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We analyze renormalization and the high-temperature expansion of the one-loop effective action of the
space-time noncommutative �4 theory by using the zeta-function regularization in the imaginary-time
formalism (i.e., on S1 � R3). Interestingly enough, there are no mixed (nonplanar) contributions to the
counterterms as well as to the power-law high-temperature asymptotics. We also study the Wick rotation
and formulate assumptions under which the real and imaginary-time formalisms are equivalent.
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I. INTRODUCTION

Since a number of review papers have been published
recently (see [1]) it is not necessary to repeat here the
motivations for studying noncommutative (NC) field theo-
ries. Most of the previous works, see e.g. [2–5] and refer-
ences therein, on finite-temperature NC theories analyzed
the case of space-space noncommutativity (with very few
exceptions [6,7]). Indeed, the case of space-time noncom-
mutativity is most problematic because of the difficulties
with unitarity and causality which were discovered some
years ago [8–10]. These difficulties have not been com-
pletely resolved up to now. Space-time NC theories with
compact dimensions exhibit an interesting phenomenon of
discreteness of time [11].

The main purpose of this paper is to develop certain
aspects of the Euclidean space formalism in space-time NC
theories, including the renormalization, the transition from
real to imaginary time, and the high-temperature
asymptotics.

We shall start our work by analyzing the one-loop
divergences in the Euclidean NC �4 on S1 � R3 to make
sure that the theory which will be discussed later does exist
at least at the leading order of the loop expansion. We shall
use the zeta-function regularization [12,13] and the heat
kernel technique [14–16]. In the context of an NC field
theory the heat kernel expansion was first obtained for the
operators which contain only left or only right Moyal
multiplications [17,18]. Such operators were, however,
insufficient to deal with some physical applications, like,
for example, the �4 theory. The heat kernel expansion for
generalized Laplacians containing both left and right
Moyal multiplications was constructed in [19] on the
Moyal plane and in [20] on the NC torus. Nonminimal
operators were considered in [21]. We would also like to

mention the calculations [22] of the heat kernel expansion
in the NC �4 model modified by an oscillator-type
potential.

To avoid unnecessary technical complications we shall
study exclusively the case of pure space-time noncommu-
tativity, i.e., we put to zero the NC parameter with both
indices in the spatial directions, �jk � 0. We shall calculate
the heat kernel coefficients an with n � 4. It will appear
that the coefficients a2 and a4 look very similar to the
commutative theory, but a3 is given by a complicated
nonlocal expression. Fortunately, odd-numbered heat ker-
nel coefficients do not contribute to one-loop divergences
at four dimensions in the zeta-function regularization. The
model will turn out to be one-loop renormalizable with
temperature-independent counterterms.

Of course, we do not expect this model to be renorma-
lizable at all loops. There are well-known problems related
to the so-called UV/IR mixing [23] which should also be
present in our case (though, maybe, in a relatively mild
form since one of the NC directions is compact). To make
the finite-temperature NC �4 renormalizable to all orders
one should probably make it duality covariant [24] or use a
bifermionic NC parameter [25].

An approach to finite-temperature theories on static
backgrounds based on the zeta-function regularization
was developed long ago by Dowker and Kennedy [26].
In particular, they established relations between spectral
functions of a three-dimensional operator which defines
the spectrum of fluctuations and the high-temperature
asymptotics of the free energy. In our case, due to the
presence of the space-time noncommutativity, such a
three-dimensional operator becomes frequency dependent
even on static backgrounds. Therefore, eigenfrequencies of
fluctuations are defined by a sort of a nonlinear spectral
problem. Fortunately for us, a technique which allows one
to work with finite-temperature characteristics of the theo-
ries leading to nonlinear spectral problems has been devel-
oped relatively recently in the papers in [27]. These papers
were dealing with the thermodynamics of stationary but
nonstatic space-times, but, after some modifications, the
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approach of [27] can be made suitable for space-time
noncommutative theories as well. By making use of these
methods we shall construct the spectral density of states in
the real-time formalism and express it through the heat
kernel of a frequency-dependent operator in three dimen-
sions. Then, by using this spectral density, we shall dem-
onstrate that the Wick rotation of the Euclidean free energy
gives the canonical free energy. To come to this conclusion
we shall need two assumptions. First of all, we shall have to
assume that the spectral density behaves ‘‘nicely’’ as a
function of complex frequencies. Although this assump-
tion is very hard to justify rigorously, we shall argue that
the behavior of the spectral density must not be worse than
in the commutative case, and we shall also suggest a
consistency check based on the high-temperature asymp-
totics. There is no canonical Hamiltonian in the space-time
NC theories. Therefore, we have to assume that the eigen-
frequncies of quantum fluctuations can replace one-
particle energies in thermal distributions. This assumptions
cannot be derived from the first principles of quantization
basing on the present knowledge on the subject, but we can
turn the problem around: the very fact that the Wick
rotation of the Euclidean free energy leads to a thermal
distribution over the eigenfrequences supports (a rather
natural) guess that the eigenfrequences are the energies
of one-particle excitations. Let us stress that the calcula-
tions we shall perform in the Euclidean space do not
depend on the assumptions described above.

We shall also use the heat kernel methods to calculate
the high-temperature asymptotics of the Euclidean effec-
tive action assuming that the background field is static. As
in the case of the counterterms, there are nonplanar con-
tributions. The asymptotic expansion does not depend on
the NC parameter (provided it is nonzero) and looks very
similar to the commutative case.

This paper is organized as follows. In the next section we
consider one-loop renormalization of NC �4 on S1 � R3.
Section III is devoted to the Wick rotation. High-
temperature asymptotics of the effective action are calcu-
lated in Sec. IV. Some concluding remarks are contained in
Sec. V.

II. NONCOMMUTATIVE QUANTUM FIELD
THEORY ON S1 � R3

A. Basic definitions and notations

Let us consider a scalar �4 model on NC S1 � R3. The
scalar field is periodic with respect to the compact coor-
dinate. We use the notations �x�� � � �x; x4� � �xi; x4�,
where x4 is a coordinate on S1, 0 � � � �. Similarly for
the Fourier momenta we use k � � �k; k4�, k4 �

2�l
� , l 2 Z.

The action reads

 S �
1

2

Z �

0
dx4

Z
R3
d3 �x

�
�@���2 �m2�2 �

g
12
�4
?

�
; (1)

where the �4
? � � ? � ? � ? �. Star denotes the Moyal

product

 f1 ? f2�x� � exp
�
{
2
���@x�@

y
�

�
f1�x�f2�y�jy�x: (2)

To simplify the setup we assume that �ij � 0, but some
of �4j � 0, i.e. we have an Euclidean space-time
noncommutativity.

We wish to investigate quantum corrections to (1) by
means of the background field method. To this end one has
to split the field � into a classical background field ’ and
quantum fluctuations, � � ’� �’. The one-loop contri-
bution to the effective action is defined by the part of (1)
which is quadratic in quantum fluctuations:

 S�’;�’� �
1

2

Z �

0
dx4

Z
R3
d3 �x�’�D�m2��’; (3)

where the operator D is of the form (cf. [19,28]):

 D � 	�@�@� � E�; (4)

with

 E � 	
g
6
�L�’ ? ’� � R�’ ? ’� � L�’�R�’��: (5)

The one-loop effective action can be formally written as

 W � 1
2 ln det�D�m2�: (6)

This equation still has to be regularized. To make use of the
zeta-function regularization we have to define the heat
kernel1

 K�t;D� � Tr�e	tD 	 etD0� (7)

and the zeta-function

 	�s;D�m2� � Tr��D�m2�	s 	 �D0 �m
2�	s�: (8)

Here Tr is the L2 trace. In both cases we subtracted the
parts corresponding to free fields with D0 � 	@�@� to
avoid volume divergences.

The regularized one-loop effective action is defined as

 Ws � 	
1

2
�2s

Z 1
0

dt

t1	s
e	tm

2
K�t;D�

� 	
1

2
�2s��s�	�s;D�m2�; (9)

where s is a regularization parameter,� is a constant of the
dimension of mass introduced to keep proper dimension of
the effective action. The regularization is removed in the
limit s! 0. At s � 0 the gamma-function has a pole, so
that near s � 0

1A better name used in mathematics for this object is the heat
trace, but here we use the terminology more common in physics.
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Ws � 	
1

2

�
1

s
	 
E � ln�2

�
	�0; D�m2�

	
1

2
	 0�0; D�m2�; (10)

where 
E is the Euler constant.
Let us assume that there is an asymptotic expansion of

the heat kernel as t! �0

 K�t;D� �
X1
n�1

t�n	4�=2an�D�: (11)

Such an expansion exists usually (but not always) in the
commutative case. On NC S1 � R3 the existence of (11)
will be demonstrated in Sec. II B. For a Laplace type
operator on a commutative manifold all odd-numbered
heat kernel coefficients a2k	1 vanish. (They are typical
boundary effects). As we shall see below, on NC S1 � R3

the coefficient a3 � 0. The coefficient a0 disappears due to
the subtraction of the free-space contribution in (7).

The pole part of Ws can be now expressed through the
heat kernel coefficients.

 	�0; D�m2� � 	m2a2�D� � a4�D�: (12)

Note that odd-numbered heat kernel coefficients a2p	1�D�
do note contribute to the divergences of Ws.

B. Heat kernel expansion on S1 � R3

Let us consider the operator

 D � 	�@2
� � E�; E � L�l1� � R�r1� � L�l2�R�r2�;

(13)

on S1 � R3. This operator is slightly more general than the
one in (4). The potential term (5) is reproduced by the
choice

 l1 � r1 � 	
g
6
’ ? ’; l2 � 	r2 �

���
g
6

r
’: (14)

We are interested in the asymptotics of the heat trace (7) as
t! �0. To calculate the trace we, as usual, sandwich the
operator between two normalized plane waves 2 and inte-
grate over the momenta and over the manifold M � S1 �
R3

 K�t;D� �
1

��2��3
�
Z
dk
Z
M
d4xe	{kx�e	tD 	 etD0�e{kx;

(15)

where we introduced the notation

 �
Z
dk 


X
k4

Z
d3 �k; (16)

with k4 � 2�n=�, n 2 Z. To evaluate the asymptotic
expansion of (15) at t!�0 one has to extract the factor
e	tk

2

 K�t;D� �
1

��2��3
Z
d4x�
Z
dke	tk

2
hexp�t��@	 ik�2

� 2ik��@� 	 ik�� � E�� 	 1ik; (17)

where we defined

 hFik 
 e	{kx ? Fe{kx (18)

for any operator F. Next one has to expand the exponential
in (17) in a power series in E and (@	 {k). As we shall see
below, only a finite number of terms in this expansion
contribute to any finite order of t in the t! �0 asymptotic
expansion of the heat kernel. We push all (@	 {k) to the
right until they hit e{kx and disappear:
 

K�t;D� �
1

��2��3
Z
d4x�
Z
dke	tk

2

�
tE�

t2

2
��@�; �@�; E��

� E2 � 2{k��@�; E��

	
4t3

6
k�k��@�; �@�; E�� � . . .

�
k
: (19)

We kept in this equation all the terms which may contribute
to an with n � 4. In the commutative case all total deriva-
tives as well as all terms linear in k vanish. In the NC case
this is less obvious because of the nonlocality, so that
we kept also such terms. The commutator of @� with E
is a multiplication operator, e.g., �@�; L�l�� � L�@�l�,
�@�; L�l�R�r�� � L�@�l�R�r� � L�l�R�@�r�. Therefore,
Eq. (19) contains multiplication operators of two different
sorts: the ones with only left or only right Moyal multi-
plications, and the ones containing products of left and
right Moyal multiplications. The terms of different sorts
will be treated differently.3

The terms with one type of the multiplications are easy.
We shall call such terms planar borrowing the terminology
from the approach based on Feynman diagrams. They can
be evaluated in the same way as in [17,18]. Because of the
identities

 

Z
d4xhR�r�ik �

Z
d4xr�x�;

Z
d4xhL�l�ik �

Z
d4xl�x�;

(20)

only the E and E2 terms in (19) contribute. It remains then
2Although we are working with a real field, it is more conve-

nient to use complex plane waves instead of real functions
sin�kx� and cos�kx�. For a complex field we would have a
coefficient of 1 instead of 1=2 on the right-hand side of (6).
Since D with (14) is real, this is the only difference.

3Formally R�r� � L�1�R�r�, but a constant function does not
belong to C1�S1 � R3� since it does not satisfy the fall-off
conditions. Consequently, the two sorts of the term discussed
above indeed lead to quite different asymptotics at t! �0.
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to evaluate the asymptotics of the integral

 

1

��2��3
�
Z
dke	tk

2
� �4�t�	2 � e:s:t:; (21)

where e.s.t. denotes exponentially small terms, to obtain

 aplanar
2 �D� � �4��	2

Z
d4x�l1 � r1�; (22)

 aplanar
4 �D� � �4��	2

Z
d4x

1

2
�l21 � r

2
1�: (23)

Nonplanar (mixed) contributions require considerably
more work. The typical term reads

 T�l; r� �
1

��2��3
Z
d4x�
Z
dke	tk

2
hL�l�R�r�ik (24)

with some functions r�x� and l�x�. For example, taking l �
l2 and r � tr2 the expression (24) reproduces the first term
(tE) in (19). Let us expand r�x� and l�x� in the Fourier
integrals

 r�x� �
1

�1=2�2��3=2
�
Z
dq~r�q�e{qx;

l�x� �
1

�1=2�2��3=2
�
Z
dq0~l�q0�e{q

0x:

(25)

Then
 

hL�l�R�r�ik �
1

��2��3
�
Z
dq�
Z
dq0~r�q�~l�q0�e{�q�q

0�x

� e	�{=2�k^�q	q0�	�{=2��q0	k�^�q�k�; (26)

where

 k ^ q 
 ���k�q�: (27)

Next we substitute (26) in (24) and integrate over x and q0

to obtain

 T�l; r� �
1

��2��3
�
Z
dk�
Z
dqe	tk

2 ~l�	q�~r�q�e	{k^q: (28)

In our case k ^ q � �4i�k4qi 	 kiq4�.
Next we study the integral over k. The sum over k4 is

treated with the help of the Poisson formula

 

X
n2Z

f�2�n� �
1

2�

X
n2Z

Z 1
	1

f�p�e	{npdp: (29)

We apply this formula to the sum

 

X
k4

exp�	tk2
4 	 {�

4jk4qj�; (30)

which corresponds to the choice

 f�p� � exp
�
	
tp2

�2 	
{�4jqjp

�

�
(31)

in (29). The sum (30) is transformed to (after changing the

integration variable y � p=�)

 

�
2�

X
n2Z

Z 1
	1

dy exp�	ty2 	 {y��4jqj � �n��

�
�

2�

X
n2Z

����
�
t

r
exp

�
	
��4jqj � �n�2

4t

�
: (32)

The integral over kj is Gaussian and can be easily per-
formed. We arrive at
 

T�l; r� �
1

�4�t�2
�
Z
dq
X
n

exp
�
	
j�j2q2

4 � ��
4jqj � �n�2

4t

�
� h�q�; (33)

where

 h�q� 
 ~l�	q�~r�q�; j�j2 
 �4j�4j: (34)

In Eq. (33) one can still put j�j � 0 thus returning to the
commutative case. The limit j�j ! 0 does not commute,
however, with taking the asymptotic t! 0. From now on
we assume j�j � 0. Obviously, all terms in the sum over q4

are exponentially small as t! �0 except for q4 � 0;
 

T�l; r� �
1

�4�t�2
Z
d3 �q

X
n

exp
�
	
��4jqj � �n�

2

4t

�
h�0; �q�

� e:s:t: (35)

Let us define two projectors

 �ij
k
�
�4i�4j

j�j2
; �ij

? � �ij 	�ij
k
; (36)

and split �q into the parts which are parallel and perpen-
dicular to �4j: qk � �k �q, q? � �? �q. Then d3 �q �
dqkd

2q?, and ��4jqj � �n�
2 � �j�jqk � �n�

2. The
asymptotics of the integral over qk can be calculated by
the saddle-point method. For each n there is one critical
point of the integrand corresponding to qk � q�n�

k



	�n=j�j. We expand h�0; qk; q?� about these critical
points and take the integral over qk to obtain

 T�l; r� �
1

j�j�4�t�3=2

X
n2Z

Z
d2q?

�
h�0; q�n�

k
; q?�

�
t

j�j2
h00�0; q�n�

k
; q?� � . . .

�
; (37)

where prime denotes the derivative with respect to qk. This
completes the calculation of small t asymptotics for T�l; r�.
Since both l�x� and r�x� are supposed to be smooth, their
Fourier components ~l�q� and ~r�q� fall off faster than any
power at large momenta, and each term in the asymptotic
expansion is given by a convergent sum and a convergent
integral.

The expression (37) is already enough to calculate
mixed (nonplanar) contributions to the heat kernel expan-
sions from the terms inside the brackets in (19) which do
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not contain k. (We shall do this in a moment). Regarding
the terms which do contain the momentum k, for our
purposes it is enough to evaluate the power of t appearing
in front of such terms. One can easily trace which mod-
ifications appear in the calculations (24)–(37) due to the
presence of a polynomial of k�. The result is (i) we still
have an expansion in t1=2, (ii) the terms with k do not
contribute to the heat kernel coefficients an with n � 4.
In other words, the only relevant mixed heat kernel coef-
ficient is generated by the first term in the brackets in (19),
and it reads
 

amixed
3 �D� �

1

j�j�4��3=2

X
n2Z

Z
d2q?~l2�0;	q

�n�
k
;	q?�

� ~r2�0; q
�n�
k
; q?�; (38)

where we substituted the fields appearing in E [see
Eq. (13)]. Note that this expression is divergent in the
commutative limit j�j ! 0. The coefficient amixed

3 is highly
nonlocal. The structure of (38), especially the sum over n,
reminds us of the heat kernel coefficients on NC torus for a
rational NC parameter [20]. In this latter case there is a
simple geometric interpretation in terms of periodic pro-
jections [29]. No such interpretation is known for the
present case of S1 � R3. However, some similarities can
be found to the works in [11] discussing discretization of
the coordinates which do not commute with a compact
coordinate.

C. Renormalization

Let us return to our particular model (1). First we
summarize the results of the previous subsection and reex-
press the heat kernel coefficients an � aplanar

n � amixed
n in

terms of the background field ’ by means of (14):

 a2�D� � 	
g

48�2

Z
d4x’2; (39)

 

a3�D� � 	
g

6j�j�4��3=2

X
n2Z

Z
d2q? ~’�0;	q�n�

k
;	q?�

� ~’�0; q�n�
k
; q?�; (40)

 a4�D� �
1

16�2

g2

36

Z
d4x’4

?; (41)

where tilde is used again to denote the Fourier components.
Next we substitute (39)–(41) in (10) and (12) to the pole

part of the regularized effective action

 Wpole
s � 	

1

2s

Z
d4x

�
g

48�2 m
2’2 �

1

16�2

g2

36
’4
?

�
: (42)

This divergent part of the effective action can be cancelled
by an infinite renormalization of couplings in (1)

 �m2 �
gm2

48�2

1

s
; �g �

g2

48�2

1

s
: (43)

There can be, of course, also some finite renormalization
which we do not discuss here. Our main physical observa-
tion in this subsection is the renormalization (43) does not
depend on the temperature 1=�.

Here some more comments are in order. It is a very
attractive feature of the zeta-function regularization that
the nonplanar nonlocal coefficient a3�D� does not affect
the counterterms. This coefficient will, however, contribute
at some other places, like the large mass expansion of the
one-loop effective action (see, e.g., [16]). Moreover, a3�D�
can lead to troubles in different regularization schemes.
For example, if one uses the proper-time cutoff at some
scale � defining the regularized effective action by

 W� � 	
1

2

Z 1
1=�2

dt
t
e	tm

2
K�t;D�; (44)

the coefficient a3 generates a linear divergence / �a3�D�,
which has no classical counterpart and cannot be renor-
malized away in the standard approach. There is a sub-
traction scheme (that was used in quantum field theory on
curved background [30] and in Casimir energy calculations
[31]) which prescribes to subtract all contributions from
several leading heat kernel coefficients, including a3�D� in
four dimensions. In the case of two-dimensional scalar
theories this heat kernel subtraction scheme is equivalent
to usual renormalization with the ‘‘no-tadpole’’ normaliza-
tion condition [32]. In the present case the heat kernel
subtraction is, obviously, not equivalent to the charge and
mass renormalizations given by (43).

We restricted ourselves to the case of pure space-time
noncommutativity �ij � 0. However, one can try to make
an educated guess on what happens for a generic non-
degenerate ���. By comparing the heat kernel expansion
obtained above with that on NC torus [20] and on NC plane
with a nondegenerate ��� [19] we can derive (rather un-
rigorously) the following rule: the presence of a noncom-
pact NC dimension increases the number of the first
nontrivial field-dependent nonplanar (mixed) heat kernel
coefficient by one as compared to the first nontrivial field-
dependent coefficient in the commutative case. Indeed, in
the commutative case the first such coefficient is a2. On the
NC torus [20] (no noncompact dimensions) the first field-
dependent mixed heat kernel coefficient is also a2. For the
geometry studied in this paper (one noncompact NC di-
mension) this is a3. On an n-dimensional NC plane with a
nondegenerate ��� the first coefficient of interest is an�2

[19]. We can expect therefore that the first mixed coeffi-
cient on S1 � R3 with a nondegenerate ��� (three compact
NC dimensions) will be a5. Such coefficient does not
contribute to one-loop divergence neither in the zeta-
function regularization nor in the proper-time cutoff
scheme. Thus the situation in the generic case may be
expected to be better than in the case of a degenerate ���
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discussed above. A similar conclusion has been made for
the Moyal plane in [28].

As we have already mentioned above, the counterterms
do not depend on the temperature. However, if one does the
calculations directly on the zero-temperature manifold R4,
there appears problems for a degenerate NC parameter
[28]. Perhaps, compactification of one of the NC directions
is a proper way to regularize these problems away.

III. FROM IMAGINARY TO REAL-TIME
FORMALISM

The methods which allow one to make correspondence
between imaginary and real-time formalisms in the case of
frequency-dependent Hamiltonians were suggested in [27]
and developed further in [33]. Here we briefly outline these
methods and discuss the peculiarities of their application to
noncommutative theories. From now on we work with
static background fields, @0’ � @4’ � 0.

A. Spectral density in the real-time formalism

Let us consider a Minkowski space counterpart of the
action (1). Our rules for the continuation between
Euclidean and Minkowski signatures read @4 ! {@0 and
�j4 ! 	{�j0, where �j0 is real, and �j0@0 corresponds to
�j4@4. We have, therefore, a real NC parameter in the
Moyal product on both Euclidean and Minkowski spaces.
These rules were applied, e.g., in [9], and they follow also
from the requirement of reflection positivity [34]. As we
shall see below, these rules also ensure consistency be-
tween the expressions for the free energy defined in imagi-
nary and real-time formalisms.

The wave equation for quantum fluctuations  �x� over a
static background reads
 �
	@2

0 � @
2
j 	m

2 	
g
6
�L�’2� � R�’2� � L�’�R�’��

�
 �x�

� 0: (45)

The wave operator in (45) commutes with @0.
Consequently, one can look for the solutions  ! whose
time dependence is described by  !�x� � ei!x

0
. They sat-

isfy the equation

 �P�!� �m2� ! � !2 !; (46)

where

 P�!� � 	@2
j � V�!�;

V�!� �
g
6
�’2
� � ’

2
	 � ’�’	�;

(47)

and

 ’��xj� � ’�xj � 1
2�
j0!�: (48)

Here we used the fact that left (right) Moyal multiplication

of a function of xj by exp�i!x0� is equivalent to a shift of
the argument.

From now on we consider the case of positive coupling g
only. Then the potential V�!� is nonnegative, V �
�g=12��’2

� � ’
2
	 � �’� � ’	�2� 
 0.

To define spectral density for the Eq. (46) we follow the
works [27]. Consider an auxiliary eigenvalue problem,

 �P��� �m2� �;� � �2 �;�: (49)

Obviously, the functions  !;! solve the Eq. (46).
Our next step differs from that in [27]. Let us restrict � to

� � �0 for some �0 and put the system in a three-
dimensional box with periodic boundary conditions. Let
us suppose that the size of the box is � ��0, so that ’�
and ’	 are localized far away from the boundaries. In this
case, the spectrum of the regularized problem can be
considered as an approximation to the spectrum of the
initial problem for the whole range of �. Later we shall
remove the box, and the restriction � � �0 will become
irrelevant. In the box, the spectrum of � in (49) becomes
discrete, but, for a sufficiently large box, the spacing is
small. The eigenvalues �2

N��� depend smoothly on � not
greater than �0, and we can define the density of states as

 

dn��; ��

d��2�
�

1

2�
dn��; ��
d�

�
X
N

���2 	 �2
N����; (50)

which can be used to calculate spectral functions of ~P���,
where tilde reminds us that we are working with a finite-
volume problem. For example,

 

eTr�e	t� ~P����m
2
� �

Z 1
m

dn��; ��
d�

e	t�
2
d�: (51)

Here eTr denotes the L2 trace in the box. The potential V is
nonnegative. Consequently, there are no eigenvalues below
m.

The eigenvalues !2
N of the initial problem (46) in this

discretized setting appear when the line �2 � �2 intersects
�2
N���. We can define the density of the eigenfrequencies
!2
N by the formula

 

dn�!�

d�!2�
�
X
N

��!2 	!2
N�: (52)

Next, we would like to relate this density to (50). This can
be done by calculating the derivative of the arguments of
the delta function taken for ! � � � �. We obtain

 

dn�!�

d�!2�
�
dn̂�!;!�

d�!2�
; (53)

where

 

dn̂��; ��

d��2�
�
X
N

�
1	

d��2
N�

d��2�

�
���2 	 �2

N�: (54)

This density admits an interpretation in terms of the heat

A. V. STRELCHENKO AND D. V. VASSILEVICH PHYSICAL REVIEW D 76, 065014 (2007)

065014-6



kernel

 

eTr
��

1	
1

2�
d ~P���
d�

�
e	t� ~P����m

2�

�

�

�
1�

1

2�t
d
d�

� eTr�e	t� ~P����m
2��

�
Z 1
m

dn̂��; ��
d�

e	t�
2
d�: (55)

Next we remove the box. Most of the quantities dis-
cussed above are divergent in the infinite volume limit. In
order to remove these divergences we subtract the spectral
densities corresponding with the free operator ~P0 �m2

with ~P0 � 	@2
j [not to be confused with ~P�0�]. Then we

perform the infinite volume limit. The limits of subtracted
densities dn�!�=d!, dn��; ��=d�, and dn̂��; ��=d� will
be denoted by ��!�, ���; ��, and %��; ��, respectively. The
following relation holds in this limit:

 Tr 3�e	t�P����m
2��sub �

Z 1
m
d!��!;��e	t!

2
; (56)

where Tr3 is the L2 trace on R3 and

 Tr 3�e
	t�P����m2��sub 
 Tr3�e

	t�P����m2� 	 e	t�	@
2
j�m

2��:

(57)

We also have the relation

 

�
1�

1

2�t
d
d�

�
Tr3�e

	t�P����m2��sub �
Z 1
m
%��;��e	t�

2
d�;

(58)

which, together with (56), yields

 %�!;�� � ��!;�� �
!
�

Z !

m
@���
;��d
: (59)

To derive this formula one has to integrate by parts.
Vanishing of the boundary terms is established by using
the same arguments as in [27]. An infinite volume counter-
part of (53) reads

 ��!� � %�!;!�: (60)

An independent calculation of the spectral densities is a
very hard problem. We shall view the Eq. (56) as a defini-
tion of the subtracted spectral density ���;�� through the
heat kernel (an explicit formula involves the inverse
Laplace transform). The other spectral densities %��;��
and ��!� are then defined through (59) and (60).

Relations similar to (56) and (58)–(60) were originally
obtained in [27] for a different class of frequency-
dependent operators and by a somewhat different method.

B. Wick rotation

In this section we show that the Wick rotation of the free
energy F defined through the Euclidean effective action
coincides with the canonical free energy FC. The methods

we use are borrowed from [27], but there are some subtle
points related to specific features of NC theories. By
definition,

 W��� � ��F��� � E�; (61)

where E is the energy of vacuum fluctuations.
Our renormalization prescription (43) is an equivalent to

the (minimal) subtraction of the pole term (42) in (10).
Therefore, the renormalized one-loop effective action
reads

 W � 	
1

2

d
ds

��������s�0
� ~�2s	�s;D�m2��; (62)

where ~�2 :� �2e	
E . On a static background one can
separate the frequency sum from the L2�R

3� trace and
rewrite the zeta function as
 

	�s;D�m2� �
X
l

Tr3��!2
l �m

2 � P�!l��
	s

	 �!2
l �m

2 	 @2
j �
	s�

�
X
l

Z 1
m
d��E��;!l��!

2
l � �

2�	s: (63)

!l � 2�l=�. The spectral density �E is defined for the
Euclidean space NC parameter �j4. It is related to the real-
time spectral density by the formula

 �E��;!j�j4� � ���; {!j 	 i�j4� (64)

according to the rules which we have discussed at the
beginning of Sec. III A. We have already mentioned that
the Wick rotation leaves the combination !� and the
potential V invariant. Therefore, both densities coincide
as functions of their arguments � and!. However, we shall
keep the subscript E to avoid confusion but shall drop �
from the notations for the sake of brevity. Next we use the
formula

 

X
l

f�!l� �
�

4�{

I
C

cot
�
�z
2

�
f�z�dz (65)

with the contour C consisting of two parts, C� running
from {��1 to {�	1 and C	 running from 	{�	1 to
	{��1, to rewrite the frequency sum as an integral.
Then, by using the symmetry of the integrand with respect
to reflections of z we replace the integral over C by twice
the integral over C� alone. Finally, we apply the identity

 cot
�
�z
2

�
�

2

�
d
dz

ln�1	 e{�z� 	 { (66)

to arrive at the result

 	�s;D�m2� � �	0�s;D�m2� � 	T�s;D�m2�; (67)

where
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 	0�s;D�m2� �
1

�

Z 1
m
d�

Z 1
0
�E��; z���2 � z2�	sdz;

(68)

 

	T�s;D�m
2� �

1

�{

Z 1
m
d�

I
C�
dz
�
d
dz

ln�1	 e{�z�
�

� �E��; z���2 � z2�	s: (69)

In commutative theories [27], the function 	T , which van-
ishes at zero temperature, represents the purely thermal
part, while 	0 is responsible for the vacuum energy. In
space-time NC theories there is no good definition of the
canonical Hamiltonian and of the energy. Therefore, we
have no other choice than to accept the same identities as in
the commutative case, namely,

 F��� � 	
1

2�
d
ds

��������s�0
~�2s	T�s;D�m

2�; (70)

 E � 	
1

2

d
ds

��������s�0
~�2s	0�s;D�m

2�: (71)

Actually, the definition of E is a rather natural one since it
coincides with the renormalized Euclidean one-loop effec-
tive action on R4. However, as we have already mentioned
in Sec. II C the renormalization in NC theories depends
crucially on the number of compact dimensions. Therefore,
if one does the renormalization directly in R4, one may
need the counterterms which differ from (43) obtained on
S1 � R3.

From now on we concentrate exclusively on FT��� and
	T . We integrate by parts over z to obtain
 

	T�s� � 	
1

�{

Z 1
m
d�

I
C�
dz ln�1	 e{�z�

�

�
@z�E��; z�

�z2 � �2�s
	

2zs�E��; z�

�z2 � �2�s�1

�
: (72)

To ensure the absence of the boundary terms, we have to
deform the contour C� by moving its ends up in the
complex plane, so that e{�z provides the necessary damping
of the integrand. We discuss the conditions on �E which
make such deformations of the contour legitimate below.
The integration by parts over � in the first term in the
square brackets in (72) yields

 	T�s� �
s
�{

Z 1
m
d�

I
C�
dz ln�1	 e{�z�

�
2z

�z2 � �2�s�1 %E��; z�; (73)

where

 %E��; z� � �E��; z� 	
�
z

Z �

m
@z�E�
; z�d
: (74)

The right-hand side of (73) is proportional to s. To estimate
the derivative @s at s � 0 in (70) one can put s � 0 in the

rest of the expression and use the Cauchy theorem after
closing the contour in the upper part of the complex plane.
The result is then given by the residue at z � i�. Next we
make the Wick rotation of the NC parameter, so that
�E�
; i�� becomes ��
;��, and %E��; i�� becomes
���;�� � ���� [cf. Eqs. (59) and (60)]. Consequently,
the Euclidean free energy is given by the equation

 F��� �
1

�

Z 1
m
d����� ln�1	 e	���; (75)

which coincides with the canonical definition of the free
energy FC.

The equality F � FC is the main result of this section.
To derive it we integrated by parts and deformed the
contour C�. The integration by part over � is a safe
operation, since for any fixed z the spectral density
�E��; z� corresponds to the Laplace operator with a smooth
potential. The absence of the boundary terms can be then
demonstrated by standard arguments [27] based on the heat
kernel expansion. The deformations of the contour are
more tricky. To justify this procedure and application of
the Cauchy theorem one has to assume that �E��; z� can be
analytically continued to the upper half-plane as an entire
function of z. A rigorous proof of this assumption is hardly
possible even in more tractable cases of stationary com-
mutative space-times [27]. We may argue, however, that
this assumption is plausible. Consider pure imaginary val-
ues of z � i�. All deformations of the contour are done
before the Wick rotation of the NC parameter �. Therefore,
’� becomes complex, and ’� � ’�	. The potential V�i��
remains real and positive. The background field ’ is as-
sumed to fall off faster than any power of the coordinates in
real directions to ensure the existence of the heat kernel
expansion. Such fields typically grow in imaginary direc-
tions (one can consider ’� e	cx

2
as an example). Large

positive potentials tend to diminish the spectral density
thus preventing it from the blow-up behavior. It seems,
therefore, that the spectral density in our case should not
behave worse than the spectral density in the commutative
case. Another argument in favor of our assumption will be
given at the end of the next section.

The free energy (75) is expressed through a thermal
distribution over the eigenfrequencies. In the absence of
a well-defined Hamiltonian it is not guaranteed that this is
the same as a thermal distribution of one-particle energies.
This is a known problem of space-time NC theories which
is beyond the scope of this paper.

IV. HIGH-TEMPERATURE ASYMPTOTICS

As in the previous section we rewrite the regularized
one-loop effective action (9) on a static background in the
form

 Ws � 	
1

2
�2s��s�

X
!

Tr3�!2 � P�!� �m2�	ssub; (76)
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where the sum over the Matsubara frequencies is separated
from the trace over the L2 functions on R3. As usual, we
subtracted the free-space contributions corresponding to
’ � 0 in P�!� [which is indicated by the subscript ‘‘sub’’
in (76)]. We remind the reader that ! � 2�l=�, l 2 Z. To
evaluate the high-temperature (small �) asymptotics of Ws
we split the sum in (76) in two parts,

 Ws � Wl�0
s �Wl�0

s ; (77)

which will be treated separately.
We start with Wl�0

s which reads

 Wl�0
s � 	1

2�
2s��s�Tr3�P�0� �m

2�	ssub

� 	1
2�

2s��s�	�s; P�0� �m2�: (78)

[The subtraction of free-space contributions is included in
our definition of the zeta function, cf. (8).] For each given
! the operator P�!� is a three-dimensional Laplace opera-
tor with a scalar potential. All effects of the noncommuta-
tivity are encoded in the form of this potential. Therefore,
as for all Laplace type operators on R3, the zeta function in
(78) vanishes at s � 0 making Wl�0

s finite. We can imme-
diately take the limit s! 0 to obtain the renormalized
expression

 Wl�0 � 	1
2	
0�P�0� �m2�: (79)

In the rest of the frequency sum we first use an integral
representation for the zeta-function

 Wl�0
s � 	

1

2
�2s

X
!�0

Z 1
0
dtts	1 Tr3�e

	t�!2�m2�P�!���sub

(80)

and then use a trick similar to the one employed in the
previous section. Namely, we replace the operator in the
exponential on the right-hand side of (80) by !2 �m2 �
P���, expand each of the terms under the frequency sum in
asymptotic series at !! 1 keeping � fixed, and then put
� � !. The result of this procedure reads
 

Wl�0
s � 	

1

2
�2s

X
!�0

X1
n�2

Z 1
0
dtts	1t�n	3�=2e	t!

2

� an�P�!� �m2�sub

� 	
1

2
�2s

X
!�0

X1
n�2

j!j3	n	2s�
�
n	 3

2
� s

�
� an�P�!� �m2�sub: (81)

Some comments are in order. Here we used again the fact
that !2 �m2 � P��� for a fixed ! is just a usual Laplace
type operator in three dimensions. The large ! expansion
of the heat trace in (80) is therefore standard and, as well as
the usual large mass expansion is defined by the heat kernel
coefficients (see, e.g., [16]). On a manifold without bound-
ary an asymptotic expansion (11) with the replacement
D! P�m2 exists, and only even numbers n appear.

The coefficient a0 vanishes due to the subtraction, so that
the sum in (81) starts with n � 2.

Now, we have to study the behavior of an�P�!� �m2�sub

at large !. These heat kernel coefficients are integrals over
R3 of polynomials constructed from the potential V�!� and
its derivatives. We can present them as
 

an�P�!� �m2�sub � an�P�m2�
planar
sub

� an�P�!� �m2�mixed; (82)

where the first (planar) contribution contains all terms
which are the products of either ’� and its derivatives
only, or of ’	 and its derivatives only (but not the products
of ’� and ’	). The rest is collected in the second (mixed)
contribution. Obviously, no subtraction for the mixed heat
kernel coefficient is needed. Because of the translation
invariance of the integral over R3, the planar coefficient
does not depend on !. For example,

R
d3x’2

� �
R
d3x’2.

Therefore, we drop ! from the notation.
First, let us consider the mixed contributions to (81). We

assumed that the background field ’ belongs to C1�S1 �
R3�. Therefore, it should vanish exponentially fast at large
distances. Since each term in an�P�!� �m2�mixed contains
a product of at least one ’� with at least one ’	, it should
be of order C2e	C1j!�j for large !, where C2 and C1 are
some constants. C1 is positive and characterizes the falloff
of ’ at large distances. C2 depends on n, on the amplitude
of ’, and on the functional form of an. Up to an inessential
overall constant the contribution of a mixed coefficient to
(81) can be estimated as

 �
X
!�0

j!j3	ne	C1j!�j �
X1
l�1

�n	3l3	n exp
�
	

2�C1lj�j
�

�
(83)

(this sum is obviously convergent, so that one can remove
the regularization parameter). If � is small enough,
namely, �� C1j�j, all terms in the sum (83) are strongly
suppressed, and the value of the sum can be well approxi-
mated by the first term

 � �n	3 exp
�
	

2�C1j�j
�

�
: (84)

We conclude that the contributions of the mixed terms are
exponentially small and can be neglected4 in the high-
temperature expansion of the effective action.

Since the planar heat kernel coefficients do not depend
on!, we are ready to evaluate their contribution to (81) by
using precisely the same procedure as in Dowker and
Kennedy [26]:

4If one imposes a stronger restriction on the background
requiring that ’ is of compact support, then the mixed terms
vanish identically above certain temperatures.
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Wl�0
s � 	�2s

X1
n�2

X1
l�1

�
�
n	 3

2
� s

�
l3	n	2s

� an�P�m
2�

planar
sub

�
�

2�

�
n	3�2s

� 	�2s
X1
n�2

�
�
n	 3

2
� s

�
	R�2s� n	 3�

� an�P�m
2�

planar
sub

�
�

2�

�
n	3�2s

(85)

with 	R being the Riemann zeta function. We remind that
the index n in (85) is even. The only divergence in (85) is a
pole in 	R for n � 4. The corresponding term near s � 0
reads

 

1

2
a4�P�m

2�
planar
sub

�

�4��1=2

�
	

1

s
	 
E 	 2 ln

�
��
4�

��
:

(86)

On static backgrounds there is a useful formula which
relates planar heat kernel coefficients of D and P,

 an�D�m
2�

planar
sub �

�

�4��1=2
an�P�m

2�
planar
sub : (87)

This formula follows from the analysis of the planar heat
kernel coefficients presented in Sec. II B and general for-
mulas for the heat kernel expansion of Laplace type op-
erators [14–16]. The coefficient � appears due to the
integration of a constant function over the Euclidean
time, and �4��1=2 comes from different prefactors in
the heat kernel coefficients in three and four dimensions.
In particular, a4�D�m

2�
planar
sub � 	m2a2�D� � a4�D� �

�=�4��1=2a4�P�m
2�

planar
sub [let us remind the reader that

mixed a2�D� and a4�D� vanish]. From (10) and (12) we see
that the divergence in the Euclidean effective is repro-
duced. This divergence is then removed by the renormal-
ization of couplings (43). After the renormalization, we
collect all contributions to the effective action to obtain our
final result for the high-temperature expansion of the re-
normalized effective action
 

W � 	
�3=2

3�
a2�P�m

2�
planar
sub 	

1

2
	 0�P�0� �m2�

	
1

2
a4�P�m

2�
planar
sub

�

�4��1=2

�

E � 2 ln

�
��
4�

��

	
X1
n�6

�
�
n	 3

2

�
	R�n	 3�an�P�m2�

planar
sub

�
�

2�

�
n	3

:

(88)

It is instructive to compare the expansion (88) to the one
in the commutative case obtained by Dowker and Kennedy
[26] (note, that the normalization of the heat kernel coef-
ficients used in that paper differs from ours). We see that
the 	 0 term is the same in both cases. The terms propor-

tional to the heat kernel coefficients for the commutative
case can be obtained from the expansion above by means
of the replacement an�P�m2�

planar
sub ! an�P�0� �m

2�sub.
(In both cases subtraction of the free-space contribution
means simply deleting the highest power of m in standard
analytical expressions [16]). Let us write down explicit
expressions for a couple of leading heat kernel coefficients.
In the NC case we have

 a2�P�m2�
planar
sub �

1

�4��3=2

Z
d3x

g
3
’2;

a4�P�m2�
planar
sub �

1

�4��3=2

Z
d3x

�
g2

36
’4 �

g
3
m2’2

�
:

(89)

The coefficients appearing in the commutative case are

 a2�P�0� �m
2�sub � 	

1

�4��3=2

Z
d3x

g
2
’2;

a4�P�0� �m
2�sub �

1

�4��3=2

Z
d3x

�
g2

8
’4 �

g
2
m2’2

�
:

(90)

In both cases the corresponding heat kernel coefficients
differ only by numerical prefactors in front of the same
powers of ’.

The high-temperature expansion does not depend on �.
In the limit �! 0 (which is a trivial operation) one does
not reproduce the corresponding expansion in the commu-
tative case. The limits �! 0 and �! 0 are not inter-
changeable because of the condition �� C1j�j which
was imposed when studying the mixed contributions to
the asymptotic expansion.

In space-space NC theories a drastic reduction of the
degrees of freedom in the nonplanar sector above certain
temperatures was observed in [3]. This may be related in
some way to the absence of nonplanar contributions to the
high-temperature power-law asymptotics in space-time NC
theories found above.

One can calculate the high-temperature asymptotics also
in the real-time formalism. The key observation that the
nonplanar sector does not contribute remains valid also in
this formalism. The heat kernel expansion in the planar
sector has the standard form (though the values of the heat
kernel coefficients differ from the commutative case).
Therefore, one can repeat step by step the calculations of
[27] and obtain an expansion for the free energy which is
consistent with the expansion for the effective action de-
rived above in the imaginary-time formalism. This is an-
other argument in favor of the assumptions made in
Sec. III B.

V. CONCLUSIONS

In this paper we considered some basic features of the
finite-temperature NC �4 theory in the imaginary-time
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formalism. We restricted ourselves to the case of pure
space-time noncommutativity, �ij � 0. We used the zeta-
function regularization and the heat kernel methods.
Although we found highly nonlocal nonplanar heat kernel
coefficients, such coefficients do not contribute either to
the one-loop divergences or to the high-temperature
asymptotics. The theory can be renormalized at one loop
by making charge and mass renormalizations, as usual. The
counterterms do not depend on the temperature (as long as
it is nonzero). We expect that the renormalization of this
theory at zero temperature proceeds differently. The high-
temperature expansion of the one-loop effective action
looks similar to the commutative case. The coefficients
of this expansion do not depend on the NC parameter �, but
again, one has to assume that this parameter is nonzero.

We have also studied relations between the imaginary
and real-time formulations. We found that the Wick rota-
tion of the Euclidean free energy gives the canonical free
energy modulo two assumptions. One assumption about
the behavior of the spectral density on the complex plane is
of a technical nature. Another one is more fundamental; it
concerns the interpretation of the eigenfrequencies of per-
turbations as one-particle energies.

An extension of our results to more general models
containing gauge fields and spinors can be done rather
straightforwardly. Gauge fields are particularly important

to make connections to other approaches [6,7]. Curved
space-times will probably be difficult because of the prob-
lems with the heat kernel expansion. Even in the case of a
two-dimensional NC space with a nontrivial metric, the
heat kernel coefficients for a (rather simple) operator are
known as power series in the conformal factor only [35].

Another possible development is suggested by the paper
[36]. The authors of [36] calculated the heat kernel expan-
sion for a kinetic operator which already contains a con-
tribution from the one-loop two-point function in an NC
scalar theory. This procedure effectively leads to resum-
mation of an infinite number of diagrams, known as the
ring or daisy resummation. In this way, logarithmic terms
in the heat kernel expansion were found. It would be
interesting to check this observation in the presence of a
nontrivial background field.
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