1; 
�, which both have p2 	
Q2
2, gives an off-shell hard-collinear momentum phc �
ps � pc with p2

hc 	Q
2
. Thus all physical interaction

Lagrangians and operators in SCETII will have � 2 soft
fields and � 2 collinear fields. As long as double counting
(and divergent convolutions) are avoided, we can group
like fields together in gauge invariant products to obtain
factorized amplitudes at any order in the power expansion
in 
. In some cases, one can more directly prove that the
convolution integrals converge [78], and for these cases it
is less important to be careful about the zero-bins.

We will show that avoiding double counting in SCETII

involves zero-bin subtractions similar to the previous sec-
tions, with the added complication associated with ensur-
ing that regions in �p are treated correctly. Because of UV
divergences in rapidity, this requires a regularization
method. It also requires extra renormalization parameters
for the insertion of any operator that connects soft and
collinear fields, which we denote by �� and ��.18 In
dimensional regularization, the parts of the SCETII action

that are purely soft or purely collinear have the standard
�2� multiplying couplings, so all factors of �s are �s���.
The factors of �� and �� only occur from mixed soft-
collinear operators. We will show below how�� appear in
dimensional regularization, and also with a cutoff regula-
tor. The �� and �� parameters are tied together with the
usual � by the dynamics of factorization, which, indepen-
dent of the UV and IR regulators, gives

 �2 � ����: (84)

Under an RPI-III transformation on the basis vectors,
n! e�n and �n! e�� �n [79] (a longitudinal boost on
coordinates and fields), �� behaves like a momentum
p� � n  p and �� behaves like p� � �n  p.
Furthermore �p scales under a RPI-III transformation.
These boosts correspond to a universal shift of all degrees
of freedom along the solid red curve in Fig. 13, and thus do
not change the fact that, having distinguished between
modes using �p in one frame, we also avoid double count-
ing in any other frame. For a process with only soft and
n-collinear modes, the boost-inversion symmetry allows us
to interchange the role of these modes [75]. In Fig. 13, we
boost to lower p� and increase p�, so that the cn overlaps
the s, and the s overlaps the c �n. We then switch our
definition of plus and minus, p� $ p�, with the overall
outcome that cn $ s. Differentiating between modes using
the variable �p keeps them distinct throughout this process.

The basic structure that we have in mind for a factoriza-
tion formula in SCETII is

 Z
dk� dk�dp�dp�J�k�; p�; ��; �0���n�p�; ��; �2�

��s�k�; k�; ��; �0��� �n�p�; �0�; �
2�; (85)

where J contains perturbative contributions from both hard
collinear and hard momenta (as shown by the solid pink
dots in Fig. 13). For cases where only the n-collinear and
soft modes are relevant, we have the slightly simpler form

 Z
dk�dp�J�k�; p�; ��; ���

��n�p�; ��; �2��s�k�; ��; �2�; (86)

with J purely hard collinear. If only the n-collinear and
�n-collinear modes are relevant, we have

 Z
dk�dp�J�p�; p�; ��; �

0
���n�p

�; ��; �
2�

�� �n�p�; �0�; �
2�; (87)

with J having hard momenta. The idea is that due to the
separation of degrees of freedom in rapidity space the
distributions can depend on ��. This dependence is simi-

p +

c

0
0

hard

η2

2

p-

Q

ηQ 0

cn

ηQ ηQ 0

SCETII

s
ηQ

ηQ

p2 = Λ2

ζ = a2

QCD

hcn
n

hcn

FIG. 13 (color online). Degrees of freedom and momentum
regions for SCETII which describe nonperturbative fluctuations
with p2 	�2

QCD. The modes include n-collinear (cn), soft (s),
and when applicable also �n-collinear (c �n). In perturbation theory
these modes extend all the way in to zero momenta. For QCD the
solid (red) curve represents the region where infrared divergen-
ces are rendered finite by �QCD. Also shown (in pink) are three
regions of perturbative momenta, two with hard-collinear mo-
menta (hcn, hc �n) and one where the momenta are hard.

18For typographical convenience, we use �� and �� although
superscripts would be more appropriate.
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lar to that for fragmentation functions in Refs. [33,34]. The
meaning of the �� and �� variables in the distribution
functions is described further below in Sec. VII C below
Eq. (129). The presence of the �� parameters allows us to
formulate the nonperturbative matrix elements that give�n
and �s as boost invariant objects. This evades an argument
made in Ref. [77] that no IR regulator will allow a boost
invariant factorization of soft and collinear modes in
SCETII. Our proposed factorization formula differs from
the conclusion of nonfactorization in Refs. [77,78,80]. The
effects due to �� and �� are actually not IR sensitive:
they denote a choice we have to distinguish the IR regions.
They behave like the dimensional regularization parameter
� in that we can compute the dependence on these pa-
rameters in perturbation theory because of the large rapid-
ity gaps.

The soft and collinear modes in SCETII generate the
physical hadron states in the effective theory, with each
mode generating the physical states in its sector. The two
sectors are separated by a perturbatively large rapidity gap,
so we do not need to consider hadrons made of both modes.
Since near the mass-shell p� 	 p2

?=p
�, the rapidity scal-

ing in Eq. (83) gives gaps in p?=E of spacing �QCD=Q. If
we try to generate a hadron with an interpolating field built
from soft and collinear fields, such as one collinear anti-
quark and one soft quark, then there are no physical non-
perturbative poles by momentum conservation. Thus, the
Hilbert space of states in the soft and collinear sectors are
individually complete.

In Sec. VII A we begin by discussing a loop integral in
SCETII taking into account the zero-bins. Our first one-
loop example uses a hard cutoff regulator, in Sec. VII A 1.
In Sec. VII B we formulate the separation of soft and
collinear modes using dimensional regularization, and re-
peat the one-loop example in Sec. VII B 1. In Sec. VII C we
give a general discussion on how the zero-bin subtractions
work on singular hard kernels to give what we call
�-distributions (the complete definition can be found in
this section). In Sec. VII D we apply this formalism to
obtain a result for the ���! � form factor at large Q2

which is free from convolution end point singularities. In
Sec. VII E we discuss the so-called ‘‘soft’’ form factor for
B! � transitions, �B��E�, to argue that SCETII yields a
result in terms of individual B and� distribution functions.

A. A SCETII loop integral with subtractions

As our first SCETII example, we consider a one-loop
integral for the process ‘‘B! �‘ ��’’ with E� � �QCD but
using scalar quarks and gluons. The LO factorization for-
mula for the full QCD process was considered in
Refs. [81–84] using SCET. It involves n-hard-collinear
fields and soft fields, but does not suffer from the subtleties
in SCETII we wish to address. The toy example with
scalars was considered in Ref. [78], where it was pointed
out that this process with scalar quarks does not factor

(naively) into a product of scalar and collinear terms, due
to end point divergences which connect the soft and col-
linear matrix elements. This issue only shows up at sub-
leading order for fermions.

In Refs. [77,80] it was independently concluded that the
convolution divergences encountered in these situations
spoil factorization. The analysis was based on a different
IR regulator, implemented with an offshellness, and adding
to SCETII a so-called messenger or soft-collinear IR regu-
lator mode which has p2 	�3

QCD=Q. Any long distance
colored interaction in SCETII would violate confinement in
QCD and therefore be forbidden, but in perturbation theory
one is free to introduce modes with p2 below �2

QCD if they
facilitate the regulation of IR divergences.19 The fact that
messenger modes should be considered as part of the IR
regulator was discussed in Ref. [65], where it was shown
that they are absent with an energy dependent gluon mass
IR regulator, but that a common dependence on this regu-
lator still appears in the soft and collinear matrix ele-
ments.20 Messenger modes were also absent with the
calculations using analytic regulators in Ref. [78].

With our definition of modes in SCETII in Fig. 13,
messenger modes are not needed. If, on the other hand,
one were to take the picture for SCETI in Fig. 4(a) and
translate it into modes for SCETII in a one-to-one corre-
spondence, then the usoft mode in SCETI becomes a
messenger mode for SCETII [75]. So the SCETI mode
decomposition seems to want a messenger mode in
SCETII. The fault here is with the translation, which re-
quired both a boost and a scale transformation. There is
nothing wrong with the boost, but QCD is not scale invari-
ant. Because of the presence of �QCD, translating the IR
tiling of modes in SCETI into a tiling of IR modes for
SCETII, gives modes which hide the physical situation, in
particular, the perturbative split of the hadronic physics in
rapidity space. In our definition of SCETII the IR regions
that show up in perturbation theory and were described by
the messenger mode in Ref. [75] are absorbed into the soft
and collinear fields.

19In particular, any mode that would leave both soft and col-
linear modes on shell must have p2 � �2

QCD by a parametric
amount [75]. In QCD, a physical IR cutoff is provided by
confinement which eliminates any such modes [85] as they
would physically correspond to colored degrees of freedom
propagating between color singlet bound states that have already
hadronized. They have been termed hyperconfining modes by
Rothstein [86]. The soft-collinear messenger mode considered in
Refs. [75,77,80] is in the hyperconfining category.

20Note that in general matching computations between QCD
and SCETII can be a bit tricky because one must be sure that
one’s choice of IR regulator is treating the Hilbert space of full
QCD in exactly the same way as the Hilbert space of SCETII. An
example of this type that we encountered in SCETI was our
discussion of the field redefined current J0�0� in b! s� in
Sects. VI A and VI B. For SCETII further discussion of this point
is given in Appendix B.
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In considering scalar ‘‘B! �‘ ��’’ we are really treating
a subleading contribution to the physical process with
fermions where the photon comes from fragmentation of
q �q! � or from a subleading contribution to the direct
�-production. In the fragmentation case we will have a
nonperturbative soft distribution associated with the initial
state B, �s�k

��, and a nonperturbative collinear distribu-
tion for the � associated with the fragmentation, �n�p

��.
To factorize this physical process we must consider the
imaginary part of the forward scattering, since due to the
probabilistic interpretation for the fragmentation function,
there will be a factorization formula for the decay rate but
not for the amplitude. Examples of one-loop diagrams in
the full theory and SCETII are shown in Fig. 14. The
SCETII graphs in Fig. 14(b) correspond to direct produc-
tion, while those in Fig. 14(c) are fragmentation. The
SCETII factorization allows these two effects to be
distinguished.

In the full scalar theory we have a charged scalar
‘‘b-quark’’ with field �b, charged light scalar ‘‘u-quark,’’
�, and neutral ‘‘gluon’’ and ‘‘photon’’ fields �g and ��,
respectively. The ‘‘weak’’ current and interaction terms are

 Jweak
full � G�y�b; Lint

full � g�g�y�� e���y�;

(88)

with standard kinetic terms for �b with mass mb, and for
the massless charged and neutral scalars. Here the coupling
G tracks the current, and g and e are coupling constants of
mass dimension one. In SCETII the leading order
Lagrangian is split into soft and collinear fields,
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where �b
v is a scalar HQET field [58], the �s and �n are

soft and collinear massless ‘‘quarks,’’ and �g
s , �g

n, and ��
n

are scalars for the ‘‘gauge’’ fields. The collinear fields have
label momenta p� 	 
0 and residual momenta p?r 	 

and p�r 	 
2, and the soft fields have label momenta k� 	

 and residual momenta k?r 	 
 and k�r 	 
. Writing out
the label and residual terms explicitly in the kinetic terms
we would have �i@���s ! � �n�P=2� i@�r ��s;‘,
�i@���n ! �n

� �P=2� i@�r ��n;p etc., with the standard
treatment of leading and subleading terms. Demanding
L�0� 	 
0 the power counting in 
 is

 �b
v 	 
3=2; �s 	�n 	 
;

��
n 	 
; �g

s 	�
g
n 	 
:

(90)

The leading order currents we will need are

 

O�0a�II �
X

p�;‘��0

J�0a�

� �n  pn  ‘� i0��

�ys;�‘�

b
v�

�
n;p�;

O�0b�II �
X

p�;‘�;k��0

J�0b�

� �n  pn  ‘� i0��� �n  pn  k� i0��

� 
�ys;�k�
b
v�

�
n;p�

g
s;‘�k�;

O�0c�II �
X

p�;‘�;q��0

J�0c�

� �n  pn  ‘� i0��� �n  qn  ‘� i0��

� 
�ys;�‘�
b
v�
y
n;p�q�n;�q�; (91)

where �n  p	 
0 while n  ‘	 n  k	 
. Note that the
operators O�0b�II and O�0c�II include restrictions on the label
sums with n  ‘ � 0 and �n  p � 0, respectively. In these
bins the 1=� �n  pn  ‘� factor would be a collinear or soft
propagator in SCETII, and these bins are taken into account
by time-ordered products with subleading SCETII

Lagrangians as discussed in Ref. [27].
Note that in scalar SCETII, we can construct leading

order operators with additional scalar fields since the extra
powers of 
 are compensated by 1=� �n  pn  ‘� factors and
the mass dimension is compensated by the dimension of
the couplings. In our perturbative example only the cur-
rents shown are needed (plus counterterm operators). A
nonperturbative treatment would require additional terms.
In the scalar theory, matching tree-level graphs give
J�0a� � eG, J�0b� � egG, and J�0c� � g2G. In dimensional
regularization, the currents are modified in a manner de-
scribed in Sec. VII B.

FIG. 14 (color online). One-loop cut graphs for the
�-fragmentation contribution to B! �‘ �� in the full and effec-
tive theories. The �’s denote an insertion of the weak current and
the leptons are not shown. The graphs in (a) are in full QCD,
while the graphs in (b) and (c) are in SCETII. For (b) we have
soft propagators, while for (c) the propagators are collinear
(dashed).
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In the gauge theory with fermions, the full set of opera-
tors for B! �e �� would be determined by gauge invari-
ance and leading order matching. The current analogous to
O�0a�II is LO, while the currents analogous to O�0b;0c�II are
suppressed by one power of 
. The nonperturbative treat-
ment is simpler in gauge theories since it is constrained by
more symmetries. See, for example, the construction of
soft-collinear SCETII operators in Refs. [78,87,88].

A goal of this section is to demonstrate that, although
there is not a simple factorization for the scalar B! �e ��
process of the form J��� ��n��� ��s���, there appears
to be a more involved factorization which contains terms of
the form
 Z

dk�dp�J�k�; p�; ��; ����n�p
�; ��; �

2�

��s�k�; ��; �2�: (92)

Here J is a perturbative jet function, and the �’s are non-
perturbative, with �n given by a matrix element of col-
linear fields and�s given by a matrix element of soft fields.
In Eq. (92) we have two additional scale parameters ��
and �� in SCETII (or two factorization scales in a more
traditional language in full QCD). We will demonstrate
that these scales are connected in a specific way to the
standard renormalization scale

 ���� � �2: (93)

Although our conjecture about the existence of a factoriza-
tion formula valid to all orders in �s differs from
Refs. [77,78,80], the structure of the result is also different
from standard factorization formulas in the literature.
Because we do not have the identity �� � �� � �, there
is not a simple factorization for the amplitude for this
process, in agreement with the conclusions in
Refs. [77,78,80]. The perturbative formula that we find
for the observable process, Eq. (86), has all the desired
properties of a factorization formula, including correctly
reproducing IR divergences (from the zero-bin subtrac-
tions), finite convolution integrals (from the zero-bin and
renormalization), and distinct matrix elements for the soft
and collinear objects.

In the context of the analytic IR regulator used in [78], it
was pointed out that there was an interesting cancellation
between IR divergences in soft and collinear diagrams. Our
observation is that this cancellation has to do with avoiding
double counting just like the zero-bin subtractions, rather
than having to do with reproducing IR divergences in
QCD. For physical observables, like the forward scattering
graphs, the method for avoiding the double counting is
computable, and can be handled in perturbation theory. It
results in regularization parameters �� and �� which
encode the coupling between soft and collinear modes
with a simple correlation. Our results turn situations, which
were previously plagued by the unphysical convolution
end point singularities, into manageable finite amplitudes,

which one can then try to arrange into a predictive facto-
rization formula. Since the divergent effects are comput-
able they do not spoil many of the nice features obtained in
simpler QCD factorization formulas.

1. Soft-collinear division with a hard cutoff regulator

We begin by considering a hard cutoff, a, between the
soft and collinear modes, as indicated in Fig. 13. For a loop
momentum k� we define �k � �n  k=n  k � k�=k� as
discussed near Eq. (15). Only the magnitude of the rapidity
variable, j�kj, is relevant for distinguishing the soft and
collinear modes. Switching variables from fk�; k�g to
fk�; �kg gives dk� � jk�jd�k when we integrate over
�1< k� <1 and �1< �k <1, so the loop integral
is no longer analytic in k� but remains analytic in �k,
and likewise if we switch to fk�; �kg. When imposing
hard cutoffs we need to avoid the physical poles, which
can be accomplished using cutoffs in Euclidean space after
Wick rotation. For variables fk�; �kg the Wick rotation
k� ! ik� is equivalent to �k � i� 0k, while for fk�; �kg the
Wick rotation k� ! ik� gives �k � �i� 0k. In our ex-
amples, Wick rotation about the origin suffices, and the
poles in complex � 0k occur along the imaginary axis in the
first and third quadrants. We take cutoffs

 soft : � a2 � � 0k � a2;

collinear: � a2 � � 0k or � 0k � a2:
(94)

As mentioned above, we only require n-collinear and soft
fields in SCETII for the example in this section and so are
free to include the entire � 0k & 1 region in the soft modes.
(For more complicated problems the region � 0k 	 


2 would
need to be disentangled for the �n-collinear modes.) We can
take a2 	 
, and note that under an RPI-III transformation
on n and �n [79] (a longitudinal boost) that a2 behaves like a
�p��2 momentum just like �k does. Also note that the
power counting scaling which fixes the soft and collinear
components only depends on j�kj or j� 0kj and so does not
care about the Wick rotation.

For simplicity we consider the same diagram as dis-
cussed in Ref. [78] which is shown in Fig. 15(a). Unlike
Ref. [78], we do not analyze this graph with the method of
regions. Instead we consider the diagram in full scalar field
theory [Fig. 15(a)] and the corresponding diagrams in
scalar SCETII [Fig. 15(b) and 15(c)]. The difference of
the two results gives a matching contribution, and allows us
to check that the full theory IR divergences are correctly
reproduced with zero-bin subtractions implemented in
SCETII. It also allows us to discuss the factorization for-
mula in Eq. (86).

For simplicity we will leave off the prefactor
ieg2G=�p�‘�� in quoting results for graphs in this sub-
section. For the full theory diagram, we have the integral
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 Iscalar
full �

Z dDk
�2��D

�
1


�k� ‘�2 � i0��
k2 � i0��
�k� p�2 � i0��
:

(95)

Evaluating this on shell with p� � p�n�=2, ‘� �
‘� �n�=2, so that p2 � ‘2 � 0, we have

 Iscalar
full �

�i

16�2�p�‘��

�
1

�2
IR

�
1

�IR
ln
�
p�‘�

�2

�

�
1

2
ln2

�
p�‘�

�2

�
�
�2

12

�
: (96)

Here the IR divergences are regulated by dimensional

regularization. For the soft and collinear graphs in
Figs. 15(b) and 15(c), we find

 Iscalar
soft �

X
k��0

Z dDkr
�2��D

1


k2 � n  ‘ �n  k� i0��
k2 � i0��
� �n  pn  k� i0��
;

Iscalar
nc �

X
k��0

Z dDk0r
�2��D

1


�n  ‘ �n  k� i0��
k2 � i0��
k2 � �n  pn  k� i0��
;

(97)

where in both cases the first two terms are the displayed
propagators, and the last factor comes from the nonlocal
vertex which emits the scalar soft or collinear fields in
SCETII.

To compute the EFT graphs we implement the hard
cutoff in Eq. (94) to regulate UV effects in the effective
theory diagrams. With this regulator the zero-bin subtrac-
tions are automatically zero since they are outside the
region of integration. The hard cutoffs are theta functions
in the integrand so they give identically zero for the inte-
grand evaluated in the subtraction regions. Therefore with
this regulator the full integrals are given by the naive
replacement in Eq. (16). We discuss in detail the calcula-
tion of the SCETII diagrams in Appendix A. For the soft
graph the result is
 

Iscalar
soft �

~Iscalar
soft

�
�i

16�2�p�‘��

�
1

2�2
IR

�
1

�IR
ln
�
‘�a
�

�

� ln2

�
‘�a
�

�
�
�2

16

�

�
�i

16�2�p�‘��

�
1

2�2
IR

�
1

�IR
ln
�
‘�

��

�

� ln2

�
‘�

��

�
�
�2

16

�
; (98)

where we defined�� � �=a. Note that since a boosts like
a minus-momentum, �� behaves like a plus-momentum,
and the result in Eq. (98) is RPI-III invariant. For the
collinear graph the result is

 

Iscalar
cn � ~Iscalar

cn

�
�i

16�2�p�‘��

�
1

2�2
IR

�
1

�IR
ln
�
p�

a�

�

� ln2

�
p�

a�

�
�
�2

16

�

�
�i

16�2�p�‘��

�
1

2�2
IR

�
1

�IR
ln
�
p�

��

�

� ln2

�
p�

��

�
�
�2

16

�
; (99)

where we defined �� � a�. Here �� behaves like a
minus-momentum and the result in Eq. (99) is also RPI-
III invariant. The soft and collinear regularization parame-
ters �� defined in the computation of Eqs. (98) and (99)
obey the anticipated relation,

 ���� � �2; (100)

where the a dependence cancels out in this product.
Moreover, with a2 	 
 we find that with �2 at the match-
ing scale,�2 	Q�QCD, one can still take�� * �QCD and
�� 	Q. Thus we can simultaneously minimize the loga-
rithms in the SCETII matrix elements, which in our pertur-
bative computation are represented by Iscalar

soft and Iscalar
cn .

Adding the two SCETII graphs, Iscalar
s�cn � Iscalar

s � Iscalar
cn ,

we find

FIG. 15. Graphs with scalar propagators as a toy model for the
�-fragmentation contribution to B! �‘ �� with fermions. The �
denotes the weak current and the leptons are not shown. Graph
(a) is in full QCD, graph (b) has an insertion of O�0b�II and a loop
with soft fields in SCETII, and graph (c) has an insertion of O�0c�II

and a collinear loop (with dashed propagators).
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�i
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�
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�
: (101)

We see that with the relation �2 � ����, the 1=�IR poles
agree exactly with the full theory expression in Eq. (96) as
required. To match the full and effective calculations we
set �2 � ���� and subtract to find
 

Iscalar
matching �

�i

16�2�p�‘��

�
�

1

2
ln2

�
p�‘�

����

�
� ln2

�
p�

��

�

� ln2

�
‘�

��

�
�
�2

24

�

�
�i

16�2�p�‘��

�
�

1

2
ln2

�
p���
��‘

�

�
�
�2

24

�
: (102)

Here the ln2�p���=‘���� contributes p� and ‘� depen-
dence to the jet function J�‘�; p�; ��; ��� at one loop. To
minimize the large logarithms in the matching calculation
in Eq. (102), we take �2 � ���� to be of order the hard-
collinear scale, and take ��=�� 	 
. Since the matching
result in Eq. (102) depends on ��=�� it depends on a,
which is not surprising. Here a ensures there is no double
counting between the soft and collinear modes in the IR,
but a also changes the behavior of the collinear and soft
modes in the ultraviolet. This change is compensated by
the perturbative Wilson coefficient, and in perturbation
theory the sum of these contributions reproduce the full
theory result.

The result in Eq. (102) is shown for illustration only,
since a complete matching calculation for scalar B! �‘ ��
requires a computation of all diagrams, not just the one
diagram that we considered. For example, one should also
compute graphs with the scalar gluon attached to the
b-quark line, and wave function renormalization type dia-
grams in both the full and effective theories.

B. Dimensional regularization division in SCETII:
General discussion

In this section, we discuss the use of dimensional regu-
larization for the UV divergences and the separation of soft
and collinear modes. This regulator makes higher order
computations more feasible and preserves gauge symme-
try. We also expect that it will make it easier to compute
anomalous dimensions and sum logarithms using renor-
malization group techniques, although we do not address
these features here. Finally, it is useful to consider dimen-
sional regularization in order to compare how the separa-

tion of modes in rapidity space appears with a different
regulator.

Since the standard application of dimensional regulari-
zation is boost invariant, it does not provide the ability to
distinguish modes in rapidity space. This also means that in
general, divergences in the rapidity will not be regulated by
standard dimensional regularization. For an insertion of a
mixed soft-collinear operator, we can regulate the rapidity
space in dimensional regularization by scaling out factors
of the label operators from the Wilson coefficients. To
implement Fig. 13 in dimensional regularization, the cor-
rect form of the operators is
 

J�p�j ; k
�
j �
� �qsS�k�1 �s�Syqs�k�2 �
�

��nW�p�1 �n�Wy�n�p�2 �

			!dim:reg:
J�p�j ; k

�
j ; ����

2�
�
� �qsS�k�1

jP yj�

��
�

�s
jP j�

��
�

�Syqs�k�2

�

�

�
� ��nW�p�1

j �P yj�

��
�

�n
j �P j�

��
�

�Wy�n�p�2

�

� J�p�j ; k
�
j ; ��; �

2��2�
�
jk�1 k

�
2 j
�

�2�
�

� �qsS�k�1 �s�S
yqs�k�2

�

�

�
jp�1 p

�
2 j
�

�2�
�

� ��nW�p�1 �n�W
y�n�p�2

�
: (103)

Here the label operator P gives the plus momentum from
soft fields, and the label operator �P gives the minus mo-
mentum from collinear fields. The momenta subscripts
occur for products of quark fields and Wilson lines,
�Syqs�k� � �k� � P ��Syqs�, �Wy�n�p� � �p� �
�P ��Wy�n�, which ensures that the momenta are gauge
invariant and that the gauge symmetry is not spoiled by
the factors of j �P j�, jP j�, etc. The absolute values ensure
that we raise a positive physical momentum to the � power,
and thus do not modify the cut structure of matrix ele-
ments.21 J is the Wilson coefficient jet function.

This rescaling will allow us to properly distinguish the
soft and collinear modes in dimensional regularization
without imposing a hard cutoff to implement the division
in Fig. 13. This modification of the current is not done to
solve a problem in the IR—it is the zero-bin subtractions
for the soft and collinear fields which will ensure that there
is no IR double counting. The zero-bin subtraction terms
are integrated over all space, which introduces new UV
divergences in rapidity space, and in Eq. (103) the factors

21Recall that the labels are positive for particles, and negative
for antiparticles [3]. Combining both particles and antiparticles
into a single field distinguished by the sign of the label simplifies
the formulation of the effective theory. One could instead have
used separate fields for the particles and antiparticles, in which
case the antiparticle field could also be chosen to have a positive
label. The absolute values in jP j� mean that we are using the
momentum of the particle, which is unambiguous, rather than
the label on the field, which is convention dependent. Because of
the zero-bin conditions p�i � 0 and k�i � 0, there is no problem
at the origin.
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of j �P j� etc. are necessary to regulate these UV divergen-
ces. If one thinks of splitting the full loop integral I into a
naive part ~I and a subtraction part I0, then ~I has an IR
rapidity divergence, while I0 has both UV and IR diver-
gences. The IR divergences cancel in I � ~I � I0, so the
rapidity divergence in I is pure UV. We will see that these
remaining UV divergences can be removed by
counterterms.

Before giving the rules for constructing Eq. (103), let us
consider how it should be used. When we do a collinear
loop involving an insertion of this operator we expand in
�p�=����, but do not expand the �k�=���� factors, and
we do the opposite for a soft loop. This dimensional
regularization rule is forced on us in any field theory
with a multipole expansion, and SCETII has a multipole
expansion between components of the soft and collinear
momenta. The rule was discussed in Ref. [53] for NRQCD
in examples involving mixed usoft-soft loops. In general,
one does not expand matrix elements of the soft fields in
D-dimensions when doing the collinear loops and one does
not expand matrix elements of the collinear fields when
doing soft loops. The factors of �p�=���� and �k�=����

should be thought of as being associated with the renor-
malized coupling function J, just like a factor of �� is
associated to the strong coupling g���. For purely collinear
or purely soft operators, we apply dimensional regulariza-
tion in the usual manner. The only place that �� appear is
in the insertion of a mixed soft-collinear operator. All
purely soft operators and purely collinear operators only
have �� factors, and so all couplings are �s���. The
couplings do not dependent explicitly on ��. In multiloop
diagrams, one can carry out the standard renormalization
procedure first, and leave to the end the rapidity renormal-
ization for the final loop involving the soft-collinear vertex.

Let us consider how we determined the powers of ��,
��, and � for Eq. (103). In dimensional regularization,
factors of �� appear from ensuring that coupling constants
in the action are dimensionless. Demanding that this is the
case for J gives the �2� factor. To determine the factors of
��, we must examine the scaling of fields in the operator
along the solid red curve in Fig. 13. An RPI-III trans-
formation scales all modes by a common amount and
separate invariance under this transformation demands
we introduce a 1=�� to compensate each P , and a
1=�� for each �P . Charge conjugation requires the same
power for quarks and antiquarks, and the boost-inversion
symmetry [75,77] requires the same power be used for the
soft and collinear fields. We can also demand rapidity
invariance under small individual scalings of the soft and
collinear sectors. This will determine the power of the label
parameters, j �P j� and jP j�. The power is related to the
spacetime dimension because in doing this rapidity scaling
we demand that the invariant mass p2 remains homoge-
neous. As an example consider a scaling by �> 0:
�n;p��0�!�n;�p��0������n;p��0�, where here x�0 as

in the soft-collinear operator. To derive the ��� factor
write the quark field �n;�p��0����p�� �P ��n�0��R
ddk��p��k���k2���k��ak, and then shift k� !

�k� and k2
?!�k2

? (to keep k2 homogeneous). This ���

factor from the transformation of �n;p� is exactly canceled
by the j �P j�!j �P j��� factor acting on this field. The
symmetry of the problem dictates that we need one such
factor for each collinear field. Repeating these arguments
with a scaling parameter �0 in the soft-sector determines
the jP j� terms.

These arguments determine the proper operator for the
dimensional regularization computations in SCETII, with
an example shown in Eq. (103). The Wilson coefficient J
has nontrivial �� and �� dependence which cancels the
dependence on these parameters in the matrix element of
the effective theory operator order by order in �s���. Thus
we see that factorizing the soft and collinear modes in
SCETII also requires introducing �� and ��, just like
with our cutoff regulator.

It is interesting to compare the regulator introduced in
Eq. (103) with the use of analytic regulators used for col-
linear computations in Refs. [78,89,90]. Much like an
analytic regulator, the result in Eq. (103) modifies the
power of a momentum dependent factor in the integrand.
It is used to regulate divergences that are not handled by
dimensional regularization, which is also the motivation
for introducing an analytic regulator. However, unlike the
use of analytic regulators, Eq. (103) is gauge invariant,
defines the modification at the operator level, and does not
modify the power of the propagators in the EFT.
Furthermore, as already emphasized, with our zero-bin
setup this regulator is needed for divergences in the UV,
rather than the IR. Since these divergences arise due to the
separation of momentum fractions in hard-scattering ker-
nels and collinear operators, we anticipate that the addition
of a power of the momentum fraction for each labeled field
will regulate UV rapidity divergences in a general
situation.

1. Dimensional regularization for the one-loop example

We now repeat the computation in the last section with
dimensional regularization for the UV. The loop integral in
Eq. (95) has IR divergences for k! 0, k! ‘�, and k!
p�. We take one of the propagator lines to have an infini-
tesimal mass m2 to regulate these IR divergences. For
simplicity we will leave off the prefactor ieg2G=�p�‘��
in quoting results. For the full theory diagram we have
 

Iscalar
full �

Z dDk

�2��D

�
1


�k�‘�2� i0��
k2�m2� i0��
�k�p�2� i0��

�
�i
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�
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2
ln2
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m2
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�
�
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3

�
: (104)
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Here m2 regulates the IR divergences in a manner similar
to the solid red curve in Fig. 13. Other choices of IR
regulator can be made, and in Appendix B we repeat the
computations done in this section with (i) factors m2

2, m2
1,

andm2
3 in the three propagators in Eq. (104), and (ii) taking

p2 � 0 and ‘2 � 0 in Eq. (104). The choice m1 � 0 is also

discussed in Appendix B, but makes the matching more
complicated.

The LO mixed soft-collinear SCETII currents in dimen-
sional regularization include the UV rapidity regulation
factors, and are

 O�0a�II �
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� �n  pn  ‘� i0��
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(105)

where we have suppressed the sums over label momenta shown in Eq. (91), and in general the J�i� are functions of the label
momenta �p�; ‘�; k�; . . .�. Using the currents O�0b�II and O�0c�II for the soft and collinear graphs in Figs. 15(b) and 15(c),
respectively, we have

 Iscalar
soft �

X
k��0

Z dDkr
�2��D

�2�


k2 � ‘�k� � i0��
k2 �m2 � i0��
�p�k� � i0��

jk�j�jk� � ‘�j�
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;

Iscalar
cn �

X
k��0

Z dDk0r
�2��D

�2�


�‘�k� � i0��
k2 �m2 � i0��
k2 � p�k� � i0��

jk�j�jk� � p�j�

�2�
�

:

(106)

Here the k� � 0 and k� � 0 conditions denote the overlap
regions where the soft integration variable becomes col-
linear and the collinear integration variable becomes soft,
as in Fig. 13. The sums over k� � 0 and k� � 0 ensure
that the [� p�k�] and [� ‘�k�] propagators never get
small. By examining the scaling, we find that no subtrac-
tion is necessary for k� � ‘� and k� � p� here, so

though present, these restrictions were not shown.
Equation (17) tells us that, unlike the SCETI computations
and the SCETII cutoff computation, here we have zero-bin
subtractions for both the soft and collinear diagrams. These
will ensure that we do not get spurious singularities from
the [� p�k�] and [� ‘�k�] propagators. The naive in-
tegrals and subtraction integrals are

 

~I scalar
soft �

Z dDk
�2��D

�2�


k2 � ‘�k� � i0��
k2 �m2 � i0��
�p�k� � i0��

jk�j�jk� � ‘�j�

�2�
�

;

Iscalar
0soft �

Z dDk

�2��D
�2�


�‘�k� � i0��
k2 �m2 � i0��
�p�k� � i0��

jk�j�jk� � ‘�j�

�2�
�

;

~Iscalar
cn �

Z dDk
�2��D

�2�


�‘�k� � i0��
k2 �m2 � i0��
k2 � p�k� � i0��

jk�j�jk� � p�j�

�2�
�

;

Iscalar
0cn �

Z dDk
�2��D

�2�


�‘�k� � i0��
k2 �m2 � i0��
�p�k� � i0��

jk�j�jk� � p�j�

�2�
�

:

(107)

Note that we must keep the m2 dependence in the subtraction integrals to properly avoid double counting the zero-bin
regions in the differences ~Iscalar

soft � I
scalar
0soft and ~Iscalar

cn � Iscalar
0cn , which from Eq. (17) gives the result for Iscalar

soft and Iscalar
cn ,

respectively.
For the soft graph we do the k� integral by contours. Because of the pole structure this restricts the k�-integration to the

region 0< k� < ‘�. The k? integral is then done. For the soft subtraction integral we follow the same procedure which
this time leaves the integration region 0< k� <1. We find
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~I scalar
soft �

�i�����2�

16�2�p�‘��

Z ‘�

0

dk�

k�

�
�‘� � k��m2

‘�

�
��
��������k
��k� � ‘��

�2
�

��������
�
�

�i����

16�2�p�‘��

�
m2

�2

�
��
�
‘�

��

�
2� 1

�IR
;

Iscalar
0soft �

�i�����2�

16�2�p�‘��

Z 1
0

dk�

k�
�m2���

��������k
��k� � ‘��

�2
�

��������
�

�
�i����

16�2�p�‘��

�
m2

�2

�
��
�
‘�

��

�
2�
��

1

�IR
�
�2�

6

�
�

�
�

1

2�UV
�
�2�

6

��
:

(108)

In the last line the first f  g factor comes from the integral
over 0< k� < ‘�, and the second from ‘� < k� <1.
Computing the full soft integral in Eq. (106), Iscalar

soft �
~Iscalar

soft � I
scalar
0soft ,

 

Iscalar
soft �

�i����

16�2�p�‘��

�
m2

�2

�
��
�
‘�

��

�
2�
�

1

2�UV
�
�2�

3

�

�
�i

16�2�p�‘��

�
1

2�2
UV

�
1

�UV
ln
�
‘�

��

�

�
1

2�UV
ln
�
m2

�2

�
� ln2

�
‘�

��

�
�

3�2

8

�
1

4
ln2

�
m2

�2

�
� ln

�
m2

�2

�
ln
�
‘�

��

��
: (109)

Much like the examples in SCETI, the zero-bin subtraction
integral Iscalar

0soft cancels the IR singularity in the k� integra-
tion in ~Iscalar

soft and replaces it by a UV divergence.
For the collinear integrals, we do the contour integration

in k� which restricts the remaining integration region in
k�. For the naive and subtraction integrals we find

 

~I scalar
cn �

�i�����2�

16�2�p�‘��

Z p�

0

dk�

k�

�
�p� � k��m2

p�

�
��

�

��������k
��k� � p��

�2
�

��������
�

Iscalar
0cn �

�i�����2�

16�2�p�‘��

Z 1
0

dk�

k�
�m2���

��������k
��k� � p��

�2
�

��������
�
;

(110)

which for our example, are the same integrals as for the soft
loops but with ‘� ! p� and �� ! ��. Thus for the
complete collinear result in Eq. (106), Iscalar

cn �
~Iscalar

cn � Iscalar
0cn , we find

 

Iscalar
cn �

�i����

16�2�p�‘��

�
m2

�2

�
��
�
p�

��

�
2�
�

1

2�UV
�
�2�

3

�

�
�i

16�2�p�‘��

�
1

2�2
UV

�
1

�UV
ln
�
p�

��

�

�
1

2�UV
ln
�
m2

�2

�
� ln2

�
p�

��

�
�

3�2

8

�
1

4
ln2

�
m2

�2

�
� ln

�
m2

�2

�
ln
�
p�

��

��
: (111)

The results in Eqs. (109) and (111) have 1=�UV ln�m2�
divergences, terms that did not appear in our example with
a rapidity cutoff, and are simply artifacts of the dimen-
sional regularization setup. These divergences arise from
the fact that the UV collinear divergences induced by the
zero-bin subtraction are multiplicative over all loops and
propagators. They are canceled by a special type of coun-
terterm that is proportional to the renormalized distribution
function at the origin, ��0; ��=�UV. The presence of these
operators is discussed further in Sec. VII C below. Here we
have one such counterterm current for the soft loop and one
for the collinear loop:
 

O�0d�II �
X

p�;‘��0

J�0d�


� �n  pn  ‘� i0�� �n  p�

�ys;�k�

b
v�

g
s;‘�

� 
��
n;p�jk�!0;

O�0e�II �
X

p�;‘��0

J�0e�


� �n  pn  ‘� i0��n  ‘�

�ys;�‘�

b
v�

� 
�yn;p�n;�q�jq�!0: (112)

These correspond to counterterms for operators which give
a ��0; ��, corresponding to the initial B meson, and a
��0; �� for the quark part of the final photon wave func-
tion. Note that the limit k� ! 0 and q� ! 0 is done at the
end.

The necessary counterterm coefficients for the results in
Eqs. (109) and (111) are

 J�0d� �
egG
2�UV

; J�0e� �
egG
2�UV

: (113)

At one loop these operators generate graphs similar to the
diagrams in Fig. 15(b) and 15(c). Using the same IR mass
regulator, pulling out the same prefactor as the other dia-
grams, and performing the standard UV renormalization of
the operators in MS prior to multiplying by the rapidity
counterterm gives

 Iscalar
ct 0d �

�
1

2�UV

�
i

16�2�p�‘��

�
� ln

�
m2

�2

��
;

Iscalar
ct 0e �

�
1

2�UV

�
i

16�2�p�‘��

�
� ln

�
m2

�2

��
:

(114)

Because of our choice of J�0d;0e� these counterterm dia-
grams exactly cancel the 1=�UV ln�m2� terms in the col-
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linear and soft loops. In dimensional regularization, this
type of counterterm operator is quite important to the
rapidity renormalization, as we discuss in the next section.
In particular, in going beyond perturbation theory, these
same types of counterterms are required to cancel UV
divergences in the convolution over the nonperturbative
matrix element.

Adding the soft, collinear, and Iscalar
ct0d , Iscalar

ct0e counter-
terms, we find the SCETII result:

 

Iscalar
soft�cn�

�i

16�2�p�‘��

�
1

2
ln2

�
m2

�2

�
� ln

�
m2

�2

�
ln
�
p�

��

�

� ln
�
m2

�2

�
ln
�
‘�

��

�
�

1

�2
UV

�
1

�UV
ln
�
p�‘�

����

�

� ln2

�
p�

��

�
� ln2

�
‘�

��

�
�

3�2

4

�

�
�i

16�2�p�‘��

�
1

2
ln2

�
m2

p�‘�

�
� ln

�
m2

�2

�
ln
�
�2

����

�

�
1

�2
UV

�
1

�UV
ln
�
p�‘�

����

�
� ln2

�
p�

��

�

� ln2

�
‘�

��

�
�

1

2
ln2

�
p�‘�

�2

�
�

3�2

4

�
: (115)

The effective theory still has UV divergences shown on the
second line of Eq. (115). These divergences occur because
of the separation of �p momenta. The remaining UV
divergences are canceled by a counterterm for the jet
function coefficient J�0a�. Putting back the prefactor, we
find the counterterm:

 J�0a� �
eg2G

16�2�p�‘��

�
�

1

�2
UV

�
1

�UV
ln
�
p�‘�

����

��
:

(116)

As is familiar from SCETI, the counterterm depends on
logs involving �’s. Thus, finally, the renormalized EFT
result is

 

Iscalar
soft�cn �

�i

16�2�p�‘��

�
1

2
ln2

�
m2

p�‘�

�

� ln
�
m2

�2

�
ln
�
�2

����

�
� ln2

�
p�

��

�

� ln2

�
‘�

��

�
�

1

2
ln2

�
p�‘�

�2

�
�

3�2

4

�
: (117)

Comparing the first two terms in Eq. (117) with the full
theory result in Eq. (104) we see that the IR divergences are
exactly reproduced if and only if

 �2 � ����: (118)

Thus again this condition follows from the dynamics. It is
interesting to note that the ln�p�‘�� ln�m2� divergence is
reproduced independent of the power of j �P j and jP j used
in Eq. (103), but that the ln2�m2� term is only reproduced
for the power �, which was derived in Sec. VII B. Using
�2 � ����, the difference of the remaining finite terms
gives a contribution to the one-loop matching

 Iscalar
match �

�i

16�2�p�‘��

�
1

2
ln2

�
p�‘�

����

�
� ln2

�
p�

��

�

� ln2

�
‘�

��

�
�

5�2

12

�

�
�i

16�2�p�‘��

�
�

1

2
ln2

�
p���
��‘�

�
�

5�2

12

�
: (119)

From Eq. (119) we see that the jet function will be a
nontrivial function of �� and �� (and thus �2 �
����) whose �-dependences will cancel against depen-
dence on these variables in the SCETII matrix elements.
The matching coefficient arises from integrating out per-
turbative effects associated with p�l� as well as perturba-
tive effects responsible for the rapidity gap between the
soft and collinear modes, and therefore has a different
structure than what would be obtained if only the former
were integrated out. In Appendix B we verify that the same
result for Iscalar

match is obtained when we regulate the IR diver-
gences in the full and effective theories with three non-
equal masses, m1;2;3, or when we keep the ‘2 and p2 off
shell. The result should be the same because the matching
only depends on the UV regulator which we keep the same
in these computations. Note that in Eq. (102) we used a
different UV regulator than in Eq. (119), which explains
why the �2 terms differ.

The results in Eqs. (116) and (119) are shown for illus-
tration only, since of course, the complete anomalous
dimension and matching calculations require a computa-
tion of all diagrams, not just the one diagram that we
considered here for illustration.

C. Zero-bin subtractions in convolutions: general
discussion

The remaining application of subtractions in SCETII

will be for factorization formulas which appear to suffer
from singular convolutions at the level of tree-level match-
ing. Much like the example discussed in SCETI, in SCETII

we must avoid the zero-bin in hard-scattering kernels
defined by tree-level matching. Doing so removes the
double-counting problem and renders singular convolu-
tions finite. Here we only deal with the rapidity renormal-
ization, so we make the simplifying assumption that the
standard UV divergences have already been taken care of,
and do not interfere with the steps carried out here.
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We will use dimensional regularization to separate the
modes in rapidity space as in Eq. (103). To see why the
convolution integrals are always finite, let us consider the
vacuum to pion matrix element of a hard-scattering kernel
J�p�i ; ��; �

2� and a twist-2 collinear operator in SCETII

that gives the light-cone distribution function ���x;��.
For simplicity we will not write the �-dependences for J
and �� below.22 This leaves the matrix element

 

A� �
X
p�1;2�0

Z
dp�1rdp

�
2rJ�p

�
1 ; p

�
2 �

� h�n�p��j� ��nW�p�1
�n6 �5�Wy�n��p�2 j0i

��������p
�
1 p
�
2

�2
�

��������
�

� �if�
X
p�1;2�0

Z
dp�1rdp

�
2r J�p

�
1 ; p

�
2 �

� � �n  p� � p�1 � p
�
2 ����x1; x2�

��������p
�
1 p
�
2

�2
�

��������
�

� �if� �n  p�

�
�n  p�
��

�
2� X
x1;2�0

Z
dx1rdx2r J�x1; x2�

� �1� x1 � x2����x1; x2�jx1x2j
�; (120)

where we switched to dimensionless variables x1;2 via
p�1 � x1 �n  p� and p�2 � x2 �n  p�, and in the second
equality we inserted the standard definition of the twist-2
distribution function

 

h��n �p��j �un;p�1
�n6 �5dn;�p�2 j0i � �if�� �n p��p

�
1 �p

�
2 �

����x1; x2;��; (121)

where the  function gives conservation of momentum.
Now suppose that we computed J at tree level (by a
matching computation) and found that J�x1; x2� �
1=�p�1 �

2 � 1=
� �n  p��
2x2

1�. If we were not careful about
the x1 � 0 condition, this would lead to a singular con-
volution integral as in Eq. (2). The zero-bin subtraction
formula in Eq. (17) tells us to impose the momentum
conserving -functions carrying through all zero-bin con-
straints. Since the x2-integration is not singular, there are
no zero-bin subtractions for x2 � 0 and we can combine
the sum over label x2 momenta and integral over residual
x2r momenta back into a integral over all x2 momenta using
Eq. (16):

 

A� � �i
f�

�n  p�

�
�n  p�
��

�
2� X
x1�0

Z
dx1rdx2

1

�x1�
2

� �1� x1 � x2����x1; x2�jx1x2j
�

� �i
f�

�n  p�

�
�n  p�
��

�
2� X
x1�0

Z
dx1r

1

�x1�
2 ��1� x1�

� ��x1��̂��x1�jx1�1� x1�j
�: (122)

where �x1 � 1� x1. If there had been zero-bin subtractions
for x2 they would carry through as additional zero-bin
subtractions at x1 � 1 after removing the -function. In
the last line we set ���x1; �x1� � ��1� x1���x1��̂��x1� to
make the support of the nonperturbative distribution func-
tion explicit. To turn the final sum over labels and integral
over residual momenta into an integral over x1, there will
be zero-bin subtractions from Eq. (17). The subtraction
acts on the integrand including the �-functions, but just as
in our perturbative analysis, it does not act on the jx1�1�
x1�j

� factor. The expansion for x1 � 0 is from the right,
about x1 � 0�, since this is how the variable scales to-
wards the zero-bin region:

 ��1� x1���x1��̂��x1� � ��x1�

�
�̂��0� � x1�̂

0
��0�

�
x2

1

2
�̂00��0� �   

�

� ��x1��̂��0�
�1� x1� �   �:

(123)

In the set of terms obtained on the first line, the ��1� x1�
disappears in the series so the support of the x1 integration
for the subtraction terms differs from that for the naive
integral. This is the same as what we saw in our perturba-
tion theory example in Eq. (110), where the naive integral
was integrated over k� 2 
0; p��, i.e. x1 2 
0; 1�, but the
subtraction integral was integrated over k� 2 
0;1�, i.e.
x1 2 
0;1�. In the last line in Eq. (123), the terms are all
zero (or finite subtractions) for the cases considered here,
and therefore these terms do not contribute for our choice
of zero-bin scheme as discussed in Sec. IV.

Let us make the standard assumption for the twist-2
distribution that���0� � 0. Then using Eq. (17), the result
for A� is

 

A� �
�if�
�n  p�

�
p��
��

�
2� Z

dx1
��x1�

�x1�
2 
��1� x1��̂��x1�

� x1�̂
0
��0��jx1�1� x1�j

��; (124)

where as usual only the subtraction needed to remove the
singular term was kept. Next we split the integration into a
finite integral x1 2 
0; 1� where the factor of jx1�1� x1�j

�

can be set to 1, and the integral of the subtraction term over

22Note that integer powers of the p�i can be moved from J to
the collinear operator by inserting powers of �P , but that our
analysis is independent of this freedom.
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x1 2 
1;1� where the � dependent term is needed

 

A� � �i
f�

�n  p�

�
�n  p�
��

�
2�
�Z 1

0
dx1

���x1� � x1�
0
��0�

�x1�
2

�
Z 1

1
dx1

x�1�x1 � 1��

�x1�
2 
x1�

0
��0��

�

� �i
f�

�n  p�

�
�n  p�
��

�
2�
�Z 1

0
dx1

���x1� � x1�
0
��0�

�x1�
2

�
1

2�UV
�0��0�

�
; (125)

Here terms of O��� have been dropped.
Equation (125) is UV divergent, but we must still add to

it the pion matrix element of the counterterm operator. This
operator is determined by the UV counterterms that are
necessary to renormalize our original operator, and can be
derived in perturbation theory with any desired external
states. Carrying out a one-loop computation with external
quark states and using our perturbative kernel J �
1=�p�1 �

2, we find the counterterm operator

 O
1�ct � C
1�ct

Z
dp�2

�
@
@p�1

�
@

@�p�1 � p
�
2 �

�

�� ��nW�p�1
�n6 �5�W

y�n��p�2 jp�1 !0: (126)

with a counterterm coefficient C
1�ct � �1=�2�UV�. The
derivative with respect to (p�1 � p

�
2 ) removes surface

terms. In the vacuum to pion matrix element, they would
result from a d=dp�1 of the -function in Eq. (121) if we
had left out the d=d�p�1 � p

�
2 �. At tree level with quarks

the matrix element of this operator vanishes—one obtains
0�p�� factors and the quark states have nonzero p�

momenta. The vacuum to pion matrix element ofO
1�ct gives

 

Act1� � �
1

2�UV

Z
dp�2

�
d
dp�1

�
d
dp��

�

� h�n�p��j� ��nW�p�1
�n6 �5�W

y�n��p�2 j0ijp�1 !0

�
if�

2�UVp
�
�

Z
dp�2 � �n  p� � p

�
1 � p

�
2 �

���1;0�� �x1; x2; ��jp�1 !0

� i
f�

�n  p�

1

2�UV
�0��0�; (127)

where the superscript (1, 0) indicates a derivative with
respect to the first argument. We should also include the
matrix element of the finite part of the counterterm opera-
tor in Eq. (126) [91], which gives

 Act2
� � �i

f�
�n  p�

C
1�ct �����
0
��0�: (128)

Adding the Act1
� term to Eq. (125), the UV divergence

cancels, and sending �! 0 we obtain the finite result:

 

A� � A
ct1
� � �i

f�
�n  p�

�Z 1

0
dx1

���x1; �� � x1�0��0; ��

�x1�
2

��0��0; �� ln
�

�n  p�
��

��

� �i
f�

�n  p�

Z 1

0
dx1

���x1; �;���

�x2
1��

: (129)

As indicated, performing the steps outlined from Eq. (120)
to (129) defines the �-distribution in dimensional regulari-
zation with our renormalization scheme. The �� in the
distribution, ��x1; �;��� is shorthand for the dependence
on the ln���� in Eq. (129). Once again, in Eq. (129) the
zero-bin subtraction has converted an IR divergence into a
UV divergence—the naive IR divergence in the convolu-
tion has been converted into a UV divergence for the
operator in Eq. (121), which is canceled by the operator
renormalization counterterm in Eq. (126). Essentially the
�-distribution notation on a variable, �x�� indicates that we
have a sum over labels x � 0, and do an integral over
residuals dxr, together with applying the rapidity renor-
malization procedure outlined above for the UV divergen-
ces. The �� dependence in Eq. (129) is canceled by
C
1�ct ���� [91] in Eq. (128).

For other cases, the steps in determining the result for
the �-distribution are the same as in our example; however
it should be clear that the final result will depend on how
singular the perturbative kernel is, as well as the end point
properties of the nonperturbative function that the
�-distribution is acting on. In particular, if the starting
kernel was not singular there would be no zero-bin sub-
tractions and we would obtain the naive result for the
convolution that one finds without the �-distribution.
Note that if we had implemented a hard cutoff as in
Sec. VII A 1 rather than dimensional regularization, then
lower limits, like x � , would be induced on the convo-
lution integrals, together with compensating  dependence
in the jet functions.

For illustration, we consider a few other cases in dimen-
sional regularization that are quite common and which
appear in the examples in the next section. First consider
a distribution �p

��x1; x2; �� that does not vanish at its end
points, integrated against a kernel J � 1=� �n  p�p�1 �. For
the analog of Eq. (121) we take the matrix element of the
operator to give�if���� �n p��p

�
1 �p

�
2 ��

p
��x1;x2;��

where �� � m2
�=�mu �md�, using Eq. (142) below with

n$ �n. The steps leading up to Eq. (122) are very similar,
giving
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f���
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�
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��
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1
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��1� x1���x1��̂
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��x1�jx1�1� x1�j

�

� �i
f���
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p
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�

1

2�UV
�p
��0�

�
: (130)

For the zero-bin subtraction in the second line, we kept the
first term in the analog of the expansion in Eq. (123). Here
the counterterm operator is

 

O
0�ct � C
0�ct

Z
dp�2 � ��nW�p�1

�n6 �5

2

�
1
�P
�iD6 ?n � � �iD6 ?n �y

1
�P y

�

� �W�n��p�2
1
�P y

��������p�1 !0
; (131)

with Cct � �1=�2�UV�. The tree-level quark matrix ele-
ment of this operator vanishes. Equation (131) with Cct

gives a vacuum to pion matrix element

 

Bct1
� �

if���

2�UVp
�
�

Z
dp�2 
� �n  p� � p

�
1 � p

�
2 �

��p
��x1; x2; ���jp�1 !0

�
if���

�n  p�

1

2�UV
�p
��0�: (132)

This term cancels the UV divergence in Eq. (130) to leave
the finite result:

 

B� � Bct1
� � �i

f���

�n  p�

�Z 1

0
dx1

�p
��x1; �� ��

p
��0; ��

x1

� ln
�

�n  p�
��

�
�p
��0; ��

�

� �i
f���

�n  p�

Z 1

0
dx1

�p
��x1; �;���
�x1��

: (133)

As indicated, the result in the first equality defines the
�-distribution for this case. Again we should add to this
the matrix element of O
0�ct with the C
0�ct ���� coefficient.

We also will need results for distributions like �p
� and

�� but with zero-bin subtractions at both ends of the
integration regions:

 

Z
dxdy

�p
��x; y�
x�y�

�1� x� y� �
�

�n  p�
��

�
2� X
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dxrdyr
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�
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�
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�

�p

��0� ��
p
��1��; (134)

and
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0
��1��: (135)

In the last line, the sign for �0��1� appears because we
differentiate with respect to x rather than 1� x. The
notation� c:t: indicates the matrix element of the counter-
term operators that cancel the 1=�UV divergences leaving
only the logarithm. The dependence of the results on�was
suppressed, and terms with counterterm coefficients,
C
0�ct ����
�

p
��0� ��

p
��1�� and C
1�ct ����
�

0
��0� ��

0
��1��,

should be added to these amplitudes [91].
The final matrix elements in Eqs. (129) and (133)–(135)

have a linear ln���� dependence which comes from the
action of the �-distribution. The coefficient of these logs is
independent of the power taken for the x�-type factors,
though the analysis in Sec. VII B dictates that the �-power
should be used. The ln���� dependence will be cancelled
order by order in �s��� by ln���� dependence in the
perturbative kernel J���� including the coefficients
Cct���� of the counterterm operators. Just as in our scalar
loop example in Secs. VII A 1 and VII B 1, when we con-
sider the resulting factorization formula at the matching
scale the �� and �� dependence will cancel out between
logs in the coefficient functions and those in the ��
dependent hadronic distributions, where �2 � ����.

D. The �-� form factor at large Q2

In this section we consider ���! � as an example of a
process with convolution integrals that appear to be diver-
gent, but are tamed in our formulation of SCETII using the
procedure in Sec. VII C. The QCD dynamics are described
by the �-� form factor,

 h���p0�j �q��qj���p; "?�i � i����	p�p0�"
?
	 F���q

2�;

(136)

with "? the transverse rho polarization vector. At large
Q2 � �q2 the form factor F���q2� was studied in detail in
Ref. [23], and also was discussed in [92]. The pion form
factor F���q2� and leading proton form factor Fpp�q2�

both scale as 1=Q2 at large Q2, however the form factor
F���q2� scales as 1=Q4. This results from an additional
1=Q suppression of the QCD matrix element shown in
Eq. (136) relative to the pion and proton cases.

In SCET, the two LO currents J�0�j that mediate any
��M1 ! M2 transition with light quarks were derived in

Ref. [66]. Using isospin and working in the Breit frame
with incoming momentum transfer q� � Q �n�=2�
Qn�=2, the incoming partons are n-collinear and outgoing
partons are �n-collinear. The LO matching of the QCD
vector current onto SCET is

 J� !
n� � �n�

Q3

Z
d!j
C1��;!j�J

�0�
1 ��;!j�

� C2��;!j�J
�0�
2 ��;!j��;

J�0�j � 
 ��n;!1
�j�n;!2

�
 �� �n;!3
�0j� �n;!4

�;

(137)

and involves n-collinear isodoublet �n and �n-collinear
isodoublet � �n fields in SCETII. Since the � and � have
opposite charge conjugation, the only relevant matrix from
Ref. [66] for our two isotriplet mesons is

 �2 � �02 �
1
4
�Qu �Qd���

a � �a�
 �n6 � n6 � �n6 �5 � n6 �
5�:

(138)

From Eq. (138) we see that there is no �?, so at this order
the �?-� transition is forbidden. This is a reflection of the
helicity structure of the factorization [23,92,92] and occurs
despite the existence of matrix elements at leading power
for the relevant hadronic states:
 

h0j �dn;�y �n6 ��?un;xj�
�
n �p; "?�i � fT� �n  p"�?�1� x� y�

���?��; x; y�;

h���n �p
0�j �u �n;un6 �5d �n;�vj0i � �if�n  p0�1� u� v�

�����; u; v�: (139)

These twist-2 matrix elements will be useful below. The
notation un;x denotes a gauge invariant product of a Wilson
line and quark with momentum fraction x along the quark
arrow, un;x � �x� �P= �n  p�Wy��u�n . Similarly, �dn;�y �
���d�n W�y� �P y= �n  p� etc. Finally, the �1� x� y� fac-
tors on the rhs of Eq. (139) come from momentum con-
servation in the matrix element. When implementing the
�-distribution we start with expressions containing
-functions, like those shown in Eq. (139). This is useful
for cases where there are simultaneous zero-bin subtrac-
tions in variables appearing in the -function.
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Once operators suppressed by 1=Q are considered, the ��? ! �� transition is allowed [23]. In SCETII the relevant
operators can be constructed from products of the bilinear O�
3� operators from Ref. [93]:

 P��u; v� �
�

�u �n
n6
2
�iD6 ?�n �

y

�
u

�5

P y
d �n;�v � �u �n;u
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P

�
�iD6 ?�n �

n6
2
d �n

�
�v
;

V�1��x; y� �
�

�dn
�n6
2
�iD6 ?�n �

y

�
�y

��

�P y
un;x � �dn;�y

��

�P

�
�iD6 ?�n �

�n6
2
un

�
x
;

V�2��x; y� �
�

�dn
�n6
2
�iD?�

�n �
y

�
�y

1
�P y
un;x � �dn;�y

1
�P

�
�iD?�

�n �
�n6
2
dn

�
x
;

(140)

 T��3 �u; v; w� � �u �n;u
n6 ��?

2
�igB�

�n?��wd �n;�v ; V�3 �x; y; z� � �dn;�y
�n6
2
�igB�

n?�zun;x ;

A�3 �x; y; z� � �dn;�y
��5n6
2
�igB�

n?�zun;x ;

(141)

where �P � �n�P
�, P � n�P

�, igB�
n? � 
1=

�PWyn 
i �n Dn; iD
�
n?�Wn�, iD

?�
n � P�

? � igB
�
n?, and �igB�

n?�z � �z�
�P=n  p�igB�

n?. As indicated, in this section we use a rescaling with respect to the momentum carried by the state in order
to make the delta functions acting on the fields dimensionless. This rescaling hides the process independence of the
operators, but makes the results simpler to present. Note that we have used slightly different notation for the operators than
Ref. [93], with relations P��u; v� � P LPW� ~!�, P��u; v� � ~P LPW� ~!�, etc. We also included one less power of 1= �P in the
three-body operators.

For the two-body operators we have matrix elements [93]

 

h���n jP��u; v�j0i � �if����1� u� v��
p
���; u; v�;

h���n jP��u; v�j0i �
�if���

6
�1� u� v��0�� ��; u; v�;

h0jV�1��x; y�j�
�
n?�"�i � f�m�"

�
?�1� x� y�g

�v�
�?��; x; y�;

h0jV�1��x; y�j�
�
n?�"�i �

f�m�"
�
?

4
�1� x� y�g�a�0�? ��; x; y� �

f�m�"
�
?

2�y� x�
�1� x� y�g�A��?��; x; y�;

(142)

where �� � m2
�=�mu �md� and for later convenience we switch from the distribution g�a�0�? to a distribution g�A��? . Other

matrix elements are related to these by simple operator relations in SCET. For the three-body operators the matrix elements
are [93]

 h���n �p
0�jT��3 �u; v; w�j0i � n  p0f3��

��
?

�1� u� v� w�
2w

�3���; u; v; w�;

h0jV�3 �x; y; z�j�
�
n?�p; "�i � � �n  pfV3�"

�
?

�1� x� y� z�
2z

�V
3���; x; y; z�;

h0jA�3 �x; y; z�j�
�
n?�p; "�i � i �n  pfA3��

��
? "

?
�
�1� x� y� z�

2z
�A

3���; x; y; z�;

(143)

where ���? � ����� �n�n�=2 (which switches sign under
n$ �n). In comparing to Ref. [93], note that we took
�fVmVV �

LPW � �f3V
� �3V

� and �fVmVA�
LPW � fA3��

A
3�

which agrees with the notation in Ref. [23]. To compare
with the other notation in Ref. [23], note that �’A��CZ �
��=2, �’p��CZ � �p

�=2, �’3��
CZ � �3�, �’T��

CZ �
��?=2, �’V;?� �CZ�g�v��?=2, �’A;?� �CZ��1�2z�g�a�0�? �z�=4�
g�A��?�z�=2.

To connect the operators in Eq. (140) to the process
����? ! ��, we must match the full theory diagrams

shown in Fig. 16 onto SCETII. The graphs in Fig. 16(a)
and 16(b) must be expanded to next-to-leading order . The
graphs in Figs. 16(c)–16(f) can be obtained from
graphs (a) and (b) by using the tree-level relation between
the QCD and SCETII fields in place of the lowest order
spinor in the LO part of these diagrams:

  � W
�

1�
1
�P
iD6 n?

�n6
2

�
�Wy�n�: (144)

Graphs (g) through (n) require separate computations.
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In matching these graphs onto SCETII, we can make
different assumptions for the scaling of the external lines.
We work in the Breit frame and take the interpolating field
for the incoming � and outgoing � to be built purely out of
n and �n collinear fields, respectively. The contribution that
matches onto the operators in Eqs. (139) and (140) will
have two n-collinear quark fields and two �n-collinear quark
fields with or without an extra n or �n collinear gluon. In
addition, SCETII has graphs where one or more of the
above fields simultaneously become soft. Although we
can formulate operators with soft fields in SCETII, they
do not contribute to the �?-� form factor in this frame.
The zero-bin subtractions ensures that we will not double
count the region of momentum space that these other
operators correctly describe. Following Ref. [35] we note
that we do not need to consider interpolating fields for

hadrons built out of mixed soft and collinear components.
These interpolating fields do not have nonperturbative
poles as discussed earlier. Furthermore, in the Breit frame,
an interpolating field that is purely soft would only be
needed for a different physical process than the one we
are considering (and would correspondingly require differ-
ent current operators).

To simplify the presentation we define

 xy � �1� x� y�; xyz � �1� x� y� z�:

(145)

Using the computation of the tree-level graphs done in
Ref. [23], but including the

P
p��0 terms with

�-distributions as described in the previous section, gives23

 

F���Q2� �
4��s���

27Q4

Z
dx
Z
dy
Z
dz
Z
du

Z
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Z
dw

�
4fT�f���

xyuv��?�x; y��
p
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�y2��v�

� fV�m�f�xyuv

�
g�v��?�x; y����u; v�

x�y��v2��
�
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f3A
� f�
4

uvxyz���u; v��3��x; y; z�
�
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� �y2x��v�

�
2
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9

� �y2x���v
2��
�

1

��zzx���v
2��
�

1

�z �y2���v
2��

�

� fT�f3��3��u; v; w���?�x; y�uvwxy

�
9

2� �u2v���y2��
�

1

2� �u2w���y2��
�

1

� �uvw��y�

�
� D-terms

�
; (146)

where �3� � �3A
� � f3V

� =f3A
� �3V

� . The ‘‘� D-terms’’ fac-
tor indicates that at this order we must also include the
renormalized coefficients Di���; ��� just like the coeffi-
cient C
1�ct ���� in Eq. (128). Here they multiply terms with
�0�?�1�, g

�A�
�?�0�, g

�A�
�?�1�, g

�v�
�?�0�, g

�v�
�?�1�, �

0
��0�, �0��1�, and

�p
��1�. The �-dependence of the distributions is sup-

pressed for brevity. The range for the integrations is de-
termined by the theta functions in the nonperturbative
distributions, which have support from [0, 1] in their
respective momentum fraction variables. Any variable de-
noted with a bar is one minus itself, �x � 1� x, etc. For the

three-body distributions we will have two convolution
integrals left after using the -functions, and the
�-distribution must in general be treated as two-
dimensional. We indicated this in Eq. (146) by having
the � subscript act on the product of three-body momentum
fractions. The action of � in these cases can be determined
by the same steps used in Sec. VII C. Because of the
�-distributions the result in Eq. (146) is finite, independent

a) b)

m) n)

i) j)

n n

g) h)

e) f)

k) l)

c) d)

FIG. 16. Graphs for matching onto the �� � electromagnetic form factor. To obtain the full set of diagrams, one must add graphs
with the gluon exiting to the right [the left-right mirror images of (c) through (n) not flipping the direction of the arrows]. Then to this
entire set, one must add the graphs with the current insertion on the other quark line (which can be obtained by charge conjugation).

23Note that we have not independently verified the calculations
in Ref. [23].
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of assumptions about the nonperturbative distribution
functions.

It is possible to study the �� dependence of the result in
Eq. (146). To do so, one adopts some end point behavior
for the distributions, and can make the action of the
�-distributions from the tree-level jet functions explicit.
A common assumption for the scaling behavior of the
above distribution functions near their end points is
���x�	x �x, ��?�u�	u �u, g�v��?�x�	1, g�a��?�x� 	 x �x [so

g�A��?�x�	1], �p
��u�	1, �3��x;y�	xyz2, �3��u;v�	

uvw2. With this scaling behavior all integrals over three-
body distributions converge without zero-bin subtractions,
and we can evaluate the two-body �-distributions explicitly
using the formulas worked out in Sec. VII C. For the
rapidity logarithms in the distributions, we then get ln� �n 
p�=���� ln�Q=��� and ln�n p�=���� ln�Q=���. The
�� and �� dependence in these logarithms is canceled by
the �� dependence of the Di���� Wilson coefficients.

In this section we showed that the SCETII zero-bin
subtractions together with UV renormalization yield a
finite answer for the �-� form factor at large Q2, given
in Eq. (146). Because of the separation in rapidity, the
result has additional dependence on ln�Q� beyond that in
the hard-scattering kernel. The appearance of these loga-
rithms is controlled by the powers of momentum fractions
in the hard-scattering kernel and the end point behavior of
the distributions. At the matching scale �� * �QCD and
�� 	Q and there are no large logarithms. As we scale �2

towards �2
QCD keeping�2 � ����, large logarithms may

be generated. The dependence on this large log is comput-
able, up to its normalization which is fixed by nonpertur-
bative parameters. These parameters are determined once
we adopt a model for the light-cone distribution functions.

E. Factorization of �B��E� appearing in B! �‘ �� and
B! ��

In this section, we study the implications of our results
for B! �‘ �� and the related process B! ��. For small
pion energy E, this process is dominated by the B� pole and
can be studied in chiral perturbation theory [94,95]. For
E & 1 GeV this process is also amenable to HQET and
lattice QCD simulations [96,97]. For large E, namely
E2 � E�QCD � �2

QCD, the process is expected to factor
into the convolution of perturbative and nonperturbative
contributions.

The exploration of factorization in QCD for the process
B! �‘ �� has a rich history. In Ref. [25], exclusive QCD
factorization techniques were applied to the B! � and
B! �� transitions to examine the hard-scattering contri-
butions. End point divergences as in Eq. (2) were encoun-
tered. Reference [98] argued that the soft end point
contributions dominate, and obey heavy quark symmetry
relations. This was extended to a bigger class of large
energy symmetry relations in Ref. [99] in the context of

an EFT known as LEET [100] that was later shown to be
inconsistent. Factorization of soft and collinear regions
was studied in Ref. [24], including Sudakov suppression
of soft contributions, and a result for the hard parts was
obtained in terms of leading twist B and � distributions.
B! �‘ �� decays were studied with light-cone sum rules in
Refs. [101–103], and in Ref. [103], a definition of the soft
and hard contributions was given using the so-called local
duality approximation. The soft part dominated numeri-
cally. In Ref. [104], it was shown that terms with end point
divergences could be absorbed into a soft-form factor
without spoiling the large energy symmetry relations, and
�s contributions which spoil the relations were evaluated.
A dominant nonfactorizable soft-form factor is an impor-
tant ingredient in the power counting used by Ref. [105] in
discussing factorization for B! ��.24 In formulating
SCET in Ref. [2], the leading order low energy current
operators for the soft B! � form factor were derived, and
their hard Wilson coefficients were computed at O��s�.
Reference [108] studied B! � form factors with thresh-
old and k? resummations, argued that soft contributions
are Sudakov suppressed in this framework, pointed out the
importance of the p2 	mb�QCD scale, and obtained a
factorized result given by individual B and � wave func-
tions with k?’s. The ability to completely factorize the
amplitude into individual B and � distributions depending
on k? is an important ingredient in the pQCD approach to
B! �� [30].

More recently, SCETI and SCETII have been used to
analyze B! �‘ ��. References [35,109] pointed out that
the interpolating field for the pion is purely collinear, and
that the LO terms therefore necessarily involve time-
ordered products of currents and subleading Lagrangians
in SCETI. Thus, in the complete set of operator contribu-
tions, leading and subleading currents both contribute to
the LO form factor. The hard-scattering and soft-form
factor contributions can be defined as subsets of these
time-ordered products with J�1� and J�0�, and it was shown
that the factorization of the hard-scattering contributions
J�1� involves a hard function for the scale m2

b, and also a
distinct jet function for the scalemb�QCD. In Refs. [75,77],
factorization in SCETII was further investigated, and it was
argued that soft-collinear messenger contributions spoil the
possibility of further factorization of the soft B! � form
factor J�0� terms. In Ref. [78], the implications of end point
singularities for factorization in SCET were investigated. It
was shown that the hard-scattering contributions are finite
to all orders in �s. It was also argued that end point
singularities spoil possible factorization of the soft-form
factor terms below the scale mb�QCD. In Ref. [80], the
complete set of SCETII operators for the soft B! � form
factor contribution was determined, including three-body

24A soft-form factor does appear in the B! D� process
[106,107].
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operators. In Ref. [110] a factorization formula for B!
�� was investigated in SCET and it was pointed out that
the same universal jet function occurs as in the B! �‘ ��
process (for a precursor see [111]).

The above results can be summarized by the following
formula for the relevant B! � form factor, derived from a
systematic expansion in E� �QCD:
 

f��E��T
����E��B��E��

Z 1

0
dzC���J �z;E��

B�
J �z;E�

�T����E��B��E��N0

Z 1

0
dz
Z 1

0
dx
Z 1

0
dk�C

���
J �z;E�

�J�z;x;k�;E����x���B �k��; (147)

Our notation follows Refs. [109,110], so N0 �

fBf�mB=�4E
2�. The hard functions T��� and C���J are

perturbative at �2 	m2
b, the jet function J is perturbative

at �2 	 E�QCD, and �� and ��B are leading twist distri-

butions, which are nonperturbative. Finally, �B��E� �
�m1=2

b =E2��̂B��E� is the unfactorized soft-form factor
with �̂B��E� containing dependence on the scales E�QCD

and �2
QCD. At lowest order in �s�mb� at the hard scale

T��� � 1, C���J � 1, and f��E� � �B��E� � �B�J �E�,
where �B�J �E� �

R
dz�B�J �z; E�. If we also work to order

�s��� at the intermediate jet scale, �2 	 E�QCD, we can
expand further, and Eq. (147) gives
 

f��E� � �B��E� �
fBf�mB

4E2

4��s���
9

�
2E
mB
�

2E
mb
� 1

�

�
Z 1

0
dx
���x�
x

Z 1
0
dk�

�B�k
��

k�
: (148)

In this result the �B��E� term is left unexpanded since its
factorization at scales�2 & E�QCD is (so far) unknown. In
the remainder of this section we will use the zero-bin in
SCETII to demonstrate that �B��E� can be factorized fur-
ther into products of twist-two and twist-three � and B
distribution functions.

In SCETI the �B��E� term is defined by

 h�n�p
�
� �jT0 � T3 � T4 � T5 � T6jBvi

� �n  p�C�p�� ��B��p�� � � 2EC�E��B��E�: (149)

The Ti are time-ordered products of subleading
Lagrangians with the leading scalar heavy-to-light current

J�0� �
P
p�C�p

��� ��nW�p��Yyhv�. Their definitions are
[109,110]

 T0 � i
Z
d4yTJ�0��0�L�1��q�y�;

T3 � i
Z
d4yTJ�0��0�L�2b��q �y�;

T4 � i
Z
d4yTJ�0��0�L�2a��q �y�;

T5 � i2
Z
d4yd4zTJ�0��0�L�1����y�L

�1�
���z�;

T6 � i2
Z
d4yd4zTJ�0��0�L�1��q�y�L

�1�
cg �z�;

(150)

and the presence of only J�0� guarantees that �B��E� sat-
isfies the symmetry relations of Ref. [99]. The momentum
conserving -functions collapse the matrix element of the
Ti’s into a simple product. The momentum p�� 	mb is
large, and p�� � 2E up to small power suppressed m�
dependent terms.

The tree-level matching onto SCETII for J�0� currents
was carried out in Ref. [80]. They found the position space
operators
 

O�P�1 � g2

�
���0�

�n6 �5

2
��s �n�

��
�Qs�tn�

�n6 n6 �5

4
H �0�

�
;

O�P�2 � g2

�
���0�

�n6 �5

2
i@6 ?��s �n�

��
�Qs�tn�

n6 �5

2
H �0�

�
;

O�P�3 � g2

�
���0�

�n6 �5

2
A6 c?�r �n���s �n�

��
�Qs�tn�

n6 �5

2
H �0�

�
;

O�P�4 � g2

�
���0�

�n6 �5

2
��s �n�

��
�Qs�tn�A6 s?�un�

n6 �5

2
H �0�

�
;

(151)

where the notation is defined in Ref. [80]. The time-
ordered product T0 contributes to the matching onto op-
erators with a gluon field strength. They also had a fifth
operator, O5, involving a time-ordered product with soft-
collinear messenger fields. In our setup, the infrared re-
gions associated to the messenger fields are covered by the
soft and collinear fields so this fifth operator should not be
included. With labeled fields the operators are

 O1 �

�
� ��nW�u

�n6 �5

2
�Wy�n��v

��
� �qsS��k1

�n6 n6 �5

4
�Syhv�k2

�
;

O2 �

�
� ��nW�u

�n6 �5

2
P6 ?�W

y�n��v

��
� �qsS��k1

n6 �5

2
�Syhv�k2

�
;

O3 �

�
� ��nW�u

�n6 �5

2
�igB6 ?n ��w�Wy�n��v

��
� �qsS��k1

n6 �5

2
�Syhv�k2

�
;

O4 �

�
� ��nW�u

�n6 �5

2
�Wy�n��v

��
� �qsS��k1

�igB6 ?s �k3

n6 �5

2
�Syhv�k2

�
:

(152)
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Tree-level matching gives the Wilson coefficients [80]:

 J�1 � �
4��s���

9E2

�
1

v2k1

�
1

vk1

�
; J�2 � �

4��s���

9E2

1

uv2k2
1

;

J�3 �
��s���

2E2

�
w

�v� w�2vk2
1

�
7

9�v� w�2k2
1

�
8

9v�u� w�k2
1

�
;

J�4 �
��s���

2E2

�
k3

v2�k1 � k3�
2k1

�
8k3

9v�k1 � k3�
2k1

�
1

9v2�k1 � k3�
2

�
:

(153)

In Eq. (152), the (igB?n ) was defined below Eq. (140), and
igB�

s? � 
1=PS
y
in Ds; iD

�
s?�S� with S
n  As� soft

Wilson lines. As in the previous section, we rescaled the
delta functions acting on the collinear fields by �n  p� so
that the subscripts involve the momentum fractions u, v,w,
and the delta functions set either u� v � 1 or u� v�
w � 1. For the soft fields we left the delta functions
dimension-full, e.g. � �qsS��k1

� � �qsS��k1 � P y�. Note
that the vacuum to pion matrix element of the operators
O�P�2 and O2 will contribute.

The factorization in rapidity in SCETII discussed in
Sec. VII indicates that the jet function matching which
determines Eq. (153) will give factors of �s��� that are
perturbative at the jet scale �2 	 E�QCD, similar to the
�s��� in Eq. (148). Therefore we included the �s��� in the
J�i coefficients, rather than grouping a g2 with the opera-
tors in Eq. (152). To evaluate the h�j    jBi matrix ele-

ments of theO1;2;3;4, we will need Eqs. (139) and (143), the
pion matrix element

 

h�n�p�j� ��nW�u
�n6 �5

2
P6 ?�Wy�n��vj0i

� h�n�p�j
��un  p�

2
�P� � P���u; v�

� i�?��
Z
dwT��3 �u� w; v;w�j0i

�
i
2

�n  pf���uvu
�
�p
���; u; v� �

1

6
�0�� ��; u; v�

�

� i �n  pf3�

Z
dwuv

�3��u� w; v; w�
w

; (154)

and the B matrix elements

 

h0j� �qsS��k1

�n6 n6 �5

4
�Syhv�k2jBi � �i

fBmB

2
�k1 � k2 �

�����B �k1; k2�;

h0j� �qsS��k1
n6 �5

2
�Syhv�k2jBi � i

fBmB

2
�k1 � k2 �

�����B �k1; k2�;

h0j� �qsS��k1�igB6 ?s �k3

n6 �5

2
�Syhv�k2jBi � if3BmB�k1 � k2 � k3 �

����3B�k1; k2; k3�:

(155)

Here fB 	m
�1=2
b can be taken to be the decay constant in the heavy quark limit, and our definition for ��B is that of

Ref. [112], while �3B has been studied in Ref. [113] and is proportional to ~�A � ~�V from Ref. [114]. The momentum
conserving delta functions involve the HQET mass of the B-state, �� � limmb!1

�mB �mb�. For the lowest order
factorization formula for the soft-form factor �B��E�, we find
 

�B��E� �
f�fBmB

4E2 ��s���
Z 1

0
dudvdw

Z
dk1dk2

�
4

9
k1k2

uv
�1� v����u; v�

�v2��

��B �k1; k2�

�k1��
�

4��

9
k1k2

uv

�
��p

� �
1
6�
0�
� ��u; v�

�v2��

��B �k1; k2�

�k2
1��

�
f3B

fB

Z
dk3k1k2k3

uv

�
���u; v�

�v2��
�3B�k1; k2; k3�

9k3 � k1

9
�k1 � k3�
2k1��

�
���u; v�
v�

8k3�3B�k1; k2; k3�

9
�k1 � k3�
2k1��

�
�
f3�

f�
k1k2

uvw

�
�3��u; v; w�


�v� w�2v��
�

7�3��u; v; w�

9
w�v� w�2��
�

8 �v�3��u; v; w�

9
v2w�u� w���

�

�
��B �k1; k2�

�k2
1��

� D-terms
�
: (156)

Here �v � 1� v, the ki-limits are �1< k2 < ��, 0< k1;3 <1, and

 k1k2
� � ���k1�k2�; k1k2k3

� � ���k1�k2�k3�; uv� �1�u�v�; uvw� �1�u�v�w�: (157)

The ‘‘� D-terms’’ factor in Eq. (156) indicates that at this order we must also include the renormalized coefficients
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Di���; ��� for operators like the ones in Eq. (128). In
Eq. (156), we have obtained a finite factorization formula
for the soft B! � form factor. The structure of this con-
tribution is very similar to the hard-scattering term in
Eq. (148), except for the necessity of the zero-bin
subtractions.

To study the �� dependence in Eq. (156), we can adopt
the standard end point behavior for the distributions. For
simplicity, we can adopt a behavior for �3B�k1; k2; k3� so
that its tree-level integrals also all converge without apply-

ing the zero-bin and renormalization. This leaves ���u� 	
u �u, ��B �k1� 	 k1, ��B �k1� 	 1, and �3��u; v; w� 	 uvw

2.
The zero-bin is then required for ���u; v�=�v2�� given in
Eq. (129) and for �3��u; v; w�=
v2w�u� w��� which gen-
erate ln���=p

�
� � � ln���=2E� terms, and for

��B �k1; k2�=�k2
1�� and ��B �k1; k2�=�k1��. Following the

usual procedure, we find that these last two terms each
generate a ln
��=�n  v ����.

At higher orders in �s, we anticipate that the factoriza-
tion formula will take the form

 

�B� � N0

Z
du

Z
dk1Ĵ1�u; k1; E;�;������u;�;�����B �k1; �;���

� N0

Z
du

Z
dk1Ĵ2�u; k1; E;�;���

�
�p
� �

1

6
�0��

�
�u;�;�����B �k1; �;���

� N0

Z
dudv

Z
dk1Ĵ3�u; v; k1; E;�;����3��u; v;�;�����B �k1; �;���

� N0

Z
du

Z
dk1dk2Ĵ4�u; k1; k2; E;�;�

�����u;�;����3B�k1; k2; �;���: (158)

where we have used the k1k2
etc. functions to reduce the

number of integrations, and we note that the zero-bin
subtractions are present on the remaining variables. Here
the �� dependence in the ��’s and �B’s is shorthand for
the ln���� and ln���� terms that are generated from the
�-distribution depending on the structure of the Ĵi’s and the
end point behavior of the distributions. The completeness
of the mixed soft-collinear basis of operators O1;2;3;4 found
in Ref. [80] should guarantee that it is the nonperturbative
functions shown in Eq. (158) which will show up at any
order in�s in the matching.25 One-loop corrections to T���,
C���J , and to J are known [2,21,115,116]. One-loop correc-
tions for the Ĵi can be computed following the method
outlined here.

Since the factorization formula for B! �� involves the
same �B� and �B�J functions,

 

A� �B!��� � 	�f�c A
M1M2
c �c �

GFm
2
B���

2
p

�
f��B�

Z 1

0
du
T1� �u�

�T2� �u���
��u��f�

Z 1

0
du

Z 1

0
dz
T1J�u;z�

�T2J�u;z�����u��B�J �z�
�
; (159)

the results in this section immediately carry over to that
process. In Eq. (159) �B�

�J� � �B�
�J� �E � mb=2� and we

quoted the result from Ref. [110]. Our result in Eq. (156)
lends support to the power counting for B! �� used in
Ref. [110], where �B� and �B�J were treated as being
parametrically and numerically similar in size. It also

indicates that the entire nonleptonic tree amplitude for
B! �� can likely be written in terms of individual B
and � distribution functions. This differs from the type of
factorization in Refs. [105,117], where the soft-form factor
is taken to be nonperturbative. Our results appear to in-
dicate that the soft-form factor factorizes, but with the
SCETII factorization in rapidity space that is different
from the standard type of factorization formula. A factori-
zation of the form factor in terms of individual B and �
objects is similar to the result found in the pQCD analysis
in Refs. [29,30]; however, we do not find k? dependent
functions. A more detailed study of Eqs. (156) will be
reported on in a future publication.

VIII. CONCLUSION

This paper discusses how to formulate effective field
theories with multiple fields for the same physical particle,
where each field represents a region of momentum space
with a different power counting. This allowed for a tiling of
all the infrared momentum regions of the theory. The
technique was applied to a nonrelativistic field theory
(NRQCD) and to field theories for energetic particles,
including SCETI with collinear and ultrasoft quarks and
gluons, and SCETII with soft and collinear quarks and
gluons. Effective theories with multiple fields for the
same particle can be formulated using fields with labels
that distinguish the different momentum modes. In con-
verting the sum over momentum labels into an integral, one
must be careful with the zero-bin, where the momentum
label is zero, since this corresponds to a different degree of
freedom. Here the proper treatment of the zero-bin was
investigated in detail. Sums which do not include the zero-
bin are converted to integrals over all space with a zero-bin

25The results in Eqs. (77) and (78) of Ref. [93] allow for the
elimination of �p

� and �0�� in terms of �3� if so desired.
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subtraction. The zero-bin subtraction removes the support
of the integrand in the infrared region of momentum space
where overlap between different modes could occur, and
thus avoids double-counting between different modes in
the effective theory.

The zero-bin subtractions give a definition of NRQCD
and SCET independent of the choice of UV and IR regu-
lators, allowing the use of regulators other than dimen-
sional regularization if desired. They also solve a number
of puzzles encountered in the literature on collinear facto-
rization in QCD and nonrelativistic field theories, which
are associated with unphysical pinch and end point singu-
larities, as well as puzzles in the NRQCD and SCET
literature with UV and IR divergences that occur at inter-
mediate length scales.

In NRQCD, the zero-bin subtractions eliminate pinch
singularities in box-type graphs by properly distinguishing
between potential and soft heavy fermions. This result
applies to any nonrelativistic effective theory (for example,
it also simplifies the resolution of the puzzle discussed in
Ref. [118] involving soft pions interacting with nucleons).
Zero-bin subtractions also distinguish between soft and
ultrasoft gluons in NRQCD. In graphs with soft loops,
they convert infrared divergences into ultraviolet divergen-
ces. Converting an infrared into an ultraviolet divergences
in the soft sector corresponds to a rearrangement of degrees
of freedom that was known to be necessary in NRQCD,
and had been implemented by hand as the ‘‘pullup’’ pro-
cedure [14,15]. Here a proper treatment of the zero-bin
enabled us to derive the pullup mechanism directly from
the effective Lagrangian.

In SCETI zero-bin subtractions occur in collinear loops
and avoid the overlap with the ultrasoft momentum region.
These subtractions remove infrared divergences and in-
duce new divergences in the ultraviolet. Previous results
in the SCET literature used anomalous dimensions com-
puted by including infrared divergences in collinear graphs
as though they were ultraviolet divergences. This gives (by
hand) the correct result for the anomalous dimensions. The
zero-bin subtractions allows the computation of anomalous
dimensions in the effective theory to be carried out by the
standard renormalization procedure, in terms of the coun-
terterms used to cancel ultraviolet divergences, and also
ensures that IR divergences of the full theory are properly
reproduced independent of the regulator choice. In inclu-
sive decays at large energy, the zero-bin subtraction applies
to both virtual loop integrals as well as phase space inte-
grals for real emission as described in Sec. VI D. We
believe that zero-bin subtractions will play a role in the
SCET matching calculations for parton showering carried
out in Ref. [119], and perhaps also to the subtractions
carried out in Ref. [120]. They are likely to have implica-
tions for the singularities encountered with
k?-distributions with lightlike Wilson lines which were
discussed in Refs. [31,32].

In exclusive decays, the zero-bin subtraction gives fac-
torized decay rates and cross sections with finite convolu-
tion integrals. Convolution integrals of the perturbatively
calculable kernel with hadron wave functions are some-
times naively divergent at the end points, as is the case for
the �-� form factor, and in factorization of the soft-form
factor in B! �‘� decays. The zero-bin subtraction avoids
double counting between soft and collinear modes in
SCETII, and this converts the unphysical infrared diver-
gence in convolution integrals into an ultraviolet diver-
gence. These ultraviolet divergences are canceled by
operator renormalization. The final convolution integral
is finite, determined by a distribution we called �. The
�-distribution is a plus-type distribution augmented by
additional nonanalytic ln�E� dependence induced by the
renormalization. Independent of the choice for the UV and
IR regulators, our formulation of SCETII has only soft and
collinear degrees of freedom and does not have soft-
collinear messenger modes [75] as explained in
Secs. VII A 1 and B.26

Thus, one gets finite unambiguous formulas for ampli-
tudes in SCETII, free of end point singularities in the
convolution integrals. In cases where there would have
been a divergent convolution, we get a separation of modes
in rapidity space with variables ��. This preserves the
power counting and naive factorization in the kinematic
variables that would be present if the convolutions were
finite. To illustrate this, we derived finite amplitudes for the
�-� form factor at large Q2, and for the soft-form factor
function �B��E�� that appears in B! �‘ �� and B! ��
decays. Without a proper treatment of the zero-bin, the
convolutions in these factorization formulas would suffer
from end point singularities. Applying the technique to the
soft-form factor for B! �� decays allowed us to derive
an amplitude for nonleptonic decays that is entirely in
terms of B and � distribution functions at lowest order.

In previous literature, the field theories, SCETI and
SCETII, have provided an algebraic means of deriving
factorization formulas at any order in �QCD=Q, but not
the means to guarantee that the manipulations would result
in finite factorization formulas. Our work suggests that this
will indeed be the case, so that the power expansion of
observables can be carried out to any desired order without
encountering singularities in convolution integrals. It still
remains to carry out the full derivation of an SCETII

factorization formula and explore the renormalization
group properties of the resulting amplitudes—tasks which
we leave for future work. The zero-bin procedure provides
the freedom to tile the infrared of an EFT with suitable
degrees of freedom, and makes the connection between the
choice of degrees of freedom and the power counting

26In Refs. [50,71,121], SCET was reformulated in position
space to avoid the sums over label momenta. To formulate the
zero-bin subtractions in position space, one can take the Fourier
transform of Eq. (17).
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expansion clear. Exploiting this, we converted the question
of finding a complete set of degrees of freedom for an EFT
at any order in the expansion, to a question that is easier to
answer physically, that of identifying the relevant operators
that occur at leading order for an observable, and give a
proper formulation of the power counting.
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APPENDIX A: RAPIDITY CUTOFF LOOP
INTEGRALS IN SCETII

In this section we give some details on the calculation of
the integrals required for the SCETII diagrams in
Sec. VII A. This calculation uses dimensional regulariza-
tion for IR divergences, and cutoffs on a Wick rotated
rapidity variable, � 0k, to regulate rapidity effects in the
UV as in Eq. (94). The integrals we wish to compute are

 Is �
Z dDk
�2��D

1

�p�k� � i0�
1

k�k� � k2
? � i0

�

�
1

k�k� � k�‘� � k2
? � i0

�
;

Ic �
Z dDk
�2��D

1

�k�‘� � i0�
1

k�k� � k2
? � i0

�

�
1

k�k� � k�p� � k2
? � i0

�
:

(A1)

with ‘� > 0 and p� > 0. We use variables fk�; �kg for the

soft integral with Wick rotation �k � i� 0k, and fk�; �kg for
the collinear integral with �k � �i�

0
k, as discussed in

Sec. VII A. It is easy to verify for Is and Ic that these
Wick rotations about the origin do not encounter any poles.

1. Soft integral in SCETII

Consider the soft integral in Eq. (A1) and perform the k?
integral:

 Is �
Z 1

0
dx
Z dDk
�2��D

1

�p�k� � i0�

�
1


k2
? � k

�‘�x� k�k� � i0��2

�
��1� ��

8�

Z 1

0
dx
Z dk�dk�

�2��2

�

k� � ‘�x� k�k� � i0���1��

�p�k� � i0�
: (A2)

Let k� � �k�, and note that dk� � jk�jd� once we inte-
grate �1< k� <1 and �1< � <1. Thus

 Is �
��1� ��

8�p�
Z 1

0
dx
Z dk�d�

�2��2

�
jk�j
k�‘��x� �k��2� � i0���1��

�k� � i0�
: (A3)

Rescale by a positive constant k� � �‘�x�k0� and for
simplicity rename k0� � k�. Then rotate � � i� 0, so

 Is �
��1� ��

8�p�
Z 1

0
dx�‘�x��1�2�

Z dk�d�

�2��2

�
jk�j
�k��1� k�� � i0���1��

�k� � i0�

�
���1� ���‘���2�

16���p�‘���2��2
Z

dk��id� 0�

�
jk�j
i� 0k��1� k�� � i0���1��

�k� � i0�
: (A4)

We divide the k� integral into k� > 1, 0< k� < 1, and
k� < 0. This gives
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: (A5)

In the second equality, note that the change of variables k� ! 1� k� for k� < 0 causes the second and third terms to
cancel. Putting the pieces back together and multiplying by the �2� this gives
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Now set � 0min � �a
2 and � 0max � a2 and note that ��i��� � exp��i��=2�, so that we have
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[In the last line when expanding in � we have multiplied by
the exp���E� factor to put� into the MS scheme, while the
necessary �4���� factor was removed already in Eq. (A2).]
Equation (A7) is the result quoted for the soft computation
in Eq. (98) in the text.

2. Collinear integral in SCETII

Let us repeat the computation in the previous section for
the collinear integral in Eq. (97). The integral is
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(A8)

Let k� � k�=� with dk� � jk�jd�=�2 and�1< � <1,
so
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(A9)

Rescale by a positive constant k� � �p�x�k0� (for sim-
plicity renaming k0� ! k�), and then rotate � � �i� 0,
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where in the last line we noted that the k� integral is

identical J�1=� 0� defined via Eq. (A5). Multiplying by
�2� this gives
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Now we add the contributions from the regions � 0 2

a2;1� and � 0 2 
�1;�a2� to give
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This is the collinear integral result quoted in Eq. (99). A
simple way to get this answer is to note that the original
collinear integral is identical to the soft integral with the
replacements k� $ k�, p� $ ‘�, and a! 1=a. The an-
swers in Eqs. (A7) and (A12) agree with this.

APPENDIX B: SCETII LOOPS IN DIM. REG. WITH
DIFFERENT IR REGULATORS

In this Appendix we repeat the matching computation
done in Sec. VII A of a scalar loop integral in SCETII. We
use dimensional regularization, but modify the treatment
of the IR regulator. The structure of the full theory and
effective theory diagrams changes, but again the IR diver-
gences are properly reproduced and the same contribution
to the matching coefficient is obtained. The calculation is
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done for two classes of IR regulators: Section B 1—taking
three different IR masses, m1, m2, and m3 rather than just
the single mass used in Sec. VII B 1; and Sec. B 2—with
m1 � 0, m2 � m3 � 0, and external momenta off shell,
‘2 � 0 and p2 � 0. Finally, in Sec. B 3, we discuss subtle-
ties related to the m1 � 0 limit of these two cases. For
simplicity we leave off the diagram prefactor
ieg2G=�p�‘�� and just quote results for the integrals in

this appendix. In all cases p� > 0 and ‘� > 0, and (p�‘�)
is the perturbative scale.

1. Three IR masses: m1, m2, m3

The full theory loop which is the generalization of
Eq. (B1) with three IR masses, is
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��
: (B1)

In Eq. (B1) factors of the IR regulators, m2
1, m2

2, and m2
3 appear in all propagators, external momenta are taken on shell,

p2 � ‘2 � 0, and we have expanded inm2
i =�p

�‘��. The result is valid as long as �p�‘�� � m2
i , �p

�‘��m2
1 � m2

2m
2
3, and

cannot be used for the case m1 � 0 since it blows up. The result which is valid form1 ! 0 and also reproduces Eq. (B1) is
given below in Eq. (B22). The m1 � 0 result is in Eq. (B24).

The LO SCETII currents for dimensional regularization are given in Eq. (105). Using the m1;2;3 IR regulators for the
scalar and collinear loops in Figs. 15(b) and 15(c), we have
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(B2)

Note that we keep m2
2 and m2

3 only in the propagators that are allowed to become small by the power counting in SCETII.
Equation (17) tells us that we have zero-bin subtractions for the soft and collinear diagrams which avoid the IR
singularities from the [� p�k�] and [� ‘�k�] propagators. The naive integrals and subtraction integrals are
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(B3)

To determine the form of the subtraction integrals, we
considered the collinear limit of the soft loop momentum
in ~Iscalar

soft , and the soft limit of the collinear loop momentum
in ~Iscalar

cn . Note that them2
2 andm2

3 dependence is dropped in
the subtraction integrals because in these limits ‘�k� �
m2

2 and p�k� � m2
3. The UV rapidity regulator factors,

j    j� are not affected by the subtractions (despite the way
we are organizing the computation here, one really has an
integrand defined with subtractions and then multiplies it

by these factors). From Eq. (17) the differences ~Iscalar
soft �

Iscalar
0soft and ~Iscalar

cn � Iscalar
0cn will give the result for Iscalar

soft and
Iscalar

cn , respectively.
For the soft graph we do the k� integral by contours.

Because of the pole structure this restricts the
k�-integration to the region 0< k� < ‘�. The k? integral
is then done. For the soft subtraction integral we follow the
same procedure which this time leaves the integration
region 0< k� <1. We find
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The double counting with the collinear integral comes from the k� ! 0 part of the integral, but the divergence from this
limit exactly cancels in Iscalar

soft �
~Iscalar

soft � I
scalar
0soft as long as m1 � 0. Computing the integrals we find
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For the collinear integrals we do the contour integration in k� which restricts the remaining integration region in k�. For
the naive and subtraction integrals we find
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(B6)

The subtraction integral cancels the singularity in ~Iscalar
cn as k� ! 0 as long as m1 � 0. The complete collinear result,

Iscalar
cn � ~Iscalar

cn � Iscalar
0cn , is very similar to the soft result
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The results in Eqs. (B5) and (B7) have 1=�UV ln�m2� divergences, which are canceled by the ��0; ��=�-type counter-
terms. For this scalar calculation these divergences are canceled by a graph containing the insertion of the renormalized
currents in Eq. (112) with additional counterterm coefficients for the convolution integral as given in Eq. (113).
Contracting the scalar gluon as in Fig. 15(b)], using the same IR mass regulator, and pulling out the same prefactor as
the other diagrams gives

 Iscalar
ct � 2

�
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2�UV
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i
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��
: (B8)

Note that dependence on m2;3 drops out of the answer for Iscalar
ct . Because of our choice of C�0d;0e� this exactly cancels the

1=�UV ln�m2
1� terms in the collinear and soft loops. Adding the soft, collinear, and counterterm graphs we find the full

SCETII result:
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The effective theory result in Eq. (B9) has UV divergences
which are the same as in Eq. (115), and are canceled by a
counterterm for the jet function coefficient J�0a�, as given in
Eq. (116). The renormalized EFT result is
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(B10)

The first three terms exactly reproduce the IR divergences
in the full theory result in Eq. (B1), including the entire
functional dependence on the ratios of m2

i , and the fourth
term vanishes since �2 � ����. The difference of the
remaining finite terms gives a contribution to the one-loop
matching coefficient,
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This result exactly reproduces the matching coefficient in
Eq. (119), as anticipated. In the limit m2;3 ! 0 all results
go smoothly over to those in Sec. VII B 1.

2. Offshellness p2 � �P2 � 0, ‘2 � �L2 � 0, with
m1 � 0 and m2;3 � 0

The full theory loop integral is now
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where ‘2 � �L2, p2 � �P2 and we have expanded in
P2=�p�‘��, L2=�p�‘��, and m2

1=�p
�‘��. The result is

valid as long as �p�‘��m2
1 � P2L2, and so cannot be

used for the special case m1 � 0. The result for m1 ! 0
is discussed below in Sec. B 3.

Using the same IR regulators for the scalar and collinear
SCETII loops in Figs. 15(b) and 15(c), we have
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(B13)

Note that we keep ‘2 and p2 only in the propagators that are allowed to become small by the power counting in SCETII.
Equation (17) tells us that we have zero-bin subtractions for the soft and collinear diagrams and the naive integrals and
subtraction integrals are
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(B14)

To determine the form of the subtraction integrals, we
considered the collinear limit of the soft loop momentum
in ~Iscalar

soft , and the soft limit of the collinear loop momentum
in ~Iscalar

cn . The p2 and ‘2 dependence is dropped in the
subtraction integrals because in these limits ‘�k� �
�‘2 and p�k� � �p2. Note that the subtraction integrals
are identical to the case with m1;2;3 � 0. The final results
Iscalar

soft and Iscalar
cn are defined by the differences ~Iscalar

soft �
Iscalar

0soft and ~Iscalar
cn � Iscalar

0cn , respectively.
To compute the soft graph we work in the frame where

‘? � 0, thus ‘�‘� � �L2 < 0 with ‘� > 0, so the off-
shell momentum is ‘� � �L� < 0. We do the k� integral
by contours. Because of the pole structure this restricts the
k�-integration to the region 0< k� < ‘�. The k? integral
is then done. For the soft subtraction integral we follow the
same procedure which gives the integration region 0<

k� <1. Thus,

 

~Iscalar
soft �

�i�����2�

16�2�p�‘��

Z ‘�

0

dk�

k�

��
1�

k�

‘�

�
�m2

1�k
�L��

�
��

�

��������k
��k��‘��

�2
�

��������
�
;

Iscalar
0soft �

�i�����2�

16�2�p�‘��

Z 1
0

dk�

k�

m2

1�
��

��������k
��k��‘��

�2
�

��������
�
:

(B15)

The double counting with the collinear integral comes
from the k� ! 0 part of the integral, but the divergence
from this limit exactly cancels in Iscalar

soft �
~Iscalar

soft � I
scalar
0soft as

long as m1 � 0. Computing the integrals we find

 

Iscalar
soft �

�i����
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�
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�Z 1

0
dx
j1� xj�jxj�
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��1� �����2��
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�

�
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�
�

1

2�UV
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�
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1

�2

�
� ln2
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� ln

�
m2

1

�2

�
ln
�
‘�

��

�

� Li2

�
�L2

m2
1

��
: (B16)

For the collinear integrals we take p? � 0, so p�p� � �P2 < 0 with p� > 0, and it is p� � �P� < 0 that takes the p2

off shell. We do the contour integration in k� which restricts the remaining integration region in k�. For the naive and
subtraction integrals we find

 

~I scalar
cn �

�i�����2�

16�2�p�‘��

Z p�

0

dk�

k�

��
1�

k�

p�

�
�m2

1 � k
�P��

�
��
��������k
��k� � p��

�2
�

��������
�
;

Iscalar
0cn �

�i�����2�

16�2�p�‘��

Z 1
0

dk�

k�

m2

1�
��
�
k��k� � p��

�2
�

�
�
:

(B17)

The complete collinear result, Iscalar
cn � ~Iscalar

cn � Iscalar
0cn , is very similar to the soft result
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 Iscalar
cn �

�i����

16�2�p�‘��

�
p�

��

�
2�
�Z 1
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dx
j1� xj�jxj�

x
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�1� x��m2
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��
: (B18)

The results in Eqs. (B16) and (B18) have 1=�UV ln�m2�
divergences, which are canceled by the ��0; ��=�-type
counterterms just as in our m1;2;3 case. The counterterms
and result to be added are the same as in Eq. (B8) and
exactly cancels the 1=�UV ln�m2� terms in the collinear and
soft loops. Adding the soft, collinear, and counterterm
graphs and simplifying we find the full SCETII result:
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�
: (B19)

The effective theory result in Eq. (B19) has UV divergen-
ces which are canceled by the counterterm for the jet
function coefficient J�0a�, as already given in Eq. (116).
The renormalized EFT result is
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: (B20)

The first three terms exactly reproduce the IR divergences
in the full theory result in Eq. (B12), including the entire
functional dependence on P2=m2

1 and L2=m2
1. The fourth

term vanishes since �2 � ����. The difference of the
remaining finite terms gives a contribution to the one-loop
matching coefficient:

 Iscalar
match �

�i

16�2�p�‘��

�
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2
ln2
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� ln2
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ln2
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�
: (B21)

This result exactly reproduces the matching coefficient in
Eqs. (119) and (B11) using a different IR regulator. This is

as expected since the full theory was UV finite, and the
same UV regulator was used in the SCETII calculation. In
the limit L2, P2 ! 0 all the results go smoothly over to the
results presented in Sec. VII B 1.

3. The limit m1 ! 0 of Secs. B 1 and B 2

Finally, we discuss the limit m1 ! 0 of the IR regulators
considered above in Secs. B 1 and B 2. This is not a smooth
limit in either the full or effective theories. In the following
we use the notation Q2 � �p�‘�� as shorthand for our
large perturbative scale.

We first consider the full theory loop integrals, but in
expanding out the IR regulators we keep the first sublead-
ing terms in the expansions in cases where the leading term
vanishes as m2

1 ! 0. So for the expansion in m2
1;2;3=Q

2 in
Sec. B 1, we keep subleadingm2

2;3 terms if the leading term
is proportional to m2

1. For the expansion in m2
1=Q

2, L2=Q2,
and P2=Q2 in Sec. B 2 we keep subleading L2 and P2 terms
when the leading term is proportional to m2

1. For the
m1;2;3 � 0 regulator this gives
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�i
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�
Q2�m2
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2
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�
� i0�

�

� Li2

�
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1 �m
2
2��m

2
1 �m

2
3�

�

��
;

� � Q2m2
1 �m

2
2m

2
3;

(B22)

while for the m2
1 � 0, p2 � �P2 � 0, and ‘2 � �L2 � 0

we have
 

Iscalar
full �

�i

16�2�p�‘��

�
1

2
ln2

�
�� i0�

Q4

�
� Li2

�
Q2P2

��� i0�

�

� Li2

�
Q2L2

��� i0�

�
�
�2

3
� Li2

�
L2P2

��� i0�

��
;

� � Q2m2
1 � L

2P2: (B23)

From Eq. (B22) we see that as long as Q2m2
1 � m2

2m
2
3,

as is the case if all the IR masses are the same order in the
power counting, then �! Q2m2

1, and expanding Eq. (B22)
reproduces the result quoted in Eq. (B1). If we set m1 � 0,
then the leading m2

i =Q
2 terms in the double log and di-logs
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vanish, and subleading terms regulate the IR divergences.
In this case �! �m2

2m
2
3, and we obtain

 Iscalar
full �m1 � 0� �

�i

16�2�p�‘��

�
ln
�
m2

2

Q2

�
ln
�
m2

3

Q2

��
; (B24)

We have checked that Eq. (B24) agrees with the result
obtained by setting m1 � 0 before evaluating the integral.
Since subleading terms are regulating the IR divergences,
the result depends on the product ln�m2

2� ln�m
2
3� and thus no

longer has a form that can be factorized in a straightfor-
ward manner into soft and collinear parts. The situation is
very similar for Secs. B 2. Expanding Eq. (B23) when
Q2m2

1 � L2P2 gives �! Q2m2
1 and reproduces the result

quoted in Eq. (B12). If we setm1 � 0 then the leading term
in � vanishes and subleading L2 and P2 terms regulate
divergences in the double log and di-logs, with �!
�L2P2. In this case

 Iscalar
full �m1 � 0� �

�i

16�2�p�‘��

�
ln
�
L2

Q2

�
ln
�
P2

Q2

�
�
�2

3

�
;

(B25)

To see why this happens, we can examine the IR diver-
gences in the full theory integral. Divergences occur for
k! p�, k! ‘�, and k! 0, and the issue with m1 ! 0
arises from the k! 0 case where the propagators carrying
the soft and collinear momenta are both singular in oppo-
site lightlike directions. The k! 0 limit of the denomina-
tor of the integrand in Eq. (B1) is 
�‘�k� �m2

2��

k2 �m2

1�
�p
�k� �m2

3� and for Eq. (B12) is 
�‘�k� �
L2�
k2 �m2

1�
�p
�k� � P2�. The effect of the IR regula-

tors is pictured by the solid curves in Fig. 17, where we
show how they shield the integrand from blowing up when
we go towards the k� � 0 or k� � 0 lines. Without the m1

regulator the intersection of the k� � m2
3=p

� and k� �
m2

2=‘
� lines generates unphysical sensitivity to a very

small scale 	m2
2m

2
3=Q

2. For the case with offshellness, it
is the intersection of the lines k� � P2=p� and k� �
L2=‘� generating sensitivity to the very small scale
	L2P2=Q2. The sensitivity to this new small scale was
first pointed out in Ref. [75] where the IR regulator L2 � 0,
P2 � 0 was used. The result in Eq. (B25) agrees with the
one studied there. In Ref. [75] messenger modes with very
small invariant mass were added to the effective theory to
account for the dependence on this ‘‘messenger scale.’’
However, in QCD the sensitivity to this small messenger
scale is unphysical because IR divergences are cutoff at an
earlier stage by �QCD [85]. In perturbation theory with
m1 � 0, sensitivity to the messenger scale also never ap-
pears. Comparing Fig. 13 with Fig. 17 we see that them2

1 �

0 regulator behaves in a similar manner to �2
QCD. Other IR

regulators are also known which remove the unphysical
sensitivity to the messenger scale, including analytic reg-
ulators [78], and an energy dependent gluon mass [65].

It is possible to choose IR regulators that complicate the
choice of the matching coefficient; m1 � 0 is such a
choice. We have seen the complication in the full theory
result in Eq. (B22). In the effective theory the choice m1 �
0 also causes problems for ~Iscalar

soft � I
scalar
0soft and ~Iscalar

cn �
Iscalar

0cn . In this situation the k? integration for the subtraction
integral is scaleless, and the subtraction terms do not
cancel the problematic k� ! 0 and p� ! 0 regions in
the naive integrals. For example, the naive and subtraction
integrals in Eq. (B4) scale with a different power of k� as
k� ! 0. The same is true for Eq. (B15), and for the col-
linear integrals. If one chooses m1 � 0 some of the IR
divergences are regulated at the scale m2

2m
2
3=Q

2 or
L2P2=Q2, and so part of the IR regulator is of subleading
order in the power counting with our definitions of the soft
and collinear modes. This makes it difficult to compute the
IR behavior in the effective theory, since one has to sum up
a class of subleading terms in the power counting to all
orders. We expect a resummation procedure in SCETII

could be developed to reproduce the matching result in
Eq. (119) with m1 � 0 for the IR regulators considered in
Secs. B 1 and B 2, but we will not attempt it here.

It is worth emphasizing that the matching coefficient,
Eqs. (119) and (B11), which depends on the difference
between the full and effective theory results, does not
depend on the IR regulator, as we have demonstrated
with several different calculations. The matching coeffi-
cient is only sensitive to ultraviolet physics. It can be
computed by using an IR regulator that is homogeneous
in the power counting. We have seen this explicitly by
computing the matching for arbitrarym1;2;3, and for P2, L2,

k+

c

0
0

η2

2

k -

Q

ηQ 0

ηQ ηQ 0

s
ηQ

ηQ

k+ = 2

n

k- m1

k+

k- = µ+

µ-

k+=
2m3

p-

k =
2m2

l+
- or

2L
l+

or
2P

p-

FIG. 17 (color online). Regulation of IR divergences in
SCETII in perturbation theory in the k� � k� plane. The cn
and s denote the collinear and soft modes, respectively, and the
dashed k�=k� � ��=�� line indicates how these modes are
distinguished in perturbation theory. For k� ! 0, the solid lines
indicate at what scales the IR divergences are cutoff by the m2

1,
m2

2, and m2
3 regulators (and also for the m2

1, L2, P2 regulator
choice). Since p� � mi, the intersection of the k� � m2

3=p
�

and k� � m2
2=‘

� lines is always below the curve k�k� � m2
1

(and same for k� � P2=p� and k� � L2=‘�). This intersection
occurs at the messenger scale.
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m2
1 with m1 � 0. The purpose of the perturbation theory

Feynman graph computations in the full and effective
theories is to compute the matching coefficient Eq. (B4),
which is a short distance quantity. The effective theory is
not being used to reproduce the IR behavior of the full

theory in perturbation theory for arbitrary IR regulators,
especially regulators that only become effective at a small
scale that is subleading order in the power counting. The
effective theory is being applied to QCD, where the infra-
red dynamics is nonperturbative, and cutoff at �QCD.
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