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The generation of the fermion mass hierarchy in the standard model of particle physics is a long-
standing puzzle. The recent discoveries from neutrino physics suggest that the mixing in the lepton sector
is large compared to the quark mixings. To understand this asymmetry between the quark and lepton
mixings is an important aim for particle physics. In this regard, two promising approaches from the
theoretical side are grand unified theories and family symmetries. In this paper we try to understand
certain general features of grand unified theories with Abelian family symmetries by taking the simplest
SU�5� grand unified theory as a prototype. We construct an SU�5� toy model with U�1�F � Z02 � Z002 � Z0002
family symmetry that, in a natural way, duplicates the observed mass hierarchy and mixing matrices to
lowest approximation. The system for generating the mass hierarchy is through a Froggatt-Nielsen type
mechanism. One idea that we use in the model is that the quark and charged lepton sectors are hierarchical
with small mixing angles while the light neutrino sector is democratic with larger mixing angles. We also
discuss some of the difficulties in incorporating finer details into the model without making further
assumptions or adding a large scalar sector.
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I. INTRODUCTION

In the standard model (SM) the Yukawa coupling con-
stants can be freely adjusted without disturbing the internal
consistency of the theory; one must rely on experiments to
fix their values. They are now tightly constrained and it is
interesting to try to predict the mass ratios and mixing
angles from some first principle calculation, incorporating
physics that is beyond the SM. Among the attempts to
explain and relate some of the arbitrary parameters in the
SM are grand unified theories (GUTs) and family
symmetries.

GUTs embed the SM group SU�3�C � SU�2�L �U�1�Y
into a larger group G and, as a result, previously indepen-
dent SM parameters may become related (see, for example,
[1]). One of the earliest and most interesting attempts in
this direction was the SU�5� theory of Georgi and Glashow
[2]. Among other things, in the ‘‘minimal’’ version, it
predicted that at the GUT scale the charged leptons and
down quarks in each generation have equal masses. On the
other hand family symmetries between the three fermion
generations generally lead to interfamily mass relations.
Froggatt and Nielsen (FN) long ago suggested that a spon-
taneously broken U�1� family symmetry may be the cause
for the observed hierarchy of fermion masses [3]. This is
because in the FN mechanism the Yukawa coupling con-
stants are derived naturally when scalar fields, transform-
ing under the family symmetry group, attain a vacuum
expectation value (VEV), spontaneously breaking the sym-
metry. It must be noted that in most cases while the GUTs
relate the quark and lepton masses in the same generation,

the family symmetry relates the masses of fermions in
different generations. Thus, sometimes we refer to them
as ‘‘vertical’’ and ‘‘horizontal’’ symmetries, respectively.
There have been some pioneering studies in recent years
using FN to understand quark and lepton mass hierarchies
[4].

The main aim of this paper is to explore some general
considerations in GUT models with Abelian family sym-
metries taking the SU�5� GUT as an example. In this paper
we explore the generation of mass hierarchies in the quark
and lepton sectors in GUTs through the spontaneous break-
ing of an Abelian family symmetry. The attempt will be to
understand general features of GUT models with the sim-
plest family symmetries and the least number of assump-
tions. We also require that the scalar sector is minimal. In
this regard, as previously mentioned, we consider the
simplest GUT group, SU�5�, as the prototype and take
the family symmetry to be U�1�F � Z02 � Z002 � Z0002 . One
reason for the choice apart from its simplicity is that the
Abelian groups are universally present in many models
where a higher GUT group (like E6 or SO�10�) undergoes
symmetry breaking. A toy model is constructed which
captures the general features of the quark and lepton
mass hierarchies. It also naturally incorporates the quali-
tative features of the quark and lepton mixing matrices to
lowest approximation. Other models in the literature aimed
at understanding the mixing patterns have been constructed
based on, for example, A4 [5] and SU�3� [6].

We attempt to explain the differences between the quark
mixing matrix and the lepton mixing matrix as a conse-
quence of the presence of right-handed Majorana neutri-
nos. There may be two scenarios to create the difference in
the quark and lepton mixings. The quark and charged
lepton Yukawa matrices may be hierarchical while the light
neutrino matrix may be nonhierarchical. By a hierarchical
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Yukawa matrix we mean that the mixing angles in the
diagonalizing matrices are small. A sufficient condition
for this is that the Yukawa matrix is very close to a diagonal
matrix with the off-diagonal elements relatively small. The
nonhierarchical Yukawa matrix on the other hand has
larger mixing angles and is far from being diagonal. This
would lead the quark and charged lepton diagonalizing
matrices to be close to the unit matrix and the neutrino
diagonalizing matrix to be tri-bimaximal [7]. The other
scenario is that the light neutrino matrix may be hierarch-
ical while the quark and charged lepton Yukawa matrices
are nonhierarchical. In this case the neutrino diagonalizing
matrix will be close to unity while the other three matrices
will be close to tri-bimaximal [7]. The essential point is
that in both the above cases the difference in the quark and
lepton mixings is explained through a mismatch of one
matrix with the other three matrices. For an interesting
alternative the reader is referred to [8]. In our model both
the matrices that contribute to the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [9] are themselves close to a
unit matrix. In the lepton sector the matrix that diagonal-
izes the charged lepton Yukawa matrix is also close to a
diagonal unit matrix, but the contribution from the neutrino
sector is close to a tri-bimaximal matrix. Thus the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [10]
comes out being very close to a tri-bimaximal matrix [7],
so in the model we construct the difference between the
CKM and PMNS matrices is solely due to the neutrino
sector.

The observational constraints on the quark and lepton
masses and mixing angles are reviewed in Sec. II. In
Sec. III we give a short description of the SU�5� GUT
and the idea behind Abelian family symmetries. Then in
Sec. IV we construct the toy model that captures to zeroth
approximation the features in the fermion mass hierarchy
and electroweak mixing matrices. In Sec. V we consider
the toy model in the context of the supersymmetric exten-
sion of the SM. We go on to discuss in Sec. VI some of the
difficulties in the GUT models when one proceeds to
incorporate finer details in the mass hierarchy and mixing
angles, again by taking the SU�5� as our prototype GUT.
Section VII is the conclusion.

II. EXPERIMENTAL CONSTRAINTS

The pattern of quark and lepton masses may provide us
with a rare insight into physics beyond the standard model.
Unfortunately, determination of the mass eigenvalues and
mixing angles is not sufficient to determine the complete
structure of the Yukawa matrices. Thus one is usually led to
make some assumptions about the Yukawa matrices them-
selves. To motivate our discussions in the rest of the paper
we briefly review the conditions that any model of masses
and mixings must satisfy.

The observed fermion mass hierarchy is most apparent
in the quark sector. Since the mass eigenstates have unique

charges, we may consider the charge � 2
3 and � 1

3 quarks
separately. The masses of the� 2

3 charged ‘‘up’’ quarks are
[11,12]

 mu ’ 1:5–3 MeV; mc ’ 1:16–1:34 GeV;

mt ’ 169:1� 172:7 GeV;
(1)

and the masses of the � 1
3 charged ‘‘down’’ quarks are

 md ’ 3–7 MeV; ms ’ 70–120 MeV;

mb ’ 4:1–4:2 GeV:
(2)

It is to be noted that all the quark masses except the top
quark mass are in the MS scheme [11]. In this scheme, for
the light quarks u, d, and s the renormalization scale is
taken to be about 2 GeV and for the c, b, and t quarks the
scale is taken to be at the threshold for pair production. One
observes here that there is a strong mass hierarchy among
the three generations in both the up and down quark sectors
with the mass spacings in the up sector larger than those in
the down sector. There is some ambiguity in the measure-
ment of the absolute quark masses since they are scheme
dependent, but the ratios of the masses are more concrete.
The light quark mass ratios are measured to be [11]

 

mu

md
� 0:3–0:6;

ms

md
� 17–22;

ms � �mu �md�=2

md �mu
� 30–50:

(3)

The mixing of the electroweak eigenstates with the mass
eigenstates in the case of the quarks is parametrized by the
CKM matrix [9]. Recent precision measurements have
greatly improved knowledge of the CKM matrix parame-
ters. The experimental constraints on the CKM parameters
[11,13] are

 jUExp
CKMj ’

0:974 0:226–0:228 0:004
0:226–0:228 0:973 0:041–0:042

0:008 0:041–0:042 0:999

0
@

1
A

(4)

where only the magnitudes of the elements are shown and
the Dirac CP phase [11] is not explicitly included. The
CKM matrix to first approximation is observed to be very
close to a unit matrix. All experiments to date strongly
suggest that unitarity is preserved. Using the standard
parametrization of the CKM matrix [11] in terms of the
angles �q23, �q13, and �q12 the above may be interpreted as a
constraint on the angles:

 2:37� 	 �q23 	 2:43�; 0:222� 	 �q13 	 0:232�;

13:07� 	 �q12 	 13:19�:
(5)

Since the CKM matrix is nearly an identity matrix the
mixing angles are rather small. This nature of the CKM
matrix strongly suggests that possibly the quark sector
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Yukawa matrices are of a ‘‘hierarchical’’ structure. As
mentioned before, by hierarchical we mean that the mixing
angles that appear in the diagonalizing matrices are small.
This will be a guiding principle that we will adopt in the
paper to construct the toy model. In fact we assume a
stronger condition that the Yukawa matrices for the quarks
are very close to diagonal matrices. This is a sufficient
condition for small mixing angles in the quark sector as
well as in the charged lepton sector due to the properties of
the SU�5� group.

The masses of the charged leptons have been measured
much more unambiguously than the quark masses. The
charged lepton sector is also seen to exhibit a large mass
hierarchy. Their masses are measured to be [11]

 me ’ 0:511 MeV; m� ’ 105:7 MeV;

m� ’ 1777 MeV:
(6)

The e, �, and � masses are the pole masses [11]. Note that
this mass hierarchy is more similar to the charge� 1

3 quark
sector than the charge � 2

3 quark sector. This observation
has been the basis for many schemes in which the down
quark and charged lepton masses unify at some energy
scale [1].

We now turn to the neutrino sector. Observations in the
neutrino sector currently provide the strongest indication
for physics beyond the standard model. Neutrino oscilla-
tions and the question of whether neutrinos are Dirac or
Majorana have spurred progress in particle theory and
experiments. The experimental constraints on the neutrino
parameters from neutrino oscillation experiments are (see,
for example, [14] and references therein)

 �m2
32 ’ 2:5� 10�3 eV2; �m2

21 ’ 8:1� 10�5 eV2;

(7)

where �m2
ij � m2

�i �m
2
�j . The above result for the mass

squared differences suggest that at least two of the neutri-
nos have nonzero masses. Apart from the above constraints
we also have

 

X
i

m�i & 0:6 eV (8)

from cosmological considerations [14]. Results from the
LSND [15] experiment seemed to favor the addition of one
or more sterile neutrinos, but this observation has not been
confirmed by the MiniBooNE experiment [16]. For the
considerations of our study we assume that there are only
three families of neutrinos. As with the CKM matrix in the
quark sector, the mixing in the lepton sector is described by
the PMNS matrix [10]. The experimental bounds on the
PMNS matrix elements give [11,14,17]

 jUExp
PMNSj ’

0:79–0:86 0:50–0:61 0–0:16
0:24–0:52 0:44–0:69 0:63–0:79
0:26–0:52 0:47–0:71 0:60–0:77

0
@

1
A: (9)

The most striking difference we immediately observe in

the PMNS matrix, as compared to the CKM matrix, is its
large deviation from an identity matrix. When parame-
trized by the angles ��23, ��13, and ��12 the above observation
is converted to the bounds on the angles

 36� 	 ��23 	 54�; 0� 	 ��13 	 10�;

30� 	 ��12 	 38�:
(10)

Thus the mixing angles are large in the lepton sector
compared to the quark sector. This intuitively suggests
that the Yukawa matrix contributing to PMNS is of a
nonhierarchical or ‘‘democratic’’ nature. By this we
mean that the Yukawa matrix elements are all of roughly
the same order and the mixing angles are therefore large.
Thus one possible way that the CKM and PMNS matrices
may be made to come out differently is through a mismatch
in the rotation matrices that contributes to each of them.
But we still have the freedom to choose which of the
matrices are hierarchical and which are democratic. In
the model we study it is found that it is more natural to
implement hierarchy in the quark sector (and thus the
charged lepton sector) and make the light neutrino sector
democratic. This idea will be elaborated and implemented
in Sec. IV.

Although the absolute masses of the fermions run
through renormalization group evolution, the intrafamily
mass ratios themselves do not run significantly. This may
be readily seen from the well-known expressions (see, for,
example [18])

 

mu�q�
mu�q0�

�

�
g1�q�
g1�q0�

�
��6=�10nf��

�
g3�q�
g3�q0�

�
�8=�11�2nf=3��

;

md�q�
md�q0�

�

�
g1�q�
g1�q0�

�
3=�10nf�

�
g3�q�
g3�q0�

�
8=�11�2nf=3�

;

me�q�
me�q0�

�

�
g1�q�
g1�q0�

�
�27=�10nf�

:

(11)

In the above equations q and q0 are energy scales, nf is the
number of quark flavors, and g1�q�, g2�q�, and g3�q� are the
coupling constants corresponding to U�1�Y , SU�2�L, and
SU�3�C, respectively, at the energy scale q. The subscripts
u, d, and e stand for any up sector quark, down sector
quark, and charged lepton, respectively. Using the scale
dependence of the coupling constants, we find central
values of the fermion masses at a unification scale of
1016 GeV to be

 mu ’ 0:57 MeV; mc ’ 0:328 GeV;

mt ’ 71:1 GeV; md ’ 1:31 MeV;

ms ’ 24:8 MeV; mb ’ 1:30 GeV;

me ’ 0:458 MeV; m� ’ 95:8 MeV;

m� ’ 1:62 GeV:

(12)

Based on the above experimental constraints we are led to
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assign approximate phenomenological constraints on the
mass ratios at the GUT scale to be

 

mu

mt
’ �8:0 
 �8;

mc

mt
’ �3:7 
 �4;

md

mb
’ �4:7 
 �4;

ms

mb
’ �2:7 
 �2;

me

m�
’ �5:6 
 �5;

m�

m�
’ �1:92 
 �2;

mb

mt
’ �2:7 
 �3;

mb

m�
’ �0:15 
 1;

(13)

where we have parametrized the mass ratios by �, the
Cabibbo angle (� ’ 0:23). To round off the exponents in
the above ratios we balanced the desire to have rough
equality of the charged lepton and down quark masses as
required by a minimal SU�5� theory [2], to have equal
logarithmic mass spacing between the generations in
both the up and down quark sectors, and to have the
logarithmic mass spacing in the up quark sector be twice
that in the down quark sector. As we shall see later this will
lead to a desirable light neutrino Yukawa matrix due to the
relations in the SU�5� GUT. The set of approximate ratios
above will be another of our guiding principles in con-
structing the toy model.

From Eqs. (4) and (9) the mixing matrices to first
approximation may be written as an identity matrix for
the quark sector

 jUCKMj 


1 0 0
0 1 0
0 0 1

0
@

1
A; (14)

and as a tri-bimaximal matrix for the lepton sector

 jUPMNSj 


2��
6
p 1��

3
p 0

1��
6
p 1��

3
p 1��

2
p

1��
6
p 1��

3
p 1��

2
p

0
BB@

1
CCA (15)

where, again, CP-phases and signs are not explicitly in-
cluded. We assume that at the GUT scale the forms of these
mixing matrices are essentially unchanged and mirror their
form at the electroweak scale. This is an assumption in the
construction of the toy model. For the CKM matrix, it has
been noted in the literature that at the GUT scale the
mixing angles in most scenarios do not deviate much
from their electroweak values [19]. There have been
many investigations into the renormalization group run-
ning of the PMNS matrix to reconcile the differences in the
quark and lepton mixing angles [8,20]. It must also be
pointed out that the assumption of the mixing matrix
texture at the GUT scale being essentially similar to the
structure at the electroweak scale depends on various pa-
rameters, for example, the Majorana phases in the PMNS
matrix and the neutrino mass hierarchy [20]. In the toy
model we assume the form for the mixing matrices to be as
in Eqs. (14) and (15). We now proceed to give a very brief

introduction to the SU�5� GUT and FN mechanism from
Abelian family symmetries.

III. THE SU�5� GUT AND ABELIAN FAMILY
SYMMETRIES

In the SU�5� GUT, the usual SM fermions and the right-
handed neutrino are accommodated in the representations
(see, for example, [2,21])

 �a: 5� ! �3�; 1�1=3 � �1; 2���1=2�;

�ab: 10! �3�; 1���2=3� � �3; 2�1=6 � �1; 1�1;

NR: 1! �1; 1�0

(16)

where the branching rules are in terms of the representa-
tions of SU�3�C � SU�2�L �U�1�Y of the SM. That is, for
a given family, the 1 contains the right-handed neutrino
NR, the 5� contains �dR and L � ��LeL�, while the 10
contains Q � �uLdL�, �uR, and �eR. For each generation
the representations are replicated with the appropriate
fields. More explicitly the fermions in the first generation,
for example, are accommodated as

 �a: dcr dcg dcb e� ��e
� �

;

�ab:

0 ucb �ucg ur dr
�ucb 0 ucr ug dg
ucg �ucr 0 ub db
�ur �ug �ub 0 e�

�dr �dg �db �e� 0

0
BBBBB@

1
CCCCCA; NR: NR

1 ;

(17)

where r, g, and b are color indices and the subscript on the
right-handed neutrino indicates the generation. All the
fields in the 10 and 5� are left-handed. Using Young
tableaux one may calculate the direct product decomposi-
tions to be

 5 � � 5� � 15 � 10�; 5� � 10 � 45 � 5;

10 � 10 � 50 � 45� � 5�:
(18)

This determines the Higgs scalars that are required to write
the Yukawa terms that would then generate the fermion
masses. We note that unlike the SM the SU�5� symmetry
introduces some restrictions when one tries to write down
invariant Yukawa terms. It is seen from the above direct
products that the Yukawa matrix for the up quarks comes
from the product of the ten-dimensional representations:
10i � 10j where i and j label the generation. The down
quark Yukawa matrix results from 10i � 5�j and that of the
charged leptons from 5�i � 10j. One sees therefore that in a
minimal SU�5� model the charged leptons and down
quarks have equal masses. The Higgs sector in ‘‘minimal’’
SU�5� consists of just a Higgs in the 5 representation [2].
The down quark and charged lepton mass relations are
improved if the Higgs sector is extended to include a 45
[22]. The branching rules for the Higgs are [21]
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 5 H ! �3; 1� � �1; 2� (19)

and
 

45H ! �3; 1� � �1; 2� � �3; 3� � �3�; 1� � �3�; 2�

� �6�; 1� � �8; 2�: (20)

The hierarchical nature of the fermion masses across the
three generations strongly suggests the possibility of a
spontaneously broken family symmetry. The presence of
such a family symmetry may then naturally lead to the
observed masses and mixings via nonrenormalizable terms
in the low-energy effective Lagrangian. In the original
paper by Froggatt and Nielsen the family symmetry was
assumed to beU�1� [3]. In this study we take the horizontal
symmetry to be based on U�1� and Z2 subfactors. Even
though there are Zn subfactors in the family symmetry
group, the mechanism is still identical to that of FN and
therefore henceforth we will still refer to this as an FN
mechanism. The U�1� and Z2 subfactors may be a conse-
quence of multiple spontaneous symmetry breaking from a
larger GUT group G, valid at even higher energy scales
than the SU�5� scale. In this paper we do not address the
actual generation of the family symmetry group from a
higher GUT, since our main aim is to capture features in the
quark and lepton masses and mixing angles. Thus, one
major motivation for considering the Abelian groups as
candidates for family symmetries is their ubiquitousness in
any theory that has multiple symmetry breakings.

Now in the Lagrangian of the low-energy effective
theory, to write Yukawa coupling terms invariant under
the family symmetry we must take the fermion fields to
be charged under the family symmetry group. The mass
terms in the Lagrangian are a result of nonrenormalizable
terms of the form

 L Y �

�
�a
�

�
pij
�
�b
�

�
qij

. . .
�
�c
�

�
rij
 i  �jH�R�; (21)

where � is some characteristic energy scale at which the
Yukawa coupling constants are generated,  and � are the
fermion representations in the model, andH�R� is the Higgs
scalar in representation R. The subscripts (i; j; . . . ) refer to
the generation indices and the indices (a; b; . . . ) refer to the
scalar fields (flavons), one for each subfactor in the family
symmetry group. Terms like these can be viewed as part of
an effective Lagrangian that results after integrating out
heavy fermion fields �i with masses of the order of � as
seen in Fig. 1. Without loss of generality each � flavon
field is charged �1 under the respective family group
subfactor. The Higgs scalars are assumed to carry no
family symmetry charges so that the Higgs potential is
unaffected. The invariance of the Yukawa term under the
family symmetry implies

 pij � xi � x
0
j; qij � yi � y

0
j;    ; rij � zi � z

0
j;

(22)

where (xi; x0j; yi; y
0
j; . . . ) are the charges of the fermion

representations under each subfactor of the family symme-
try group. The symbol � denotes either ordinary addition if
the subfactor is U�1� or modulo addition for cyclic group
subfactors. With this understanding, from the above ex-
pression, it is readily seen that the U�1� charges satisfy the
sum rule

 pij � pji � pii � pjj; (23)

while the Zn charges satisfy the sum rule

 qij � qji � qii � qjj �mod n�: (24)

Thus we note that the Zn subfactors may be used to
selectively suppress the diagonal or off-diagonal elements
in a 2� 2 matrix block. This property will prove useful to
us when we impose hierarchy in the quark sector.

The Yukawa coupling constants are generated when the
flavon scalar fields, �, get their VEVs. From Eq. (21) we
note that the actual value of the Yukawa constants depend
on the fermion charges and the value of the VEVs. We do
not try to incorporate CP-violating phases in any of our
analyses. Another point to note is that if the theory is
assumed to be supersymmetric, holomorphy of the super-
potential stipulates that pij; qij . . . rij > 0 and be integers
[4]. For the model that we construct we will require that the
sum of the fermion family charges be positive integers to
be consistent with holomorphy. This is a major theoretical
constraint when we pick charges for the various represen-
tations of SU�5�. Also in models where the horizontal
symmetry is gauged, there may be anomalies present in
the model [4]. The anomalies may be made amenable to
cancellation by requiring that the family symmetry com-
mutes with the SU�5� generators. Hence we must assign
the same charge under the family symmetry to all the
fermion fields in a multiplet of SU�5� (for a given genera-
tion). Thus the Froggatt-Nielsen mechanism can be used to
impose further relations between Yukawa terms, including
those of different generations. In this way after electroweak
symmetry breaking one can then obtain logarithmically
distributed fermion masses with the U�1�F and Z2 charges
being O�1� parameters—that is, without much fine-tuning.
One of the main challenges of using this mechanism to
build a model of flavor is choosing the right charges
without much fine-tuning so that one not only gets the

FIG. 1. Froggatt-Nielsen diagram that leads to effective
Yukawa terms as in Eq. (21).
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fermion mass hierarchy correct, but also the mixings after
moving to the mass eigenstate basis.

IV. AN SU�5� TOY MODEL WITH ABELIAN
FAMILY SYMMETRY

We will now consider as an example an SU�5� GUT
model along with a U�1�F family symmetry. The hierarch-
ical structure in the quark and charged lepton sectors is
implemented using three Z2 symmetries that suppress the
off-diagonal elements compared to the diagonal elements.
This suppression of the off-diagonal elements is a sufficient
condition for the mixing angles to be small in the quark
sector and hence also in the charged lepton sector. Let us
label these discrete groups as Z02, Z002 , and Z0002 . It is possible
that this suppression of the off-diagonal elements is a
consequence of some other mechanism, but in this model
we try to fold that ignorance into the Z2 charges. The toy
model is also constructed to be consistent with superpo-
tential holomorphy, coming from supersymmetry consid-
erations [4].

In the quark sector it is sufficient to consider the hier-
archies within each charge sector separately. The contri-
butions to the up quark masses come from the 10 � 10
fermion representations while those that contribute to the
down quark masses come from the 10 � 5� fermion repre-
sentations. Up to O�1� factors the Yukawa terms thus are

 L d
Y 


�
�a
�

�
pij
�
�b
�

�
qij
�
�c
�

�
rij
�
�d
�

�
sij
Qi

�djH;

Lu
Y 


�
�a
�

�
lij
�
�b
�

�
mij
�
�c
�

�
nij
�
�d
�

�
oij
Qi �uj ~H;

(25)

with QL��3; 2�, �uR��3�; 1� in the 10, and �dR��3�; 1� as-
signed to the 5�. H��1; 2� is the usual SM Higgs doublet.
~H is defined as ~H � i	2H

�. The subscripts a, b, c, and d
on the flavon fields signifies their association to either the
U�1�F or Z2 subfactors. Likewise �pij; qij; rij; sij� and
�lij; mij; nij; oij� denote the sum of theU�1�F or Z2 charges,
respectively, of the fermions in the Yukawa term. The
labels i, j denote the generations.

Now we assume that the quark sector is ‘‘hierarchical’’
in the sense that the matrices that diagonalize the up and
down quark matrices are themselves very close to the
identity matrix. This means that the matrix may to zeroth
approximation be represented as
 

YU 
mu

1

;

;

0
BB@

1
CCA  1 ; ;

� �
�mc

;

1

;

0
BB@

1
CCA  ; 1 ;

� �

�mt

;

;

1

0
BB@

1
CCA  ; ; 1

� �
; (26)

where ; denotes an entry that is relatively suppressed due
to a large power of the Cabibbo angle. Then from the up

quark mass ratios in Eq. (13) up to O�1� factors we have the
� 2

3 quark Yukawa matrix

 Y U 

�8 . . . . . .
. . . �4 . . .
. . . . . . 1

0
B@

1
CA: (27)

Since the above Yukawa matrix comes from the 10i � 10j
term it fixes the U�1�F charge of the 10 under the three
generations as

 10 : I �4; 10�; II �2; 100�; III �0; 1000�: (28)

The three Z2 charges are fixed by the requirement that the
off-diagonal elements must be suppressed relative to the
diagonal elements. The requirement of holomorphy is
clearly satisfied for the above choices of the charges.

The down quark Yukawa matrix comes from terms of the
form 10i � 5�j. Unlike the up quark matrix, the down quark
matrix in general is not symmetric or even normal (see, for
example, [23]). From the matrices YDY

T
D and YT

DYD, the
assumption of hierarchy implies that the� 1

3 quark Yukawa
matrix decomposition must be again of the form
 

YD 
md

1

;

;

0
BB@

1
CCA  1 ; ;

� �
�ms

;

1

;

0
BB@

1
CCA  ; 1 ;

� �

�mb

;

;

1

0
BB@

1
CCA  ; ; 1

� �
: (29)

Now based on the down quark ratios and the estimate of
the mb=mt ratio at the GUT scale we may write the down
quark Yukawa matrix as

 Y D 

�7 . . . . . .
. . . �5 . . .
. . . . . . �3

0
@

1
A (30)

where again there might be O�1� factors preceding each
term. The U�1�F and Z2 charges are again set by the mass
ratios and ‘‘hierarchy’’ assumption to be

 5 �: I �3; 10�; II �3; 100�; III �3; 1000�: (31)

Thus we obtain equal U�1�F charges for 5� across the three
generations. It is to be noted that this is a consequence of
the fact that the logarithmic mass separation in the down
quark sector is approximately half that in the up quark
sector as we had assumed in Eq. (13). As we shall see, this
will be an important result when constructing the light
neutrino Yukawa matrix. Again the 5� charges are consis-
tent with the holomorphy of the superpotential.

We now turn our attention to the family symmetries and
the minimal number of flavon scalar fields that are required
in the model apart from the Higgs sector scalars. There
must be one scalar field corresponding to each of the
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family symmetry subfactor groups and they attain a VEVat
some characteristic energy scale that breaks the respective
horizontal symmetry subfactor. Let us label these scalar
fields and their charges under U�1�F � Z02 � Z002 � Z0002 as

 �: ��1�; �0: ��10�; �00: ��100�; �000: ��1000�:

(32)

Again we parametrize the characteristic energy scales at
which these fields attain their VEVs by the Cabibbo angle.
In this model we take for the U�1�F flavon field

 

�
�
�

	
0

 �; (33)

and for the three Z2 flavons let

 

�
�0

�

	
0

 �
;

�
�00

�

	
0

 ��;

�
�000

�

	
0

 ��: (34)

The values of these VEVs must be chosen so as to make the
quark sector hierarchical with suppressed off-diagonal en-
tries. Here � is some characteristic energy scale associated
with the breaking of the horizontal symmetry leading to the
Yukawa coupling constants at lower energies. The three Z2

flavon VEVs have been taken to be different in the above,
since a priori there is no reason to assume them to be the
same or related in any way. We will comment further on the
values of the Z2 flavon VEVs when we discuss the con-
straints in the charged lepton and neutrino sectors. For now
we just assume that the values of the VEVs parametrized
by 
,�, � are sufficient to enforce a suppression of the off-
diagonal elements in the quark Yukawa matrices. The
Yukawa matrices in terms of these parameters are

 Y U 

�8 �6�
�� �4�
��

�6�
�� �4 �2����

�4�
�� �2���� 1

0
B@

1
CA;

YD 

�7 �7�
�� �7�
��

�5�
�� �5 �5����

�3�
�� �3���� �3

0
B@

1
CA:

(35)

The CKM matrix is constructed from the ‘‘left’’ matrices
that diagonalize YD and YU. Bidiagonalizing the matrices
in Eqs. (27) and (30) gives

 Diag �mu;mc;mt� ’UU
LYUU

Uy
R ;

Diag�md;ms;mb� ’UD
LYDU

Dy
R :

(36)

In the above, for small mixing angles, the diagonalizing
matrices [24] to lowest order may be expressed in terms of
the VEV parameters 
, �, and � as

 

jUU
L j


1 �2�
�� �4�
��

�2�
�� 1 �2����

�2�
�� �2���� 1

0
BB@

1
CCA;

jUD
L j


1 �2�
����2�
�� �4�
��

�2�
����2�
�� 1 �2����

�2�
�� �2���� 1

0
BB@

1
CCA:

(37)

The textures of both the up and down quark diagonalizing
matrices come out to be the same up to undetermined O�1�
factors. Since by assumption the VEV parameters are
chosen so as to impose hierarchy the above matrices may
be equivalently viewed as having the textures

 jUU
L j ’

1 ; ;

; 1 ;

; ; 1

0
@

1
A; jUD

L j ’

1 ; ;

; 1 ;

; ; 1

0
@

1
A:
(38)

In the above, ; is used to denote a term that is suppressed
with respect to the diagonal entry since it has � raised to a
large power. As mentioned previously, we will explicitly
give a bound on the possible values of the parameters 
, �,
� when we discuss the neutrino sector. At this stage they
are arbitrary, but sufficiently large to enforce hierarchy.
Note that we do not use the idea of holomorphic zeroes [4]
in the Yukawa matrices to suppress entries and generate
texture zeroes. From Eq. (38) we may construct the CKM
matrix as

 jUCKMj ’ jU
U
L jjU

Dy
L j ’

1 ; ;

; 1 ;

; ; 1

0
@

1
A: (39)

It must again be commented that in this toy model the finer
details of the CKM matrix as embodied in the Wolfenstein
parametrization [25] and CP phases are not obtained. But
using the U�1�F and Z2 horizontal symmetries we have
constructed to first approximation the CKM matrix as an
identity matrix.

In the quark sector the qualitative features of the quark
mass hierarchy and CKM matrix are obtained. By the
imposition of hierarchy through discrete symmetries, the
up quark masses are in the ratio

 mu:mc:mt ’ O��8�:O��4�:O�1�: (40)

Similarly the down quark mass ratio is

 md:ms:mb ’ O��4�:O��2�:O�1�; (41)

with

 

mb

mt
’ O��3�; (42)

and the CKM matrix is
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 jUCKMj ’ 13�3: (43)

In the charged lepton sector the Yukawa terms are of the
form 5�i � 10j. This is a consequence of lL��1; 2� belong-
ing to 5� and �eR��1; 1� to the 10 of SU�5�. The Yukawa
terms in the usual notation are of the form

 L l�
Y 


�
�a
�

�
wij
�
�b
�

�
xij
�
�c
�

�
yij
�
�d
�

�
zij
li �ejH; (44)

up to possible O�1� factors. The Yukawa constant matrix
coming from the 5�i � 10j term is just the transpose of the
down quark Yukawa matrix:

 Y l� 
YT
D 


�7 �7�
�� �7�
��

�5�
�� �5 �5����

�3�
�� �3���� �3

0
B@

1
CA
T

: (45)

Since we have constructed the quark sector to be hier-
archical and since the charged lepton Yukawa matrix in
SU�5� is just the transpose of the down quark matrix, the
charged lepton Yukawa matrix is also hierarchical:
 

Yl� 
me

1

;

;

0
BB@

1
CCA  1 ; ;

� �
�m�

;

1

;

0
BB@

1
CCA  ; 1 ;

� �

�m�

;

;

1

0
BB@

1
CCA  ; ; 1

� �
: (46)

One point to note is that the left-diagonalizing matrix of
the charged leptons is the diagonalizing matrix that appears
on the right of the down quark Yukawa matrix. This
implies that the off-diagonal suppression in the down
Yukawa matrix must be sufficient to make the right diago-
nalizing matrix also close to a unit matrix. As mentioned
before when we discuss the neutrino sector we will put
bounds on the possible values of the VEV parameters. Thus
the contribution to the PMNS lepton mixing matrix from
the charged lepton sector will be a left-diagonalizing ma-
trix that is very close to unity. It is also to be commented
that in SU�5�, as is well-known, the mass hierarchy in the
charged leptons closely follows the mass hierarchy in the
down quarks. Poor mass relations such as

 m� ’ ms; me ’ md; (47)

are a generic problem in minimal SU�5� GUTs and may be
improved by extending the Higgs sector which will con-
tribute O�1� factors as Clebsch-Gordan coefficients. A
classic example of this is the SU�5� model of Georgi and
Jarlskog [22] which extends the minimal SU�5�model with
the Higgs in the 5 representation with a Higgs in the 45
representation. This leads to the improved relations

 m� ’ 3ms; me ’
md

3
: (48)

Thus in the model that we pursue the charged lepton
mass ratios come out naturally as

 me:m�:m� ’ O��4�:O��2�:O�1�; (49)

due to the imposition of hierarchy in the down quark sector.
Extending the Higgs sector is likely to improve these
ratios. Also due to the above-mentioned property of
SU�5� the contribution to the lepton mixing matrix from
the charged leptons, again assuming small mixing angles,
is

 jUl�
L j 


1 �
�� �
��

�
�� 1 ����

�
�� ���� 1

0
B@

1
CA ’

1 ; ;

; 1 ;

; ; 1

0
@

1
A;
(50)

where again ; denotes suppressed entries.
Turning now to the neutrino sector we accommodate

three right-handed neutrinos (NR) in the 1 representation of
SU�5�. In our study it is assumed that the smallness of
neutrino masses is explained by the Type-I seesaw mecha-
nism [26]. In this context the Yukawa terms in the
Lagrangian that contribute to the light neutrino masses
may be written as Dirac and Majorana terms [26]

 L D
Y 


�
�a
�

�
eij
�
�b
�

�
fij
�
�c
�

�
gij
�
�d
�

�
hij
li �NR

j
~H;

LN
Y 


�
�a
�

�
tij
�
�b
�

�
uij
�
�c
�

�
vij
�
�d
�

�
kij �R

2
NR
i N

R
j ;

(51)

up to O�1� factors from the nonrenormalizable terms. �R is
the characteristic energy scale of the right-handed
Majorana neutrinos or equivalently the seesaw scale. In
the Type-I seesaw the light neutrino masses are generated
by the expression

 Y � ’ �Y
D
� �Y

R
� �
�1�YD

� �
T; (52)

where Y� is the light neutrino Yukawa matrix, YD
� is the

Dirac neutrino Yukawa matrix and YR
� is the right-handed

Majorana neutrino Yukawa matrix. Now, in the basis where
the charged lepton Yukawa matrix is diagonal, the light
neutrino Yukawa matrix texture

 Y � �

a b b
b b� c a� c
b a� c b� c

0
@

1
A; (53)

leads immediately to the PMNS matrix in Eq. (15). This
may be observed from the decomposition
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Y�
 �a� b�

�2��
6
p

1��
6
p

1��
6
p

0
BBBB@

1
CCCCA
�2��

6
p 1��

6
p 1��

6
p


 �
� �a� 2b�

1��
3
p

1��
3
p

1��
3
p

0
BBBB@

1
CCCCA

� 1��
3
p 1��

3
p 1��

3
p


 �
� �2c� b� a�

0
�1��

2
p

1��
2
p

0
BBB@

1
CCCA 0 �1��

2
p 1��

2
p


 �
:

(54)

It has been noted before that the above texture may be a
consequence of a �� � �� permutation symmetry [27]. We
take Eqs. (7)–(10) and (53) as our guiding principles in
constructing a phenomenologically viable neutrino sector
in the toy model.

Let us denote the U�1�F charges of the right-handed
neutrinos (NR) in the 1 across the three generations as

 1 : NR
1 �e1�; NR

2 �e2�; NR
3 �e3�: (55)

The right-handed neutrinos are assumed to carry no Z2

charges. Note that in the SU�5� model the Dirac Yukawa
matrix YD

� in Eq. (51) comes from the 5�i � 1j terms while
the Majorana Yukawa term YR

� comes from the 1i � 1j
terms. If we denote the U�1�F charges of the 5� by
�x1; x2; x3� then we have from Eqs. (34), (52), and (55)
 

Y� 

v2

�R

�x1�e1�
 �x1�e2�
 �x1�e3�


�x2�e1�� �x2�e2�� �x2�e3��

�x3�e1�� �x3�e2�� �x3�e3��

0
BB@

1
CCA  �YR

� �
�1



�x1�e1�
 �x1�e2�
 �x1�e3�


�x2�e1�� �x2�e2�� �x2�e3��

�x3�e1�� �x3�e2�� �x3�e3��

0
BB@

1
CCA
T

; (56)

where
 

�YR
� �
�1 


1

�R

�2e1 �e1�e2 �e1�e3

�e2�e1 �2e2 �e2�e3

�e3�e1 �e3�e2 �2e3

0
BB@

1
CCA
�1



1

�R

��2e1 ���e1�e2� ���e1�e3�

���e2�e1� ��2e2 ���e2�e3�

���e3�e1� ���e3�e2� ��2e3

0
BB@

1
CCA: (57)

We are able to invert the seemingly singular matrix YR
�

since there are suppressed O�1� factors in each term that
render the matrix invertible. Using the above result we
have

 Y � 

v2

�R

�2x1�2
 �x1�x2�
�� �x1�x3�
��

�x2�x1���
 �2x2�2� �x2�x3����

�x3�x1�
�� �x3�x2���� �2x3�2�

0
B@

1
CA:
(58)

In the above expression we have powers like 2
, 2�, and

2� because the seesaw scale is assumed to be lower than
the scale � where the flavons get a VEV and hence there is
no Z2 addition in the seesaw formula. Thus we encounter
the interesting property that in the SU�5� model the light
neutrino Yukawa matrix is generated by effective terms of
the form

 

v2

�R
�5�i � 5�j �: (59)

Thus in the absence of Z2 charges for 1 and holomorphic
texture zeroes, the light neutrino Yukawa matrix is com-
pletely independent of the 1 charges. This may also be
easily seen from the Feynman diagram of Fig. 2 that leads
to the light neutrino masses.

Using the above result along with the 5� charges in
Eq. (31) we get

 Y � 

v2

�R
�6

�2
 �
�� �
��

���
 �2� ����

�
�� ���� �2�

0
B@

1
CA: (60)

Now if we assume, for example, that 
 � � � � then we
get

 Y � 

v2

�R
�6�2


1 1 1
1 1 1
1 1 1

0
@

1
A: (61)

This would correspond to the special case of a � 1, b � 1,
and c � 0 in Eq. (53). Thus the light neutrino Yukawa
matrix comes out naturally to be of a democratic structure
as we had required. We note that this is strictly a conse-
quence of the fact that the 5� charges across generations are
all equal as seen from Eqs. (31) and (59). The equal 5�

charges are a result of the up quark sector’s logarithmic
mass spacing being twice that of the down quark sector. As
an aside it must be pointed out that the earliest studies on a

FIG. 2. Feynman diagram that generates light neutrino masses.
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democratic Yukawa texture in the context of mass genera-
tion were by Nambu [28] and Kaus and Meshkov [29]. The
above matrix has the �� � symmetric texture that we
require but it is immediately seen from Eq. (54) that the
above result is in conflict with Eq. (7), since the mass
hierarchies come out incorrectly. This requirement from
neutrino oscillations and �� � symmetry motivates us to
make the ansatz

 

h�0i
�

 �
;

h�00i
�


h�000i

�

 ��; (62)

which leads to the light neutrino texture

 Y � 

v2

�R
�6

�2
 �
�� �
��

�
�� �2� �2�

�
�� �2� �2�

0
B@

1
CA: (63)

It must be noted that choosing the VEVs of two of the Z2

subfactors to be different from the first clearly does not
affect the result in Eq. (59). It also allows us to properly
account for the observed neutrino mass splittings.
Comparing Eqs. (53) and (63) we may make, up to O�1�
and common factors, the association

 a
 �6�2
; b
 �6�
��; c
 �6�2�: (64)

To make this association we have implicitly assumed that
�< 
. We will comment on an alternative when we dis-
cuss the case of inverted neutrino hierarchy. With this then
we have for the light neutrino eigenvalues

 m�1 

v2

�R
�6��2
 � �
���;

m�2 

v2

�R
�6��2
 � 2�
���;

m�3 

v2

�R
�6�2�2� � �2
 � �
���:

(65)

The neutrino mass squared differences in terms of the VEV
parameters are
 

��m2
32 


�
v2

�R
�6

�
2
��2�2� � �2
 � �
���2

� �2�
�� � �2
�2�;

��m2
21 


�
v2

�R
�6

�
2
���2
 � 2�
���2 � ��2
 � �
���2�:

(66)

Taking the ratio of the above mass squared differences and
comparing with Eq. (7) from neutrino oscillation data gives
the condition

 

4

3
�2���
� ’ 31) 
 ’ �� 1: (67)

We substitute back this bound into the quark sector results
previously obtained. Assuming that the quark mixing an-

gles are small (hierarchy assumption) we may explicitly
derive [24] up to O�1� factors the diagonalizing matrices in
terms of the VEV parameter �. We have the decomposition
for the � 2

3 charged quark sector,
 

YU 
 �8

1

�3�2�

�5�2�

0
BB@

1
CCA 1�3�2��5�2�
� �

� �4

��3�2�

1

�2�2�

0
BB@

1
CCA ��3�2�1�2�2�
� �

� 1

��5�2�

��2�2�

1

0
BB@

1
CCA ��5�2� � �2�2�1
� �

; (68)

which leads to the left-diagonalizing matrix

 jUU
L j 


1 �3�2� �5�2�

�3�2� 1 �2�2�

�5�2� �2�2� 1

0
B@

1
CA: (69)

Similarly, considering the matrix YD:YT
D we get the left-

diagonalizing matrix for the � 1
3 charged quark sector,

 jUD
L j 


1 �3�2� �5�2�

�3�2� 1 �2�2�

�5�2� �2�2� 1

0
B@

1
CA: (70)

The two left-diagonalizing matrices come out to be of the
same texture for both the up and down quark sectors.
Considering the matrix YT

D:YD which is equivalent to
Yl� :Y

T
l� gives

 jUl�
L j 


1 �1�2� �1�2�

�1�2� 1 �2�

�1�2� �2� 1

0
B@

1
CA: (71)

The CKM matrix to lowest order comes out to be of the
same texture as the up and down diagonalizing matrices

 jUCKMj 

1 �3�2� �5�2�

�3�2� 1 �2�2�

�5�2� �2�2� 1

0
B@

1
CA: (72)

We note that for any non-negative value for � the 1–2
CKM element is smaller than the 2–3 CKM element. This
texture is contrary to what is experimentally observed. We
will comment further on this when we discuss an inverted
neutrino mass hierarchy. To lowest order, though, the CKM
matrix is an identity matrix. From Eqs. (69)–(71) and the
requirement of ‘‘hierarchy’’ we get a bound on the VEV
parameter (specifically from the charged lepton sector)

 2� � 1) � �
1

2
: (73)

We do not want the flavor symmetry breaking scale to be
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too low, since it would then affect low-energy electroweak
physics. This leads us to choose the lowest possible value
for �, that is, the highest possible flavor symmetry break-
ing scale allowed, and to use a value of 
 consistent with
Eq. (67):

 
 �
3

2
; � �

1

2
: (74)

This leads to the light neutrino Yukawa matrix (up to O�1�
factors)

 Y � 

v2

�R
�7

�2 � �
� 1 1
� 1 1

0
B@

1
CA; (75)

which is phenomenologically viable. In this model from
Eq. (54) the light neutrino mass ratio predictions are

 m�1
:m�2

:m�3
’ O���:O���:O�1�: (76)

Thus for the particular values of the flavon VEVs chosen,
the toy model predicts that the neutrino mass spectrum is of
the normal hierarchy type. For the mass square differences

 ��m
2
32 ’ O�10�3 eV2�; ��m

2
21 ’ O�10�5 eV2�;

(77)

with v ’ 174 GeV the model predicts

 �R ’ O�1010 GeV�: (78)

Although the seesaw scale comes out slightly lower than
the GUT scale this is again quite consistent with experi-
mental constraints and theoretical prejudices since the
scale is not a priori well-defined (see, for example,
[26,30]). The PMNS matrix without any phases or O�1�
factors is to lowest order tri-bimaximal owing to the par-
ticular texture of the light neutrino matrix,
 

jUPMNSj � jU
l�y
L U�

Lj

’

2��
6
p � �2��

6
p 1��

3
p � �2��

3
p �2��

2
p

1��
6
p � ���

6
p 1��

3
p � ���

3
p 1��

2
p � ���

2
p

1��
6
p � ���

6
p 1��

3
p � ���

3
p 1��

2
p � ���

2
p

0
BBBB@

1
CCCCA




2��
6
p 1��

3
p 0

1��
6
p 1��

3
p 1��

2
p

1��
6
p 1��

3
p 1��

2
p

0
BBBB@

1
CCCCA: (79)

If instead of assuming that �< 
 we had assumed that
�> 
 then we may again make the association up to
common factors

 a
 �6�2
; b
 �6�
��;

b� c
 a� c
 �6�2�:
(80)

This association then leads to the light neutrino eigenval-
ues

 m�1 

v2

�R
�6��2
 � �
���;

m�2 

v2

�R
�6��2
 � 2�
���;

m�3 

v2

�R
�6��2��:

(81)

This choice clearly leads to an inverted hierarchy in the
neutrino sector since now m�3 has a lesser value than m�2

and m�1. It must still be checked whether the neutrino
oscillation data may be accommodated readily for reason-
able values of the VEV parameters. The neutrino mass
squared differences in terms of the VEV parameters are

 ��m2
32 


�
v2

�R
�6

�
2
��2�
�� � �2
�2 � ��2��2�;

��m
2
21 


�
v2

�R
�6

�
2
���2
 � 2�
���2 � ��2
 � �
���2�:

(82)

As we did for the previous case, taking the ratio of the
above mass squared differences and comparing with
Eq. (7) gives

 

1

6
���
��� � 4� ’ 31) � ’ 
� 4: (83)

This condition on the VEV parameters is again substituted
back into the quark sector results. For small mixing angles
[24] this leads to the left-diagonalizing matrices to lowest
order for the up, down, and charged lepton sectors:

 jUU
L j 


1 �6�2
 �8�2


�6�2
 1 �10�2


�8�2
 �10�2
 1

0
B@

1
CA;

jUD
L j 


1 �6�2
 �8�2


�6�2
 1 �10�2


�8�2
 �10�2
 1

0
B@

1
CA;

jUl�
L j 


1 �4�2
 �4�2


�4�2
 1 �8�2


�4�2
 �8�2
 1

0
B@

1
CA:

(84)

Because of the hierarchical structure of the up and down
quark mixing matrices the CKM matrix would again have
the same texture as these matrices. That is,

 jUCKMj 

1 �6�2
 �8�2


�6�2
 1 �10�2


�8�2
 �10�2
 1

0
B@

1
CA: (85)

We note that in contrast to the case of normal neutrino
hierarchy now the CKM matrix element in 1–2 is greater
than the 2–3 element. So within the approximations of this
model it seems that an inverted neutrino hierarchy gives a
CKM matrix texture qualitatively closer to the observed
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CKM matrix. But again it is to be admitted that the 1–3
element is wrong and the magnitudes of the CKM elements
also come out incorrectly in the toy model. As before from
the requirement of suppressed off-diagonal entries and
small mixing angles we get a bound on the VEV parameter

 4� 2
 � 1) 
 � �
3

2
: (86)

Since the nonrenormalizable terms are obtained after in-
tegrating out the heavy fermions (�) we require that the
VEV parameters �
;�� be such that the flavon VEVs are
smaller than the energy scale of the heavy fermions (�).
This requires us to choose non-negative values for the VEV
parameters. Choosing again the smallest value consistent
with the bound gives

 
 � 0; � � 4: (87)

With this choice the light neutrino Yukawa matrix is

 Y � 

v2

�R
�6

1 �4 �4

�4 �8 �8

�4 �8 �8

0
B@

1
CA; (88)

So with the above choice of the VEV parameters from
Eq. (81) this toy model predicts the inverted neutrino
hierarchy

 m�1
:m�2

:m�3
’ O�1�:O�1�:O��8�: (89)

Now, from the neutrino mass squared differences and v ’
174 GeV, the model predicts the seesaw scale to be

 �R ’ O�1011 GeV�: (90)

The lepton mixing matrix is again tri-bimaximal. In this
toy model the tri-bimaximal nature is strictly a conse-
quence of the light neutrinos, with the charged lepton
contribution being close to an identity matrix. This is a
consequence of imposing a hierarchy in the quark sector
which gets communicated to the charged lepton sector
owing to the properties of the SU�5� representations. The
light neutrino Yukawa matrix is effectively generated from
the equal 5� charges alone and this makes it naturally of a
democratic type. Motivated by neutrino oscillation results
we were able to pick the VEVs to readily incorporate the
neutrino hierarchy and large mixing angles. The correc-
tions to the strictly tri-bimaximal mixing in the toy model
come from the charged lepton sector. Since the CKM
matrix given by the toy model does not capture to next
order the true texture in the off-diagonal elements, the
above result for the PMNS matrix must be considered
only as an approximate first order prediction. A similar
situation is also encountered in many interesting A4 models
[5]. In Sec. VI we will discuss some of the problems in the
toy model in detail.

V. TOY MODEL IN THE SUPERSYMMETRIC CASE

Let us now briefly consider the toy model in the context
of the minimal supersymmetric standard model (MSSM).
It is well-known that supersymmetry provides a possible
solution to the hierarchy problem and that the gauge cou-
pling unification is more exact in the MSSM (see, for
example, [31] and references therein). In the case of the
MSSM, the mass ratios at the GUT scale and the mixing
matrix textures are still consistent with our assumptions in
Eqs. (13)–(15) [19,20,32] as are the caveats made at the
end of Sec. II regarding the PMNS mixing matrix.

In the MSSM, the Yukawa terms are generated from a
holomorphic superpotential. Based on the gauge symmetry
of the SM and the condition of holomorphy, in the usual
notation, it is determined to be
 

WMSSM��Hu Hd��Yl��ij�Hd  li� �ej

��YD�ij�Hd Qi� �dj��YU�ij�Qi Hu� �uj: (91)

In the above expression all fields may be considered to be
the scalar components of the respective supermultiplets or
equivalently as superfields. In the MSSM, the two Higgs
supermultiplets are in the representations

 Hd � �1; 2���1=2�; Hu � �1; 2�1=2: (92)

After electroweak symmetry breaking they are assumed to
attain VEVs vd and vu, respectively, with

 

�����������������
v2
u � v

2
d

q
’

�
1

4
���
2
p
GF

�
1=2
: (93)

One may also define the quantity

 tan� �
vu
vd
: (94)

As before, the � 2
3 charged quark sector Yukawa matri-

ces are generated from the 10i � 10j representations. From
Eq. (13), under the assumption of hierarchy, this again fixes
the U�1�F charges of the 10 representations to be

 10 MSSM: I �4; 10�; II �2; 100�; III �0; 1000�: (95)

The down quark masses again come from the 10 � 5�

fermion representations, and to satisfy Eq. (13) the 5�

charges in the present case must be chosen to be

 5 �MSSM: I �x; 10�; II �x; 100�; III �x; 1000�: (96)

We may proceed further and determine the compatible
value of the charge x by normalizing the down quark sector
with respect to the up quark sector using the ratio

 

mb

mt


�xvd
�0vu


 �3: (97)

This gives the value

 x ’ 3� log��tan��: (98)
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The rest of the analysis proceeds as in the nonsupersym-
metric case and in the present case the Yukawa matrices of
the up quarks, down quarks, and charged leptons are ob-
tained as

 Y MSSM
U 


�8 �6�
�� �4�
��

�6�
�� �4 �2����

�4�
�� �2���� 1

0
B@

1
CA  vd tan�;

(99)

 

YMSSM
D 
 �YMSSM

l� �T




�7 �7�
�� �7�
��

�5�
�� �5 �5����

�3�
�� �3���� �3

0
BB@

1
CCA��x�3�  vd

’

�7 �7�
�� �7�
��

�5�
�� �5 �5����

�3�
�� �3���� �3

0
BB@

1
CCA tan�  vd:

(100)

One point to note is that the appearance of tan� in the
down and charged lepton Yukawa terms above is from the
U�1�F charge in Eq. (98) and not from the Higgs sector.
One may again verify that all the required mass ratios at the
GUT scale are satisfied. Also, since the tan� factor appears
as an overall multiplicative constant in the above matrices
it is seen that the diagonalizing matrices, and consequen-
tially the CKM matrix, come out to have the same texture
as in the nonsupersymmetric case. Thus the shortcomings
in the quark sector in the nonsupersymmetric case (which
result from only using the principle of hierarchy) are not
improved by embedding the toy model in the MSSM.

As before, we may add the gauge singlet �NR to the
MSSM to give the neutrinos a seesaw mass. The part of
the superpotential that contributes to the neutrino sector is

 

W �
MSSM � ��Y

D
� �ij�li Hu� �NR

j � �Y
R
� �ij

�R

2
�NR
i

�NR
j

� Lk �NR
k : (101)

The last term in the above superpotential contributes only
to the potential term and we ignore the consequences of
such a term in the present study. Again the analysis pro-
ceeds identical to the nonsupersymmetric case and specifi-
cally the conclusion in Eq. (59) still remains valid. From
Eqs. (59), (96), and (98) the light neutrino Yukawa matrix
in the MSSM case is found to be

 

YMSSM
� 


v2
dtan2�
�R

 �2x

�2
 �
�� �
��

���
 �2� ����

�
�� ���� �2�

0
BB@

1
CCA

’
v2
dtan2�
�R

 �6tan2�

�2
 �
�� �
��

���
 �2� ����

�
�� ���� �2�

0
BB@

1
CCA:

(102)

This again has the required �� � symmetric form and
leads to a tri-bimaximal texture for the PMNS matrix as in
the nonsupersymmetric case. Proceeding as before, for the
case of normal neutrino hierarchy as in Eq. (74) and, say,
tan� ’ 10 we get the seesaw scale as

 �MSSM
R ’ O�1012 GeV�: (103)

Thus we note that in the supersymmetric case the seesaw
scale comes out slightly higher compared to Eq. (78).
Similarly for the inverted neutrino hierarchy with tan� ’
10 we get

 �MSSM
R ’ O�1013 GeV�; (104)

which is again higher than in the nonsupersymmetric case.
We see that the main features of the toy model are

retained even in the supersymmetric case. The mass ratios
in the quark and lepton sector at the GUT scale are pre-
served in the MSSM case without virtually any modifica-
tion of the toy model. The PMNS matrix again naturally
comes out to have a tri-bimaximal form and the CKM
matrix is still predicted to the lowest order as an identity
matrix. The main change in the supersymmetric case is that
the seesaw scale generically comes out to be higher relative
to the nonsupersymmetric case. Under solely the assump-
tion of hierarchy and ‘‘democracy’’ the Wolfenstein texture
of the CKM matrix is not faithfully reproduced even with
the assumption of supersymmetry. It may be speculated
that next-order corrections possibly come from soft sym-
metry breaking terms, a breakdown of the hierarchy as-
sumption, by enlarging the parameter space or extending
the scalar sector. In the next section we look at some of the
shortcomings of the model.

VI. PROBLEMS IN SU�5� GUTS WITH ABELIAN
FAMILY SYMMETRIES

The toy model presented in the previous section captures
to first approximation the mass hierarchy and mixing ma-
trices in the quark and lepton sectors. When one attempts to
include the finer details in the mass spectra and mixing
angles some difficulties arise. To describe the fine structure
without introducing large numbers of additional scalar
fields, making further assumptions about the couplings,
or otherwise drastically increasing the number of parame-
ters has proved to be challenging. We briefly illustrate
some of the difficulties by taking the toy model of the
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previous section and the Georgi-Jarlskog SU�5�model [22]
as examples.

In the toy model that we explored, the choice of VEVs in
Eqs. (74) and (87) led to the CKM mixing matrices

 jU�1�
CKMj 


1 �4 �6

�4 1 �3

�6 �3 1

0
B@

1
CA;

jU�2�
CKMj 


1 �6 �8

�6 1 �10

�8 �10 1

0
B@

1
CA:

(105)

The lepton mixing matrices in both cases are very close to
tri-bimaximal:

 jUPMNSj 


2��
6
p 1��

3
p 0

1��
6
p 1��

3
p 1��

2
p

1��
6
p 1��

3
p 1��

2
p

0
BB@

1
CCA: (106)

Generically, in a minimal SU�5� GUT with a family sym-
metry made up only of U�1� subfactors, the PMNS matrix
will come out to be unity. This is because the left-
diagonalizing matrices of the charged leptons and light
neutrinos come out to be the same. The Zn subfactors
that we used overcome this problem by imposing hierarchy
on the charged leptons; they also set the neutrino mass
hierarchy as noted previously.

It is clear that the CKM matrix to next order does not
agree well with that which is observed. This is a generic
problem in our model. If we use the Yukawa matrices from
Eq. (35) we obtain the CKM matrix for small mixing
angles [24]:

 jUCKMj 

1 �2�
�� �4�
��

�2�
�� 1 �2����

�4�
�� �2���� 1

0
B@

1
CA: (107)

Since 
, �, � > 0 we see that Vus comes out to be too
small. The requirement of �-� symmetry fixes � � �.
This sets Vub=Vus 
 �2 which is in agreement with experi-
ment. However, folding in the neutrino masses causes
problems. Imposing a normal hierarchy sets 
 � �� 1 �
�� 1 giving Vcb=Vus 
 �

�1 and Vub=Vcb 
 �
3. In an

inverted hierarchy 
� 4 � � � �. This gives Vcb=Vus 

�4 and Vub=Vcb 
 ��2.

This gives some insight into the difficulty of reconciling
the neutrino masses and the CKM matrix within our model.
There are a few possible solutions. One may introduce one
or more Higgs fields and charge them under the family
symmetry. This could serve to change the structure of the
Yukawa matrices in Eq. (35) which lead directly to the
CKM matrix of Eq. (107). It may be that the SU�5� GUT is
not amenable to a description of the finer structure of the
CKM and PMNS matrices. Of course, enforcing that the
quarks and charged leptons are hierarchical and that the
light neutrinos are democratic could be wrong.

We now explore the Georgi-Jarlskog (GJ) model. As
mentioned before, the Georgi-Jarlskog SU�5�model incor-
porates improved quark-lepton relations

 m� ’ mb; m� ’ 3ms; me ’
md

3
; (108)

by introducing a 45 Higgs representation. The Yukawa
coupling terms are chosen to give the following textures
for the quark and charged lepton matrices [22]

 Y U �

0 Y1020 0
Y1020 0 Y2030

0 Y2030 Y3030

0
@

1
A; (109)

 Y D �

0 Y201 0
Y102 Y202 0

0 0 Y303

0
@

1
A; (110)

 Y l� �

0 Y201 0
Y102 �3Y202 0

0 0 Y303

0
@

1
A: (111)

Georgi and Jarlskog then note that for Y102 � Y201,
Y303 � Y202 � Y102, and Y3030 � Y2030 � Y1020 in
Eqs. (109)–(111) the relations in Eq. (108) are satisfied.
Considering Eq. (13) along with the mass eigenvalues of
the above matrices [22] we are immediately led to the
identification

 Y102 
 Y201 
 Y1020 
 �
7; Y303 
 �

4;

Y202 
 �6; Y3030 
 �; Y2030 
 �3;
(112)

with all the other Yukawa coupling constants zero. Now,
using Eq. (112) in Eqs. (109)–(111) gives (neglecting any
common factors and external O�1� factors from the non-
renormalizable FN terms)

 Y U 

0 �6 0
�6 0 �2

0 �2 1

0
B@

1
CA; (113)

 Y D 

0 �6 0
�6 �5 0
0 0 �3

0
B@

1
CA; (114)

 Y l� 

0 �6 0
�6 �3�5 0
0 0 �3

0
B@

1
CA: (115)

The CKM matrix is constructed from the left matrices
that diagonalize YD and YU. Bidiagonalizing the matrices
in Eqs. (113) and (114) gives (for � ’ 0:23)

 jUUy
L j ’

0:999 0:04 0:002
0:04 0:998 0:04

0 0:04 0:999

0
@

1
A


1 0 0
0 1 0
0 0 1

0
@

1
A;
(116)
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 jUD
L j ’

0:982 0:189 0
0:189 0:982 0

0 0 1

0
@

1
A


1 0 0
0 1 0
0 0 1

0
@

1
A: (117)

Using Eqs. (116) and (117) the CKM mixing matrix (ne-
glecting the CP phases) in the model comes out to be

 jUCKMj ’

0:974 0:228 0:002
0:228 0:973 0:04
0:008 0:04 0:999

0
@

1
A


1 0 0
0 1 0
0 0 1

0
@

1
A:

(118)

From the above prediction the quark mixing angles are

 �q23 ’ 2:3�; �q13 ’ 0:12�; �q12 ’ 13:2�: (119)

Comparing Eqs. (4) and (118) we see that the CKM
matrix in the Georgi-Jarlskog model captures very well the
features of the CKM texture. Subjecting the Yukawa cou-
pling matrix in Eq. (45) to bi-diagonalization gives the left-
diagonalizing matrix for the charged leptons as, for �

0:23,

 jUl�
L j ’

0:997 0:076 0
0:076 0:997 0

0 0 1

0
@

1
A


1 0 0
0 1 0
0 0 1

0
@

1
A: (120)

Thus, as seen above, the GJ textures are very attractive
phenomenologically and capture to a large extent the fea-
tures of the quark and charged lepton sectors. Now one
may ask whether it is possible in the context of the GJ
SU�5� GUT and the simplest family symmetry based on
U�1� subfactors augmented with Zn discrete groups to
arrive naturally at the Yukawa coupling matrices in
Eqs. (113)–(115) with the least number of assumptions.

It will be shown in the following that the Georgi-
Jarlskog texture is very difficult to implement with any
number of U�1� and Zn subfactors without further assump-
tions. We would like to investigate the possibility of using a
family symmetry G � U�1�1 � . . .U�1�N to generate
quark Yukawa matrices of the form in Eqs. (113) and
(114), i.e., using the FN mechanism. The fermion charges
under G are

 5 �: �x�1�i ; x
�2�
i ; . . . ; x�N�i �; 10: �y�1�i ; y

�2�
i ; . . . ; y�N�i �;

(121)

where i � 1, 2, 3 labels the generation and the superscript
labels the U�1� in G to which the charge refers. Define

 �Yd�ij � log���YD�ij� �
XN
n�1

�x�n�i � y
�n�
j �;

�Yu�ij � log���YU�ij� �
XN
n�1

�y�n�i � y
�n�
j �:

(122)

Using Eqs. (113) and (114) we get the simultaneous equa-
tions

 

XN
n�1

�x�n�1 � y
�n�
2 � � 6;

XN
n�1

�x�n�2 � y
�n�
1 � � 6;

XN
n�1

�x�n�2 � y
�n�
2 � � 5;

XN
n�1

�x�n�3 � y
�n�
3 � � 3;

XN
n�1

�y�n�1 � y
�n�
2 � � 6;

XN
n�1

�y�n�2 � y
�n�
3 � � 2;

XN
n�1

�y�n�3 � y
�n�
3 � � 0:

(123)

In the process of solving the above linear equations one
immediately arrives at two inconsistent algebraic equa-
tions,

 

XN
n�1

�y�n�1 � y
�n�
2 � � 1 �

XN
n�1

�y�n�1 � y
�n�
2 � � 2: (124)

If we add additional Zk factors to G the argument proceeds
essentially unchanged. The charges from the cyclic sub-
factors modify the above linear equations in a straightfor-
ward manner; we perform the same manipulations and
arrive at an inconsistency similar to that above. We con-
clude that we cannot generate the Georgi-Jarlskog textures
purely from a family symmetry containing only U�1� and
Zk subfactors without resorting to further assumptions or
by extending the Higgs sector. This is further backed up by
numerical studies, especially if we restrict ourselves to
considering charges consistent with holomorphy.

An early and pioneering study using the Georgi-Jarlskog
texture in SO�10� was that of Harvey, Reiss, and Ramond
[33]. In their model the GJ texture is implemented by three
126 Higgs scalars and one 101�i102 Higgs of SO�10�
which have VEVs along definite directions.

From the discussions in this section it is a fair assess-
ment that incorporating finer details in the SU�5� toy model
would require us to extend the scalar sector or make other
additional assumptions rather than just ‘‘hierarchical’’ ver-
sus ‘‘democratic’’ texture for the mixing matrices. The
Georgi-Jarlskog model is very attractive from a phenome-
nological point of view but imposing the texture zeroes
requires some additional Higgs or other mechanisms for
suppressing some entries and generating texture zeroes.

VII. CONCLUSIONS

The Yukawa coupling constants and mixing angles are
among the most poorly understood features of the SM,
since in the theory they are arbitrary parameters whose
values are set by experiments alone. The discovery of
nonzero masses for the neutrinos and a lepton mixing
matrix far from the unit matrix have rekindled many stud-
ies attempting to predict fermion masses and mixing an-
gles. Among the most interesting attempts in this regard
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are GUTs and family symmetries which relate some of the
previously arbitrary parameters in the SM.

In this paper we have attempted to discuss the general
features of GUTs with Abelian family symmetries taking
the simplest GUT group SU�5� as an example. One of the
crucial questions that is to be understood today is why the
mixing in the lepton sector is very large as compared to the
quark sector. So it is interesting to explore various mecha-
nisms that may lead to this asymmetry. We constructed a
SU�5� toy model with Abelian family symmetries with as
few assumptions as possible that replicates the observed
SM mass hierarchy and mixing matrices to lowest approxi-
mation. It is seen that to include further details into the
model one has to make further assumptions, add extra
scalar fields, or fine-tune some of the charges.
Nevertheless from the point of view of incorporating the
general features of the mass hierarchy and mixing angles
approximately with as few assumptions as possible, the toy
model has been modestly successful. The main assump-
tions in our model building have been the implementation
of hierarchical quark/charged lepton sectors and a demo-
cratic light neutrino sector in terms of the mixing matrices.
The charges of the representations as well as the VEV
parameters of the flavon fields were determined purely
from phenomenology. This determination of the family
symmetry charges and VEV parameters give values that
are of O�1� without any fine-tuning. The toy model in the

context of the MSSM retains all the main features but does
not alleviate the shortcomings of the nonsupersymmetric
case. One key difference in the supersymmetric case is that
the seesaw scale generically comes out to be higher com-
pared to the nonsupersymmetric case.

We have ignored the question of CP violating phases
throughout this study. In the lepton sector apart from a
normal CP phase we also expect two Majorana phases. A
study of the CP phases in the CKM and PMNS matrices is
especially pertinent in the context of the baryon asymmetry
in the universe. It would be interesting to extend the model
by incorporating possible CP phases in the quark and
lepton sectors. Another avenue of exploration would be
to include soft symmetry breaking terms and to study their
effects on the mixing matrices. It would also be interesting
to explore along similar lines the general features of the
generation of mass hierarchy and quark/lepton mixing
matrices in more interesting GUT groups such as SO�10�
and E6.
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