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The spatial ’t Hooft loop, which is a disorder parameter dual to the temporal Wilson loop, is calculated
using the nonperturbative Yang-Mills vacuum wave functional determined previously by a variational
solution of the Yang-Mills Schrödinger equation in Coulomb gauge. It is shown that this wave functional
yields indeed a perimeter law for large spatial ’t Hooft loops signaling confinement.
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I. INTRODUCTION

Order and disorder parameters are useful tools in deter-
mining the phase structure of extended physical systems.
The order parameter of confinement in QCD is the tempo-
ral Wilson loop, which shows an area law in the confine-
ment regime and a perimeter law in the deconfinement
region [1]. The temporal Wilson loop is related to the
potential between static quarks and an area law corre-
sponds to a linearly rising quark potential.

The emergence of the area and perimeter laws in the
Wilson loop in the confined and deconfined phases can be
easily understood in a center vortex picture of the Yang-
Mills vacuum [2]. While confinement arises for a phase of
percolated vortices, the perimeter law arises from small
vortex loops, which can link to the Wilson loop only if they
are in the vicinity of the loop. In recent years the center
vortex picture of confinement has received strong support
from lattice calculations [3,4].

Another (dis)order parameter for Yang-Mills theory was
introduced by ’t Hooft [5] and is defined in the following
way. Consider Yang-Mills theory in canonical quantization
(which assumes Weyl gauge A0 � 0), where the spatial
components of the gauge field ~A�x� are the ‘‘coordinates.’’
Let W�A��C� denote the spatial Wilson loop operator. Then
the operator of ’t Hooft’s disorder parameter V�C� for a
closed (spatial) loop C is defined by the commutation
relation

 V�C1�W�C2� � ZL�C1;C2�W�C2�V�C1�; (1)

where Z is a (nontrivial) center element of the gauge group
and L�C1; C2� is the Gaussian linking number of the two
loops C1 and C2. The expectation value of the (spatial) ’t
Hooft loop operator V�C� can serve as an order parameter
for Yang-Mills theory. As argued by ’t Hooft, in the con-
fined (deconfined) phase hV�C�i obeys a perimeter (area)
law [6]. In this sense hV�C�i behaves dual to the temporal
Wilson loop, which shows an area (perimeter) law in the
confined (deconfined) phase. Given the fact that a center
vortex located at a loop C1 and described by a gauge
potential A�C1� produces a Wilson loop C2

 W�A�C1���C2� � ZL�C1;C2�; (2)

the ’t Hooft loop operator V�C� defined by Eq. (1) can be
interpreted as a center vortex creation operator. An analo-
gous monopole creation operator was studied on the lattice
in Ref. [7].

In statistical physics, operators creating topological ex-
citations like vortices or monopoles are referred to as
disorder operators. Their expectation values, referred to
as disorder parameters, are related to the free energy of
the associated topological excitations.

Center vortices can be easily generated on a lattice,
where they represent coclosed �D� 2�-dimensional hyper-
surfaces of plaquettes equal to a nontrivial center element.
Accordingly, the ’t Hooft loop operator can be easily
realized on the lattice. In particular, center vortices wrap-
ping around the whole lattice universe (torus), can be easily
generated, and ’t Hooft loops of maximal size on a finite
lattice can be realized by imposing twisted boundary con-
dition on the links [6]. The free energy of center vortices
wrapping around the (space-time) torus, i.e. ’t Hooft loops
of maximal size, has been calculated in a high-temperature
expansion [8] and measured on the lattice for SU�2� Yang-
Mills theory in Ref. [9] and for a Z�3� random center vortex
model [10] in Ref. [11]. Let us also mention that the energy
per length of a straight infinite magnetic vortex line was
calculated to one loop order as a function of the vortex flux
[12]. It was found that the center vortex flux is energeti-
cally favored and its (free) energy vanishes in the absence
of quarks.

In the present paper we calculate the (spatial) ’t Hooft
loop, i.e. the vacuum expectation value of the operator
V�C� defined by Eq. (1), in continuum Yang-Mills theory.
Recently progress has been made in variationally solving
the Yang-Mills Schrödinger equation in Coulomb gauge
[13–16]. The Coulomb gauge has the advantage that
Gauss’ law can be explicitly resolved resulting in an ex-
plicit expression for the potential between static (color)
charges. Using Gaussian ansätze for the vacuum wave
functional, minimizing the vacuum energy density yields
a set of Dyson-Schwinger equations (DSEs). These equa-
tions can be solved analytically in the infrared [17].
Implementing the so-called horizon condition (i.e. an in-
frared diverging ghost form factor) one finds a solution
which produces a strictly linearly rising confinement po-
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tential for static color charges, provided the curvature of
the space of gauge orbits, induced by the Faddeev-Popov
determinant, is properly included. In this paper we use the
Yang-Mills vacuum wave functional determined in
Refs. [14,16] to calculate the spatial ’t Hooft loop.

The organization of the paper is as follows: In the next
section we present the ’t Hooft loop in Coulomb gauge, and
the loop geometry will be worked out for a planar circular
loop. We will briefly review the Dyson-Schwinger equa-
tions in Coulomb gauge derived in Ref. [14] in Sec. III. In
Sec. IV we study the asymptotic behavior for the ’t Hooft
loop in both the ultraviolet and infrared and extract its large
perimeter behavior. Our numerical results will be pre-
sented in Sec. V. A short summary and some concluding
remarks are given in Sec. VI.

II. THE SPATIAL ’T HOOFT LOOP IN COULOMB
GAUGE

A. The ’t Hooft loop operator

The ’t Hooft loop operator, V�C�, is implicitly defined by
Eq. (1). An explicit realization of ’t Hooft’s loop operator
V�C� in continuum Yang-Mills theory was derived in
Ref. [18] and is given by

 V�C� � exp
�
i
Z
d3xAa

i �x��
a
i �x�

�
; (3)

where �a
i �x� � �i�=�A

a
i �x� is the canonical momentum

operator and

 A a
i ��; x� � �a

Z
�
d2 ~�i�3�x� �x���� (4)

is the gauge potential of a center vortex, whose flux is
localized at the loop C � @�. Here � � �aTa (with Ta
being the generators of the gauge group) denotes a co-
weight vector defined by exp���� � Z with Z being a
(nontrivial) center element of the gauge group.
Furthermore �xi��� denotes a parametrization of the 2-
dimensional surface � bounded by the loop C. For SU�2�
with generators Ta � �

i
2 �a (�a being the Pauli matrices)

the coweight vector of the nontrivial center element Z �
�1 is given by �a � �a32�.

Just as the Wilson loop W�C2� creates an elementary
electric flux along the loop C2, the ’t Hooft loop V�C1�
creates an elementary magnetic flux along C1. In fact, the
gauge potential (4) produces a magnetic flux

 

~B�x� � ~@� ~A��; x� � �
I
@�
d~y�3� ~x� ~y�; (5)

which is localized on C � @�.
Inserting (4) into (3), the spatial integral can be carried

out yielding

 V�C� � exp
�
i�a

Z
�
d2 ~�i�

a
i � �x����

�
: (6)

Since �a
i �x� is the operator of the electric field, it is seen

that the ’t Hooft loop measures the electric flux through the
surface � enclosed by the loop C � @�, in the same way
as the (spatial) Wilson loop W�C� measures the magnetic
flux through a surface enclosed by the loop C.

The loop operator (3) is not manifestly gauge invariant.
However, it produces a gauge invariant result, when it acts
on a gauge invariant wave functional, see Ref. [18] for
more details.

Consider the action of the loop operator (3) on a gauge
invariant wave functional ��A�. The ’t Hooft loop operator
is analogous to the translation operator eiap̂ in quantum
mechanics which shifts the argument of a wave function
exp�iap̂�’�x� � ’�x� a�. Thus, when acting on wave
functionals the loop operator (3) shifts the ‘‘coordinate’’
~A�x� by the center vortex field A�x�

 V�C � @����A� � ��A�A���� (7)

and in this sense is a true center vortex generator.
Below, we first derive the expression for the ’t Hooft

loop in Coulomb gauge and second calculate the ’t Hooft
loop for the specific vacuum wave functional obtained in
Refs. [14–16]. Furthermore we will explicitly work out the
’t Hooft loop for a planar circular loop.

B. The vacuum expectation value of the ’t Hooft loop
operator

We are interested in the vacuum expectation value of the
’t Hooft loop operator (3). The exact vacuum wave func-
tional is not known but recently progress has been made in
determining the Yang-Mills vacuum wave functional
�0�A� variationally in Coulomb gauge ~@ ~A � 0 [13–16].
The wave functionals in Coulomb gauge satisfy Gauss’
law1 and hence should be regarded as the gauge invariant
wave functionals restricted to transverse gauge fields.
Using Eq. (7) and implementing the Coulomb gauge by
means of the Faddeev-Popov method, we obtain for the
expectation value of the ’t Hooft loop operator in Coulomb
gauge wave functionals

 hV�@��i � h�jV�@��j�i

�
Z
DA?J�A?��	�A?���A? �A?����; (8)

where

 J�A?� � det��D̂@� (9)

is the Faddeev-Popov determinant with D̂ being the cova-
riant derivative in the adjoint representation.2

1Gauss’ law is explicitly resolved in deriving the Yang-Mills
Hamiltonian in Coulomb gauge.

2The Fadeev-Popov determinant provides the Haar measure of
the gauge group [19].

H. REINHARDT AND D. EPPLE PHYSICAL REVIEW D 76, 065015 (2007)

065015-2



Because of the transversal property of the field variable
A?i �x� only the transversal part A?�@�; x� of the center
vortex gauge potential (4) enters, which is given by [20]

 

A?
i �@�; x� � ��

I
@�
d ~�ik@

�x
kD�x� �x����;

d~�ik � �ikld �xl;
(10)

where D�x� is the Green’s function of the 3-dimensional
Laplacian defined by

 � �xD�x� � �3�x�: (11)

Note that the transversal part A?�@�; x� depends mani-
festly only on the boundary @�.3

In Ref. [14] the following ansatz was used for the
vacuum wave functional:

 

��A?� �N
1�������������
J�A?�

p exp��S0�A
?��;

S0�A
?� �

1

2

Z
d3xd3x0A?ai �x�tij�x�!�x; x

0�A?aj �x
0�;

(14)

where tij�x� � �ij � @
x
i @

x
j=@

2
x denotes the transversal pro-

jector and !� ~x; ~x0� is a variational kernel determined by
minimizing the vacuum energy density. The ansatz (14) for
the wave functional is motivated by the form of the wave
function of a point particle in a spherically symmetric (l �
0) s-state, which is of the form ��r� � ��r�=r, where J �
r2 is the Jacobian corresponding to the change from
Cartesian coordinates to spherically symmetric coordinates
(for s-states the scalar product is given by h�1j�2i �R
drr2�	1�r��2�r�). Like in the case of the point particle

in a spherically symmetric state, the ansatz (14) simplifies
the actual calculation, since it removes the Jacobian from
the integration measure. Let us stress, however, that both
the ultraviolet and the infrared properties of the theory do
not depend on the specific choice of the preexponential
factor. In fact it was shown [15] that replacing J��1=2� by
J�� with an arbitrary real � yields, after minimizing the
energy density (to 2-loop level), a vacuum wave functional
whose infrared limit is independent of the choice of �.
(The choice � � 1

2 simplifies, however, the calculations.)
For the wave functional (14) the expectation value of the

’t Hooft loop (8) becomes

 

hV�@��i � jN j2
Z

DA?J1=2�A?�J��1=2��A? �A?�

� exp���S0�A?� � S0�A? �A?���: (15)

In Ref. [15] it was shown, that to 2-loop level in the energy
the Jacobian can be expressed as

 J�A� � const


 exp
�
�
Z
d3xd3x0A?ai �x�tij�x�	�x; x

0�A?aj �x
0�

�
;

(16)

where [14]
 

	�x; y� � �
1

4

1

N2
C � 1

�abtkl�x�

�

�
�

�������� �2 lnJ�A?�

�A?ak �x��A
?b
l �y�

���������
�

(17)

is the ‘‘curvature’’ of the space of gauge orbits. This
quantity gives the ghost loop contribution to the gluon
self-energy. The ghost propagator is defined by

 h jh ~xj��D̂@��1j ~x0ij i �
�
 
�������� d
��

�������� 
�
; (18)

where d denotes the ghost form factor.
Using the representation (16) the functional integral in

Eq. (15) becomes Gaussian and we obtain
 

hV�@��i � exp
�
�

1

2

Z
d3xd3yAa?

i ��; x�tij�x�K�x; y�

�A?a
j ��; y�

�
� exp��S�; (19)

where we have introduced the abbreviation

 K�x; y� � !�x; y� � 	�x; y� �
1

2

Z
d3zd3z0�!�x; z�

� 	�x; z��!�1�z; z0��!�z0; y� � 	�z0; y��: (20)

If one uses the more general ansatz for the vacuum wave
functional considered in Ref. [15],

 ��A� � J�A���e��1=2�
R
A!A; (21)

and uses the representation (16) for the Jacobian, one still
finds the form (19) for the ’t Hooft loop, however, with the
kernel

 K � �� 	� 1
2��� 	��

�1��� 	�; (22)

where

 � � !� �1� 2��	 (23)

is the inverse (3-dimensional) gluon propagator. Note,
Eq. (22) arises from Eq. (20) with ! replaced by � (23).
In Ref. [15] it was shown, that to 1-loop level (i.e. 2 loops
in the energy density) the solutions of the Schwinger-

3The longitudinal part of A��; x� is given by [20]

 A k��; x� � ��@���; x�; (12)

where

 ���; x� �
Z

�
d2 ~�k@

x
kD�x� �x���� (13)

is the solid angle subtended by the surface � at the point x.
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Dyson equations for � and 	 are independent of the choice
of �. Thus, we obtain the same expectation value for the
’t Hooft loop for all choices of � and for convenience we
will continue to choose � � 1=2 for which � � !. We
should, however, stress that there are other quantities (like
e.g. the 3-gluon vertex), which are sensitive to the choice of
� [17].

Using Eq. (10) one finds after straightforward evaluation
for the exponent in the ’t Hooft loop (19)

 S � 2�2
I
C
yk
I
C
dzl

Z
d3xtkl� ~y�K� ~y; ~x�D� ~x; ~z�: (24)

Because of the translational invariance of the vacuum the
kernel K� ~x; ~y�, as well as the Green function D� ~x; ~y�,
depends only on the distance j ~x� ~yj and it is convenient
to use Fourier representation
 

D� ~x� ~x0� �
Z d3q

�2��3
ei ~q� ~x� ~x

0�D�q�; D�q� �
1

q2 ;

tkl�q̂� � �kl � q̂kq̂l; q̂ �
~q
j ~qj
: (25)

Then the kernel (20) becomes

 K�q� � �!�q� � 	�q��
�

1�
1

2

!�q� � 	�q�
!�q�

�

�
1

2
!�q�

�
1�

�
	�q�
!�q�

�
2
�
: (26)

We obtain then from Eq. (24)

 S�C� �
Z 1

0
dqK�q�H�C; q�; (27)

where the function

 H�C; q� �
1

4�

I
C
dyk

I
C
dzl

Z
d�̂qtkl�q̂�e

i ~q
� ~y�~z� (28)

contains the geometry of the loop C considered, but is
independent of the properties of the Yang-Mills vacuum,
which are exclusively contained in the kernel K.

C. Loop geometry

We can explicitly carry out the integral over the solid
angle

R
d�̂q in (28). Expressing the unit vector q̂ in terms

of spherical coordinates �, �

 q̂ � q̂��; �� � �sin� cos�; sin� sin�; cos�� (29)

we have

 

Z 2�

0
d�tkl�q̂��; ��� � 2��kl

	
1� 1

2sin2�; k � 1; 2
1� cos2�; k � 3

:

(30)

Putting the 3-axis of ~q-space parallel to the vector ~y� ~zwe
find for the relevant integral

 

Z
d�̂qtkl�q̂�ei�cos�� 2��kl

Z 1

�1
dzei�z

	 1
2�1� z

2�

1� z2

� 2��kl

	
j0���� j000 ���; k� 1;2
2�j0���� j000 ����; k� 3

;

(31)

where � � qj ~y� ~zj and we have introduced the spherical
Bessel function j0��� �

sin�
� .

To proceed further with the evaluation of the geometric
function H�C; q� (28) we have to adopt an explicit realiza-
tion of the loop C. For simplicity we will choose a planar
circular loop of radius R, which we put for convenience in
the 1-2 plane. Then it is convenient to use cylindrical
coordinates in ~x-space and to parametrize the loop by the
azimuthal angle ’

 ~x�’� � R~e
�’�; ~e
�’� � ~e1 cos’� ~e2 sin’;

d ~x � R~e’�’�d’; ~e’ � �@’ ~e
�’�:
(32)

With Eq. (31) the geometric function (28) then becomes

 H�C; q� �
1

2
R2

Z 2�

0
d’

Z 2�

0
d’0 ~e’�’�


 ~e’�’
0�f�Rqj ~e
�’� � ~e
�’

0�j�; (33)

where we have introduced the abbreviation
 

f��� �
1

2

Z 1

�1
dz�1� z2�ei�z �

1

2

Z 1

�1
dz�1� z2� cos��z�

� j0��� � j000 ���: (34)

Using

 j00�x� � �j1�x�; 3j01�x� � j0�x� � 2j2�x� (35)

the function f�x� (34) can be expressed as

 f�x� � 2
3�2j0�x� � j2�x��: (36)

Since j0�0� � 1 and jl>0�0� � 0 we have f�0� � 4
3 and the

integrand in the angular integral is regular everywhere.
Note also that j0�x�, j000 �x�, and f�x� (34) are even functions
of x.

The expression (33) can be further simplified by using
 

~e’�’� 
 ~e’�’
0� � cos�’� ’0�;

j ~e
�’� � ~e
�’
0�j �

����������������������������������������
2�1� cos�’� ’0��

q (37)

resulting in
 

H�C; q� �
1

2
R2

Z 2�

0
d’

Z 2�

0
d’0 cos�’� ’0�

� f�Rq
���������������������������������������
2�1� cos�’� ’0�

q
�: (38)

Hence the integrand in (33) depends only on the difference
’� ’0. Therefore we expect that one of the angular in-
tegrals can be trivially taken. This, in fact, turns out to be
the case, although the integrations run over finite intervals.
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In the appendix we show that the geometric factor (33) can
indeed be reduced to
 

H�C; q� � 4�R2A�Rq�;

A�x� �
Z �=2

0
d��1� 2sin2��f�2x sin��:

(39)

Let us stress that the function H�C; q� reflects only the
geometry of the considered loop C and does not contain
any dynamical information as is clear from its definition
given in Eq. (28). It contains only the kinematical infor-
mation about the transversality of the gauge field due the
presence of the transversal projector. Note also that the
integrand in Eq. (39) is well defined in the whole integra-
tion interval, in particular, the function f�x� is well defined
at the origin. After a sequence of manipulations (see the
appendix) this integral (39) can be done analytically with
the result (x � qR)
 

A�x� �
�
4x
�2xJ0�2x���x�J1�2x�H0�2x�� J0�2x�H1�2x��

� 2J1�2x���
3�2

16x2 �J2�2x�H1�2x�� J1�2x�H2�2x��;

(40)

where J��x� and H��x� are the ordinary Bessel functions
and the Struve function, respectively. The asymptotic
forms of the Bessel and Struve functions for small and
large arguments are known. This yields the following
asymptotic behaviors of the angular integral A�x� for small
x

 A�x� �
2�
15
x2 �

�
35
x4 � 
 
 
 ; x! 0 (41)

and for large x
 

A�x� �
�
4x
�

����
�
p

2
cos

�
2x�

�
4

�
1�����
x3
p �O

�
1�����
x5
p

�
; x!1:

(42)

Figure 1 shows the full function A�x� together with its
asymptotic forms. The asymptotic forms provide excellent
approximations in the small and large momentum region.
In the intermediate momentum range 1:5 � x � 2:5 we
Taylor expand A�x� around x � 2 up to fourth order.
Matching the Taylor expansion at x � 1:5 and x � 2:5,
respectively, with the infrared and ultraviolet asymptotic
forms yields a very accurate representation of the function
A�x� in the whole momentum range, see Fig. 1. This
representation is used in the numerical calculations.

Inserting Eq. (39) into Eq. (27) we find for the exponent
of the ’t Hooft loop

 S�R� � 4�R2
Z 1

0
dqK�q�A�Rq�: (43)

We are interested in the large R behavior of S�R�. For this
purpose we study first the UV and IR behavior of the

integrand, in particular, of the kernel K�q�. This requires
the asymptotic behaviors of the solutions of the Dyson-
Schwinger equations.

III. THE DYSON-SCHWINGER EQUATIONS
REVISITED

A. Ultraviolet behavior and renormalization

Consider the (unrenormalized) gap equation obtained in
Ref. [14] by variation of the energy density with respect to
the kernel !

 !2�k� � k2 � 	2�k� � I!�k� � I0
!; (44)

where

 	�k� � I	�k� �
NC
4

Z d3q

�2��3
�1� �k̂ q̂�2�

d�k� q�d�q�

�k� q�2
;

(45)

 

I!�k� �
NC
4

Z d3q

�2��3
�1� �k̂ q̂�2� 


d�k� q�2f�k� q�

�k� q�2



�!�q� � 	�q� � 	�k��2 �!�k�2

!�q�
; (46)

 I0
! �

NC
4
g2
Z d3q

�2��3
�3� �k̂ q̂�2�

1

!�q�
(47)

are all UV-divergent integrals, so that this equation needs
regularization and renormalization. In the above integrals
d�k� and f�k� are, respectively, the ghost (see Eq. (18)) and
the Coulomb form factor, which are determined by two
further DSEs, whose renormalization is described in detail
in Ref. [14].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1  2  3  4  5  6  7  8  9  10

A
(x

)

x

Numerical value
IR expansion

UV series
Taylor expansion around x=2

FIG. 1. The angular function A�x� (40): the full numerical
result (solid line), its infrared (dashed line), and ultraviolet (short
dashed line) asymptotic behaviors defined by Eqs. (41) and (42)
and its Taylor expansion around x � 2 (dotted line). See text for
more details.
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We renormalize the gap equation (44) in the standard
way by subtracting it at an arbitrary renormalization point
�. Defining

 �	�k� � 	�k� � 	��� � I	�k� � I	��� (48)

and using �	��� � 0 we obtain

 !2�k� � k2 � �	2�k� �!2��� ��2 � 2 �	�k�	���

� I!�k� � I!���: (49)

The renormalized curvature �	�k� (48) is UV finite. The
crucial observation now is that in I!�k� (46) the UV-
divergent piece 	��� drops out. We can hence replace
	�k� in I!�k� (46) by �	�k�. Analogously to Ref. [14] we
rewrite the Coulomb integral I!�k� (46) as

 I!�k� � I�2�! � �	��k� � 2 �	�k�I�1�! � �	��k�; (50)

where the integrals
 

I�n�! �	��k� �
NC
4

Z d3q

�2��3
�1� �k̂ q̂�2� 


d�k� q�2f�k� q�

�k� q�2



�!�q� � 	�q��n � �!�k� � 	�k��n

!�q�
(51)

are for n � 1 and n � 2, respectively, linearly and quad-
ratically ultraviolet divergent, while the differences

 �I�n�! �k� � I�n�! � �	��k� � I
�n�
! � �	���� (52)

are ultraviolet finite. From Eq. (50) we obtain with �	��� �
0

 I!�k� � I!��� � �I�2�! �k� � 2 �	�k�I�1�! �k�: (53)

With this result the renormalized gap equation (49) can be
rewritten as
 

!2�k� � �	2�k� � k2 � �0 � �I�2�! �k�

� 2 �	�k���� �I�1�! �k� � �I�1�! �0��; (54)

where we have introduced the abbreviations

 �0 � !2��� ��2; (55)

 � � 	��� � I�1�! �0�: (56)

Since !��� and � are finite constants, �0 is a finite
renormalization constant. The only singular piece in the
gap equation (54) is the quantity � (56). Ignoring the
anomalous dimensions both 	��� and I�1�! �0� are linearly
UV divergent. These linearly diverging terms of the 3-
dimensional canonical Hamilton approach correspond to
quadratically divergent terms in the 4-dimensional cova-
riant Lagrange formulation. As is well known these singu-
larities have to cancel by gauge invariance. We should
hence ignore these singularities (which are artifacts due
to our approximations) and keep only the finite parts of

	��� and I�1�! �0�. In the following we therefore consider
	���, I�1�! �0�, and thus � as finite renormalization
constants.

The novel result of the above consideration is that in the
gap equation there are only two independent renormaliza-
tion constants, �0 and �. The renormalized gap equation
obtained in Ref. [14] seems to depend explicitly on the
three renormalization constants: �, �0, and 	���. The
constant 	��� sneaked formally into the renormalized
gap equation since it was not realized that this quantity
drops out from the Coulomb integral I!�k� (46). However,
it was already found empirically in Ref. [14] that the
numerical solutions to the DSE are practically independent
of 	���. Indeed, by noticing that the integrals I�n�! �	��k�
defined by Eq. (51) satisfy the relations

 I�1�! � �	� 	�����k� � I�1�! � �	��k�; (57)

 I�2�! � �	� 	�����k� � I�2�! � �	��k� � 2	���I�1�! � �	��k� (58)

one shows that the renormalized gap equation (54) agrees
with the one derived in Ref. [14]. Thus all results derived in
Ref. [14] about the behavior of the solutions of the Dyson-
Schwinger equations remain true. This refers, in particular,
to the fact that both the infrared and the ultraviolet behav-
ior of the solutions of the gap equation are insensitive to the
precise value of the renormalization constants (except for
the renormalization constant of the ghost form factor
which is fixed, however, by the horizon condition, see
below). While the (renormalized) gap equation obtained
by minimizing the energy density does not depend on the
choice of 	��� (but merely on the values of � and �0) other
observables may explicitly depend on 	���. In fact, we
will see that the ’t Hooft loop does depend on 	���.

The DSE resulting from the minimization of the energy
density can be solved analytically not only in the ultravio-
let where perturbation theory is applicable but also in the
infrared [14,17].

B. Infrared behavior

In Ref. [14] it was shown that the infrared behavior of
the solutions of the DSE is rather uniquely determined
once the so-called ‘‘horizon condition’’ [21], i.e. an infra-
red divergent ghost form factor, d�1�k � 0� � 0, is imple-
mented. This condition turns out to be absolutely necessary
in D � 2� 1 dimensions to obtain a self-consistent solu-
tion to the Dyson-Schwinger equation in Coulomb gauge
[22]. In D � 3� 1 this condition is in accord with the
Gribov-Zwanziger confinement scenario, which is consis-
tent with the Kugo-Ojima confinement criteria in Landau
gauge [23].

Infrared analysis of the ghost (or gluon) Dyson-
Schwinger equation (in the rainbow-ladder approxima-
tion), implementing the horizon condition d�1�k � 0� �
0 and using the power-law ansätze
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 !�k� �
a
k�
; d�k� �

b

k
(59)

yields the sum rule (in D � d� 1 dimensions) [17]

 � � 2� 2� d (60)

due to the nonrenormalization of the ghost-gluon vertex.
This sum rule also guarantees that 	�k� (45) (and thus �	�k�
(48)) has the same infrared power as !�k�, i.e.

 �	�k� �
u
k�
; k! 0: (61)

The horizon condition implies > 0 and for > d�2
2 the

gluon energy !�k� (and thus also �	�k�) is infrared diver-
gent, i.e. �> 0. It can be shown that the gap equation has
indeed a consistent solution where both !�k� and �	�k� are
infrared divergent and in addition their difference (!�k� �
�	�k�) is infrared finite.

Indeed if (!�k� � �	�k�) is infrared finite it follows that
I�n�! �k� and thus �I�n�! �k� are infrared finite. Then for infra-
red divergent !�k� and �	�k� the gap equation (54) reduces
for k! 0 to

 �!�k� � �	�k���!�k� � �	�k�� � 2� �	�k�: (62)

Since !�k� and �	�k� have the same infrared exponent it
follows from (62) that the infrared limit of the gap equation
is given by

 lim
k!0
�!�k� � �	�k�� � � (63)

or expressed in terms of the total curvature 	�k� � �	�k� �
	���

 lim
k!0
�!�k� � 	�k�� � c; c � �� 	���: (64)

Instead of 	��� we can use c as the independent renor-
malization constant. Equation (63) implies (cf. Eqs. (59)
and (61))

 u � a: (65)

Equation (63) along with the ghost DSE in the infrared
limit can be solved analytically for the infrared exponents
yielding two solutions

   0:796;  � 1: (66)

Only the latter one gives rise to a strictly linear rising static
quark potential at r! 1,

 V�r� �
1

2�2

Z 1
0
dk�d�k��2

�
1�

sinkr
kr

�
: (67)

Here we have assumed that the so-called Coulomb form
factor can be put to one [14]. The first term in the bracket
represents the self-energies of the static (quark and anti-
quark) color charges. In this paper we will use the solution
 � 1 because the resulting linear rise of the static poten-
tial allows us to fix the scale by the (Coulomb) string
tension.

By definition the (Coulomb) string tension is given by
that part of

 

dV
dr
� �

1

2�2

Z 1
0
dkk�d�k��2

�
d
dx

sinx
x

�
x�kr

; (68)

which (for large r) is independent of r. This part is ex-
clusively determined by the infrared behavior of d�k�.
Inserting the infrared form (59) (with  � 1) into
Eq. (68) we obtain for the Coulomb string tension

 �C � �
b2

2�2

Z 1
0

dx
x

d
dx

�
sinx
x

�
: (69)

This integral can be done, yielding

 �C �
b2

8�
: (70)

Thus the infrared coefficient of the ghost form factor can
be explicitly expressed by the string tension. The infrared
analysis of the ghost Dyson-Schwinger equation provides
the relation between the infrared coefficients in (59) [17]

 a �
b2Nc

4�4��d=2

��d�2 �
2��1� d

2� �

��d� ���1� 
2�

2
: (71)

Hence the infrared coefficient a of !�k� and 	�k� (see
Eqs. (59), (61), and (65)) can be also expressed by the
string tension. For d � 3 and  � 1 the last relation sim-
plifies to

 a � b2 Nc
8�2 : (72)

Lattice calculations [24,25] show that �C is by a factor of
1.5–3 larger than the string tension � extracted from the
Wilson loop, in accord with the fact that �C gives an upper
bound to � [26]. Assuming a value of the Coulomb string
tension �C � 1:5��� � �440 MeV�2� we find

 a � 0:185 GeV2; b � 2:702 GeV: (73)

These values are in remarkable agreement with the figures
extracted from the numerical solutions of the Dyson-
Schwinger equations.

IV. THE ASYMPTOTIC BEHAVIOR OF THE
’T HOOFT LOOP

Given that !�k� and 	�k� are both infrared singular and
satisfy the relation (64) it follows that the infrared limit of
the kernel K�k� (26) is given by

 lim
k!0

K�k� � lim
k!0
�!�k� � 	�k�� � c: (74)

As we will explicitly see further below, it is the infrared
behavior of K�k� which determines the large R behavior of
the ’t Hooft loop. The fact that K�q� is infrared finite (see
Eq. (74)) restricts the possible R dependence of S (43)
drastically.
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A. Renormalization of the ’t Hooft loop

In Ref. [14] it was shown that in the ultraviolet (k! 1)

 !�k� ! k;
	�k�
!�k�

!
c0�������
lnk�

q ; (75)

where � is some arbitrary energy scale (renormalization
point) and c0 is some constant whose precise value depends
on the choice of �. The first relation expresses asymptotic
freedom, i.e. for large momenta gluons become photons,
while the second relation expresses the presence of an
anomalous dimension. With (75) for large q! 1 the
kernel K�q� defined by Eq. (26) behaves asymptotically
as K�q� ! 1

2 q. Since A�x � qR� � 1
x for x! 1, see

Eq. (42), it follows that the exponent of the ’t Hooft loop
S (43) is linearly UV divergent. UV singularities are ex-
pected given the singular nature of the ’t Hooft loop. There
are also UV-subleading terms in K�q� which give rise to
UV singularities in S (43). To extract these terms let us
parametrize !�q� by

 !�k� �
a
k
� a0 � k; (76)

which is in accord with the asymptotic IR and UV behavior
and which gives a good approximation to the numerical
solution of the gap equation in the whole momentum range
(see Fig. 2). For the solution presented in Fig. 2 we find
numerically a � 0:61 and a0 � �0:078.

The leading UV terms of K�q� giving rise to UV singu-
larities in S (43) are then given by

 K�q� !
1

2
�q� a0�

�
1�

�c
lnq�
�
c�1

q
� . . .

�

�
1

2
q�

1

2
q

�c
lnq�
�

1

2
�a0 � c�1� � a0

�c
lnq�
� . . .

(77)

with unknown coefficients �c, c�1 arising from the UV
expansion of 	�q�. These terms produce UV singularities
of S (43) of the form (	-UV cutoff)

 �	; li�	�; ln	; ln�ln	�; (78)

where li�x� is the logarithmic integral, which behaves for
large x as li�x� � ��x� �O�

���
x
p

lnx�, where ��x� is the
number of primes less than or equal to x. In practice it is
not possible to determine the various coefficients of the
UV-asymptotic expansion of 	�q� with sufficient accuracy.
We therefore propose to eliminate the UV divergencies of
S (43) by subtracting from the kernel K�q� (26) the follow-
ing UV-leading one

 K0�q� �
1

2
�q� a0�

�
1�

�
	�q�
!�q�

�
2
�
; (79)

which results from K�q� (26) by replacing !�q� by its UV-
leading and next-to-leading order terms (see Eq. (76)),
while keeping the ratio 	�q�=!�q� fixed. The kernel
K0�q� (79) contains all the UV-leading terms which give
rise to UV singularities in S. In addition (since we have
kept fully (1� �	!�

2)) it also contains terms which produce
finite contributions to S. However, these terms are negli-
gible compared to the dominating finite terms of S pro-
duced by the full K. The reason is the following: For large
R the ’t Hooft loop is dominated by the infrared part of
K�q� as one explicitly notices by rescaling the integration
variable q! qR � x in (43) and as we will explicitly show
further below. Furthermore, since !�q� � 1=q for q! 0,
in the infrared K0�q� is by a power of q suppressed relative
toK�q� and thus gives subleading contributions to the large
R behavior of the ’t Hooft loop. By the same token,
elimination of the UV-divergent terms from S by replacing
K�q� by K�q� � K0�q� does not change the large R behav-
ior of S.

We thus isolate the ultraviolet divergent parts of S (43)
by writing

 S � �S� S0� � S0; (80)

where S0 results from S (43) by replacing K�q� (26) by
K0�q� (79). By construction S� S0 is UV finite. The
leading UV-divergent term S�l�0 of S0 is independent of R
and exp��S�l�0 � � Z can be absorbed into the renormaliza-
tion of the wave functional Z1=2�! �. The remaining
terms in S0 have weak R dependences (at most logarithmic)
and as explained above their elimination does not spoil the
use of the renormalized ’t Hooft loop

 

�S � S� S0 � 4�R
Z 1

0
dx
�
K
�
x
R

�
� K0

�
x
R

��
A�x� (81)

as a disorder parameter, i.e. they do not convert a perimeter
law into an area law or vice versa. Equation (81) explicitly
shows that the large R behavior of the ’t Hooft loop is
determined by the infrared behavior of K�q�.
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FIG. 2. The gluon energy resulting from the numerical solution
of the Dyson-Schwinger equation [16] and its parametrized form
(76).
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B. The large R behavior of the ’t Hooft loop

We are interested in the ’t Hooft loop, i.e. in the quantity
�S�R� defined by Eq. (81) for large R! 1. If we could take
in Eq. (81) the limit R! 1 before taking the momentum
integral, using

 lim
R!1

K
�
x
R

�
� K�0� � c; lim

R!1
K0

�
x
R

�
� K0�0� � 0;

(82)

we would obtain a perimeter law

 

�S � R�; � � 4�c
Z 1

0
dxA�x� (83)

for c � 0. However, the remaining integral (83) is UV
divergent while the original integral (81) is convergent.
Thus we must not take the limit R! 1 before having
carried out the momentum integral: In fact, we will
show below that a finite c � 0 gives rise to a large R
behavior �S�R� � R lnR, while c � 0 yields a perimeter
law �S�R� � R.

The fact that we must not take the limit R! 1 in (81)
before taking the integral does not, however, imply that �S is
not dominated by the infrared part of K�q�. We will ex-
plicitly show further below that it is the infrared part of the
momentum integral (81) (and thus of K�q�) which deter-
mines whether an area law or perimeter law arises.

Since!�k� � 	�k� is infrared finite (by the gap equation,
see Eq. (63)) it is of the form

 !�k� � 	�k� � �Ck�; � � 0; k! 0; (84)

and by Eq. (74), K�k� has the same IR behavior4

 K�k� � �Ck�; � � 0; k! 0: (85)

Since the large R behavior of S�R� is determined by the
infrared behavior of K�q� and since the UV behavior of
K�q� and A�Rq� determines the convergence property of
the momentum integral, for the following qualitative con-
siderations it is sufficient to approximate A�x� by the
interpolating formula

 A�x� �
2�
15

x2

�x3 � 1
; � �

8

15
(86)

which has the correct IR and UV behavior given in
Eqs. (41) and (42), respectively. Along the same lines we
use the interpolating formula

 �K�q� :� K�q� � K0�q� � �C
�q=q0�

�

�q=q0�
��1 � 1

(87)

which has the correct IR and UV behavior. With Eqs. (86)
and (87) we find from (81)

 

15

8�2 �CR
�S �

Z 1
0
dx

x�q0R

x��1 � �q0R���1

x2

�x3 � 1

�: IIR � IUV: (88)

To estimate this integral we split the integration range into
the intervals �0; q0R� and �q0R;1� and denote the corre-
sponding integrals by IIR and IUV. Consider first IIR where
0 � x � q0R. An upper and lower bound to this integral is
obtained by replacing 1

x��1��q0R���1 by 1
�q0R���1 and

1
�q0R���1��q0R���1 �

1
2

1
�q0R���1 , respectively. Thus we obtain

 

1
2 I

0
IR < IIR < I0

IR; (89)

where

 I0
IR �

�
1

q0R

�
� Z q0R

0
dx

x��2

�x3 � 1
: (90)

An upper and lower bound to the integral IUV is obtained
by replacing 1

x��1��q0R���1 by 1
x��1 and 1

x��1�x��1 �
1

2x��1 , re-

spectively. This yields

 

1
2 I

0
UV < IUV < I0

UV; (91)

where

 I0
UV � q0R

Z 1
q0R

dx
x

�x3 � 1

�
1

3�
y
� ���

3
p �

�
2
� arctan

2y� 1���
3
p

�
�

1

2
ln
y2 � 2y� 1

y2 � y� 1

�
:

(92)

Here we have introduced the abbreviation y � �1=3q0R.
Note that I0

UV is independent of � and thus independent of
the IR behavior of �K�q�. For large R the last expression
becomes

 I0
UV �

1

�

�
1�

1

4�
1

�q0R�
3

�
� 0

�
1

R5

�
: (93)

Thus the UV part contributes for large R always a perime-
ter term to �S (88). It is the IR part, IIR, or more precisely the
infrared exponent � of K�q�, which decides whether the
’t Hooft loop has an area law or a perimeter law.

Consider first � � 0. In this case the IR integral (90)
becomes

 I0
IR �

Z qR

0
dx

x2

�x3 � 1
�

1

3�
ln�1� ��q0R�

3� (94)

and gives rise to an R dependence

 

�S� R lnR; R! 1: (95)

Consider now the case c � 0, i.e. � > 0. For � > 0 the IR
integral (90) can be expressed as

4In the notation of Eq. (74) � > 0 corresponds to c � 0 and
� � 0 to c � �C � 0.
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 IIR�R� � ��
�

3���1=3q0R�
� sin

��
3

�
�1

�
1

3�


�
�

1

��q0R�3
; 1;�

1

3
�
�
; (96)

where

 
�z; s; �� �
X1
k�0

zk

��� k�s
(97)

is the Lerch transcendent, which is a generalization of the
Hurwitz zeta function and the polylogarithm function and
is defined for jzj< 1 and� � 0;�1; . . . For large Rwe can
expand 
�z; 1;� 1

3�� in powers of z � �1=��q0R�3, keep-
ing only the first two terms in (97). In this order we obtain

 

IIR�R� � ��
�

3���1=3q0R�
� sin

��
3

�
�1
�

1

��

�
1

3�
1

��q0R�
3�1� 1

3��
: (98)

For �! 0 the first two terms have simple poles which
cancel. For � > 0 the second term is the leading one for
large R, and gives rise to a perimeter contribution to �S (88).
Since the UV integral (93) contributes a perimeter term
independent of � we obtain for � > 0 indeed a perimeter
law for the ’t Hooft loop.

We have thus shown that the Yang-Mills vacuum wave
functional obtained in the variational solution of the Yang-
Mills Schrödinger equation in Coulomb gauge [14–16]
yields indeed a perimeter law for the ’t Hooft loop, pro-
vided the renormalization constant (74) is chosen c � 0.
The ’t Hooft loop is thus more sensitive to the details of the
wave functional than the confinement properties, i.e. the
infrared behaviors of the ghost and gluon propagators,
which turned out to be independent of the choice of the
renormalization constants once the horizon condition is
implemented [14,16]. The choice c � 0 is also preferred
by the variational principle as we will discuss in Sec. VI.

V. NUMERICAL RESULTS

The above observed qualitative behavior of the ’t Hooft
loop is confirmed by the numerical calculations. The DSEs
resulting from the variational solution of the Yang-Mills
Schrödinger equation in Coulomb gauge derived in
Ref. [14] and reviewed in Sec. III are solved numerically
as described in Ref. [16].

Since Yang-Mills theory is a scale-free theory, the DSEs
can be entirely expressed in terms of dimensionless quan-
tities defined by rescaling all dimensionful quantities with
appropriate powers of a (so far arbitrary) scale �:

 

�k � k=�; �� � �=� � 1; �� � �=�;

��0 � �0=�2; �!� �k� � !� �k��=�;

�	� �k� � 	� �k��=�; �d� �k� � d� �k��; �f� �k� � f� �k��:

(99)

From the numerical solution of the DSEs we calculate the
dimensionless Coulomb string tension ��c (69), which is
related to the physical (Coulomb) string tension �c by

 �c � �2 ��c: (100)

The last relation fixes the scale � once a specific value is
assigned to �c. Note that ��c depends, in principle, on the
renormalization constants ��, ��0.

Figure 3 shows the difference �!� �k� � �	� �k� for various
choices of the remaining renormalization constants ��, ��0.
In Table I we quote the resulting dimensionless Coulomb
string tension ��c. For all these solutions the kernel K�q�
(26) of the ’t Hooft loop has practically the same infrared
behavior (74) and (84) with �  1. With these solutions
the quantity �S�R� (81) of the ’t Hooft loop is calculated.
Thereby we use for the angular integral A�x� (40) the
analytic representation presented at the end of Sec. II. In
the numerical evaluation of the momentum integral in �S
(81) we split the UV part of A�x� (see Eq. (42)) into an
oscillating and nonoscillating part. The nonoscillating part
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FIG. 3. The difference �!� �k� � �	� �k� for various choices of the
renormalization constants. For all solutions presented here the
renormalization constant c � 0 (see Eq. (64)) is chosen, result-
ing in an infrared-vanishing �!� �k� � �	� �k�.

TABLE I. The dimensionless renormalization constants ��, ��0

used in the numerical calculations presented in Fig. 3, and the
resulting dimensionless Coulomb string tension ��c.

��0 0.0 0.0 0.0 1.44 1.44 1.44

�� �0:156 25 0 0.156 25 �0:156 25 0 0.156 25
��c 0.047 0.173 0.340 0.261 0.385 0.285
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as well as the infrared part is integrated by the standard
Gauss-Legendre method. The integral over the oscillating
part of A�x� is efficiently carried out using the method of
integrating half-waves. Figure 4 shows the results obtained
for �S�R�=R (81) for c � 0 and various values of the re-
maining renormalization constants �, �0. One observes
that indeed for large R the quantity �S�R�=R approaches a
constant independent of the choice of the remaining renor-
malization constants while requiring c � 0. Although all
these solutions with c � 0 yield a perimeter law for the ’t
Hooft loop, i.e. �S�R� � R, the perimeter tension � defined
by

 

�S�R! 1� ! �R (101)

depends quite sensitively on the remaining renormalization
constants �, �0. In fact these renormalization constants
affect the solutions of the DSE only in the intermediate
momentum range while both the infrared and ultraviolet
behaviors are untouched. This shows that the perimeter
tension is sensitive to the details of the wave functional in
the intermediate momentum range. Therefore it would be
very helpful to have lattice measurements of this quantity.
Unfortunately this quantity is very difficult to measure on
the lattice.

The range of the undetermined renormalization constant
implies quite large changes of the gluon energy in the
intermediate momentum range. If we interpret the
lowest-lying glueball as a ‘‘two quasigluon s-state’’ and
adjust the minimum in 2!�k� to the glueball energy of
1.65 GeV and furthermore choose the Coulomb string
tension 1:5��� � �440 MeV�2� we find the perimeter ten-
sion around 4.4 GeV.

VI. CONCLUDING REMARKS

In summary, the wave functional we have obtained in the
variational solution of the Yang-Mills Schrödinger equa-

tion yields either a perimeter law �S� R or �S� R lnR
depending on whether we choose the renormalization con-
stant (74) c � 0 or c � 0, respectively. The renormaliza-
tion constants are undetermined parameters due to the
approximations involved in the derivation of the DSEs
[14]. However, since we are using the variational principle
the renormalization constant could, in principle, be con-
sidered as variational parameters and fixed by minimizing
the energy density with respect to these parameters. Such
type of calculations are rather expensive, since they require
the solution of the DSE in the multidimensional space of
the renormalization constants and as the energy density
depends only implicitly via the various form factors on
these constants. An exception is the renormalization con-
stant c defined in Eq. (64), which explicitly enters the
kinetic energy and which determines the large R behavior
of the ’t Hooft loop. Since c is an infrared property of the
solutions of the DSE for its determination it should be
sufficient to use the infrared form of these solutions which
are analytically known [17]. Then c drops out from the
Coulomb energy and does not enter the potential energy,
while the kinetic energy density is proportional to c2 and is
minimized by c � 0. It is this value which gives rise to a
perimeter law in the ’t Hooft loop. Resorting to the repre-
sentation (16) (which is correct to two loop in the energy)
the value c � 0 implies that our wave functional (14) has
the form

 ��A� �N e��1=2�
R
AhA (102)

with

 h�k� � !�k� � 	�k� � k�; k! 0; � > 0:

(103)

It describes a vacuum where the low momentum modes of
the gauge field can fluctuate (for k! 0) in an uncon-
strained fashion. Such a stochastic vacuum is required for
an area law in the spatial Wilson loop. We therefore find
that a perimeter law in the ’t Hooft loop is a necessary
condition for an area law in the spatial Wilson loop, which
at zero temperature is equivalent to the temporal one. This
is in accord with the duality between the spatial ’t Hooft
loop and the temporal Wilson loop.
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APPENDIX A: THE LOOP INTEGRAL

In the following we work out the geometric factor
H�C; q� given by (38) of the ’t Hooft loop. We first reduce
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FIG. 4. The function �S�R�=R, (81), for different renormaliza-
tion constants, resulting from the solutions presented in Fig. 3.
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the double integral to a single loop integral, which even-
tually can be taken explicitly.

Since the integrand in Eq. (38) depends only on the
difference ’� ’0 it is convenient to introduce ‘‘center of
mass’’ and ‘‘relative’’ coordinates

 � �
’� ’0

2
; � � ’� ’0: (A1)

The integral (38) then becomes

 H�C; q� �
1

2
R2

�Z �

0
d�

Z 2�

�2�
d�

�
Z 2�

�
d�

Z 2�2����

�2�2����
d�
�

� cos�f�Rq
�������������������������
2�1� cos��

q
�: (A2)

Changing integration variable in the second term �!
��� and using cos���� � cos� we find

 H�C; q� � R2
Z �

0
d�

�Z 2�

0
d��

Z 2�����

0
d�
�

� cos�f�Rq
�������������������������
2�1� cos��

q
�: (A3)

A further change of integration variable �! �� 2� in
the second term using the periodicity of cos�, yields
 

H�C; q� � R2
Z �

0
d�

�Z 2�

0
d�

�Z 2�

0
d��

Z �2�

�2�
d�
��

� cos�f�Rq
�������������������������
2�1� cos��

q
�

� R2
Z �

0

Z 2�

0
d� cos�f�qR

�������������������������
2�1� cos��

q
�

� �R2
Z 2�

0
d� cos�f�qR

�������������������������
2�1� cos��

q
�: (A4)

As anticipated, one angular integral can be trivially taken.
Changing the integration variable � � �

2 we obtain

 H�C; q� � 4�R2A�Rq�; (A5)

where

 A�x� �
Z �=2

0
d��1� 2sin2��f�2x sin��; (A6)

which is the result quoted in Eq. (39).
To work out the angular integral (A6), it is more conve-

nient to express f��� (34) in terms of its original integral
representation, rather than in terms of the spherical Bessel
function,

 f�t� �
1

2

Z 1

�1
dz�1� z2� cos�tz�: (A7)

Then, the angular integral in (A6) can be explicitly carried
out. This turns out to be also advantageous for the numeri-
cal calculations.

To carry out the angular integration in Eq. (A6) we use in
f�2x sin�� (34) the expansion

 cos�y sin�� � J0�y� � 2
X1
n�1

J2n�y� cos2n�; (A8)

where J��x� are the (ordinary) Bessel functions.
Then we need the following angular integrals

 

Z �=2

0
d� cos2n� �

1

2n
sin2n�j�=2

0 � 0 for n � 0;

(A9)

 Z �=2

0
d�2sin2� cos2n� �

Z �=2

0
d��2sin2�� 1� cos2n�

� �
Z �=2

0
d� cos2� cos2n�

� �
�
4
�n;1: (A10)

To obtain the last relation we have inserted a zero in the
form of the integral (A9). With Eq. (A9) we find from (A8)

 

Z �=2

0
d� cos�y sin�� �

�
2
J0�y�: (A11)

Analogously, we find from Eq. (A8) with (A10)

 

Z �=2

0
d�2sin2� cos�y sin�� �

�
2
�J0�y� � J2�y��: (A12)

With the last two relations we obtain for the angular
integral (A6)
 

A�x� �
1

2

Z 1

�1
dz�1� z2�

Z �=2

0
d��1� 2sin2��

� cos�2xz sin��

�
1

2

Z 1

�1
dz�1� z2�

�

�
�
2
J0�2xz� �

�
2
�J0�2xz� � J2�2xz��

�

�
�
4

Z 1

�1
dz�1� z2�J2�2xz�: (A13)

The remaining integral over the Bessel function can be
taken using the relations
 Z z

0
dtJ2�t� �

Z z

0
dtJ0�t� � 2J1�z�;

Z z

0
dtJ0�t� � zJ0�z� �

�
2
z�H0�z�J1�z� �H1�z�J0�z��;

Z 1

0
dzz2J2�zy� �

3�

2y2 �J2�y�H1�y� �H2�y�J1�y��; (A14)

where H��z� are the Struve functions.
With these relations we find for the angular integral (A6)

the result quoted in Eq. (40).
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We will also need the asymptotic form of A�x� for small
and large arguments. This is most easily done by using the
asymptotic forms of the Bessel function J2�x� in (A13)

(although the asymptotic form of the Struve function is
also known). One finds then the results quoted in Eqs. (41)
and (42).
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