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We consider the possibility to detect right-handed neutrinos, which are mostly singlets of the standard
model gauge group, at future accelerators. Substantial mixing of these neutrinos with the active neutrinos
requires a cancellation of different contributions to the light neutrino mass matrix at the level of 10�8. We
discuss possible symmetries behind this cancellation and argue that for three right-handed neutrinos they
always lead to conservation of total lepton number. Light neutrino masses can be generated by small
perturbations violating these symmetries. In the most general case, LHC physics and the mechanism of
neutrino mass generation are essentially decoupled; with additional assumptions, correlations can appear
between collider observables and features of the neutrino mass matrix.
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I. INTRODUCTION

The most appealing and natural mechanism for generat-
ing small neutrino masses is the (type-I) seesaw mecha-
nism [1–5]. It relies on the existence of right-handed (RH)
neutrinos that are singlets under the standard model (SM)
gauge groups and can therefore have large Majorana
masses. A direct test of the seesaw mechanism would
involve the detection of these neutrinos at a collider and
the measurement of their Yukawa couplings with the elec-
troweak doublets. If the Dirac neutrino masses are similar
to the other fermion masses, the Majorana masses turn out
to be of order �108–1016� GeV, so that this test is not
possible. In principle, the seesaw mechanism can also be
realized with masses as small as 100 GeV, though, which
are within the energy reach of the LHC and future col-
liders. This possibility has attracted renewed interest re-
cently, see e.g. [6–14]. However, given the smallness of the
light neutrino masses, small RH masses generically imply
tiny Yukawa couplings. Consequently, also the mixing
between the singlets and the electroweak doublet neutrinos
is tiny, resulting in negligible production cross sections. In
order to allow for large mixing, different contributions to
the light masses have to cancel. In other words, the leading-
order structure of the mass matrices leads to vanishing light
neutrino masses [15–27], and nonvanishing masses are
generated by small perturbations. Unless this structure
can be motivated by some symmetry, it amounts to fine-
tuning. The known setups [15,16,23,25,26] contain lepton
number conservation, which ensures that the heavy states
either form Dirac pairs or decouple from the active
neutrinos.

An alternative possibility is that the neutral fermions
participating in the seesaw are not singlets of the SM
symmetry group or have some other interactions that can
lead to their production at future colliders, see e.g. [27–

35]. For instance, if all singlets are relatively light, one can
expect that the scale of left-right symmetry is also low. In
this case, they have gauge interactions with the WR and Z0.
Then the discovery is possible for masses up to a few TeV.
Another example is the type-III seesaw mechanism
[36,37], where the heavy neutrinos enter an SU(2) triplet
and therefore can be produced by the electroweak inter-
actions even if their mixing with light neutrinos is ex-
tremely small.

In this paper we will reconsider from the theoretical
perspective the possibility of testing the existence of RH
neutrinos at future colliders. We study implications of such
a detection for the mechanism of neutrino mass generation.
After discussing the generic estimates that lead to the
expectation of tiny doublet-singlet mixings, we will con-
sider the cancellation of contributions to light neutrino
masses required by large mixings and possible underlying
symmetries in Sec. II. Besides the well-known case of
lepton number conservation, we will discuss a scenario
based on the discrete symmetry A4 which achieves the
same objective in a different way, but ultimately turns
out to contain a conserved lepton number, too. We argue
that this is a general feature of any symmetry behind the
cancellation. In Sec. III, we will systematically study small
perturbations of the leading-order mass matrices that yield
viable masses for the light neutrinos. In Sec. IV, we will
discuss consequences for signatures at colliders. Within the
setups relying on a symmetry, lepton number violation is
unobservable. Lepton-flavor-violating processes can have
sizable amplitudes but are difficult to observe at LHC [14].
Consequently, the discovery of RH neutrinos will probably
require a more advanced machine like the ILC.

II. CANCELLATIONS AND SYMMETRIES

A. Mixing of doublet and singlet neutrinos

In the setup we consider, the Lagrangian responsible for
neutrino masses is the same as in the type-I seesaw sce-
nario [1–5],

*jkersten@ictp.it
†smirnov@ictp.it

PHYSICAL REVIEW D 76, 073005 (2007)

1550-7998=2007=76(7)=073005(13) 073005-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.073005


 L �
Mass � � ��mDN �

1
2N

CmRN � H:c: (1)

Each RH neutrino,1 Ni, generates the (rank 1) contribution
to the mass matrix of light neutrinos,

 m�i�� � �
1

Mi
~mi ~m

T
i ; (2)

where Mi is the mass of Ni and ~mi � �mei;m�i; m�i�
T .

Then the Dirac mass matrix, in the basis where mR is
diagonal, is given bymD � � ~m1; ~m2; ~m3�, and the complete
mass matrix of the light neutrinos equals

 m� �
X
i

m�i�� � �mDm�1
R mT

D: (3)

The Dirac mass terms provide the mixing between the light
(active) and heavy (singlet) states, described by the mixing
matrix elements

 V�i � �mDm
�1
R ��i �

m�i

Mi
�� � e;�; ��: (4)

In terms of V�i, the elements of the mass matrix in Eq. (2)
can be rewritten as

 �m�i�� ��� � �V�iV�iMi: (5)

Assuming the absence of cancellations, the experimental
limits on the light neutrino masses imply that each element
is at most of the order m� � 0:1 eV. This yields the upper
bound

 jV�ij �

�������
m�

Mi

s
& 10�6

�
100 GeV

Mi

�
1=2
: (6)

It can be considered the generic bound on the mixing of
any heavy Majorana lepton with the light neutrinos.

The limit (6) is much stronger than the direct bound for
singlets heavier than the Z, obtained from observations like
universality of the weak interactions and the Z width
[38,39],

 

X
i

jV�ij2 & 0:01: (7)

If the heavy neutrinos are to be observable at the LHC or
the ILC, their mixing angles must not lie far below the
upper limit (7) [6,9,10,12,14]:

 jV�ij * 0:01: (8)

Using this value, we obtain from Eq. (5) a contribution to
the light neutrino mass,

 m�i�� � jV�ij2Mi � 107 eV
�
jV�ij
0:01

�
2
�

Mi

100 GeV

�
: (9)

Thus, to reconcile m� � 0:1 eV with the observability of

RH neutrinos at the LHC or the ILC, one needs to arrange a
cancellation between the contribution from a given RH
neutrino and some other contribution at the level of 10�8.
The situation improves only slightly if one considers more
advanced machines like CLIC or an e� collider, which
could increase the reach in the mixing angle by about an
order of magnitude compared to Eq. (8) [7,8,10].

In what follows we will discuss cancellations between
the contributions from different RH neutrinos, i.e. we will
stay within the framework of the type-I seesaw scenario.
One could also consider a cancellation with contributions
from other mechanisms, for example, involving a Higgs
triplet (type-II seesaw [40–43]), a fermion triplet (type-III
seesaw [36,37]) or a radiatively generated neutrino mass
[44,45]. However, in these cases contributions from differ-
ent, in general unrelated sources have to cancel, which
looks extremely implausible. The left-right symmetric
models have been suggested as an exception, since there
the type-I and type-II seesaw contributions can be related
[46].

B. Cancellation of light neutrino masses

Let us consider first the necessary and sufficient con-
ditions for an exact cancellation of contributions to the
light neutrino masses. In the case of two RH neutrinos, two
matrices have to cancel,

 m�1�� �m
�2�
� � 0: (10)

Together with Eq. (2) this implies [17,19,20] proportion-
ality of the vectors ~mi,

 ~m 1 � y1 ~m0; ~m2 � y2 ~m0 � ~m0 � m�1; �; ��T�;

(11)

and

 

y2
1

M1

�
y2

2

M2
� 0: (12)

Therefore, the Dirac mass matrix has the form

 mD � m
y1 y2

�y1 �y2

�y1 �y2

0
@

1
A: (13)

This result can be generalized to the case of three
neutrinos [18,21,22]. The light neutrino mass matrix van-
ishes if and only if the Dirac mass matrix has rank 1,

 mD � m
y1 y2 y3

�y1 �y2 �y3

�y1 �y2 �y3

0
@

1
A; (14)

and if

 

y2
1

M1

�
y2

2

M2
�
y2

3

M3
� 0; (15)

where the mass parameters are defined in the basis where
1We will call any heavy singlet N that has Yukawa couplings

with the usual (active) neutrinos a RH neutrino.
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the singlet mass matrix is diagonal. That is, the contribu-
tions from the three RH neutrinos tom� have to be equal up
to a normalization factor in this case as well. Under the
conditions (14) and (15), the light neutrino masses vanish
exactly, to all orders in mDm�1

R . This can easily be seen by
writing down the 6� 6 mass matrix M and verifying that
its rank is 3 or smaller. Consequently, the same is true for
MyM, implying the existence of at least 3 vanishing mass
eigenvalues. The �N-mixing relevant for collider physics,
as given by Eq. (4), is not restricted by the cancellation
condition (15) and hence allowed to be large enough to
make the detection of RH neutrinos possible.

In the following, we will show that Eqs. (14) and (15) are
also necessary conditions. Let us consider the case of k RH
neutrinos coupled with three active neutrinos. (A general
consideration of the case with an equal number of left- and
right-handed neutrinos has been presented in [22].) We
parametrize the contribution of the ith RH neutrino to the
light Majorana mass matrix as

 m�i�� � �i

1 �i �i
�i �2

i �i�i
�i �i�i �2

i

0
@

1
A �i � 1 . . . k�: (16)

Then the 11-, 12-, and 22-elements of the condition m� �P
im
�i�
� � 0 can be written as

 

Xk
i�1

�i � 0;
Xk
i�1

�i�i � 0;
Xk
i�1

�2
i �i � 0: (17)

Introducing xi � �i=�1, and subtracting the first equation
in (17) from the second and third one (divided by �1 and
�2

1, respectively), we obtain

 

Xk
i�2

�xi � 1��i � 0;
Xk
i�1

�x2
i � 1��i � 0: (18)

Equation (18) is a system of linear equations for �i. A
similar consideration for the 11-, 13-, and 33-elements of
the condition m� � 0 leads to the same system of equa-
tions with xi ! x0i � �i=�1.

For k � 2 the first equation in (18) gives �2�x2 � 1� �
0 with the unique nontrivial solution x2 � 1 or �1 � �2.
Then the second equation is satisfied automatically.
Similarly, one finds �1 � �2, and consequently m�1�� /
m�2�� , so that we recover Eqs. (11) and (12).

For k � 3 the system

 �x2 � 1��2 � �x3 � 1��3 � 0;

�x2
2 � 1��2 � �x2

3 � 1��3 � 0
(19)

has nontrivial solutions (�i � 0) only if �x2 � 1��
�x3 � 1��x2 � x3� � 0 (zero determinant). If this condition
is satisfied with x2 � 1 or x3 � 1, one�i is zero and�k �

��j (k, j � i) for the two others. This implies that one RH
neutrino decouples and the problem is reduced to the case

of two RH neutrinos with canceling contributions,
cf. Eqs. (12) and (13). Thus, the only nontrivial case
is x2 � x3 � 1, i.e. �1 � �2 � �3. Analogously, �1 �

�2 � �3, and consequently m�1�� / m
�2�
� / m

�3�
� . Then the

definition (2) straightforwardly leads to

 ~m 1 / ~m2 / ~m3; (20)

which proves that the rank of the Dirac mass matrix must
be 1. Writing mD as in Eq. (14) and plugging it into the
condition m� � 0 finally yields Eq. (15).

In the case of k � 4, we have two linear equations for
three variables �2, �3, �4 and therefore the zero determi-
nant condition does not apply: nontrivial solutions appear
even if xi � 	1. This means that the Majorana matrices
generated by different RH neutrinos are not necessarily
proportional to each other and nontrivial cancellation con-
ditions appear.

One interesting (and the most symmetric) example is
when cancellations occur between two pairs of matrices,
for instance

 m�1�� � �m
�2�
� ; m�3�� � �m

�4�
� : (21)

In this case two combinations of the light neutrinos couple
with RH neutrinos and the latter form two heavy Dirac
neutrinos. For k � 6, all three combinations of active
neutrinos can couple to RH neutrinos. In what follows,
we will concentrate mainly on the case of three RH
neutrinos.

One can also obtain the cancellation condition using the
Casas-Ibarra parametrization [47] for the Dirac mass ma-
trix,

 mD � UPMNS
�������
m�
p

R
�������
mR
p

; (22)

where R is an arbitrary orthogonal matrix, RRT � 1. This
matrix disappears from the seesaw formula and therefore
does not influence the light neutrino masses. On the other
hand, R does influence the Dirac mass matrix and therefore
the mixing of the RH neutrinos with the active neutrinos. In
fact, the elements of R can be arbitrarily large, so that
according to (22) one can obtain large mD (and therefore
large mixing) for arbitrarily small m�. We will show an
example in the Appendix where the limit m� ! 0 but�������
m�
p

R � const recovers the cancellation conditions.
Equation (14) implies that only the combinations

 

~� �
�e � �
�� � �
�����������������������������������

1� j�j2 � j�j2
p ; ~N �

y1N1 � y2N2 � y3N3����������������P
i jyij

2
q

(23)

of left- and right-handed neutrinos participate in the
Yukawa interactions. Two other combinations of the active
neutrinos decouple and therefore remain massless. The
mass of ~� is zero because the contributions from the differ-
ent RH components in ~N cancel. In the next section we will
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elaborate on this cancellation more and give a different
interpretation.

The fact that only one combination of the left-handed
(LH) neutrinos ~� and one combination of the RH neutrinos
~N couple can follow from a flavor symmetry. For example,
in the basis of LH states that includes ~� and the RH states
that includes ~N, a U(1) symmetry with a simple charge
assignment can lead to a single coupling. The cancellation
condition (15) that involves both the Yukawa couplings and
the masses does not show a simple symmetry in the most
general case. Without a symmetry motivation, it is a fine-
tuning condition and in addition unlikely to be stable
against radiative corrections at the required level. In the
following we will therefore discuss cases relying on
symmetries.

C. Cancellation due to Lepton number conservation

Let us derive a symmetry that leads to the cancellation as
well as the additional constraints it implies for the particu-
lar realization. According to our consideration in the pre-
vious section, only one combination of the active neutrinos
has Yukawa interactions with singlets. Therefore, we con-
sider the system of one active neutrino ~� and two or three
singlets. We require that all singlets have masses at the
electroweak scale or higher or decouple from the system.
Since there is only one light neutrino, the only mass that it
may have is a Majorana mass. The Majorana mass is
forbidden if we assign to ~� a nonzero lepton number, e.g.
L�~�� � 1, and require it to be conserved in the whole
system.2 (Notice that in the case of two active components
in the system they could form a light Dirac neutrino and
our argument would not work.)

Next, we determine the lepton numbers of the singlets
which ensure that only one combination couples to ~� and
that the singlets are massive. We can rewrite the Dirac mass
term in Eq. (1) as ~m ~� ~N , where

 ~m � m
���������������������������������������������������X
i

jyij2�1� j�j2 � j�j2�
s

: (24)

This mass term implies that ~N has the lepton number
L� ~N� � 1, and all other RH neutrinos have L � 1.

We first consider the case of two RH neutrinos, denoting
by N0 the combination of RH components that is orthogo-
nal to ~N. Then the only way to generate a mass for N0 and
~N that is consistent with lepton number conservation is to
prescribe L�N0� � �1 and to introduce the mass term
MN0C ~N . Combining the mass terms,

 � � ~m ~��MN0C� ~N � H:c:; (25)

we see that ~� mixes with N0C to form a heavy Dirac
neutrino together with ~N. This Dirac neutrino has mass�������������������
M2 � ~m2
p

, while the orthogonal combination of ~� andN0C

is massless. In this way we have arrived at the symmetry
structure used previously in order to obtain the cancellation
in [15,16,23,25,26].

In the case of three singlets, there are two combinations
N01 and N02 orthogonal to ~N, and consequently, several
possibilities to realize lepton number conservation and
the cancellation appear [48]:

(1) L�N01� � �1 and L�N02� � 	1 (or vice versa). In
this case a Dirac particle arises as before, whereas
N02 decouples from the system. It can have a
Majorana mass if L�N02� � 0.

(2) L�N02� � L�N01� � �1. Now both N01 and N02 can
couple to ~N. Then the corresponding combination
of N0C1 and N0C2 appears in Eq. (25) and forms a Dirac
pair with ~N. The orthogonal combination is mass-
less and decouples.

Thus, in all cases with two and three singlets, we arrive
at the same conclusion: if the cancellation of active neu-
trino masses is a consequence of lepton number conserva-
tion, this symmetry leads to one decoupled singlet and to
the existence of a Dirac fermion formed predominantly by
the other two singlets, i.e. the symmetry yields the struc-
ture (25). Because of symmetry the structure is stable
under radiative corrections. In the flavor basis for the LH
neutrinos, L���� � 1 for all flavors �, and the mass ma-
trices read3

 m0R �
0 M 0
M 0 0
0 0 M3

0
@

1
A; m0D � m

a 0 0
b 0 0
c 0 0

0
@

1
A:

(26)

If the decoupled singlet has nonzero lepton number, then
M3 � 0. We will refer to Eq. (26) as the cancellation
structure hereafter.

Instead of lepton number conservation, we can use some
discrete subgroup of U�1�L to ensure the cancellation. For
example, invariance under ~�! i~�, ~N ! i ~N, N0 ! �iN0

does the same job. In models of this type, U�1�L reappears
as an accidental symmetry of the discussed mass terms, but
it may be broken in other sectors explicitly to avoid a
massless Majoron [49,50]. In the case of 4 and more RH
neutrinos, more than one combination of active neutrinos
couples with the singlets, cf. Eq. (21), and the arguments
presented here do not apply.

The suppression of the masses of the active neutrinos is
not due to the seesaw mechanism but due to mixing with
additional states and mismatch between the number of left-
and right-handed fields [15]. So we can conclude that
observation of the RH neutrinos at LHC and other colliders

2More precisely, we impose a global symmetry U�1�L under
which the SM particles have a charge L that equals their lepton
number. Thus, it leads to the same consequences as lepton
number conservation in the SM, in particular, massless neutrinos
and vanishing amplitudes for L-violating processes.

3A prime denotes quantities in a basis where the singlet mass
matrix is nondiagonal.
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would imply that at least those RH neutrinos do not par-
ticipate in the seesaw mechanism.

D. Three degenerate singlets and the discrete
symmetry A4

In general, the cancellation condition does not require
the conservation of lepton number. In the basis ~�, ~N, N01,
N02, the sufficient condition for the cancellation is that the
determinant of the N01N

0
2-block of the singlet mass matrix

should be zero. This does not forbid entries in the singlet
mass matrix that violate lepton number. Hence, one may
ask whether symmetries exist which lead to the cancella-
tion, but not to L-conservation.

Let us first assume that such a symmetry produces equal
masses for all singlets, mR � M1, and realizes Eq. (15) in
such a way that seemingly all three singlets participate in
canceling the light neutrino masses,

 y2
1 � y

2
2 � y

2
3 � 0: (27)

We will now show that in this case there always exist a
Dirac pair of heavy neutrinos and a decoupled singlet. That
is, in fact the system does realize lepton number
conservation.

From Eq. (14) we know that the Dirac mass terms have
the form

 �m~��y1N1 � y2N2 � N3� � H:c:; (28)

where without loss of generality we have set y3 � 1. Now
the cancellation condition (27) reads y2

1 � y
2
2 � �1. Recall

that yi are complex parameters and that in general jyij2 �

1. Performing an orthogonal transformation Ni ! Nir, it is
straightforward to check4 that the mass term (28) can be
reduced to

 � �~��iN1r � N2r� � H:c:; (29)

where � � m
��������������������������������������
�Imy1�

2 � �Imy2�
2

p
. Thus, the third singlet

decouples. As the singlet mass matrix is proportional to the
unit matrix, it does not change under the transformation.

Introducing ~N � �iN1r � N2r�=
���
2
p

and the orthogonal
combination N01 � ��iN1r � N2r�=

���
2
p

, we find that the
Yukawa couplings and the mass term become

���
2
p
�~� ~N

and MN0C1 ~N , respectively. Consequently, ~N and N01 form
a Dirac pair and we reproduce precisely the structure (26)
that corresponds to lepton number conservation.

As an interesting special case, let us consider the most
symmetric scenario where jy1j

2 � jy2j
2 � jy3j

2 � 1 or
y1 � 1, y2 � !, y3 � !2, where ! � e�2�i�=3. This sce-
nario can arise from the discrete flavor symmetry A4.
Suppose that the singlets transform under the representa-

tion 3, while all the LH neutrinos transform under 100 in the
notation of [51]. Then mR � M1, and a Dirac mass matrix
is obtained from the interactions

 

X3

i�1

hi ��i�N1	1 �!N2	2 �!2N3	3�;

where hi are coupling constants and 	 is a scalar trans-
forming under 3 with vacuum expectation values (vevs)
	k � vk. We find

 mD �
h1v1 !h1v2 !2h1v3

h2v1 !h2v2 !2h2v3

h3v1 !h3v2 !2h3v3

0
B@

1
CA: (30)

In the notation of Eq. (14), this corresponds to m � h1v1,
y1 � 1, y2 � !v2=v1, and y3 � !2v3=v1, so that vanish-
ing light neutrino masses are obtained for

 v1 � v2 � v3 � v (31)

(up to phase factors), which is required in most mass
models based on A4. If one did not assign the LH neutrinos
to a one-dimensional representation, producing a rank-1
Dirac mass matrix would require tuning or a nontrivial
extension of the symmetry.

Transforming the RH fields into ~N � UymagN, where

 Umag �
1���
3
p

1 1 1
1 ! !2

1 !2 !

0
@

1
A (32)

is the magic matrix, we obtain the Dirac term ~m ~� ~N3 with

~m �
���
3
p
v

�������������������������������������������
jh1j

2 � jh2j
2 � jh3j

2
p

, and the mass matrix of
the RH neutrinos ~N,

 ~m R � UmagUmag �

1 0 0
0 0 1
0 1 0

0
@

1
A: (33)

That is, ~� mixes with ~NC
2 and forms a Dirac pair with ~N3.

The decoupled singlet ~N1 retains the mass M, while the
Dirac neutrino is slightly heavier. Thus, lepton number
conservation arises as an accidental global symmetry in
this A4 toy model.

E. Cancellation without lepton number conservation?

In the above examples, the singlets contributing to the
cancellation mechanism have equal masses. Because of the
imposed symmetry the cancellation is stable against radia-
tive corrections. Let us relax the requirement of equal
masses and consider the renormalization group evolution
of neutrino masses. Suppose that the singletsN1 andN2 are
relevant for the cancellation and that the condition (15) is
imposed by a symmetry at the energy scale M2, i.e.
m�1�� �M2� � �m

�2�
� �M2�. Below this scale, the symmetry

is broken. We use an effective theory where N2 is inte-
grated out, so that the contribution m�2�� corresponds to a

4One has to perform a rotation in the 12-plane that leads to a
real Yukawa coupling of the second RH neutrino and afterwards
a rotation in the 23-plane that makes the coupling of the third RH
neutrino vanish.
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dimension-5 operator. In the SM, the running of this op-
erator differs from that of m�1�� [52,53], so that

 

d
dt
m�

����������M2

�
d
dt
m�1��

����������M2

�
d
dt
m�2��

����������M2

�
1

16�2 ��1m
�1�
� �M2� � �2m

�2�
� �M2��

� �
1

16�2

�

�

3

2
g2 �

3

2
g02
�
m�1�� �M2�;

(34)

where t � ln��=�0� and � is the energy scale. The term
involving the Higgs self-coupling 
 and the gauge cou-
plings g, g0 is of order 1. Thus, using the estimate m�1�� �
0:01 GeV from Eq. (9), we obtain a light neutrino mass of

 m��M1� �
d
dt
m�

����������M2

�t� 10�4 GeV ln
M2

M1
(35)

at M1, which is unacceptable unless N1 and N2 are nearly
degenerate. Of course, the problem becomes even worse if
also the third singlet contributes to the cancellation, since
then there are additional corrections from the running
between M2 and M3.

As the running is due to diagrams with Higgs fields in
the loop, our estimate is not reliable if the Higgs is heavier
than M2. In supersymmetric theories, both m�1�� and m�2��
obey the same renormalization group equation due to the
nonrenormalization theorem, so that m� remains zero
above the mass scale MSUSY of the superparticles. How-
ever, as long as M1 <MSUSY, the SM can be used as an
effective theory below this scale, so that the estimate (35)
remains valid if we replace M2 by MSUSY. In any case,
further changes of the neutrino mass matrix from threshold
corrections [20,54,55] tend to yield too large masses as
well, although a simple model-independent estimate is
more difficult.

These arguments suggest that the cancellation of light
neutrino masses can only be realized without fine-tuning, if
the RH neutrinos contributing to the cancellation are nearly
degenerate in mass. As we have seen in the previous
sections, this implies the existence of a symmetry U�1�L
which guarantees the conservation of total lepton number
in the light sector. Consequently, any more complicated

symmetry leading to vanishing neutrino masses has to
contain U�1�L as a subgroup or accidental symmetry.

III. NONZERO NEUTRINO MASSES FROM
PERTURBATIONS

We will now discuss small perturbations of the cancel-
lation structure introduced in the previous section that lead
to nonvanishing light neutrino masses. We will identify the
simplest cases which result in viable neutrino masses and
mixings.

A. Generic perturbations

In the case of the Dirac pair of Sec. II C, the most general
possibility for perturbing the cancellation structure (26) is

 m0R �
�1M M �13M
M �2M �23M
�13M �23M M3

0
@

1
A;

m0D � m
a �a �a
b �b �b
c �c �c

0
@

1
A � m r; r�; r�

� �
:

(36)

Considering the entries in the mass matrices as spurions,
we can immediately see which of them are relevant for the
light neutrino masses. The latter have a lepton number of
�2, so that they will receive contributions from combina-
tions of parameters which also have L � �2. We have
L��2� � L�r�� � 2, so that these parameters can contrib-
ute directly via terms also involving the large Yukawa
couplings r. As L��23� � L�r�� � 1, these quantities will
appear quadratically (or in combinations of 2 or more
different small parameters). If all perturbations are of the
same order of magnitude, these contributions will be sub-
leading. Finally, L��1� and L��13� are negative, so that
terms involving these quantities have to contain at least 2
more small parameters. Consequently, they are almost
completely irrelevant for neutrino masses at the tree level.

Explicitly, we obtain
 

m� � �m2��m0�1
R �11rrT � �m0�1

R �12�rrT� � r�r
T�

� �m0�1
R �13�rrT� � r�rT� � �m0�1

R �22r�rT�

� �m0�1
R �23�r�rT� � r�rT�� � �m

0�1
R �33r�rT� � (37)

with

 m0�1
R �

1

M3

�M3

M �2 � �
2
23

M3

M �
M3

M �1�2 � �13�23 ��23 � �2�13
M3

M �
M3

M �1�2 � �13�23 �M3

M �1 � �2
13 ��13 � �1�23

��23 � �2�13 ��13 � �1�23 1� 2 M
M3
�13�23

0
B@

1
CA� 1

M
O��3�:

In the following, we will assume that max�a; b; c� � 1,
m=M� 0:1, M� 0:1 TeV (as required by observability
of Ni at LHC), that all �i in m0R are of the same order of
magnitude, and that no severe cancellations occur in

Eq. (37). Then neutrino masses m� � 0:1 eV require
each term in square brackets to be of order 10�9 TeV�1

or smaller. Applying this criterion to the first term and the
second one, respectively, we obtain
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 �2 & 10�10; (38)

 max��a; �b; �c� & 10�10: (39)

Considering the last term with M3 � 1 TeV for concrete-
ness, we obtain

 max��a; �b; �c� & 10�4:5; (40)

i.e. this term would be negligible if also r� � r�. From
these constraints on �2, r�, and r�, it follows that all other
terms in Eq. (37) are negligible under our assumptions, so
that

 m� 
m2

M
��2rrT � �rrT� � r�r

T�� �
m2

M3
r�rT� : (41)

For completeness, we also list the constraint

 �23 & 10�4:5 (42)

forM3 � 1 TeV, which can be obtained from the first term
in brackets in Eq. (37). As mentioned, the remaining
L-violating parameters are all but irrelevant for neutrino
masses and thus unconstrained at the tree level. However,
they contribute to one-loop threshold corrections to m�
[20]. If only �1 is nonzero, we find, using the result given
in [26],

 �m�  �1
g2

128�2

m2

M
f�M;MH�rr

T; (43)

where f is of order 1 and depends on M and the Higgs
mass. Requiring for simplicity the corrections to be sig-
nificantly smaller than the tree-level masses, �m� &

0:01 eV, we find

 �1 & 10�8: (44)

The parameter �13 violates L by one unit and therefore
enters �m� quadratically. Furthermore, its contribution is
suppressed by M=M3. Hence, it is less constrained,

 �13 & 10�3:5; (45)

again for M3 � 1 TeV. All other perturbations yield neg-
ligible radiative corrections if they satisfy the above tree-
level limits.

B. Special cases

1. Only �2 � 0

Returning to Eq. (41), we see that there are obviously
enough free parameters to fit the measured neutrino mass
parameters and to prevent any observable imprint of the
cancellation structure. Let us therefore look at some more
constrained cases. The simplest possibility is that the

dominant contribution comes from the first term in brack-
ets,

 m�  �2
m2

M
�a; b; c��a; b; c�T: (46)

Notice that this perturbation generates the singular mass
matrix of light neutrinos that is required by data in the first
approximation. The condition b � c leads to a maximal
atmospheric mixing angle. One also finds

 sin13 �
jaj������������������������������������

jaj2 � jbj2 � jcj2
p ; (47)

so that the experimental 3� limit sin213 < 0:04 [56] trans-
lates into j ba j * 3:5 for jbj  jcj.

2. �2 � 0, r� � 0, r� � 0

Perturbations of the Dirac mass matrix are needed to
generate a second nonvanishing mass and the solar mixing
angle, since the rank of the productmDm�1

R mT
D and thus the

number of massive neutrinos is at most as large as the
minimum of the rank of mD and the rank of mR. Adding
nonvanishing entries in either r� or r� is sufficient. If only
r� � 0, we can have a scenario where two neutrinos are
light due to the U�1�L symmetry while the third mass is
suppressed by the usual seesaw mechanism, i.e. large M3.
If r� � 1, M3 has to be larger than about 1012 GeV here. A
relatively simple choice of parameters leading to viable
neutrino masses and mixings with a normal mass hierarchy
is

 m � 10 GeV; M � 100 GeV; M3 � 1012 GeV;

�2 � 2:5� 10�11; a � 0; b � �c � 1;

�a � �b � �c � 0:17:

In [26] an alternative situation was studied where all
singlet masses are equal in the leading order, M3 � M.
This is enforced by an SO(3) flavor symmetry, which
contains U�1�L as a subgroup and also motivates the small-
ness of the perturbations in the singlet mass matrix.

3. Only r� � 0

If r� is not much smaller than r�, its contribution to m�
will dominate over that from r� as mentioned above. We
find a particularly interesting case by assuming that the
term which involves �2 is negligible as well.5 Then the
neutrino mass matrix

 m�  �
m2

M
�rrT� � r�r

T� (48)

has rank 2, so that we can obtain a realistic mass spectrum

5A nonzero �2 can be absorbed into r0� � r� �
�2

2 r, so that it
does not change the discussion.
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with a strong hierarchy from the perturbation r� alone.
Corrections from the neglected terms yield a tiny mass for
the lightest state. In order to verify that this form of m� is
indeed compatible with the known neutrino masses and
mixings, we have determined values of the parameters that
lead to tribimaximal mixing [57] and mass squared differ-
ences within the experimentally allowed ranges [56]. In
this case 13 � 0, which places rather strong restrictions on
the form of m�. Nevertheless, solutions for r and r� can be
found. The entries jaj, jbj, and jcj have to be roughly of the
same order, and similarly j�aj, j�bj, and j�cj. One choice
leading to an inverted mass hierarchy and a negative CP
parity for one mass eigenstate is6

 m � 2:8 GeV; M � 100 GeV; a � 1;

b � c  0:12; �a  1:0� 10�10;

�b � �c  �4:3� 10�10:

The mass matrix (48) was studied in the context of lepto-
genesis in [59]. It was found that a normal mass hierarchy
with 13 not far below the experimental bound is most
natural, if there are no hierarchies or special relations
between the parameters in r and r�. The branching ratios
for the flavor-violating decays li ! lj� in supersymmetric
seesaw models turned out to be related via the observed
neutrino masses and mixings and of comparable size.

4. Remarks

Let us conclude the discussion with some comments
about variants of the scenario, which may be useful input
for the construction of models explaining the perturbations.
In order to reduce the number of free parameters, one could
impose an ‘‘L parity,’’ i.e. a Z2 symmetry under which all
fields with nonzero lepton number change sign. Then only
the perturbations �1, �2, and r� are allowed, which violate
L by two units.

If the main goal is avoiding tiny parameters instead, one
could use only terms which violate lepton number by one
unit, since they appear quadratically in the light neutrino
mass matrix as mentioned. This means that only couplings
of the singlet N3 contribute at the tree level, leaving two
active neutrinos massless. A second mass can then be
generated by radiative corrections if �13 is sufficiently
large. Alternatively, one could impose the restriction that
all perturbations are related to a single more fundamental
parameter " violating L by one unit, i.e. �23, r� � " and �2,
r� � "2. Then the contributions of all these parameters to
the neutrino masses are of similar sizes, if M3 is not much
larger than M. The dependence of �m0�1

R �11 on �23 is non-
negligible, and the term proportional to �m0�1

R �13 in
Eq. (37) becomes relevant in general. For m � 10 GeV

and M3 � 10M� 1 TeV, the value m� � 0:1 eV requires
" & 10�5. Finally, one could invoke a cancellation of the
leading-order contributions due to �2 and r�, which occurs
for r� �

�2

2 r according to Eq. (41), in order to allow larger
values for these parameters.

C. A4 model

One may hope to obtain a connection between the
leading-order mass matrices relevant for LHC and the
perturbations responsible for nonvanishing neutrino
masses in the case of the A4 toy model discussed in
Sec. II D, postulating that the perturbations leave a sub-
group of A4 unbroken. The vevs (31) break A4 down to a Z3

subgroup, so that e.g. radiative corrections will generate
new couplings that are invariant under Z3 but not under A4

[60]. However, we find that these do not change the form of
the Dirac mass matrix, similarly to what happens in the
models discussed in [60,61]. The form of the singlet mass
matrix does change because it obtains nonvanishing off-
diagonal entries. As a consequence of Z3, these entries are
all equal and therefore the active neutrinos remain
massless.

Consequently, we have to consider additional symmetry
breaking. The remaining options are the Z2 subgroups of
A4. If the A4-triplet scalar � responsible for this breaking
coupled to the neutrinos via renormalizable interactions,
new entries would be generated in every element of the
Dirac mass matrix, destroying all predictivity. Let us there-
fore assume that � is a SM singlet, so that it can couple to
the neutrinos only via the nonrenormalizable operator

 

X3

i�1

�i ��i�N2	3�1 �!N3	1�2 �!2N1	2�3�

� �0i ��i�N3	2�1 �!N1	3�2 �!2N2	1�3�

with couplings �i and �0i of dimension �mass��1, and the
Yukawa term
 


��NC
2N3 � N

C
3N2��1 � �N

C
3N1 � N

C
1N3��2

� �NC
1N2 � N

C
2N1��3�:

For concreteness, we assume that � develops the vev

 � � �v�; 0; 0�: (49)

Then the corrections to the mass matrices are

 �mD � vv�

0 �1 �01
0 �2 �02
0 �3 �03

0
@

1
A;

�mR � 
v�

0 0 0
0 0 1
0 1 0

0
@

1
A:

(50)
6The Dirac masses were chosen a bit smaller here in order to

satisfy the bound j
P
iVeiV



�ij & 10�4 from the nonobservation of

the decay �! e� [58].
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The complete Dirac mass matrix can have rank 3. To first
order in �i, �0i, and � �


v�
M , the elements of the light

neutrino mass matrix equal

 �m��ij �
v2

M
�2hihj�� hj ��i � hi ��j� (51)

with ��i � !v���i �!�0i�. This is the mass matrix of
Eq. (41) for r� � 0, which is compatible with observations,
see Sec. III B. We obtain a strong mass hierarchy with the
lightest neutrino receiving a mass only from higher-order
corrections. Note that including the above-mentioned
Z3-invariant corrections changes only hi but not � at the
considered level of accuracy. If the position of the nonzero
entry in h�i is changed compared to Eq. (49), � and ��i will
change by factors ! or !2, but the form of m� will remain
unaltered.

Thus, we have constructed a pattern of symmetry break-
ing that produces perturbations leading to a viable light
neutrino mass matrix, which we had found in the previous
section by introducing all possible small perturbations
and assuming some of them to dominate. The smallness
of the perturbations in the Dirac mass matrix can be
motivated by the fact that they arise from nonrenormaliz-
able interactions.

IV. COLLIDER SIGNATURES

In this section, we turn to the consequences of the
discussed scenarios for processes involving RH neutrinos
at colliders. Their charged-current gauge interactions are
given by

 L cc � �
g���
2
p �l�V�i�

�W�
1� �5

2
N0
i � H:c:; (52)

where l� is a charged lepton and N0
i is a heavy neutrino

mass eigenstate. The Feynman diagrams for the most
important processes at LHC [10] are shown in Fig. 1.

A. Lepton number violation

As a promising signal for the production of singlet
neutrinos, L-violating processes with like-sign leptons in
the final state have been suggested. Their amplitudes are

proportional to the combination

 ALNV � V�i
Mi

p2 �M2
i � iMi�i

V�i; (53)

where �i is the width of N0
i . For Mi � 100 GeV and

jV�ij � 0:1, one finds �i � 0:01 GeV [10]. The quantity
ALNV also controls the contribution of the RH neutrinos to
neutrinoless double beta decay. The amplitude is propor-
tional to ALNV with p2 ! 0 and � � � � e.

All the scenarios for the suppression of the light neutrino
masses discussed above involve the conservation of lepton
number, so that ALNV vanishes. As an explicit example,
consider the case of a heavy Dirac pair. Then M1 � M2 �
M, and the mixing matrix of the light and the heavy
neutrinos reads

 V  mDm�1
R �

m���
2
p
M

ai a 0
bi b 0
ci c 0

0
@

1
A (54)

in the basis where mR is diagonal and in the usual seesaw
approximation m� M. In order to check the accuracy of
the approximation, we have diagonalized the 6� 6 mass
matrix M exactly in the special case a � b � c, finding
no significant changes. Obviously, ALNV vanishes for all
flavors �, �.

If L violation is introduced, ALNV will be proportional to
the corresponding couplings, which are restricted to be tiny
by the smallness of neutrino masses. Hence, the suppres-
sion of the cross section emerges in a very similar way as in
the usual seesaw scenario. Sizable lepton number violation
would require the perturbations of the cancellation struc-
ture to split the masses of the singlets forming the Dirac
pair by an amount �M significantly larger than their decay
width. In this case, only one singlet would be produced on-
shell and dominate ALNV, resulting in a nonzero amplitude.
If, for instance, p2 � M2

1, then

 ALNV �
1

i�1
V�1V�1 �

M2

M2
1 �M

2
2 � iM2�2

V�2V�2


1

i�1
V�1V�1 �

1

2�M
V�2V�2: (55)

FIG. 1. Feynman diagrams for lepton-number-violating (left) and lepton-flavor-violating processes (right) involving heavy neutrinos
at the LHC.
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For example, the mass splitting caused by �1 is roughly
�M  �1M. Consequently, for �M� 1 GeV� �i, we
need �1 � 0:01 (again in the case M� 100 GeV). This is
still a small perturbation but orders of magnitude above the
bound (44), so that we cannot avoid unacceptable active
neutrino masses without fine-tuning. The parameter �13

enters the mass splitting quadratically and therefore has
to be larger than �1 to achieve the same splitting �M�
1 GeV, e.g. �13 � 0:3 forM� 100 GeV andM3 � 1 TeV.
On the other hand, the bound (45) is weaker than Eq. (44)
and can be further relaxed if one allows the one-loop
correction to the neutrino masses to be of the same order
of magnitude as the tree-level terms. Leaving aside the
problem of explaining the large hierarchy between the
perturbations �i, lepton number violation via a large �13

may then be achievable with tuning at the percent level.

B. Lepton flavor violation

If L-violating effects are too small to be observable, one
can still hope to detect events with different lepton flavors
such as e��� in the final state, since these have a relatively
small SM background as well. According to [14], such
signals are unlikely to be observable at LHC, however.
Now the amplitude is proportional to

 ALFV � V�i
p6

p2 �M2
i

V
�i: (56)

In the considered scenarios, the mechanism leading to the
cancellation of ALNV causes the different terms in ALFV to
add up constructively. Again considering the example of
Eq. (54), we obtain

 ALFV �
p6

p2 �M2 �V�1V
�1 � V�2V
�2�

�
p6

p2 �M2

m2

M2 �a; b; c���a

; b
; c
��: (57)

Hence, lepton-flavor-violating (LFV) amplitudes can be
sizable. This also means that bounds from low-energy
searches for rare decays cannot be avoided by cancella-
tions. The most stringent limit,

 

��������
X
i

VeiV


�i

��������� m2

M2 jab

j & 10�4; (58)

comes from the nonobservation of the decay �! e� [58].
In order to have at least a small chance of observing events
at LHC, this condition has to be satisfied with either a or b
being very small and the other parameter of order 1. In the
most minimal examples for perturbations, we have seen
that the large atmospheric mixing angle implies jbj � jcj.
In this case, all amplitudes would be suppressed if b were
small. Therefore, making a tiny is the more favorable
option. Then flavor-violating processes with electrons in
the final state are not observable, leaving processes with

the final state �	�� as the best candidate for observing
singlets.

At the ILC, the situation is more hopeful, since there the
resonant production of RH neutrinos is possible for jVjei *

0:01 [6,10], which is allowed by Eq. (58) even if jaj � jbj.
By observing the branching ratios for the subsequent de-
cays into charged leptons, one could determine the mixings
with the different flavors directly.

C. Decoupling of collider physics from the light masses

If the observation of RH neutrinos at colliders is to shed
light onto the mechanism of neutrino mass generation,
the first key question we have to ask is whether the pertur-
bations responsible for neutrino masses could have con-
sequences for signals at colliders. Unfortunately, the
smallness of the light neutrino masses immediately tells
us that the answer is negative. All perturbations of the
couplings of relatively light singlets yielding neutrino
masses are restricted to be tiny. Thus, they will not lead
to observable collider signatures. Instead, collider experi-
ments are only sensitive to the large Yukawa couplings in
Eq. (26), i.e. to the cancellation structure of the mass
matrices which does not produce neutrino masses.

This leads to the second key question, whether pertur-
bations can be introduced in such a manner that the light
neutrino mass matrix still ‘‘remembers’’ in some way the
cancellation structure. In other words, can perturbations
lead to particular features of the light neutrino mass matrix,
so that the cancellation structure is imprinted in the struc-
ture of m�? As argued above, a light neutrino mass matrix
with at least two nonvanishing eigenvalues can only be
obtained if the Dirac mass matrix is perturbed. In general,
this introduces many new parameters, so that there is little
hope to find a simple connection between m� and the
cancellation structure. Then the answer to the second
question is negative, too.

The situation is better in constrained setups where only
some of the perturbations are present or dominant. In the
cases we discussed, a strong mass hierarchy is expected.
The number of free parameters is large enough to repro-
duce any mixing pattern, so that there are no definite
predictions for the mixing angles. However, to the extent
that the leading-order Yukawa couplings are fixed by the
measured neutrino masses and mixings, correlations be-
tween the branching ratios of LFV processes can be ob-
tained, cf. Eq. (57), analogously to what was found for the
branching ratios of LFV decays [59]. As we have argued,
the severe limit from �! e� probably means that at most
one LFV branching ratio will be measurable at LHC. Then
the predicted correlations can be falsified by observing a
second LFV process. In order to verify them, one has to
determine the mixings of RH neutrinos with the different
flavors directly, which may be possible at e�e� colliders
[6,7,10]. In the most optimistic case, collider experiments
could even test some predictions of leptogenesis models
[26,59].
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V. SUMMARY AND DISCUSSION

We have critically reexamined the possibility of a direct
test of the seesaw mechanism of neutrino mass generation
in collider experiments. We have assumed the existence of
right-handed (RH) neutrinos with masses close to the
electroweak scale (but no other new particles or interac-
tions). The upper bound on the light neutrino masses
immediately leads to the conclusion that these RH neutri-
nos are much too weakly coupled to the standard model
particles to be produced at colliders. This conclusion can
only be avoided, if there is a strong cancellation between
the contributions from different RH neutrinos to the light
neutrino masses, which can be due to lepton number
conservation. Then the seesaw mechanism itself plays
only a minor role in explaining the smallness of neutrino
masses. Light neutrino masses can appear as a result of a
small breaking of lepton number. Other effects of this
breaking are too small to be tested at accelerators. The
only hope to check this possibility is to discover the RH
neutrinos and to establish correlations, which may exist in
special cases, between properties of the light neutrino mass
matrix and processes at accelerators involving the RH
neutrinos. Of course, one cannot exclude the existence of
additional, very heavy RH neutrinos contributing to neu-
trino masses via the standard seesaw mechanism, but this
cannot be tested directly.

More explicitly, an exact cancellation of light neutrino
masses occurs, if only one combination of the active neu-
trinos, ~�, couples with the RH neutrinos, while two others
decouple and remain massless. The contributions of the
RH neutrinos to the mass of ~� cancel due to a certain
correlation between their masses and Yukawa couplings.
We have shown that these are necessary conditions in
scenarios with two and three RH neutrinos. If there are
more than three RH neutrinos, the conditions do not apply.
In this case, more than one combination of active neutrinos
can couple to the RH neutrinos, and the cancellation can be
realized in a more complicated way.

We have discussed examples where the cancellation is
due to a symmetry. In the simplest setup, one RH neutrino
decouples from the system. Another one mixes with ~� and
forms a Dirac pair with the third RH neutrino, and the
combination orthogonal to this mixture stays massless.
This structure implies conservation of lepton number. We
have also presented a simple model based on the discrete
symmetry A4, in which L conservation arises as an acci-
dental symmetry.

If the cancellation is realized by a symmetry that leads to
lepton number conservation, it is stable against radiative
corrections: three neutrinos remain massless. In all other
cases, the cancellation is unstable and therefore requires
fine-tuning in several orders of perturbation theory. This is
true both for setups without any symmetry motivation and
for scenarios relying on a symmetry which does not imply
L conservation.

Light neutrino masses are obtained from small pertur-
bations of the leading-order mass matrices. We have sys-
tematically considered all possible perturbations of the
mass matrices arising in the L-conserving setup. In the
A4 toy model, we have discussed a pattern of symmetry
breaking that leaves a Z2 subgroup unbroken, resulting in a
subset of the most general perturbations and partially
motivating their smallness.

Thus, both lepton number violation and active neutrino
masses arise due to small perturbations, and their magni-
tudes are related. Therefore, we expect lepton-number-
violating signals at colliders to be unobservable in untuned
scenarios. The cross sections for lepton-flavor-violating
processes are not suppressed, so that LHC might have a
chance to observe such reactions. If this is the case, lepton
flavor violation should also be observable in upcoming
experiments studying the decays of charged leptons.

The flavor pattern of processes with RH neutrinos at
colliders depends on the particular combination ~�. With a
realistic experimental accuracy, a measurement of the per-
turbations will not be possible. Consequently, in the most
general case the theory contains too many free parameters
to realize a simple connection between collider observ-
ables and the masses and mixings of the active neutrinos.
In this sense, the mechanism of neutrino mass generation
and collider physics decouple. However, in minimal cases,
where only some perturbations of the cancellation structure
are present, one can find correlations between features of
neutrino masses and accelerator observables. These could
be falsified at the LHC and tested at the ILC. Of course, the
discovery of standard model singlets close to the electro-
weak scale would be very interesting by itself in any case.
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APPENDIX: CANCELLATION AND CASAS-
IBARRA PARAMETRIZATION

Let us demonstrate how the cancellation condition can
be derived using the Casas-Ibarra parametrization [47]. For
illustration we consider the two-generation case and
choose

 R �
coshx �i sinhx
i sinhx coshx

� �
: (A1)

For simplicity we neglect neutrino mixing, UPMNS � 1.
Then using Eq. (22) with the diagonal matrices m� �
diag�m�1; m�2� and mR � diag�M1;M2� we can write

 mD �
coshx

���������������
m�1M1

p
�i sinhx

���������������
m�1M2

p

i sinhx
���������������
m�2M1

p
coshx

���������������
m�2M2

p
� �

: (A2)
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For x� 1, coshx  sinhx  ex=2. If in the limit m� ! 0
the products ex

��������
m�1
p

!
����
�
p
� const, and ex

��������
m�2
p

!����
�
p

� � const, the Dirac mass matrix becomes

 mD �

�����������
�M1

p
�i

�����������
�M2

p

i
�����������
�M1

p
�

�����������
�M2

p
�

� �
: (A3)

This matrix has rank 1 and satisfies the cancellation con-
dition (12).
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