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A class of strongly interacting 2� 1 dimensional conformal field theories in a transverse magnetic field
can be studied using the AdS/CFT duality. We compute zero momentum hydrodynamic response
functions of maximally supersymmetric 2� 1 dimensional SU�N� Yang-Mills theory at the conformal
fixed point, in the large N limit. With background magnetic field B and electric charge density �, the Hall
conductivity is found to be �=B. The result, anticipated on kinematic grounds in field theory, is obtained
from perturbations of a four-dimensional AdS black hole with both electric and magnetic charges.
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I. INTRODUCTION

The Hall effect is a fundamental property of a conduct-
ing medium subject to an external magnetic field. Upon
application of an electric field, current flows in a direction
orthogonal to both the electric and magnetic fields.
Therefore the conductivity tensor, defined by ja �
�abEb, acquires off diagonal entries.

In a Lorentz invariant theory, the dc conductivity in the
presence of an external magnetic field is completely de-
termined by boost invariance. Suppose there is a magnetic
field B in the lab frame. Consider a frame moving with
small velocity �v with respect to the lab frame. In this
frame there is a current j � �v, where � is the charge
density of the medium in the lab frame, and an electric field

 E � �v� B � �
1

�
j� B: (1)

If the magnetic field isB � �0; 0; B�, then from (1) we have
that in the xy plane

 �xy � ��yx �
�
B

and �xx � �yy � 0: (2)

Thus the conductivity tensor is antisymmetric: its off di-
agonal components are precisely the Hall conductivity.

From a microscopic point of view, �ab can be evaluated
using the Kubo formula which relates electrical conductiv-
ity to the current-current retarded Green’s function, eval-
uated in the thermal equilibrium state:

 �ab � � lim
!!0

ImGR
ab�!�
!

: (3)

The validity of the Kubo formula only relies on linear
response; in particular, it does not assume that the physical
system is composed of weakly interacting quasiparticles.
Thus, for strongly interacting systems without a quasipar-
ticle description, Eq. (3) provides a first-principles way to
evaluate the conductivity. We note that Kubo formulae are

modified in the presence of an external magnetic field. The
expression (3) remains valid however.

Motivated by understanding charge transport at quantum
critical points [1], in this paper we will study conductive
properties of strongly interacting 2� 1 dimensional con-
formal field theories (CFTs) in the presence of an external
magnetic field. A particular field theory to which our
discussion applies is the infrared conformal fixed point of
maximally supersymmetric SU�N� Yang-Mills theory at
large N. This CFT has eight supersymmetries and a global
SO�8� R symmetry group. The magnetic field we will turn
on belongs to a U�1� subgroup of SO�8�. The theory
describes the low-energy dynamics of M2 branes in M
theory. However, as emphasized in the recent work [2], it
is our hope that the study of this special theory may shed
light upon general aspects of strongly coupled CFTs in 2�
1 dimensions that are of interest in quantum critical phe-
nomena. In fact, our results will apply to any CFT with an
AdS/CFT dual that may be truncated to Einstein-Maxwell
theory on AdS4.

The M2 brane theory is tractable in the large N limit
because the AdS/CFT correspondence [3] provides a dual
gravitational description of the system which may be
treated classically in this limit. Furthermore, it has been
understood how the correspondence may be used to extract
hydrodynamic coefficients that describe the large scale and
late time behavior of finite temperature field theories [4–
6]. In 3� 1 dimensions, that work has led to a conjectured
universal lower bound on the ratio of shear viscosity to
entropy density [7] and also to unanticipated connections
with the fireball created at the Relativistic Heavy Ion
Collider [8]. In contrast, the implications of the AdS/CFT
correspondence for 2� 1 dimensional hydrodynamics
have so far been less developed, although see [2,9–11].

The behavior under a magnetic field is a basic probe of
interacting 2� 1 dimensional systems. In the following
section we show how the M2 brane theory may be placed in
a background magnetic field by considering a dual mag-
netically charged black hole in AdS4. We go on to describe
the thermodynamics and some of the hydrodynamic re-
sponse functions of this theory. The AdS/CFT duality maps
fluctuations of conserved currents in the 2� 1 dimensional
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CFT to fluctuations of gauge fields in the background of the
3� 1 dimensional black hole, and provides a recipe for
computing current-current correlation functions. We will
use the Kubo formula (3) to compute the Hall conductivity
from perturbations of the black hole spacetime and recover
precisely (2).

II. DYONIC BLACK HOLE IN AdS4

In this section we describe the four-dimensional space-
time dual to the M2 brane CFTon R1;2. We are interested in
the system at finite temperature and with a background
magnetic field. Finite temperature is realized in AdS/CFT
by allowing the spacetime to contain a black hole [12]. We
will shortly explain that a background magnetic field is
obtained by allowing the black hole to carry a magnetic
charge.

The fact that our CFT is relativistic implies that it has the
same number of excitations with positive and negative
charges. Under applied magnetic and electric fields, the
charges will create opposite currents that cancel and there
will be no Hall conductivity. To avoid this scenario, we
need to consider the CFT in a state with a net charge
density. We will recall below that this is obtained by
requiring that the black hole carry an electric charge.

In summary: the background we require is a dyonic
black hole in AdS4, with both electric and magnetic charge.
Such black holes have been known for some time [13].
Precisely four spacetime dimensions are necessary for a
point source to be both magnetically and electrically
charged.

The full supergravity context is 11-dimensional super-
gravity on AdS4 � S

7. This theory may be consistently
truncated to Einstein-Maxwell theory on AdS4. For details,
see for instance [2]. In this reduction, the Maxwell field
originates via the Kaluza-Klein mechanism as a U�1� sub-
group of the SO�8� symmetry group of the full background.
The action for Einstein-Maxwell theory with a negative
cosmological constant �1=L2 is

 I �
2

�2
4

Z
d4x

�������
�g
p

�
�

1

4
R�

L2

4
F��F

�� �
3

2

1

L2

�
; (4)

which implies equations of motion
 

R�� � 2L2F��F�� �
L2

2
g��F��F�� �

3

L2 g��; (5a)

r�F
�� � 0: (5b)

We have included the overall normalization of the action
coming from the reduction of 11-dimensional supergravity,
which in terms of the field theory N is (see e.g. [2])

 

2L2

�2
4

�

���
2
p
N3=2

6�
: (6)

Our background metric will be a black hole in AdS4 with
planar horizon

 

1

L2
ds2 �

�2

z2 ��f�z�dt
2 � dx2 � dy2� �

1

z2

dz2

f�z�
: (7)

We will take the black hole to carry both electric and
magnetic charge

 F � h�2dx ^ dy� q�dz ^ dt; (8)

which implies that

 f�z� � 1� �h2 � q2�z4 � �1� h2 � q2�z3: (9)

This solution may be obtained, for instance, by taking the
planar limit of the expressions in [13]. One can explicitly
check that Eqs. (7)–(9) solve the equations of motion (5).
Without loss of generality we have scaled the coordinates
so that the horizon is at z � 1. The AdS asymptopia is at
z! 0. The parameter � has the dimensions of mass, and
determines the temperature of the black hole through

 T �
��3� h2 � q2�

4�
: (10)

Note that for a regular horizon we have 3� h2 � q2 > 0.
This inequality defines the allowed range of h and q. It will
not, however, restrict the ranges of the dual variables T, B
and �. The extremal zero temperature limit is achieved by
taking h2 � q2 ! 3, with � fixed. The relation of � to the
mass of the black hole is given in the following section.

The dual field theory to this spacetime is the low-energy
theory living on N M2 branes with worldvolume R1;2. To
understand the implications of the bulk Maxwell field it is
convenient to consider a potential giving F � dA,

 A � h�2xdy� q�zdt: (11)

We see that the magnetic term remains finite at the AdS
boundary, z! 0, whereas the electric term goes to zero.
These different falloffs lead to differing dual interpreta-
tions for the charges [14]. Both falloffs of a Maxwell field
in AdS4 are normalizable, and we can choose which one to
interpret as being dual to a vacuum expectation value
(VEV) [14]. We will make the standard choice in which
the faster falloff is dual to a VEV.

The magnetic term in the potential (11) has a slower
falloff, remaining finite at the AdS boundary, and hence
corresponds to an external magnetic field for a gauged
U�1� subgroup of the SO�8� R symmetry group of the
theory. Such modes are usually considered as adding the
term A0

�J
� to the field theory Lagrangian, where A0

� is the
boundary value of the field and J� is the dual U�1� current.
This is the same as gauging the U�1� symmetry by adding
the background field A0

�, which in this case is magnetic.
The strength of the magnetic field in the field theory is B �
h�2, as we can read off from taking z! 0 in the expres-
sion for the bulk field strength (8).

The electric term in the potential has a faster falloff, and
therefore does not correspond to a background field in the
dual theory. Instead, it fixes the electric charge density of
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the state in the field theory to be

 � 	 hJti �
�I

�A0
t
� �

���
2
p
N3=2

6�
q�2: (12)

Here Jt is the charge density operator for the same U�1�
subgroup of the R symmetry as before. We will rederive
this expression for the charge density from thermodynamic
considerations in the following section.

Finally, there is in fact a term missing in the potential
(11). In order for the potential to be regular at the horizon
of the black hole, At must vanish there.1 This requires that
we add to (11) the pure gauge term �q�dt. This term
remains finite as z! 0 and has the dual interpretation of
adding a chemical potential for the electric charge, � �
�q�, to the field theory. This is the chemical potential
corresponding to the electric charge density �. Our com-
putation of the conductivity will only depend on the bulk
field strength (8) and not on this pure gauge term.

III. THERMODYNAMICS OF THE GRAND
CANONICAL ENSEMBLE

Before going on to compute hydrodynamic correlators,
it is useful to summarize the thermodynamic properties of
the black holes we have just described. These characterize
the dual field theory in thermal equilibrium.

We describe the thermodynamics of the grand canonical
ensemble, where the chemical potential � � �q� is kept
fixed. We also keep fixed the magnetic field B � h�2, this
is treated as a parameter of the system rather than a
thermodynamic variable. We will see that this is a consis-
tent treatment.

We give the results in terms of the bulk spacetime
variables q, h, �. There are various ways of computing
thermodynamic quantities from black holes. The most
elegant is holographic renormalization, in which the action
is regularized using a counterterm boundary action [15,16].
No new counterterms are needed due to the Maxwell field,
as the F2 term in the action falls off sufficiently quickly
near the boundary. The renormalized action is given by
subtracting a boundary term from the bulk action

 Iren � I �
1

�2
4

Z
d3x

��������
�	
p


�
2

�2
4

1

L

Z
d3x

��������
�	
p

; (13)

where 	 is the boundary metric. We have also included the
Gibbons-Hawking boundary term. Here 
 � 	��
�� is the
trace of the extrinsic curvature 
�� � �

1
2 �r�n� �

r�n��, with n an outward directed unit normal vector to
the boundary.

The thermodynamic potential is given by the renormal-
ized action Iren evaluated on the solution times the tem-
perature (10)

 � � TIren �

���
2
p
N3=2

6�
V�3

4
��1� q2 � 3h2�: (14)

Here V �
R
dxdy is the spatial volume.

The renormalized energy momentum tensor of the black
hole is [16]

 

1

L3
hT��b:h:i �

2��������
�	
p

�Iren

�	��

�

���
2
p
N3=2

6�
1

2

�

�� � 
	�� �

2

L
	��

�
: (15)

This is related to the field theory energy momentum tensor
by hT��i � ��=z�5hT��b:h:i. Thus we can obtain the energy

 E �
Z
d2xhT��b:h:ik���

����
�
p
�

���
2
p
N3=2

6�
V�3

2
�1� q2 � h2�:

(16)

The integral is over the R2 at spatial infinity z! 0, k is a
unit vector normal to the spatial hypersurface t � const, �
is the Killing vector @t and

����
�
p
� �	xx	yy�

1=2 is the vol-
ume element of the R2. The entropy is given by the area of
the horizon times a standard normalization to be

 S �

���
2
p
N3=2

6
V�2: (17)

The total electric charge may be computed by varying the
free energy with respect to the chemical potential

 Q � �
�
@�

@�

�
T;B
�

���
2
p
N3=2

6�
V��: (18)

This expression agrees with our previous result (12). It will
be useful later to define the energy, entropy and charge
densities

 " �
E

V
; s �

S

V
; � �

Q

V
: (19)

Finally, the pressure in the grand canonical ensemble is
simply given by

 � � �PV : (20)

Note that in a magnetic field, P differs from hTxxi by a term
proportional to the magnetization. A check of the formulae
we have given in this section is that they satisfy the
required thermodynamic relation

 � � E� TS��Q: (21)

The fact that this relation holds without needing to add a
term for the magnetic charge shows that our treatment of h
as a constant external parameter is consistent.

1One way to see this is to look at the Euclidean black hole
solution with imaginary time direction � compactified to a circle.
The radius of the circle shrinks to zero at the horizon, implying
that A� must vanish there.

HALL CONDUCTIVITY FROM DYONIC BLACK HOLES PHYSICAL REVIEW D 76, 066001 (2007)

066001-3



Analogously to the five-dimensional example in [17],
we check the local thermodynamic stability of the system
by considering the equation of state "�s; ��. In the grand
canonical ensemble, the condition for stability is that
det�@2

s�"�s; ���> 0. From the formulae above it follows
that

 "�s; �� �
61=2

21=4N3=4

s3=2

2�

�
1�

�2�2

s2 �
~B2�2

s2

�
; (22)

where ~B � B
���
2
p
N3=2=6�. It is easily checked that the

condition for the determinant to be positive is that 3�
3h2 � q2 > 0. This is certainly true, and therefore the
system is locally thermodynamically stable at all tempera-
tures, charges and values of the background magnetic field.

IV. FLUCTUATIONS AND ACTION

A. Equations of motion

We are aiming to compute correlators of the boundary
current operators Jx and Jy, dual to the components of the
bulk Maxwell potential Ax and Ay. The AdS/CFT dictio-
nary requires that we consider fluctuations of these fields
about the black hole background. In order to extract the
conductivity, it will suffice to work at zero momentum in
the x and y directions. [It is consistent to do so because
only the background field strength (8) enters the equations,
not the background potential (11). Thus, translation invari-
ance is maintained.] That is, the perturbations are taken to
be independent of x and y. In this case, it turns out that the
gauge field fluctuations source fluctuations in the metric
components gtx and gty and no others. By linearising the
Einstein-Maxwell equations about the background we ob-
tain the following equations for the fluctuations: From the
Maxwell Eq. (5b) we find
 

f�fA0x�0 � w2Ax � iwhGy � qfG0x � 0; (23a)

f�fA0y�0 � w2Ay � iwhGx � qfG0y � 0: (23b)

In these equations Gx � gtx��1z2, and similarly for Gy.
Prime denotes differentiation with respect to z. The time
dependence is taken to be e�i!t for all fields. We have also
introduced the dimensionless frequency w 	 !��1.

The Einstein Eq. (5a) give
 

f�G0y=4z2�0 � h2Gy � iwhAx � qfA0y � 0; (24a)

f�G0x=4z2�0 � h2Gx � iwhAy � qfA0x � 0; (24b)

iwG0y=4z2 � hfA0x � iwqAy � hqGx � 0; (24c)

iwG0x=4z2 � hfA0y � iwqAx � hqGy � 0: (24d)

It is easy to verify that these equations imply the Maxwell
Eqs. (23), thus providing a consistency check. The fluctua-
tion equations may be separated out to obtain higher order
equations for the different modes. One can verify that Ax
and Ay satisfy the same fifth-order equation.

We need to solve the Eqs. (24) with the condition that the
solution satisfies ingoing wave boundary conditions at the
horizon z � 1. Near the horizon, the solutions behave as
Ax;y 
 �1� z��, Gx;y 
 �1� z�. The set of Eqs. (24) then
determines the ingoing and outgoing exponents � �
�iw=�h2 � q2 � 3�,  � 1� �. The ingoing wave solu-
tion at the horizon corresponds to �� � iw=�h2 � q2 � 3�.
Thus we will be looking for the solution of the form
 

Ax�z� � f�z���ax�z�; (25a)

Gx�z� � f�z�1���gx�z�; (25b)

and similarly for Ay�z�, Gy�z�. The functions ax�z�, gx�z�
are required to be regular at the horizon z � 1. There is
also a third possible exponent at the horizon, which leads to
a constant z-independent solution of Eqs. (24),

 Gy �
iw
h
Ax; Gx � �

iw
h
Ay: (26)

This constant solution will be important later.

B. Hydrodynamic limit

We are interested in the low-frequency, hydrodynamic
behavior of the system when !=T � �=T, B=T2. This
regime of small frequencies can be achieved by letting
w! 0, with q and h fixed. Therefore we will solve the
equations perturbatively in w:

 ax�z� � a�0�x �z� � wa
�1�
x �z� � . . . ; (27)

 gx�z� � g�0�x �z� � wg
�1�
x �z� � . . . ; (28)

and similarly for ay�z�, gy�z�. To zeroth order in w, we
have2

 g�0�00x �z� � 2
 0�z�
 �z�

g�0�0x �z� � 0; (29)

 a�0�0x �z� � qg
�0�
x �z� � 0; (30)

where  �z� 	 f�z�=z. A general solution is of the form
g�0�0x �z� � const= �z�2 and the condition of regularity on
the horizon implies

 g�0�x �z� � 	x; a�0�x �z� � �x � 	xqz; (31)

where 	x, �x are integration constants. To first order in w
we find

 g�1�00x �z� � 2
 0�z�
 �z�

g�1�0x �z� � G�0�x �z�; (32)

 a�1�0x �z� � qg
�1�
x �z� �A�0�

x �z�; (33)

2Here and below we give expressions for the x components;
the y components are the same but with x$ y and h$ �h.
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where the functions G�0�x �z�, A
�0�
x �z� on the right-hand side

depend on the zeroth-order solution (31). One finds that
G�0�x �z� �z�2 and A�0�

x �z�f�z� are fourth-order polynomials
in z. A general solution is of the form

 g�1�0x �z� �
const

 �z�2
�

1

 �z�2
Z z

0
G�0�x �u� �u�2du; (34)

and demanding regularity of g�1�x �z� on the horizon now
implies a relation between the integration constants:

 �y �
	xh�h2 � q2 � 3� � 3	yq�1� h2 � q2�

4�h2 � q2�
: (35)

With this relation, one finds that the solution which is
regular at the horizon is
 

g�1�x �z� � ~	x � i
Z z

0

du

 �u�2
	xP5�u�; (36a)

a�1�x �z� � ~�x � q
Z z

0
g�1�x �u�du

� i
Z z

0

du
f�u�

�	xQ4�u� � 	yQ3�u��; (36b)

where P5, Q3, Q4 are polynomials in u, whose coefficients
(given in the Appendix) depend on q and h only. The
integration constants ~	x, ~�x can be absorbed into 	x and
�x respectively; as a result the solution is characterized by
the two constants 	x, 	y. This is too few. We want a
solution that is characterized by four constants: the four
boundary values of the fields Gx, Gy, Ax, Ay. We must
therefore add to the solution (25) the constant solution
(26)3

 Ax � �x; Ay � �y;

Gx � �
iw
h
�y; Gy �

iw
h
�x;

(37)

where �x;y are constants. Then for the boundary values
G0
x 	 Gx�z � 0� etc., we find

 G0
x � �

iw
h
�y � 	x; G0

y �
iw
h
�x � 	y; (38)

 A0
x � �x � �x�	x; 	y�; A0

y � �y � �y�	x; 	y�: (39)

We can now express integration constants in terms of the
boundary values of the fields4

 

�x� A
0
x�

G0
yh�h2�q2� 3�� 3G0

xq�1�h2�q2�

4�h2�q2�
; (40a)

�y� A0
y�

G0
xh�h

2�q2� 3�� 3G0
yq�1�h

2�q2�

4�h2�q2�
: (40b)

To sum up: the solution to first order in w is
 

Gx�z� � �
iw
h
�y � f�z�1���

�
G0
x �

iw
h
�y

� iwG0
x

Z z

0

du

 2�u�
P5�u�

�
; (41a)

Ax�z� � �x � f�z�
��

�
A0
x � �x �

�
G0
x �

iw
h
�y

�
qz

� iwqG0
x

Z z

0

du�z� u�

 2�u�
P5�u� � iw

Z z

0

du
f�u�

� �G0
xQ4�u� �G0

yQ3�u��
�
: (41b)

C. The action

The current correlators will be computed by differenti-
ating the action evaluated on the solution with respect to
the boundary values of the fields. We therefore need the
renormalized action (13) to quadratic order in perturba-
tions. The quadratic action evaluated on shell is given by
the boundary term
 

Iren � lim
z!0

2L2�

�2
4

Z
dtd2x

�
f1=2 � 1

2z3f1=2
G G�

q
2

A G

�
1

8z2 G G0 �
f
2

A A0
�
: (42)

In this expression G 	 �Gx;Gy�, A 	 �Ax; Ay�. Any pos-
sible contribution to the action from a boundary term at the
horizon is neglected [5]. The action is now computed by
expanding the solution (41) near the boundary z � 0 and
substituting into Eq. (42).

The result is most cleanly expressed in terms of the
Fourier transformed modes

 A0
x�t� �

Z 1
�1

d!
2�

A0
x�!�e�i!t; (43)

and similarly for the other modes. The action can be
written as the sum of three terms

 Iren �

���
2
p
N3=2

6�
�IAA � IAG � IGG�; (44)

where to lowest order in !=T ! 0 we have

 IAA �
iq
2h

Z d!
2�

d2x!�abA
0
a�!�A

0
b��!�; (45)

where �ab is antisymmetric, with �xy � 1. The � tensor
appears because of the mixing of x and y coefficients in

3The constant term is often not written explicitly in treatments
of black hole hydrodynamics, which only give expressions for
the derivatives of fields, but it is usually there when more than
one field is involved. Without it, one would not have sufficient
free constants at the boundary. Gauge invariant fluctuations will
be purely ingoing at the horizon.

4The expressions (40) have O�w� corrections. However, these
subleading terms do not contribute to the correlators to first order
in w.
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(41). The term coupling the metric and gauge potential is

 IAG �
�i3�1� q2 � h2�

4h

Z
d2x

d!
2�

!�abA
0
a�!�G

0
b��!�;

(46)

and finally, dropping a contact term,

 IGG �
Z
d2x

d!
2�

�
��3� h2 � q2�2

32�h2 � q2�
�ab

�
9q�1� h2 � q2�2

32h�h2 � q2�
�ab

�
i!G0

a�!�G
0
b��!�: (47)

When writing these expression for the action, the boundary
values for the fields A0

x;y, G0
x;y in the solution (41) are taken

as arbitrary functions of !. Taking functional derivatives
with respect to the boundary values allows us to compute
hydrodynamic correlators and conductivity.

V. HALL CONDUCTIVITY AND HYDRODYNAMIC
CORRELATORS

Recall from our discussion in Sec. II that the background
magnetic field in the field theory is B � h�2 and the
charge density of the system � / q�2 is given by (19).
These definitions imply that � and B have mass dimension
two, which is the correct dimensionality for charge density
and field strength in three dimensions.

The AdS/CFT dictionary [5] allows us to read off the
large N retarded Green’s function from (45) as

 GR
ab�!� � �i

Z
d2xdtei!t
�t�h�Ja�t�; Jb�0��i

� �i!�ab
�
B
: (48)

The conductivity is then given by the Kubo formula (3)

 �xy � ��yx �
�
B
; �xx � �yy � 0: (49)

There is no temperature dependence in this result. This
expression exactly recovers the results expected on general
grounds from Lorentz invariance (2).

We can also compute from (44) the retarded correlator
between the momentum density and the R charge current.
We have, to leading order in w and at zero spatial momen-
tum,

 GR
a�b�!� � �i

Z
d2xdtei!t
�t�h�Ja�t�; Ttb�0��i

� �
3"
2B

i!�ab: (50)

When extracting the correlators (50), the action IAG has to
be multiplied by � because Gx � �gtx�z=��

2. The final
result here has been expressed in terms of the background
magnetic field and the charge and energy densities of the
equilibrium field theory. The expression for the

momentum-momentum correlator also follows from (44)
as

 GR
�a�b�!� � �i

Z
d2xdtei!t
�t�h�Tta�t�; Ttb�0��i

�

���
2
p
N3=2

6�
s2T2

�2 � ~B2
i!�ab

�
9�"2

4B��2 � ~B2�
i!�ab: (51)

As previously, ~B � B
���
2
p
N3=2=6�. The expressions (48),

(50), and (51) are the main result of this paper. The regime
of their applicability is broader than the naive hydrody-
namic limit!� T. We have assumed that!� �, with �
implicitly defined by the relation 4�T � ��3� B2=�4 �
�2=�2�. This allows !=T to take any value provided the
chemical potential (or magnetic field) is sufficiently large.

VI. DISCUSSION

We have shown how a background magnetic field may
be incorporated into the AdS/CFT correspondence for 2�
1 dimensional boundary theories, by considering a dyonic
black hole as the bulk spacetime. As an application, we
studied low-frequency charge transport in 2� 1 dimen-
sional CFTs whose gravity duals contain Einstein-Maxwell
theory on AdS4. This class of conformal field theories
includes maximally supersymmetric SU�N� Yang-Mills
theory at the conformal fixed point in the limit of large
N. For the Hall conductivity, our bulk computation recov-
ered the field theory result expected due to Lorentz covari-
ance. In addition to the conductivity, we computed
hydrodynamic response functions of charge and momen-
tum currents at zero spatial momentum. One expects that
the full study of bulk fluctuations with nonzero spatial
momentum should reproduce linearized relativistic mag-
netohydrodynamics of the boundary field theory. These
computations appear to be technically involved, and we
have left them for future work.

From the fact that the diagonal dc conductivity vanishes
in (49) it follows that the hydrodynamic limit �!=T� ! 0
does not commute with the limit of small magnetic fields
�B=T2� ! 0. It would be interesting to understand the
crossover between the two regimes for the class of strongly
interacting CFTs studied here.

Let us also note that turning on a background magnetic
field is not the only way to introduce off diagonal con-
ductivity in the AdS/CFT framework. A topological 
 term
for the four-dimensional gauge fields in the bulk gives rise
to the antisymmetric contribution ����p� in two point
current-current correlators of the 2� 1 dimensional CFT
on the boundary [18]. Application of the Kubo formula
now tells us that there is a nonzero off diagonal conduc-
tivity, proportional to 
. However, introducing a 
 term in
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the bulk does not correspond to introducing a background
magnetic field in the original CFT; rather, it means that one
simply studies a different CFT [18]. Indeed, the effective
Hall-like conductivity coming from the 
 term is a con-
stant, present even at zero temperature and zero charge
density. In contrast, Hall conductivity due to the back-
ground magnetic field studied in this paper should be a
nontrivial function of !=T and �=T. As a related applica-
tion, it would be interesting to see how a 
 term may be
obtained in AdS4 via reduction from ten- or 11-
dimensional supergravity. These terms seem to be generic
in flux compactifications.

There are various other interesting phenomena that arise
in 2� 1 dimensional theories with a background magnetic
field. These range from the quantum Hall effect to the
Nernst effect in superconductors. The AdS/CFT correspon-
dence provides a unique framework in which such effects
may be analytically studied in a strongly coupled field
theory.
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APPENDIX A: POLYNOMIALS

The polynomials in (36) are given by
 

P5�u� � �7h
2 � 7q2 � 3��1� u�2

�
3� 15�h2 � q2�2 � 22�h2 � q2�

h2 � q2 � 3
�1� u�3

�
13�h2 � q2�2 � 7�h2 � q2�

h2 � q2 � 3
�1� u�4

�
4�h2 � q2�2

h2 � q2 � 3
�1� u�5; (A1)

 

Q3�u� �
h�q2�h2� 3�

2�h2�q2�
�1�u�

�
3h�3h2� 3q2� 1�

4�h2�q2�
�1�u�2�h�1�u�3; (A2)

 

Q4�u� �
q�5q2 � 5h2 � 3�

2�h2 � q2�
�1� u�

�
3q�3� 11�q2 � h2�2 � 18�q2 � h2��

4�q2 � h2��q2 � h2 � 3�
�1� u�2

�
2q�5q2 � 5h2 � 3�

q2 � h2 � 3
�1� u�3

�
4q�q2 � h2�

q2 � h2 � 3
�1� u�4: (A3)
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