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Starting from quaternionic N � 8 supersymmetric mechanics we perform a reduction over a bosonic
radial variable, ending up with a nonlinear off-shell supermultiplet with three bosonic end eight fermionic
physical degrees of freedom. The geometry of the bosonic sector of the most general sigma-model type
action is described by an arbitrary function obeying the three dimensional Laplace equation on the sphere
S3. Among the bosonic components of this new supermultiplet there is a constant which gives rise to
potential terms. After dualization of this constant one may come back to the supermultiplet with four
physical bosons. However, this new supermultiplet is highly nonlinear. The geometry of the corresponding
sigma-model action is briefly discussed.
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I. INTRODUCTION

Despite the many common structures the mechanics
with extended supersymmetries shares with its higher di-
mensional counterparts (see e.g. [1]), it also possesses
some rather specific features which cannot be even imag-
ined in other dimensions. Among the most impressive
examples one may find the one dimensional N � 4, 8
supermultiplets without auxiliary components or even
without physical bosons [2] as well as plenty of off-shell
nonlinear supermultiplets. Just a new N � 8 nonlinear
supermultiplet and its action are the subject of the present
paper.

The idea about the possibility of the existence of the
nonlinear supermultiplets in N � 4, d � 1 supersymmet-
ric theories has been formulated for the first time in [3]. In a
short time, some of the nonlinear N � 4 supermultiplets
have been explicitly constructed in [4]. Later on, it has
been understood that almost all N � 4 supermultiplets,
linear and nonlinear ones, can be obtained proceeding
from the ‘‘root’’ supermultiplet and dualizing the physical
bosons into auxiliary components [5]. Alternatively, the
superfield procedure for constructing linear and nonlinear
supermultiplets starting from the root one has been re-
cently proposed in [6]. Finally, after some preliminary
consideration [7] it was found that there are infinitely
many N � 4 nonlinear supermultiplets with a functional
freedom in the definition [8].

When passing to N � 8, d � 1 supersymmetry, the
situation becomes more complicated. Until now only two
nonlinear off-shell N � 8 supermultiplets are known—
those with two [9] and four [10,11] physical bosons were
constructed off shell. Other known nonlinear supermultip-
lets, for example, those discussed in [12], have been con-
structed with the help of duality transformations and had

been fully described only on shell. One may wonder why
we need nonlinear supermultiplets and which additional
problems appear in the case of N � 8 supersymmetric
mechanics. The answer to these questions is that the N �
8 supersymmetry puts a rather strong restriction on the
metric of the sigma-model part of the action—for all linear
supermultiplets the metric has to be conformally flat, with
the conformal factor obeying a proper Laplace equation.
Thus, the hyper-Kähler metrics never show up within the
models with linear supermultiplets. Moreover, the reduc-
tion procedure which perfectly worked in theN � 4 case is
not so useful for the N � 8 case. The explanation is very
simple—in order to dualize the physical boson into the
auxiliary component one should choose a metric which
does not contain this boson. Only with such a condition it is
possible to turn this physical boson into the auxiliary
component. But in almost all cases this cannot be achieved,
because the metrics is subjected to the Laplace equation.
Nevertheless, there is one special case where the reduction
can be performed. It corresponds to the N � 8 supersym-
metric mechanics with four physical bosonic components.
Only in this case the solution of the four dimensional
Laplace equation admits the reduction over radii and re-
sults in a three dimensional system with N � 8 supersym-
metry. Just this case will be analyzed in this paper. We start
from the known quaternionic four dimensional N � 8
mechanics [13] and perform the reduction over the ‘‘radii’’
variable. In such a way we will get the N � 8 supersym-
metric system on the sphere S3 (Sec. II). Then we will write
the proper superfield constraint, which follows from the
constraints on the four dimensional supermultiplet upon
reduction, and construct the most general action (Sec. III).
In Sec. IV we consider the potential terms and perform
another dualizations of the coupling constant which pushes
us back to a new nonlinear four dimensional supermulti-
plet. For this supermultiplet we find that the geometry of
the bosonic sigma-model is neither conformally flat nor of
a hyper-Kähler type. In fact, this geometry is just the one
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which was previously found in the (4, 0) heterotic sigma
models in d � 2 [14].

II. N � 8 SUPERSYMMETRIC MECHANICS ON
THE SPHERE S3

As we already mentioned in the Introduction, our idea is
to perform the reduction over radii to pass from quater-
nionic four dimensional N � 8 mechanics [13] to three
dimensional mechanics with the sphere S3 in the bosonic
part of the action.

The supermultiplet which has been used to construct the
quaternionic mechanics is described by a quartet of N � 8
superfields Qia depending on the coordinates of the N �
8, d � 1 superspace R�1j8�. These superfields are subjected
to the following constraints [15]:

 D�iAQ
j�a � 0; r�a�Qib� � 0: (2.1)

Here i; a; A; � � 1, 2 are doublet indices of four SU�2�
subgroups of the automorphism group of N � 8 super-
space, and the spinor covariant derivatives are defined to
obey the algebra

 fDiA;DjBg � 2i�ij�AB@t; fra�;rb�g � 2i�ab���@t:

(2.2)

The component on-shell form of the corresponding ac-
tion with arbitrary metric function G depending on four
physical bosonic fields is given by
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�
:

(2.3)

The invariance under N � 8 supersymmetry imposes the
additional constraint on the metric G to be harmonic

 

@2

@qia@qia
G � 0: (2.4)

It is easy to see that in the special case of the metric
function

 G �
1

qiaqia
; (2.5)

the four-fermion term in (2.3) is canceled. Then, introduc-
ing new bosonic and fermionic variables

 qia � ~qiaeu=2; ~qia~qka � �ki; ~qia~qbi � �ba;

~ iA � e�u=2 ~qia 
aA; ~�a� � e�u=2 ~qai �

i�;
(2.6)

one finds that the action (2.3) is reduced to the sum of a
bosonic sigma-model type action and the action for free

fermions

 S �
1

2

Z
dt
�
1

2
� _u�2 � _~qia _~qia �

i
2

~�a� _~�a� �
i
2

~ iA _~ iA

�
:

(2.7)

If we replace the time derivative of the field u by an
auxiliary field A � _u and then exclude A by its equation
of motion, we will get just N � 8 mechanics on the sphere
S3. What is really interesting is that the N � 8 supersym-
metrization of this S3 is achieved by adding eight free
fermions. Let us remind, that just the same phenomenon
appears in the case of the N � 4 supersymmetrization of
the spheres S2 [4] and S3 [16,17].

III. THREE DIMENSIONAL MECHANICS:
SUPERFIELDS AND COMPONENTS

The example of straightforward reduction presented in
the previous section gives only the simplest variant of the
three dimensional action. In order to construct the most
general sigma-model action one should perform the reduc-
tion in terms of superfields. Fortunately, this is rather easy
to do. Indeed, let us introduce new N � 8 quartet super-
fields N ia as follows:

 N ia �
Qia

jQj
; jQj2 �QiaQia: (3.1)

Clearly, these new defined superfields N ia do not include
the ‘‘radii component’’ jQj2 from the supermultiplet Qia.
Moreover, in virtue of (2.1), the superfields N ia obey the
closed set of constraints

 N �k
a Di

AN
j�a � 0; N �a

i r
b
�N

c�i � 0;

NiaNia � 2:
(3.2)

Thus, the structure of our nonlinear supermultiplet is com-
pletely defined by the constraints (3.2).

The concise form of the constraints (3.2) is not practi-
cally useful. It is convenient to use instead the following
parametrization for them (which solves the last, algebraic
constraint in (3.2)):

 N ia � �N 11;N 12;N 21;N 22�

�

�
1���������������

1� u �u
p u;

ei=2����������������
1� u �u
p ;�

e�i=2����������������
1� u �u
p ;

1���������������
1� u �u
p �u

�
:

(3.3)

In this parametrization the constraints (3.2) read

 Di�e��i=2��u� � 0; �Di�e
�i=2�� �u� � 0;

ra�e�i=2��u� � 0; �ra�e
��i=2�� �u� � 0;

Di�e��i=2�� �u� � �i �Di�; �Di�e
�i=2��u� � �iDi�;

ra�e�i=2�� �u� � �i �ra�; �ra�e
��i=2��u� � �ira�:

(3.4)
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Here, we redefine the covariant derivatives as

 Di � fD11; D12g; �Di � fD21; D22g;

ra � fr11;r12g; �ra � f �r21; �r22g;

which now anticommute as follows:

 fDi; �Djg � �2i�ij@t; fra; �rbg � �2i�ab@t: (3.5)

Besides the superfields f�; u; �ug it is rather convenient to
introduce the related sets of superfields f�;�; ��g and
f�; �; ��g as

 e�i=2��� � u � e��i=2���; e��i=2�� �� � �u � e�i=2�� ��:

(3.6)

Now one may rewrite the constraints (3.4) in a symmet-
rical, linear (although disguisedly nonlinear) form
 

Di� � 0; �Di
�� � 0;

ra� � 0; �ra �� � 0;

Di �� � �i �Di�; �Di� � �iDi�;

ra �� � �i �ra�; �ra� � �ira�:

(3.7)

Now, it is time to analyze the component structure of our
supermultiplet. First of all, let us define the following
components of our superfields1:
 

�j��0 � ��t�; ��j��0 � ���t�; �j��0 � ��t�;

Di ��j��0 � �i�t�; �Di�j��0 � ��i�t�;

ra ��j��0 �  a�t�; �ra�j��0 � � a�t�;

D2 ��j��0 � iB�t�; �D2�j��0 � i �B�t�;

r2 ��j��0 � iA�t�; �r2�j��0 � i �A�t�;

Dira ��j��0 � Yia�t�; �Di �ra�j��0 � � �Yia�t�:

(3.8)

Not all of these components are independent. Indeed, one
may check that the constraints (3.7) imply the reality of Yia

 Yia � �Yia (3.9)

and impose the following additional relations between the
components A and B:

 A� �A � �4i _�; B� �B � �4i _�; (3.10)

 

_A� _�B � 0: (3.11)

Thus, one may see that among the four auxiliary compo-
nents A, B only one, namely, (ReA� ReB), is independent:
the imaginary parts are expressed through _� while the real
ones are subjected to the differential constraint following
from (3.11)

 

d
dt
�ReA� ReB� � 0) ReA� ReB � m: (3.12)

Therefore, our nonlinear supermultiplet contains eight bo-
sonic components: three physical fields—�, �, �� and five
auxiliary ones—Yia, (ReA� ReB), as well as eight fermi-
onic fields—�i, ��i,  a, � a.

Before going further to construct an invariant superfield
action, let us point the attention on the two essential
features of our construction. First of all, we defined the
components of our nonlinear supermultiplet (3.8) in a
rather nonstandard way. Indeed, one may see that the
components are defined not only as the spinor derivatives
of, say, superfields f�; �; ��g, but also through derivatives of
another set of superfields f�;�; ��g. Of course, the latter
ones are expressed through the former ones. However,
proceeding with such a definition, the relations between
different auxiliary components in (3.8) acquired the sim-
plest form, as in (3.10), (3.11), and (3.12). Second, one may
see from (3.12) that the constant m appears as a component
of our supermultiplet. As we already know from [18–20],
the presence of this constant is crucial as for generating the
potential terms in the action, as well as for the dualization
procedure [12].

While being a quite reasonable choice for establishing
the irreducible constraints for the superfields, the N � 8,
d � 1 superspace is not too suitable for constructing the
invariant action. In one dimension, the N � 4 superspace
provides the best framework for the superfield action.
Fortunately enough, for the case at hand the proper N �
4 superspace is almost evident. Indeed, analyzing the con-
straints (3.7), one may note that fD2; �D2;r

2; �r2g deriva-
tives from all superfields and all their combinations are
expressed in terms of fD2; �D2;r2; �r2g derivatives from
another superfield. For example, the spinor components
with indices 2 defined in (3.8) can be equivalently ex-
pressed as follows:
 

�2 � �i �D1�; ��2 � iD1�;

 2 � i �r1�; � 2 � ir1�:
(3.13)

Thus, all independent components present in our N � 8
nonlinear superfields appear in the expansion over
Grassmann variables with index ‘‘1’’ only. Therefore, the
proper action reads

 S �
Z
dtd2�1d2#1L �

Z
dtD1 �D1r

1 �r1L; (3.14)

where an arbitrary, for the time being, function L depends
on �2 � #2 � 0 projections of our superfields �, u, �u (or
�, �, �� or �, �, ��). Of course, by construction, the action
(3.14) is invariant only under the manifest N � 4 super-
symmetry acting on �1, #1. The invariance under implicit
N � 4 supersymmetry imposes the following constraint on
the function L��; u; �u� � Lj��#�0:

1The higher components in the superfields are easily expressed
through the time derivatives of those in (3.8).
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Of course, it makes no differences which set of superfields
is chosen in the superfield Lagrangian density L. From
now on, let us fix this dependence to be on the set f�; �; ��g.
With this choice the constraint (3.15) acquires the standard
form of the three dimensional Laplace equation on the
sphere S3 in stereographic coordinates
 

�3L� �1�� ���
@2L

@�@ ��
�
@2L

@�2� i
��
@2L

@ ��@�
� i�

@2L
@�@�

� 0:

(3.16)

Thus we conclude that the action (3.14) with the function
L��;�; ��� obeying (3.16) is invariant under the entire N �
8 supersymmetry.

For completing this section, let us note that the con-
straints on the superfields f�; ��g in (3.7) may be written as

 Di��� �Di� � 0; ra� � 0: (3.17)

The first part of these constraints coincides with the con-
straints on the N � 4 nonlinear chiral supermultiplet
[9,20,21], while the second part is just a chirality condition.
So, one may wonder whether it is possible to write the
superfield action for our supermultiplet in a way similar to
the action for the nonlinear chiral supermultiplet, as an
integral over the chiral superspace

 Schir �
Z
dtd2�d2# �F � ��� �

Z
dtd2 ��d2 �#F ���; (3.18)

where F��� is an arbitrary function depending on the
superfield � only. The simplest consideration shows that
the action (3.18) is perfectly invariant with respect to full
N � 8 supersymmetry. The natural question is how the
action (3.18) is related with the action (3.14) which is
supposed to be the most general one. In order to clarify
this point, let us consider an arbitrary term in the expansion
of integrand in (3.18) over � and perform the following
transformations:
 

�r2 �D2

�
an
n!

�n
�
� �r2 �D1

�D2

�
an
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�n
�

� �r2 �D1

�
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�n� 1�!
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�
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�n� 1�!

�n�1D1�
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� �r2 �D1
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�n� 1�!

�n�1ei�n�1��D1�
�

� �r2 �D1D
1

�
�

an
�n� 1��n� 1�!

�n�1

�
:

(3.19)

Playing a similar game with �r2 derivatives we will finally
transform the integrand as follows:

 

�r 2 �D2

�
an
n!

�n
�
� �r1r

1 �D1D1�ei��1�� ����n�2�:

(3.20)

Therefore, the full action (3.18) can be rewritten in the
form given in (3.14) with the Lagrangian

 L chir �
1�� ��

� ��
�ei�F 0 ��� e�i� �F 0��: (3.21)

It is a matter of straightforward calculations to check that
(3.21) obeys the Laplace equation (in the variables �, �,
��)

 

�3L � �1�� ���
@2L

@�@ ��
�
@2L

@�2 � i
��
@2L

@ ��@�

� i�
@2L
@�@�

� 0; (3.22)

as it should be. Thus, the action (3.18) is a particular case of
the more general action (3.14).

IV. BOSONIC SECTOR, POTENTIAL TERMS, AND
DUALIZATION

The full component action is rather lengthy, but its pure
bosonic core is remarkably simple. Integrating in (3.14)
over Grassmann variables, discarding all fermions, and
eliminating the auxiliary fields Yia, ImA, ImB by means
of their equations of motion, we get the following action:
 

S �
Z
dt

@2L
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�
�ReA�@t�� ��� � 4 _� _���2i _��� _��� _� ���
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Z
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�
1

2
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�
@2L
@�@�

��
@2L

@�@ ��
��
��
: (4.1)

Before imposing the last constraint (3.12) and eliminating
the last auxiliary component, let us introduce the new
function h��; �; ��� as follows:

 h��; �; ��� � �
@L
@�
� i

�
�
@L
@�
� ��

@L

@ ��

�
: (4.2)

One may check that this function h also obeys the three
dimensional Laplace equation on the sphere S3

 �1� � ���h� �� � h�� � i�h�� � i ��h� �� � 0: (4.3)

Now, rewriting the action (4.1) in terms of h, taking into
account the constraint (3.12) and eliminating the last aux-
iliary component, we end up with the bosonic action
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The bosonic kinetic terms of the action (4.4) describe just
the sphere S3 in stereographic coordinates modified by an
arbitrary function h�, which is a harmonic function on S3.
In addition, the action contains potential terms which are
completely specified by the same function h. One should
stress that the action (4.4) is very similar to the bosonic part
of the action describing theN � 4 supersymmetric particle
on the sphere S3 [4,16,17]. The essential difference is that
the metrics and the potential terms are defined by the same
harmonic function h, while in the N � 4 supersymmetric
case the metrics and potential terms are not related. Thus,
N � 8 supersymmetry puts a rather strong restriction on
the possible potential terms. As an impressive example,
one may consider the particle on the S3 itself. This case
corresponds to h� � 1, and one may immediately check
that all potential terms disappear, being either constants or
full time derivatives. This is just the result we got in Sec. II,
while performing the reduction from quaternionic N � 8
supersymmetric mechanics.

The last issue we are going to discuss in this section is a
dualization of the coupling constant m entering the action
(4.4) into a fourth physical bosonic field. Following [22],
we treat the self-evident statement m � const as the addi-
tional constraint @tm � 0. If we include this constraint into
our action (4.4) with a Lagrangian multiplier, it will be
possible to express the ‘‘former constant’’m in terms of the
Lagrange multiplier. So, we have
 

Ŝ� S�
1

2

Z
dtm _u

)�
1

8
h�m�

1

2

h�@t�� ���

1�� ��
� i

1

2
�h ��

_���h� _���
1

2
_u� 0:

(4.5)

Now we plug this expression for m back into the action Ŝ.
Doing in such a way we get a four dimensional sigma-
model action with the following bosonic part:
 

Ŝ �
Z
dt
�
h�

�
4 _� _��

�1� � ���2
�

�
_�� i

_���� _� ��

1� � ��

�
2
�

�
1

h�
� _u� i� _��h �� � _�h���2

�
: (4.6)

The action (4.6) depends on one arbitrary function
h��; �; ���, which obeys the Laplace equation on S3. It is
interesting to note that the action (4.6) exhibits the same
target space geometry which appears in the heterotic (4, 0)
sigma-model in d � 2 [14].

In the particular case with h� � 1, h� � 0 the action
(4.6) is reduced to the direct sum of the free actions on S3

and on S1. Another interesting limit corresponds to a

linearized version of the action (4.6). In this case it acquires
the form of the Gibbons-Hawking ansatz for the hyper-
Kähler sigma-model action [23]:
 

~S �
Z
dt
�
h��4 _� _���� _�� i� _���� _� ����2�

�
1

h�
� _u� i� _��h �� � _�h���

2

�
; (4.7)

with the function h obeying the ‘‘flat’’ three dimensional
Laplace equation

 h� �� � h�� � 0: (4.8)

V. CONCLUSIONS

In this paper, proceeding from quaternionic N � 8
supersymmetric mechanics, we performed a reduction
over a bosonic radial variable, ending up with a nonlinear
off-shell supermultiplet with three bosonic end eight fer-
mionic physical degrees of freedom. The simplest action
describes the N � 8 supersymmetric mechanics with the
sphere S3 in the bosonic part of the action. We find the
irreducible constraints on the supermultiplet arising upon
this reduction and construct the most general superfield
action for three dimensional supersymmetric mechanics.
The geometry of the bosonic sector of the most general
sigma-model type action is described by an arbitrary func-
tion obeying the three dimensional Laplace equation on the
sphere S3. Among the bosonic components of this new
supermultiplet there is a constant which gives rise to
potential terms. After dualization of this constant one
may come back to the supermultiplet with four physical
bosons. However, this new supermultiplet is highly
nonlinear.

An obvious project for future study is to investigate the
same type of radii reductions for other linear N � 8 super-
multiplets [15,24]. One may expect to find new nonlinear
supermultiplets which will exhibit a new type of geometry
in the bosonic sector. Another related interesting question
concerns the superfield description of the supermultiplets
depending on the arbitrary function, like our four dimen-
sional nonlinear supermultiplet, which we constructed in
the present paper by dualization of the coupling constant.
Finally, it would be rather interesting to check the integra-
bility of the constructed system for the simplest choices of
the harmonic function h� in a full analogy with the results
presented in [25].
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