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The static Coulomb potential of quantum electrodynamics (QED) is calculated in the presence of a
strong magnetic field in the lowest Landau level approximation using two different methods. First, the
vacuum expectation value of the corresponding Wilson loop is calculated perturbatively in two different
regimes of dynamical mass mdyn, i.e., jq2

k
j � m2

dyn � jeBj and m2
dyn � jq

2
k
j � jeBj, where qk is the

longitudinal component of the momentum relative to the external magnetic field B. The result is then
compared with the static potential arising from Born approximation. Both results coincide. Although the
arising potentials show different behavior in the aforementioned regimes, a novel dependence on the angle
� between the particle-antiparticle’s axis and the direction of the magnetic field is observed. In the regime
jq2
k
j � m2

dyn � jeBj, for strong enough magnetic field and depending on the angle �, a qualitative change
occurs in the Coulomb-like potential; whereas for � � 0, � the potential is repulsive, it exhibits a
minimum for angles � 2�0; ��.
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I. INTRODUCTION

Chiral symmetry plays an important role in elementary
particle physics. It has been known [1] for some time that
QED, in addition to the familiar weak coupling phase, may
have a nonperturbative strong coupling phase, character-
ized by spontaneous chiral symmetry breaking [2]. The
existence of this new phase was exploited in a novel
interpretation of the multiple correlated and narrow peak
structures in electron and positron spectra observed at GSI
several years ago [3]. According to this scenario the
electron-positron peaks are due to the decay of a bound
electron-positron system formed in the new QED phase
induced by a strong and rapidly varying electromagnetic
field which is present in the neighborhood of colliding
heavy ions. It is therefore of great interest to investigate
whether background fields, such as constant magnetic
fields, can potentially induce chiral symmetry breaking in
gauge theories and lead eventually to the formation of a
chiral symmetry breaking fermion condensate h �  i and a
dynamically generated fermion mass.

Indeed, the magnetic catalysis of dynamical chiral sym-
metry breaking has been established as a universal phe-
nomenon in 2� 1 and 3� 1 dimensions [2,4]. According
to these results, even at the weakest attractive interaction
between fermions, a constant magnetic field leads to the
generation of a fermion dynamical mass. The essence of
this effect is the dimensional reduction D! D� 2 in the
dynamics of fermion pairing in a magnetic field, which
arises from the fact that the motion of charged particles is
restricted in directions perpendicular to the magnetic field.
It is believed that at weak coupling this dynamics is domi-
nated by the lowest Landau level (LLL). The magnetic
catalysis is not only interesting from a purely fundamental

point of view, but it has potential application in condensed
matter physics [5] and cosmology [6].

In this paper we are interested in the static potential
between the particle and antiparticle in the presence of a
strong constant magnetic field. The potential produced by a
point electric charge placed into a constant magnetic field
is recently calculated in [7]. It is shown that the standard
Coulomb law is modified by the vacuum polarization aris-
ing in the external magnetic field. Here, since the vacuum
polarization component, taken in the one-loop approxima-
tion, grows linearly with the magnetic field, a scaling
regime occurs in the limit of infinite magnetic field. The
scaling regime implies a short range character of interac-
tion, expressed as a Yukawa law

 V�x� � �
�e�M�R

R
; with M� 	

���������������������
2�jeBjNf

�

s
; (1.1)

where R 	 jxj and M� is the photon mass.
In the present work, we will determine anew the poten-

tial V�x� between the particle-antiparticle pair in the pres-
ence of a constant magnetic field in the LLL
approximation. Although our method differs essentially
from the analytic methods used in [7] leading to (1.1),
our result is indeed consistent with this potential.

To determine the fermion-antifermion potential, we will
first compute perturbatively the vacuum expectation value
(VEV) of a Wilson loop of a static fermion-antifermion
pair for large Euclidean time.1 In [9], the same perturbative
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1Here, to determine the potential in the LLL approximation,
we will use the full photon propagator in the presence of a strong
magnetic field [8] in the LLL approximation. In [8], it is shown
that the full photon propagator depends on the dynamical mass
mdyn, which is calculated nonperturbatively in [4]. Thus,
although our method is a perturbative one, the result depends
automatically on a parameter which is determined non-
perturbatively.
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method is used to determine the quark-antiquark potential
of ordinary QCD. At one-loop level it is shown to be

 V�R� � �C
e2

4�R

�
1�

11e2

8�2 ln
R
a

�
; (1.2)

where C 	 1
4 tr��a�a� is the trace over the product of Gell-

Mann matrices �a, and a�1 is the UV cutoff parameter.
Using the same idea, we will determine the potential of a
point charged particle in the external magnetic field.
Eventually, we will compare our result with the modified
Coulomb potential from a semiclassical Born approxima-
tion. In the regime of LLL dominance, we will consider
two different regions of dynamical mass, jq2

k
j � m2

dyn �

jeBj and m2
dyn � jq

2
k
j � jeBj, separately. Here, qk is the

longitudinal component of the momentum with respect to
the direction of the external magnetic field. We will show
that the potential in the regime jq2

k
j � m2

dyn � jeBj has
the general form of a modified Coulomb potential,
 

V1�R;�� � �
�
R

�
A1��; �� �

�A2��; ��

R2 �
�2A3��;��

R4

�
;

with � 	
2�

3�m2
dyn

; (1.3)

and in the regime m2
dyn � jq

2
k
j � jeBj has the form of a

Yukawa-like potential

 V2�R; �� � �
�e�MeffR

�1� �
��g���R

; with

Meff��� 	 g���

���������������
2�jeBj
�

s
;

(1.4)

where Ai, i � 1, 2, 3 in (1.3) and g��� in (1.4) will be
calculated exactly in Sec. III. In (1.3) as well as (1.4), � is
the angle between the particle-antiparticle axis and the
direction of the magnetic field. Up to this explicit novel
dependence on the angle �, the potential V2�R; �� from
(1.4) is comparable with the potential (1.1) from [7]. As a
consequence of this �-dependence, the effective photon
mass Meff��� in (1.4) is, in contrast to the photon mass
M� in (1.1), a function of �.

In the regime jq2
k
j � m2

dyn � jeBj, it can be shown that
for large enough magnetic field and depending on the angle
�, a qualitative change occurs in the Coulomb-like poten-
tial V1�R; ��; whereas for � � 0, � the potential is repul-
sive, it exhibits a minimum for angles � 2�0; �� and
distances R 
 0:005 fm. The position of this minimum is
proportional to 1=

����
B
p

and the depth of the potential at Rmin

increases with the magnetic field. The exact value of the
strong magnetic field will be determined in Sec. V. We
interpret the appearance of such a minimum as a possibility
for bound state formation inD � 4 dimensions. A rigorous
proof of the bound state formation in the above potentials

V1 and V2 is the subject of a separate investigation and is
beyond the scope of this paper.2

The organization of the paper is as follows. In Sec. II, a
brief review of QED in a strong magnetic field containing
some important results from [4] will be presented. In
Sec. III, the static potential of QED in a strong magnetic
field will be calculated perturbatively by determining the
VEV of the Wilson loop of a static fermion-antifermion
pair in two regimes of the dynamical mass jq2

k
j � m2

dyn �

jeBj and m2
dyn � jq

2
k
j � jeBj in the LLL. In Sec. IV a

semiclassical Born approximation will be used to deter-
mine the same particle-antiparticle potentials. In Sec. V, a
qualitative analysis of these potentials will be performed
and the role played by the angle � will be discussed in
detail. Sec. VI summarizes our results.

II. QED IN A STRONG MAGNETIC FIELD

In this section we will briefly review the characteristics
of fermions and photons in a constant external magnetic
field. To this purpose, let us start with the QED Lagrangian
density

 L � �
1

4
F��F

�� � � ���i@� � eA�� �m �  ; (2.1)

where the vector field A� � a� � A
ext
� , where a� is an

Abelian quantum gauge field, F�� is the corresponding
field strength, and Aext

� describes an external electromag-
netic field. In this paper we will choose the symmetric
gauge for Aext

� , i.e.,

 Aext
� �

B
2
�0; x2;�x1; 0�: (2.2)

This leads to a magnetic field in the x3 direction. From now
on, the longitudinal (0, 3) directions will be denoted by xk
and the transverse directions (1, 2) by x?. Using the
Schwinger proper time formalism [10], it is possible to
derive the fermion and photon propagator in this gauge. As
for the fermion propagator, it is given by
 

SF�x; y� � exp
�
ie
2
�x� y��Aext

� �x� y�
�
S�x� y�

� exp
�
ieB
2
�abxayb

�
S�x� y�; a; b � 1; 2:

(2.3)

Here, the first factor containing the external gauge field,
Aext
� , is the Schwinger line integral [10]. The Fourier trans-

form of the translational invariant part S�x� y� reads

2A nonperturbative analysis of the corresponding Schrödinger
equation describing the Nambu-Goldstone modes and arising
from a Bethe-Salpeter equation for bound states shows that at
least one bound state can be formed in the attractive potential in
D � 4 dimensions [4] (for more details, see the explanation in
the last paragraph of Sec. II).
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~S�k� � i
Z 1

0
dse�ism2

exp
�
is
�
k2
k
�

k2
?

eBs cot�eBs�

��
� f�m� �k � kk��1� �1�2 tan�eBS��

� �? � k?�1� tan2�eBs��g; (2.4)

where kk � �k0; k3� and �k � ��0; �3� and k? � �k1; k2�
and �? � ��1; �2�. After performing the integral over s,
~S�k� can be decomposed as follows:

 

~S�k� � ie��k
2
?
=jeBj�

X1
n�0

��1�n
Dn�eB; k�

k2
k
�m2 � 2jeBjn

; (2.5)

withDn�eB; k� expressed through the generalized Laguerre
polynomials L�m,
 

Dn�eB; k� � ��
k � kk �m�f2O�Ln�2	� � Ln�1�2	��

� 4�? � k?L1
n�1�2	�g: (2.6)

Here, we have introduced 	 	
k2
?

jeBj and

 O 	
1

2
�1� i�1�2sign�eB��: (2.7)

Relation (2.5) suggests that in the IR region, with jkkj,
jk?j �

���������
jeBj

p
, all the higher Landau levels with n  1

decouple and only the LLL with n � 0 is relevant. In the
strong magnetic field limit, the full fermion propagator
(2.3) can therefore be decomposed into two independent
transverse and longitudinal parts [4]:

 S F�x; y� � Sk�xk � yk�P�x?; y?�; (2.8a)

with the longitudinal part

 Sk�xk � yk� �
Z d2kk
�2��2

eikk��x�y�k iO

�k � kk �m
(2.8b)

and the transverse part
 

P�x?; y?� �
jeBj
2�

exp
�
ieB
2
�abxayb �

jeBj
4
�x? � y?�2

�
;

a; b � 1; 2: (2.8c)

The photon propagator D�� of QED in an external con-
stant magnetic field in one-loop approximation with fer-
mions from LLL is calculated explicitly in [4,8]. It is given
by

 iD���q� �
g?��
q2 �

qk�q
k
�

q2q2
k

�
�gk�� � qk�q

k
�=q2

k
�

q2 � q2
k
��q2

?; q
2
k
�
� 


q�q�
�q2�2

;

(2.9)

where 
 is an arbitrary gauge parameter. Since the LLL
fermions couple only to the longitudinal (0, 3) components
of the photon fields, no polarization effects are present in
the transverse (1, 2) components of D���q�. Therefore, the
full photon propagator in the LLL approximation is given
by the Feynman-like covariant propagator [4]

 i ~D���q� �
gk��

q2 � q2
k
��q2

k
;q2
?�
; (2.10)

with ��q2
?; q

2
k
� having the form [11]

 ��q2
?; q

2
k
� �

2�jeBjNf
q2
k

e��q
2
?
=2jeBj�H

� q2
k

4m2
dyn

�
: (2.11)

Here Nf is the number of fermion flavors and � 	 e2

4� ,
where e is the running coupling. Further, H�z� in (2.11) is
defined by

 H�z� 	
1

2
�����������������
z�z� 1�

p ln
� ������������

1� z
p

�
�������
�z
p������������

1� z
p

�
�������
�z
p

�
� 1: (2.12)

Expanding this expression for jq2
k
j � m2

dyn � jeBj and
m2

dyn � jq
2
k
j � jeBj leads to

 ��q2
?;q

2
k
� ’ �

�jeBjNf
3�m2

dyn

e��q
2
?
=2jeBj�

for jq2
k
j � m2

dyn � jeBj;

(2.13)

 ��q2
?;q

2
k
� ’ �

2�jeBjNf
�q2
k

e��q
2
?
=2jeBj�

for m2
dyn � jq

2
k
j � jeBj:

(2.14)

In [4], it is shown that the kinematic region mostly respon-
sible for generating the fermion mass is with the dynamical
mass, mdyn, satisfying m2

dyn � jq
2
k
j � jeBj. Plugging

(2.14) in the full photon propagator (2.10) and assuming
that jq2

?j � jeBj, we get

 

~D ���q� � �
igk��

q2 �M2
�
; with M2

� �
2�jeBjNf

�
:

(2.15)
The appearance of a finite photon mass M� is the result of
the dimensional reduction 3� 1! 1� 1 in the presence
of a constant magnetic field. This phenomenon can be
understood as reminiscent of the Higgs effect in the 1�
1-dimensional Schwinger model, where the photon ac-
quires also a finite mass.

As for the dynamically generated fermion mass mdyn, it
can be determined by solving the corresponding
Schwinger-Dyson equation in the rainbow (ladder) ap-
proximation, where the effects of dynamical fermions are
neglected. In this approximation, the gauge invariant dy-
namical mass is shown to have the form [4]

 mdyn � C
������
eB
p

exp
�
�
�
2

�
�
2�

�
1=2
�
; (2.16)

where the constant C is of order one.3 In the improved
rainbow approximation, however, the expression for mdyn

takes the following form [4]:

3The problem of gauge invariance of chiral symmetry breaking
induced by the magnetic field found in the ladder QED is
investigated in [12].
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 mdyn � ~C
���������
jeBj

p
F��� exp

�
�

�
� ln�C1=�Nf�

�
; (2.17)

where F��� ’ �Nf��1=3, C1 ’ 1:82� 0:06 and ~C�O�1�.
The dynamical mass, mdyn, plays the role of energy in

the two-dimensional Schrödinger equation
 

����m2
dyn � V�x����x� � 0;

with � 	
@2

@x2
3

�
@2

@x2
4

: (2.18)

Here, the attractive potential has the form [4]

 V�x� �
�jeBj
�

exp
�
R2jeBj

2

�
Ei
�
�
R2jeBj

2

�
; (2.19)

and behaves as

 V�x� ’ �
2�
�

1

R2 ; R! 1;

V�x� ’ �
�jeBj
�

�
�E � ln

2

R2jeBj

�
; R! 0;

(2.20)

where �E ’ 0:577 is the Euler constant. To determine the
long and short range behavior of the potential, the asymp-
totic behavior of Ei�x� is used [13]. In this context, the
problem concerning bound state formation is reduced to
finding the spectrum of bound states of the Schrödinger
equation (2.18) with the attractive potential (2.19). In [4], it
is shown that in D � 4 dimensions at least one bound state
can be formed. Figure 1 shows the behavior of V�x� for
different B � 103, 104, 105, 109, and B � 1012 (from left
to right) as a function of R.4 According to this result,

whereas for B< 109 at each given distance the absolute
value of the potential increases with increasing the mag-
netic field, the shape of the potential does not change for
B  109.

In the next section we will determine the static Coulomb
potential between a fermion-antifermion pair in two afore-
mentioned regimes in the LLL approximation by calculat-
ing the VEV of the Wilson loop perturbatively. Note that
although our method is a perturbative one, our results
depend explicitly on mdyn which is determined nonpertur-
batively in the literature [4].

III. THE WILSON LOOP AND THE MODIFIED
COULOMB POTENTIAL IN A STRONG

MAGNETIC FIELD

In ordinary quantum field theory with no background
magnetic field, the Wilson loop appears as one of the most
efficient tools for probing the large distance properties of
strong coupling QCD. It provides a natural criterion for
confinement through the area law. In contrast to QED,
where the field lines connecting a pair of opposite charges
are allowed to spread, one expects that in QCD the quarks
within a hadron are the sources of a chromoelectric flux
which is concentrated within narrow tubes connecting the
constituents. Since the energy is not allowed to spread, the
potential of a quark-antiquark pair h �qqi will increase with
their separation, as long as vacuum polarization effects do
not screen their color charge. This picture of confinement
can be checked by computing the nonperturbative potential
between a static quark-antiquark pair in the path integral
formalism.

It is the main purpose of this section to investigate the
properties of the Wilson loop concerning the bound state
problem of QED in the presence of a strong magnetic field
in the LLL approximation. Here, the magnetic field plays
the role of a strong catalyst and even the weakest attractive
potential between fermions is enough for dynamical mass
generation and bound state formation. Before calculating
the modified Coulomb potential by determining the VEVof
the Wilson line of a static fermion-antifermion pair in two
regimes of dynamical mass, jq2

k
j � m2

dyn � jeBj and
m2

dyn � jq
2
k
j � jeBj, we briefly review the path integral

formulation leading to the Coulomb potential between
slowly moving particles in ordinary QED. Here, we keep
closely to the notations of [16] and the classical review
article [9].

Imagine creating a fermion-antifermion pair, �  , at
space-time point x� � 0 and adiabatically separate them
to a relative distance R. This configuration will be held for
a time T ! 1. Finally we bring the �  pair back together
and let them annihilate. The Euclidean amplitude for this
process is the matrix element of the Hamiltonian evolution
operator e�HT between the initial and final states, jii and
jfi, respectively,

0 0.01 0.02 0.03 0.04 0.05 0.06
R (fm)

17.5

15

12.5

10

7.5

5

2.5

0
V

(R
)

(G
eV

)

B=1012
B=109
B=105
B=104
B=103

FIG. 1. Potential V�x� from (2.19) of a particle-antiparticle
pair for different magnetic fields. According to this result,
whereas for B 
 109 at each given distance the absolute value
of the potential increases with increasing the magnetic field, the
shape of the potential does not change for B  109.

4Note that discussion here is purely qualitative. It is never-
theless possible to give the strength of the magnetic fields in
Gauss through the relation 6:8� 1019B ’ H in Gauss [14,15].
Using this relation the potential V�R� is given in GeV � 109 eV
and the distance R in fm � 10�15 m.
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 hije�HTjfi: (3.1)

Here, jii and jfi represents a �  pair a distance R apart and
H is the Hamiltonian (for more details concerning the
exact mathematical structure of the initial and final states,
jii and jfi, see [16]). In the path integral representation the
matrix element (3.1) can be expressed by

 hije�HTjfi �

R
DA�D D � e�S�ie

R
A��x�j��x�d4xR

DA�D D � e�S
; (3.2)

where we have already skipped the subscript E for the
Euclidean action S. Here, the current j� should describe
the closed worldline C of the creation and annihilation of
�  pair. For a closed worldline of the heavy fermions (3.2)

simplifies to [16]

 hije�HTjfi �

R
DA�D D � e�S�ie

H
C
A��x�dx�R

DA�D D � e�S
: (3.3)

Since in a closed path jii and jfi are identical and since the
process is static, the Hamiltonian H is purely potential and
the left-hand side (LHS) of (3.3) is

 hije�HT jfi � e�V�R�T: (3.4)

Here, V�R� is the fermion-antifermion potential. Taking the
logarithm of (3.3) by plugging (3.4) on its LHS, it is given
by

 V�R� � � lim
T!1

1

T
lnhWC�A�i; (3.5)

where we have introduced the ‘‘loop-correlation’’ func-
tion—the Wilson loop [17–19],

 WC�A� 	 eie
H
C
A��x�dx� ; (3.6)

and used the definition

 hOi 	

R
DA�D D � Oe�SR
DA�D D � e�S

: (3.7)

For S being the QED action, the Coulomb potential
V�R� � � e2

4�R can be analytically calculated in the
quenched approximation, i.e., when the vacuum polariza-
tion effects arising from the presence of dynamical fermi-
ons are neglected. To calculate this Coulomb potential, one
expands hWC�A�i in powers of the background field A�, to
get
 

hWC�A�i �
�

1� ie
I
C
dx�A��x�

�
e2

2

I
C

I
C
dx�dy�A��x�A��y� � � � �

�
: (3.8)

Here, the second term including only one gauge field does
not contribute. As for the other terms, the terms with an
odd number of external photon lines do not contribute to

the above expansion. This is because of Furry’s theorem
that holds in ordinary QED in contrary to QED in the
presence of external magnetic field.5 Plugging (3.8) in
(3.5), the Coulomb potential is given by
 

V�R� � lim
T!1
�

1

T
ln
�
1�

e2

2

I
C

I
C
dx�dy�D���x;y� � � � �

�

� lim
T!1

e2

2T

I
C

I
C
dx�dy�D���x;y� �O�e3�; (3.9)

where we have expanded the ln�1� � � �� for weak coupling
constant e. The integrand is the photon propagator in the
coordinate space,

 D���x; y� 	 hA��x�A��y�i �
���

4�2�x� y�2
: (3.10)

To compute the double integral (3.9), one chooses a rect-
angular contour. Because in the Euclidean space the inte-
grand (3.10) is proportional to ���, the double integral
receives a contribution when x and y are located on the
segments of integration contour which are parallel to each
other. The double integral therefore reduces to

 V�R� � lim
T!1

�e2

T

Z T

0
dT1

Z T

0
dT2D00�R; T1 � T2�

� lim
T!1

�e2

T

Z T

0
dT1

Z T

0
dT2

1

4�2�R2 � �T1 � T2�
2�
:

(3.11)

Here R 	 jx� yj. Performing now the double integration,
one arrives first at [16]

 V�R� � lim
T!1

�
e2

2�2

�
1

R
arctan

T
R
�

1

2T
ln
�
1�

T2

R2

��
;

(3.12)

and then after taking the limit T ! 1, at the Coulomb
potential of a fermion-antifermion pair

 V�R� � �
�
R
: (3.13)

After this brief excursion, let us now turn back to our
original problem of computing the modified Coulomb
potential of QED in the presence of external strong mag-
netic field. In the regime of LLL, the full photon propa-
gator ~D�� in the momentum space is given by (2.10),
where ��q2

k
;q2
?� is defined in (2.11). It is indeed a very

difficult task to calculate the potential of a static fermion-
antifermion pair for full photon propagator (2.10). We will
therefore consider only two different regimes of dynamical
mass jq2

k
j � m2

dyn � jeBj and m2
dyn � jq

2
k
j � jeBj, with

5The phenomenon of photon splitting �! 2� in the presence
of an external magnetic field [20] is the best counterexample for
the validity of Furry’s theorem for QED in external magnetic
field.
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��q2
k
;q2
?� given in (2.13) and (2.14), respectively, and will

calculate the modified Coulomb potential V�x� in these two
regimes.

A. Modified Coulomb potential in jq2
k
j � m2

dyn � jeBj
regime

Substituting (2.13) withNf � 1 in (2.10), the full photon
propagator in this regimes reads

 

~D ���q� � �i
gk��

q2 � �jeBj
3�m2

dyn
q2
k

exp��
q2
?

2jeBj�
: (3.14)

To calculate the Coulomb potential by (3.9), we need the
LLL photon propagator in the coordinate space, i.e., the
Fourier transform of (3.14):

 

~D ���x� � �ig
k
��

Z d4q

�2��4
eiqx

q2 � �jeBj
3�m2

dyn
q2
k

exp��
q2
?

2jeBj�
:

(3.15)

After a lengthy but straightforward calculation of the above
integral over q (see Appendix A for more details), we
arrive at the LLL photon propagator in the coordinate
space

 

~D���R; �; T� �
�k��

4�2a1

��
1�

�
a1
�

4a2 � �R
2sin2�

2�a2
1

�
3a2R

2sin2�

2�2a3
1

�
�

4�2

a2
1

�
1�

3R2sin2�
2�a1

�
3R4sin4�

8�2a2
1

�

�
12�a2

�a3
1

�
2�

2

�a1

�
2R2sin2��

a2

�

�
�

5

4�2a2
1

�
R4sin4��

4a2R
2sin2�
�

�
�

15a2R
4sin4�

8��3a3
1

�

�
�

jeBj�a2
1

�
1�

3

�a1

�
R2sin2�

2
�
a2

�

�
�

6

�2a2
1

�
R4sin4�

16
�
a2R2sin2�

�

�
�

15a2R4sin4�

8��3a3
1

��
: (3.16)

Here,

 ��1 	 4
�
1�

�jeBj

3�m2
dyn

�
and ���� 	

2�

3�m2
dyn

(3.17)

are constant c-numbers, and ai � ai�R; �; T�, i � 1, 2 are
defined by

 a1�R; �; T� 	 T2 � R2f2��; ��; with

f2��; �� 	 1�
�jeBj

2
sin2�;

a2�R; �; T� 	 ���T2 � R2cos2��:

(3.18)

In all the above expressions R 	 jxj is the distance be-
tween the static fermion and antifermion pair, � is the angle
between the particle-antiparticle axis and the direction of
the magnetic field B, i.e., the x3 direction, and T 	 ix0 is
the Euclidean time. Note that here, to determine the LLL
photon propagator, we have to use the approximation
q2
? � jeBj, which is valid in the regime of strong mag-

netic field.

To determine the static potential between the �  pair,
we have to calculate the double integral [see (3.11) leading
to the expression of the ordinary Coulomb potential]

 V�R; �� � lim
T!1

�
e2

T

Z T

0
dT1

Z T

0
dT2

~D00�R; �; T1 � T2�;

(3.19)

which can be easily simplified to

 V�R; �� � �2e2
Z 1

0
dT ~D00�R; �; T�: (3.20)

Using now the definition of ~D���R; �; T� in (3.16), and
performing the integration over T, the modified Coulomb
potential in the regime jq2

k
j � m2

dyn � jeBj can be given
by

 V�R; �� � �
�
R

�
A1��; �� �

�A2��; ��

R2 �
�2A3��; ��

R4

�
;

(3.21)

with

 

A1��; �� 	
1

f
; A2��; �� 	 �

1

4f3

�
1�

3cos2�

f2 �
3sin2�

8�f2 �
15sin2�cos2�

8�f4

�
;

A3��; �� 	 �
9

16f5

�
1�

5sin2�

4�f2 �
35sin4�

128�2f4

�

�
15cos2�

8f7

�
3�

7

4�f2 �2�cos2�� 3sin2�� �
63sin2�

8�2f4

�
�cos2��

3sin2�
16

�
�

693cos2�sin4�

256�2f6

�

�
3

16jeBjf5��

�
1�

5

4�f2 �4�cos2�� sin2�� �
35sin2�

4�2f4

�
�cos2��

sin2�
32

�
�

315cos2�sin4�

128�2f6

�
: (3.22)
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In Sec. V we will present a qualitative analysis of the above
potential emphasizing the role played by the angle � in a
possible bound state formation.

B. Modified Coulomb potential in m2
dyn � jq

2
k
j � jeBj

regime

To compute the interparticle potential in this regime, we
substitute (2.14) in (2.10). For Nf � 1, the full photon
propagator in the coordinate space reads

 

~D ���x� � �ig
k
��

Z d4q

�2��4
eiqx

q2 � 2�jeBj
� exp��

q2
?

2jeBj�
:

(3.23)

The integration over q can be performed using the approxi-
mation q2

? � jeBj which is valid in the regime of LLL
dominance. After a straightforward calculation (see
Appendix B for more details), the propagator is given by

 

~D ���R; �; T� �
�k��

4�2�1� �
��

�
����������������������������

T2 � R2g2���
p K1�

����������������������������
T2 � R2g2���

q
�;

(3.24)

where

  	

���������������
2�jeBj
�

s
; and g2��� 	 cos2��

sin2�
1� �

�

: (3.25)

The fermion-antifermion potential in this regime is then
calculated using the expression (3.19) or equivalently
(3.20) and reads

 V�R; �� � �
e2

2�2�1� �
��

�
Z 1

0
dT

1����������������������������
T2 � R2g2���

p K1�
����������������������������
T2 � R2g2���

q
�:

(3.26)

To evaluate the integral we make use of

 

Z 1
0
d�

�2��1���������������������
��2 � z2��

p K��
����������������
�2 � z2

p
�

�
2����� 1�

��1z����1 K����1�z�;

 > 1;Re���>�1:

(3.27)

Choosing � � T, z � Rg���, � � 1, and � � � 1
2 , we

arrive at

 V�R; �� � �
�

�1� �
��g���R

e�g���R: (3.28)

Here we have used K1=2�x� �
�����
2x

p
e�x and ��12� �

����
�
p

.

Apart from its �-dependence our result is comparable
with (1.1) from [7].

The potential (3.28) is indeed comparable with the ordi-
nary attractive Yukawa potential

 VYukawa�R� � �
�
R
e�mR; (3.29)

where �! �
�1��

��g���
and the effective photon mass m!

Meff��� 	 g���. This result is also in agreement with the
general result about the massive photons in a strong mag-
netic fields in the LLL approximation. As we have seen in
Sec. II, in the regime m2

dyn � jq
2
k
j � jeBj, the 3� 1

dimensional QED in the LLL approximation is reduced
to a 1� 1 dimensional Schwinger model where the photon

acquires a finite massM� �
���������������
2�jeBjNf

�

q
, with Nf the number

of flavors [see (2.15) for more details]. For Nf � 1, we
have M� �  . Thus the effective photon mass in this
regime is given by Meff � M�g��� and depends explicitly
on the angle � between the particle axis and the direction of
the external magnetic field. Figure 2 shows the
�-dependence of g��� which is understood to be the ratio
Meff

M�
. For all values of � 2 �0; �� the effective mass Meff

and the aforementioned photon mass M� are almost equal.
Here � is fixed to be � � 1=137. A qualitative analysis of
the potential (3.28) emphasizing the role played by the
angle � will be presented in Sec. V.

In Sec. IV we will use the Born approximation to
determine the static Coulomb potential in two regimes of
dynamical mass in the LLL approximation. Eventually we
will study the behavior of the potentials (3.21) and (3.26) as
a function of the angle � for two limits of large and small
distances.

IV. BORN APPROXIMATION AND THE STATIC
COULOMB POTENTIAL IN A STRONG

MAGNETIC FIELD

In the nonrelativistic quantum mechanics the relation
between the scattering amplitude M and the potential is

0 0.5 1 1.5 2 2.5 3
θ

1

1.0002

1.0004

1.0006

1.0008

1.001

M
ef

f
M

γ

FIG. 2. The ratio Meff

M�
� g��� for � 2 �0; �� in the regime

m2
dyn � jq

2
k
j � jeBj of LLL dominance.
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given by the Born approximation

 hp0jiMjpi � �iV�q��2����Ep0 � Ep�; (4.1)

where p (Ep) and p0 (Ep0) are the momenta (energy) of the
incoming and outgoing particles, respectively, and q �
p0 � p. For ordinary QED with no background magnetic
field, for instance, the amplitude of a particle-antiparticle
scattering is given by [21]

 iM��
ie2

jp� p0j2
: (4.2)

Comparing with (4.1), the attractive (classical) Coulomb
potential V�q� is thus given by

 V�q� � �
e2

jqj2
; with jqj 	 jp� p0j: (4.3)

After a Fourier transformation into the coordinate space,
the same potential reads

 V�x� �
Z d3q

�2��3
V�q�eiq�x � �

�
R
; (4.4)

where R 	 jxj. Furthermore, to include the quantum cor-
rection into the result, the modified Coulomb potential can
be calculated from

 V�x� � �
Z d3q

�2��3
eiq�x

e2

q2�1���q2��
; (4.5)

where ��q� in the ordinary QED is defined by the vacuum
polarization tensor

 ����q� � �q2g�� � q�q����q2�; (4.6)

and is given by

 ��q2� � �
2�
�

Z 1

0
dxx�1� x� log

�
m2

m2 � x�1� x�q2

�
:

(4.7)

Choosing q0 � 0 and plugging this relation into (4.5), after
some straightforward calculation [21], one arrives at the so
called Uehling potential

 V�R� � �
�
R

�
1�

�
4
����
�
p

e�2mR

�mR�3=2
� � � �

�
: (4.8)

In this section, we will use the above method to determine
the potential of QED in a strong magnetic field in two
regimes of dynamical mass jq2

k
j � m2

dyn � jeBj and
m2

dyn � jq
2
k
j � jeBj separately. We will show that our

results coincide with (3.21) and (3.22) in the regime jq2
k
j �

m2
dyn � jeBj and with (3.26) in the regimem2

dyn � jq
2
k
j �

jeBj.

A. Modified Coulomb potential in jq2
k
j � m2

dyn � jeBj
regime

We will start using the relation (4.5) where ��q� in this
regime is given by (2.13). The modified Coulomb potential
in this regime is therefore given by

 V�x� � �e2
Z d3q

�2��3
e�iq�x

q2 � �eB
2 q2

3e
��q2

?
=2jeBj�

; (4.9)

where we set q0 � 0, and the factor � 	 �jeBj
3�m2

dyn

is defined in

(3.17). The three-dimensional integral over q can be per-
formed by making use of the same methods as was shown
in Appendix A. The main steps of the calculations are as
follows. First, using the relation (A2) and (A8) we write the
integrand in the form

 

V�x� � �e2
Z 1

0
ds
Z dq?q?dq3d’0

�2��3

� e�i�q3R cos��q?R sin� cos�’�’0��

� exp
�
�s

�
q2
? � q

2
3 �

�eB
2
q2

3e
��q2

?
=2jeBj�

��
;

(4.10)

where � is the angle between the particle-antiparticle axis
and the external magnetic field. The integration over ’0

and q3 can be performed using (A10) and (A12), respec-
tively. We arrive therefore at

 

V�x� � �e2
Z 1

0
ds

����
�
s0

r Z dq?q?
�2��2

J0�q?R sin��

� e�sq
2
?e��R

2cos2�=4s0�; (4.11)

where we have introduced

 s0 	 s
�
1�

�eB
2
e��q

2
?
=2jeBj�

�
(4.12)

to simplify our notations. At this stage, to perform the
integration over q? and eventually over s, one can use
the approximation jq2

?j � jeBj, which is valid in the LLL
approximation. The factors 1

s0 and 1���
s0
p are therefore given by

 

1

s0
’

2

s


�
1�

�
2


q2
? �

�
�2

4
2 �
�

8jeBj


�
q4
?

�
;

1����
s0
p ’

������
2

s


s �
1�

�
4


q2
? �

�
3�2

32
2 �
�

16jeBj


�
q4
?

�
;

(4.13)

where 
 	 �2� �jeBj�. Using these expressions, the po-
tential is given by
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V�x� � �e2
Z 1

0
ds

�������
2�
s


s Z dq?q?
�2��2

e�sq
2
?e��b1=2
s�

� J0�q?R sin��
�
1�

�q2
?

4


�
1�

b1

s


�

� q4
?

�
�2

16
2

�
3

2
�

3b1

s

�

b2
1

2s2
2

�

�
�

16
jeBj

�
1�

b1

s


��	
; (4.14)

where b1 	 R2cos2�. The result is similar to (A16) and
indeed we have used the same approximation which was
done in (A15) and led to (A16). Using now the integrals Ii,
i � 1, 2, 3 from (A21)–(A23), (4.14) can be written as

 

V�x� � �e2
Z 1

0

ds

�2��2

�������
2�
s


s
e��b1=2
s�

�
I1 �

�q2
?

4


�

�
1�

b1

s


�
I2 � q4

?

�
�2

16
2

�
3

2
�

3b1

s

�

b2
1

2s2
2

�

�
�

16
jeBj

�
1�

b1

s


��
I3

	
: (4.15)

Here, the integration over s can be performed using (A25).
After replacing

 R2sin2��
2R2cos2�



! 4�R2f2���; (4.16)

where � 	 �2
��1 and f2��; �� are defined in (3.17) and
(3.18), we arrive at the same potential (3.21) and (3.22).
The potential has therefore the general form

 V�R; �� � �
�
R

�
A1��; �� �

�A2��; ��

R2 �
�2A3��; ��

R4

�
;

with Ai, i � 1, 2, 3 from (3.22).

B. Modified Coulomb potential in m2
dyn � jq

2
k
j � jeBj

regime

Starting from (4.5) and plugging ��q� corresponding to
the relevant regime m2

dyn � jq
2
k
j � jeBj from (2.14) and

choosing q0 � 0, we arrive first at

 V�x� � �e2
Z d3q

�2��3
e�iq�x

q2 � 2e��q
2
?
=2jeBj�

; (4.17)

where  	
�����������
2�jeBj
�

q
is already defined in (3.25). To perform

the three-dimensional integral over q, we will use the same
methods described in Appendix B to evaluate the full
photon propagator in the coordinate space. First using
Schwinger’s parametrization technique (B2), the potential
reads

 

V�x� � �e2
Z 1

0
ds
Z dq?q?dq3d’0

�2��3

� e�i�q?R sin� cos�’�’0��q3R cos��

� exp��s�q2 � 2e��q
2
?
=2jeBj���; (4.18)

where we have used (A8) to bring q � x in a useful form.
Now integrating over ’0 and q3 using (A10) and (A12), we
arrive at
 

V�x� � �e2
Z 1

0
ds

����
�
s

r Z dq?q?
�2��2

e��R
2cos2�=4s�

� J0�q?R sin��e�s
2
e�s�1���=���q

2
? ; (4.19)

where we have used the IR approximation jqj2 � jeBj
relevant in the LLL regime

 e�s�q
2
?
�2 exp���q2

?
=2jeBj��� ’ e�s

2
e�s�1���=���q

2
? :

Next, using (B10) the integration over q? can be per-
formed. The potential is therefore given by
 

V�x� � �
e2 ����

�
p

8�2�1� �
��

Z 1
0

ds

s3=2
e��R

2g2���=4s��s2
; with

g2��� � cos2��
sin2�
�1� �

��
:

The �-dependent function g��� is defined already in (3.25).
Finally, defining a new variable s0 � 2s, and using (B13),
the potential V�x� in the m2

dyn � jq
2
k
j � jeBj in the LLL

dominance can be calculated and reads

 V�R; �� � �
�

�1� �
��g���R

e�g���R;

which is the same potential as (3.28) which was found
using the Wilson-loop technique.

V. A QUALITATIVE ANALYSIS OF MODIFIED
COULOMB POTENTIALS IN THE LLL

In this section we will consider the potential (3.22) and
(3.28)

 V1�R; �� � �
�
R

�
A1��; �� �

�A2��; ��

R2

�
�2A3��; ��

R4

�
;

V2�R; �� � �
�

�1� �
��g���R

e�g���R;

in the first jq2
k
j � m2

dyn � jeBj, and the second m2
dyn �

jq2
k
j � jeBj LLL regimes, respectively. We will eventually

compare these potentials with the modified Coulomb po-
tential (1.1).

As for V1�R; ��, Fig. 3 shows this potential for different
choices of the magnetic field B � 105, 106, 107, 109 (from
right to left) and different � � 0, �=3, 2�=3, �.
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2 eB Regime for different θ and B
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FIG. 3. Potential V1�R; �� for different B and �. No qualitative changes occur by varying the angle �.
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FIG. 4. Coefficients A1, �A2, and �2A3 for different magnetic fields. As it turns out, A3 decreases rapidly with increasing
magnetic field.
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According to this result, for R! 0 the potential falls
more rapidly to �1 the smaller the magnetic field is.
Although the scales in which the potential V1 is plotted
for � � 0, � are different from the scales in which it is
plotted for � � �=3, 2�=3, their shapes are almost the
same, i.e., no qualitative changes occur by varying the
angle �. This situation changes by neglecting the coeffi-
cient �2A3 comparing with A1 and �A2 in V1�R; ��.
Figure 4 shows the behavior of the coefficients A1, �A2,
and �2A3 of the potential V1 as functions of the angle �
for different magnetic fields B � 102, 105, 107, and B �
109.

Choosing � � 1=137, it turns out that the coefficients
A1, �A2, and �2A3 are positive 8� 2 �0; �� and for
any choice of constant magnetic field B. However, as it is
shown in Fig. 4, A3 decreases rapidly with increasing
magnetic field. Whereas for B � 102 the three coefficients
A1, �A2, and �2A3 are comparable, for B � 105,
�2A3 is 104 times smaller than A1, and for B � 109

this difference is �13 order of magnitude. We conclude
therefore that for strong magnetic field B  105, the coef-
ficient �2A3 in V1�R; �� is negligible comparing with A1

and �A2. Thus for B  105 the potential V1�R; �� can be
replaced by
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FIG. 5. Potential V3�R; �� for different B and �. Bound states can be formed for � 2�0; �� and for strong magnetic fields, B  105, in
the regime R 
 0:005 fm. The depth of the potential at Rmin increases with the magnetic field.

0 2 10 8 4 10 8 6 10 8 8 10 8 1 10 9

10 7 B 10 9

0

2

4

6

8

10

12

R
m

in
10

4
fm

π
2

π
3

π
4

π
6

π
8

0

1

2
0

2 1015

4 1015

6 1015

8 1015

1 1016

107 B 10 16

0

0.1

0.2

0.3

Rmin 10 6 fm

0

1

2

3

0

0

0.1

0.2

FIG. 6. Behavior of the minimum of the potential V3 as a function of 107 
 B 
 1016 for different 0< � 
 �=2. For �=2 
 � < �,
Rmin shows a symmetry in changing �! �� �=2 (see the three-dimensional figure on the right-hand side).

NEW LOOK AT THE MODIFIED COULOMB . . . PHYSICAL REVIEW D 76, 065013 (2007)

065013-11



 V3�R; �� � �
�
R

�
A1��; �� �

�A2��; ��

R2

�
; (5.1)

which has its minimum at

 Rmin�B; �� �

��������������
3�A2

A1

s
: (5.2)

Figure 5 shows V3�R; �� for different choices of the mag-
netic field B � 105, 106, 107, and 109 (from right to left)
and different � � 0, �=3, �=2, 2�=3, �. Whereas for � �
0, � the potential is repulsive, it exhibits a minimum for
angles � 2�0; �� and distances R 
 0:005 fm. The depth
of the potential at Rmin increases with the magnetic field.
We interpret this effect as a possibility for bound state
formation. The answer to the question concerning the
existence and the number of bound states in the potential
V3 is beyond the scope of this paper.

In Fig. 6 the behavior of Rmin from (5.2) for different � is
studied. As it turns out, for different �, the position of the
minimum of the potential is proportional to 1=

����
B
p

.
Let us now consider the potential V2�R; �� in the second

regime m2
dyn � jq

2
k
j � jeBj of LLL. Figure 7 shows its

behavior for different magnetic field B and angle �. Again
no qualitative changes occurs by varying the angle �. As it
is pointed out in the introduction, this Yukawa-like poten-
tial is comparable with the potential (1.1) from [7] in the
scaling regime.

VI. SUMMARY

In this paper the static potential of QED is calculated in
the presence of a strong but constant magnetic field using
two different methods. First a perturbative Wilson-loop
calculation is performed for two different regimes of dy-
namical mass jq2

k
j�m2

dyn�jeBj and m2
dyn�jq

2
k
j�jeBj

in the lowest Landau level (LLL). The resulting potential is
then compared with the potential arising from a modified
Born approximation. The results coincide. Comparing with
the recently calculated potential of pointlike charges in [7],
our potential shows a novel dependence on the angle �
between the particle-antiparticle axis and the direction of
the magnetic field. A qualitative analysis of these modified
potentials is performed in the previous Sec. V. As for the
potential (3.22) from the first regime jq2

k
j�m2

dyn�jeBj, it
turns out that for strong magnetic field B105, the coef-
ficient of the R�5 term, i.e., �2A3, is negligible compared
to both other coefficients A1 and �A2 from the expected
Coulombian R�1 and the additional R�3 terms. Keeping
only these two coefficients, a qualitative change occurs in
the Coulomb-like potential which depends on the angle �;
whereas for ��0, � the potential is repulsive, it exhibits a
minimum for angles �2�0;�� and distances R
0:005 fm.
The depth of the potential at Rmin increases with the
magnetic field and the position of the minimum is propor-
tional to 1=

����
B
p

. We interpret this effect as a possibility for
bound state formation. A rigorous proof of the existence
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FIG. 7. Potential V2�R; �� for different B and �. No qualitative changes occur by varying the angle �. This potential is comparable
with the potential (1.1) from [7] in the scaling regime.
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and the number of bound states in the above potential is the
subject of future investigations.

As for the potential (3.28) of the second regime m2
dyn �

jq2
k
j � jeBj, it is comparable with a screened Yukawa

potential. It is well-known that in this regime the photon
acquires a finite mass proportional to

���������
jeBj

p
. According to

our result, the photon receives also a modified effective
mass depending on the angle � between the particle axis
and the direction of the magnetic field. But, this depen-
dence is indeed negligible for fixed � � 1=137. This result
is in good agreement with the result recently found in [7].

It would be interesting to study the renormalization
group (RG) improvement of these potentials, as they both
depend on the coupling constant e, which is taken to be a
bare parameter in our calculations. Using the RG improved
potential it is possible, according to [9], to determine the
Callan-Symanzik �-function of QED in the presence of
strong magnetic field in the LLL approximation.
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APPENDIX A: THE LLL PHOTON PROPAGATOR
IN jq2

k
j � m2

dyn � jeBj REGIME

In this section we will perform the integration over q in
(3.15) to determine the full LLL photon propagator in the
m2

dyn � jq
2
k
j � jeBj regime (3.16). To start, let us give the

integral (3.15) in the Euclidean space

 

~D ���x� � �k��
Z d4q

�2��4

�
e�i�q4x4�q�x�

q2 � ����jeBj
2 �q2

3 � q
2
4� exp��

q2
?

2jeBj�
; (A1)

where ���� 	 2�
3�m2

dyn

. Here, the Euclidean coordinates

x0 � �ix4 as well as q0 � �iq4. We have further used
the notations q � �q1; q2; q3� and x � �x1; x2; x3�. The
scalar product is defined therefore by q � x �

P3
i�1 qixi.

Using the Schwinger parametrization technique

 

Z 1
0
dse�as �

1

a
; (A2)

the above expression (A1) can be given by

 

~D���x� � �k��
Z 1

0
ds
Z d4q

�2��4
e�i�q4x4�q�x�

� exp
�
�s

�
q2

4 � q2 �
����jeBj

2
�q2

3 � q
2
4�

� exp
�
�

q2
?

2jeBj

���
: (A3)

Let us first evaluate the integral over q4

 

Z �1
�1

dq4e�iq4x4 exp
�
�sq2

4

�
1�

����jeBj
2

e��q
2
?
=2jeBj�

��
:

(A4)

For the new variable

 s0 	 s
�
1�

����jeBj
2

e��q
2
?
=2jeBj�

�
; (A5)

we get

 

Z �1
�1

dq4e
�iq4x4�s0q2

4 �

����
�
s0

r
e��x

2
4=4s0�: (A6)

To integrate the variable q3 component, let us go into the
polar coordinate system. Here, the product q � x is given by

 q � x � qR sin� sin�0 cos�’� ’0� � q3R cos�0 cos�;

(A7)

with q 	 jqj and R 	 jxj, � (�0) the angle between x (q)
and the external magnetic field, which is assumed to be in
the x3-direction. Now using q3 � q cos�0 and q? �
q sin�0, (A6) is given by

 q � x � q?R sin� cos�’� ’0� � q3R cos�: (A8)

In these cylindric coordinates the photon propagator (A3)
is given by
 

~D���x� � �k��
Z 1

0
ds
Z dq?q?dq3d’0

�2��4

� e�i�q3R cos��q?R sin� cos�’0�’��

� exp
�
�s

�
q2

3 � q2
? �

����jeBj
2

q2
3

� exp
�
�

q2
?

2jeBj

��� ����
�
s0

r
e��x

2
4=4s0�; (A9)

where we have inserted the expression from (A6). Now
using the integral representation of the Bessel function J0

 J0�z� �
1

2�

Z 2�

0
d’0e�iz cos�’0�’�; (A10)

and performing the integration over ’ we get
 

~D���x� � �k��
Z 1

0
ds
Z dq?q?dq3

�2��3
e�iq3R cos��s0q2

3

� J0�q?R sin��e�sq
2
?

����
�
s0

r
e��x

2
4=4s0�: (A11)
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Performing now the integration over q3 using

 

Z �1
�1

dq3e
�iq3R cos��s0q2

3 �

����
�
s0

r
e��R

2cos2�=4s0�; (A12)

the photon propagator (A11) therefore reads
 

~D���x� � �k��
Z 1

0

ds
s0
Z dq?q?

8�2 J0�q?R sin��

� e�sq
2
?e���x

2
4�R

2cos2��=4s0�: (A13)

To perform the integration over q? we proceed as follows.
Using first the IR approximation q2

? � jeBj in the regime

of LLL dominance, and expanding the factor e��q
2
?
=2jeBj� �

1�
q2
?

2jeBj �
1
2!

q4
?

4�eB�2 , the relation s0=s from (A5) can be

written as

 

1

s0
�

2

s


�
1�

�q2
?

2

�

�
�2

4
2 �
�

8
jeBj

�
q4
?

�
; with


 	 �2� �jeBj�: (A14)

Plugging this result in (A13) the photon propagator is given
by

 

~D���x� � �k��
Z 1

0

ds
s


Z dq?q?
4�2 J0�q?R sin��e�sq

2
?

�
1�

�q2
?

2

�

�
�2

4
2 �
�

8
jeBj

�
q4
?

�
� e���x

2
4�R

2cos2��=2s
��1���q2
?
=2
�����2=4
2����=8
jeBj��q4

?
�: (A15)

Again using the IR approximation and expanding the ex-
ponent we get
 

~D���x� �
�k��

4�2


Z 1
0

ds
s
e��b1=2s
�

Z 1
0
dq?q?J0�q?R sin��

� e�sq
2
?

�
1�

�q2
?

2


�
1�

b1

2s


�

� q4
?

�
�2

4
2

�
1�

b1

s

�

b2
1

8s2
2

�

�
�

8
jeBj

�
1�

b1

2s


��	
; (A16)

where

 b1 	 x2
4 � R

2cos2�: (A17)

To perform the integration over q? we use [13]
 Z 1

0
dzz�e��z

2
J���z� �

������1
2 �

���=2���� 1�
e���

2=8��

�M��=2�;��=2�

�
�2

4�

�
; (A18)

where M��=2�;��=2��y� is the Whittaker function defined by

 M��=2�;��=2��y� � y���1�=2e��y=2��
�
���� 1

2
; �� 1; y

�
;

(A19)

where

 ���; �; y� 	 1�
�
�
y
1!
�
���� 1�

���� 1�

y2

2!
� � � � : (A20)

For the first term on the second line of (A16) we get
therefore

 I1�s� 	
Z 1

0
dq?q?J0�q?R sin��e�sq

2
? �

1

2s
e��R

2sin2�=4s�;

(A21)

and for the second term we get

 I2�s� 	
Z 1

0
dq?q3

?J0�q?R sin��e�sq
2
?

�
1

2s2 e
��R2sin2�=4s�

�
1�

R2sin2�
4s

�
; (A22)

whereas the third term yields

 I3�s� 	
Z 1

0
dq?q

5
?J0�q?R sin��e�sq

2
?

�
1

s3 e
��R2sin2�=4s�

�
1�

R2sin2�
2s

�
R4sin4�

32s2

�
: (A23)

Inserting (A21)–(A23) in (A16) we arrive first at
 

~D���x� �
�k��

4�2


Z 1
0

ds
s
e��b1=2s
�

�
I1�s� �

�
2


�
1�

b1

2s


�

� I2�s� �
�
�2

4
2

�
1�

b1

s

�

b2
1

8s2
2

�

�
�

8
jeBj

�
1�

b1

2s


��
I3�s�

	
: (A24)

Finally, the integration over s can be evaluated using [13]

 

Z 1
0

ds
sn
e��a=s� �

��n� 1�

an�1 : (A25)

Choosing the notation b0 � R2sin2�� 2b1


 , we get for the
first term in (A24)
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�k��
8�2


Z ds

s2 e
��b0=4s� �

�k��
2�2

1


b0
; (A26)

for the second term

 

�k���

8�2
2

Z 1
0

ds
s
e��b0=4s�

�
1�

b1

2s


�
I2�s�

�
�k���

�2

�
�

4b1


3b3
0

�
12b1R2sin2�


3b4
0

�
1


2b2
0

�
2R2sin2�


2b3
0

�
;

(A27)

and the third term

 

�
�k��
4�2

Z 1
0

ds

s2 e
��b0=4s�

�
�2

4
2

�
1�

b1

s

�

b2
1

8s2
2

�
�

�
8
jeBj

�
1�

b1

2s


��
I3�s�

�
8�k���2

�2
3b3
0

�
1�

6R2sin2�
b0

�
6R4sin4�

b2
0

�
�

96�k���2b1

�2
4b4
0

�
1�

8

b0

�
R2sin2��

b1

4


�
�

20

b2
0

�
R4sin4�

2
�
R2b1sin2�




�

�
30b1R

4sin4�


b3
0

�
�

4�k���

�2jeBj
2b3
0

�
1�

6

b0

�
R2sin2��

b1




�
�

6

b2
0

�
R4sin4��

8b1R
2sin2�



�
�

60b1R
4sin4�


b3
0

�
: (A28)

Further, to find the LLL photon propagator in the regime
jq2
k
j � m2

dyn � jeBj from (3.16), we will first replace

 b0 ! 4�a1�R; �; x4�;

b1 !
a2�R; �; x4�

��
and 
! �2���1;

(A29)

where � and ai, i � 1, 2 are defined in (3.18). Adding then
the results from (A26)–(A28), together we arrive at the
propagator (3.16).

APPENDIX B: THE LLL PHOTON PROPAGATOR
IN m2

dyn � jq
2
k
j � jeBj REGIME

In this section we will perform the integration over q in
(3.23) to determine the full LLL photon propagator in the
m2

dyn � jq
2
k
j � jeBj regime (3.24). To start, let us give the

integral (3.23) in the Euclidean space

 

~D ���x� � �k��
Z d4q

�2��4
e�i�q4x4�q�x�

q2
4 � q2 � 2�jeBj

� e��q
2
?
=2jeBj�

;

(B1)

where we have introduced the Euclidean coordinates x0 �
�ix4 as well as q0 � �iq4. Here, q � �q1; q2; q3� and x �
�x1; x2; x3� and q � x �

P3
i�1 qixi. Using the Schwinger

parametrization

 

Z 1
0
dse�as �

1

a
; (B2)

the above expression (B1) can be given by
 

~D���x� � �k��
Z 1

0
ds
Z d4q

�2��4
e�i�q4x4�q�x�

� exp
�
�s

�
q2

4 � q2 �
2�jeBj
�

e��q
2
?
=2jeBj�

��
:

(B3)

Performing the integration over q4

 

Z �1
�1

dq4e
�sq2

4�iq4x4 �

����
�
s

r
e��x

2
4=4s�; (B4)

we arrive at
 

~D���x� � �k��
Z 1

0
ds

����
�
s

r
e��x

2
4=4s�

Z d3q

�2��4
e�iq�x

� exp
�
�s

�
q2 �

2�jeBj
�

e��q
2
?
=2jeBj�

��
: (B5)

To integrate the q component, we follow the same steps as
in the previous section [see (A7) and (A8)] leading from
(A3) to (A9). In the cylindric coordinates the photon
propagator (B5) is given by
 

~D���x� � �k��
Z 1

0
ds

����
�
s

r
e��x

2
4=4s�

Z dq?q?dq3d’
0

�2��4

� e�i�q?R sin� cos�’�’0��q3R cos��

� exp
�
�s

�
q2 �

2�jeBj
�

e��q
2
?
=2jeBj�

��
: (B6)

Here ’0 2 �0; 2�� and q? 	 jq?j 2 �0;1�. Now using
the integral representation of the Bessel function J0 from
(A10) and performing the integration over ’ we get
 

~D���x� � �k��
Z 1

0
ds

����
�
s

r
e��x

2
4=4s�

Z dq?q?dq3

�2��3

� e�iq3R cos�J0�q?R sin��

� exp
�
�s

�
q2
? � q

2
3 �

2�jeBj
�

e��q
2
?
=2jeBj�

��
;

(B7)

where we have written q2 � q2
? � q

2
3. Performing now the

integration over q3 in the same way as the integration over
q4 [see (B4)] we get first
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Z �1
�1

dq3e
�sq2

3�iq3R cos� �

����
�
s

r
e��R

2cos2�=4s�; (B8)

and then
 

~D���x� � �k��
Z 1

0

ds
s
e���x

2
4�R

2cos2��=4s�
Z dq?q?

8�2

� J0�q?R sin��e�s�q
2
?
�2 exp���q2

?
=2jeBj���; (B9)

with 2 	 2�jeBj
� . To perform the integration over q?, we

use the approximation q2
? � jeBj, which is valid in the

regime of LLL dominance. After expanding the exponent

 e�s�q
2
?
�2 exp���q2

?
=2jeBj��� ’ e�s

2
e�s�1���=���q

2
? ;

the integration over q? can be written as

 e�s
2
Z 1

0
dq?q?J0�q?R sin��e�s�1���=���q

2
?

�
e�s

2

2s�1� �
��

exp
�
�

R2sin2�
4s�1� �

��

�
: (B10)

To evaluate the q? integration, we have used [13]
 Z 1

0
dzz��1J���z�e

��z2
�

��

�2����1 e
���2=4��;

Re���>�1;Re���> 0; (B11)

by choosing � � s�1� �
��, � � R sin�, and � � 0.

Plugging this result in (B9) we arrive at

 

~D ���x� � �
1

16�2�1� �
��

Z 1
0

ds

s2 e
�s2��1=4s��x2

4�R
2g2����;

(B12)

where g��� is defined in (3.25). Defining a new variable
s0 � 2s, the s0 integration can now be performed using

 

Z 1
0

ds0

s0��1 e
�s0��z2=4s0� �

�
2

z

�
�
2K��z�: (B13)

We arrive finally at the full LLL photon propagator in the
regime m2

dyn � jq
2
k
j � jeBj, which is then given by

 

~D ���R; �; x4� �
�k��

4�2�1� �
��

�
����������������������������

x2
4 � R

2g2���
q K1�

����������������������������
x2

4 � R
2g2���

q
�:

(B14)

For the notation x4 ! T we arrive therefore at our results
from (3.24).
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