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3-point off-shell vertex in scalar QED in arbitrary gauge and dimension
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We calculate the complete one-loop off-shell three-point scalar-photon vertex in arbitrary gauge and
dimension for scalar quantum electrodynamics. Explicit results are presented for the particular cases of
dimensions 3 and 4 both for massive and massless scalars. We then propose nonperturbative forms of this
vertex that coincide with the perturbative answer to order e?.
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I. INTRODUCTION

The nonperturbative structure of Green functions in
gauge field theories has turned out to be a challenging
problem. Aside from the complicated non-Abelian sce-
nario of quantum chromodynamics (QCD), even simpler
examples such as quantum electrodynamics (QED) have
proved a hard nut to crack in the nonperturbative regime.
Nevertheless, gauge covariance relations, such as the
Ward-Fradkin-Green-Takahashi identity (WFGTID) [1],
and the Landau-Khalatnikov-Fradkin transformations
(LKFT) [2] contain vital clues about the Green functions.
Guided by such relations, extensive work has been carried
out to construct nonperturbative Green functions [3—5]. As
well, perturbation theory is a reliable guide when con-
straining acceptable structures in the weak coupling limit
[6-11].

In the context of perturbation theory, a systematic
study of spinor QED was initiated by Ball and Chiu [6].
They decomposed the vertex into a “longitudinal”
part which ensures that the WFGTI is satisfied, and
a “transverse” part. In a basis where kinematic singular-
ities are avoided, they gave off-shell results for the one-
loop transverse vertex in 4 dimensions in the Fermi-
Feynman gauge. Later on, Kizilersii, Reenders, and
Pennington extended this result to an arbitrary covariant
gauge [7]. Results for massless and massive QED3 were
obtained afterwards [9—12]. These results were then gen-
eralized to arbitrary dimension by Davydychev, Osland,
and Saks [13] in the realm of QCD (from which all
QED results can be inferred). Whereas the bare fermion-
boson vertex in a minimal coupling gauge theory is merely
y#, in general the vertex can be expanded out in terms
of 12 spin amplitudes constructed from y* and two
independent four-momenta [14]. The WFGTI fixes four
coefficients of the 12 spin amplitudes in terms of the
fermion functions comprising the longitudinal component.
The transverse part thus involves eight vectors with
eight unconstrained scalar coefficients that depend on
the gauge parameter £, the space-time dimension d = 2¢,
fermion masses, and three kinematical invariants
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(k%, p%, g?); so this is a complicated problem even at one-
loop order.

One might hope that, in the absence of spinorial matri-
ces, scalar quantum electrodynamics (SQED) can offer a
simpler platform to study nonperturbative solutions [15].
In this scenario, the 3-point vertex can be written in terms
of just two independent four-momenta. The WFGTI fixes
the coefficient of one of these. Therefore, there is only one
unconstrained function which defines the transverse ver-
tex—representing an 8-fold simplification of spinor QED/
QCD. The trade-off is that additional four-point interac-
tions occur in SQED. Thus the 1-loop scalar-photon vertex
involves two additional Feynman diagrams. Ball and Chiu
[6] carried out this calculation for massive scalars in the
Fermi-Feynman gauge (¢ = 1) for d = 4. In this article,
we extend their work to arbitrary dimension d and gauge ¢
involving the one-loop scalar propagator along the way.

There are several reasons why this calculation is helpful:
(i) it keeps track of the correct gauge covariance properties
of the Green functions; (ii) one can take on-shell limits to
check the gauge invariance of physical observables—this
is not possible [13] if one only has results near four
dimensions; (iii) SQED anyway has interest in lower di-
mensions, for example, nonperturbative SQED in 2 + 1
and 0 + 1 dimensions has been examined by [16,17],
respectively; (iv) three dimensional field theories contain
several features of corresponding four dimensional field
theories at high temperatures [18].

We have organized the article as follows. In Sec. II we
introduce the notation to calculate the three-point vertex,
discuss its decomposition in the light of WFGTI, and give
the expressions for one-loop scalar propagator and the
longitudinal component of the three-point vertex. In
Sec. III we evaluate the complete one-loop vertex in arbi-
trary gauge and dimensions and hence deduce an expres-
sion for its transverse component. We suggest three simple
and natural constructions for its nonperturbative counter-
part in Sec. IV and finish by discussing the so-called
transverse Takahashi identities in Sec. V. An appendix
serves to summarize many useful expressions arising
from the Feynman integrals.
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II. PRELIMINARIES

We shall start by setting out the notation, discussing the
WEFGTI and decomposing the 3-point vertex into longitu-
dinal and transverse components. We then make use of the
scalar propagator to present the longitudinal part fully at 1-
loop order. Constant reference is made here and in the next
section to various (mainly hypergeometric) functions
which are listed in an appendix.

A. Notation

We define the bare quantities in the usual form: the
scalar propagator S°(p) = 1/(p*> — m?), the photon propa-
gator Afl)l,ll = _[g,uupz - (1 - f)P;LPv]/P4’ the 3-pOiI1t
vertex I'), = (k + p),, and the 4-point double photon
vertex ¢TI, = e?g,,,, where & is the general covariant
gauge parameter (such that & = 0 corresponds to Landau
gauge) and e is the usual QED coupling constant. The 3-
point vertex up to one-loop order is diagrammatically
represented in Fig. 1; it can be written in terms of two
vectors alone, namely, k* and p* or, if preferred, P* =
(p + k)* and g* = (k — p)*. Because of the presence of
the four-point vertex, there are two additional diagrams to
be calculated in addition to the usual one required for the
spinor QED.

The full 3-point vertex satisfies the usual WFGTI:

g, "k p)=S""(k) — S '(p) ¢))
and has the nonsingular limit
I'“(p, p) = aS ' (p)/dp, (2)

when k — p. We can use (1) to construct the *“longitudi-
nal” part of the vertex :

FIG. 1 (color online).
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S~k — S~ (p)

Fik p) =—5= pe

(k + p)*. 3)

The full vertex can then be written as
T#(k, p) = T} (k p) + T7(k p), )
where the ‘““transverse’ part satisfies
9.7k p)=0, T7(p.p)=0, (5)
and can be expanded out only in terms of the basis vector
T#(k, p) = k- qp* — p - qk*
= [g*(k* = p*) — (k + p)*4*1/2.  (6)
Thus the full vertex is

S~1(k) — S~ (p)
e
+ 7(k, p?, ¢*)T*(k, p). (7

& (k, p) = (p + k)*

The coefficient 7 is a Lorentz scalar function of k and p,
and can be expressed in terms of the 3 invariants, k2, p2,
and g*. Thus knowing only one unknown function 7 is
sufficient to fix the full 3-point vertex completely in SQED,
the rest being tied to the scalar propagator S.

B. Longitudinal vertex

At one-loop the scalar propagator is given by two dia-
grams but because massless tadpole type diagrams are zero
in dimensional regularization (which we are adopting),
only the first diagram contributes, see Fig. 2.

In arbitrary dimensions d = 2¢€ and gauge &, the inverse
propagator at one-loop is given by

One-loop 3-point vertex in SQED.

FIG. 2 (color online).

p p

One-loop scalar propagator.
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and readily yields the longitudinal part of the 3-point
vertex at one loop:

e’m*(k+ p)H
P (e = )
—=20,(p)(m* + p?) + (1 = §)[(m* — p*)*O5(p)
—(m? = k*)?0;(b)1}, ©)

Iy (k. p)= {20,(K)(m* + k*)

where the functions Q;(p) are tabulated in the appendix.

III. ONE-LOOP VERTEX

In this section, we shall evaluate the complete off-shell
one-loop vertex for all £ and €. Subtracting the longitudi-
nal part from that produces the remaining transverse part.
J

1
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A. The full vertex

The complete one-loop correction to the vertex is the
sum of the three contributions that correspond to the last
three graphs of Fig. 1:

A® = Ak p) + A%(p) + AL (k). (10)

The first contribution involving only 3-point vertices is
given by:

A, = (2_7;—;;{4% p)k+ p) O+ [-8(k- pg,”
= 2(k + p)(k+ p) 1Y + 4k + p) I
+ (k+ p), KO = 2K + (¢ = DIk + p) K
+ Ak + p), pkPICy — 8pekPIS) o = 2(k + p),,

X (k + p)JY + 4k + p)a2, —2kD, (1)

where

(1 _ w
K/L - fddw [(p — W)2 _ mZ]EL(k _ W)2 — le]’

w
JS_LI) — fddw o

wlp = wf = Tk = w) = m]
1

12)

WaWB

2) _ d
Sl e ey (e

W WoWg

B
Fias fﬁﬁm@—MLwﬂm—wﬁ—wI

The results of computing these integrals are provided in
detail in the appendix where we also compare them with
other calculations in the literature for some particular cases
of d. The two A% contributions contain the 4-point verti-
ces. They are relatively simple to evaluate as they contain
only propagator type loops. Thus we only quote the final
result:

AS(p) = M{F + YZ_§:|Q1(p)

(277.)%’

ST - o + g - )
)4 )4

XM@+W—M@@ﬂ (13)

Equations (10)—(13) form the complete one-loop scalar-

[

photon vertex for any £ and € at the one-loop level. This is
a generalization to arbitrary dimension and gauge of the
work of Ball and Chiu [6] who only examined the case & =
1, € = 2, using cutoff regularization. The explicit answers
for the integrals (12) are stated in the appendix; as a general
abbreviation we will write X© = i72X,,/2 in what follows
and use {d, m} as a superscript (or subscript) to signify
dimension and mass, as and when needed.

B. The transverse vertex

The transverse vertex is obtained by subtracting the
longitudinal vertex, Eq. (9), from the full one, Egs. (10)—
(13), at one loop. Carrying out this exercise, we arrive at
the following coefficient 7 of the transverse vector 7# for
massive scalars:
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e T
2027) A2

Tam(K p? g% =

{(k2 2m? + p* — 4k p)[—Koy + (m?> + k- p)J0]+ —3k-p)

2Q (k)

+ kK2 (k-p—3p%) —2m*(p*+ k- p)]— [k2(1<2 3k p)+ p*(k- p—3k*) —2m*(k*> + k- p)]

+@—nmﬂ—ﬂmﬁ—papmwkp+m%1

where 1, Jy, Ky, Q,_¢ are explicitly stated in the appendix. A? = (k- p)2 —kp?= (k- q)2 — k*q?. Thus 4A? =
MK, p% ¢?) = [p* + k* + g* — 2p°k> — 2p*q® — 2k*¢?*], the Killén function, and is related to the (2 X area)? of a
triangle with sides ViZ, VP2 /42 In the massless limit, the above expression reduces to

2,2 d,0
40 = 53myiA? {(kz +p = 4k k- PR~ KO+ 9 W )[ $=302 + k- p)p? + Kk p)
d,0 d,0
i?l ® ~[k* = 3(p* + k- p)k* + p*k - p] + (£ — 1)k2p2[Jg’° — k- pI§° — 333_ (ppz) (k-p+p?)
d,0
t ;Q%Z?(k o kﬂ}. (15)

In the massive case for small € =2 — € one gets

2L
Tazem =g Az{(k2 —2m? + p? — 4k - p)[(m* + k- p)Jy " + 28] + (122( 2(p? =3k p)+ K (k- p—3p?)

—omE(p + k- p)) — ZL“)

(kz(k2 —3k-p)+ p*k-p—3k>) —2m*(k> + k- p)) + (£ — 1)(m*> — k?)

p(p* — mH)g* + 2m*(k* — p?)IL(p)

X (m? — p2)|:JgZE"" - —(k “p+ m2)<—q28 +
X

(p* = m?)?
K} [(k* — m?)q? — 2m?(k* — p?)]L(k) (k- p+ pP(p* + m?) (k- p+K)(K>+m )
* &~ mP )+ 2 A~ L 2 G e — e L0}

(16)

The quantities S, L can be found early on in the appendix. In the massless limit for small € one reads off

. (k2 + P2)C]2 _ 8p2k2 k2
Ti-2e0 =g A2 {(k2 + p? — 4k - p)<k pJy " +1n 2k2> + e ln?
2 + k- p)In(—=p?) k2(p + k p)

+ (£ - l)kzpz[Jg_ZE'o +22 P g In(—k2) + 2k - pIn(—q )}} (17)

Note that for ¢ = 1, it agrees with Eq. (2.9) of [6]. In the massive case with d = 3 we end up with

ey = {(k2—2m b p? - 4k p)[(m bk p)ng—y( )}+4(k2(k2—3k-p)—2(k2+k-p)m2

167A2
1(k*) 1(p?)

(k* = p?) (k* — p?)
” 4m(k> + k- p) 4m(p* + k- p)
+ (&= D(m? — k) (m* — PZ)[Jg' - (K2 :nmz)z(kz _ppz) (m2T I;z)z(kz _ppz)

32k (G s (SR EIGREER LN ay

+ (k- p = 3k})p?) 5 — 4(K*(k - p — 3p?) + p*(p* — 3k p) = 2m*(k - p + p?))

where y is a geometrical quantity listed in the appendix. The result (18) simplifies remarkably in the massless limit:

e K>+20K + P> +2PQ B
T30 = ZKTQ[ K+PK+Pro ¢ ”Z} (19
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where we have adopted the Euclidian notation v—k> =

KA =
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P =

IV. ON THE NONPERTURBATIVE VERTEX

The one-loop expression for 7(k?, p2, g%) provides a guide as to its possible form in the strong coupling regime. Any
nonperturbative ansatz for the transverse vertex should reduce to the perturbative result evaluated above. Equations (8) and

(14) suggest what 7 might resemble for general e*:

1 [SHké=1)—-Spé
402 [(m® + k%) Q; (k) —
ile(P)[ 2( 2

=1)]
(m*+ p?)0,(p)]

Td,m(kz’ p2, qZ) =

+

+ 2k p—3K2) — 2m2 (K2 + k- p)]} +

X{JO—(k'p—i-mz)IO— 5

The notation here means that S(p, & = 1) is the scalar
propagator in the Fermi-Feynman gauge, whereas,
S(p, &€ — 1) is the coefficient of the scalar propagator pro-
portional to (¢ — 1). By construction, this expression re-
produces the one-loop transverse vertex in the weak
coupling regime. In specific dimensions and for the mass-
less case, it simplifies. Of course its form is not unique but
it is perhaps the simplest nonperturbative extension of our
earlier results for any ¢ and d. We expect that an identical
two-loop calculation will help us pin down the exact
structure better. Because of the lack of Dirac matrices,
this two-loop calculation is not as formidable a task as
for spinor QED or QCD. We are currently in the process of
carrying it out.

Another approach is to tie in the asymptotic behavior
with the anomalous dimension of the scalar field in 4d. To
see how this is done, return to the one-loop self energy as
obtained previously in Eq. (8); by using contiguity rela-
tions of hypergeometric functions, this can be cast in the
simpler form

S(p) = () T - o[ 1+ 20 - v - g

2
{1 —20) — £ — 26)}(1 + %)

2
X 2F1<2 — ¢, 1;6;512”.

—3k-p) +k*(k-p—3p®) —2m*(p* + k- p)] -

2A% [(m?
3( l(‘ . 2)

X {(k2 —2m? + p? — 4k p)[— Ko+ (m* + k- p)Jy]

]le(k) [kz(kz )

[S_l(k, E-1)— I(Pr —1)] (m2 _ k2)(m2 _ p2)

— k»)?Q5(k) — (m* — p*)?05(p)]
+ %(k p+ k2)}. (20)

According to the procedure for self-consistent regulariza-
tion by higher-order corrections [19] we then make the
substitution € — 2 + 7y in Eq. (21) and renormalize by
ensuring that the propagator behaves as (—p?)'*7 as p? —
oo, This gives the self-consistent asymptotic equation

P\t @ TP +y) B
( W) 16w T2y +2) T2y 2l =AY

+2(1 - HT( - 'y)](l + :122><1 - Z)y,
2D

which fixes y = (3 — £)e?/167* + O(e*). But anyway it
produces a nonperturbative form of the 4d propagator

RPN e’ oy B B
SI(P)—W[@ 3IN(=y)+2(1 = HI'(1 —v)]

2
><<1 +%>2F1(—%1;7+2;p2/m2)- (22)

[This nonperturbative method succeeds in the ultraviolet
but fails in the infrared limit p?> — m?, when the propa-
gator S ~ 1/(p? — m2)!*@=8¢/87 For infrared exponen-
tiation it is much easier to resort to the gauge technique
[3].] Exactly the same procedure can be applied to the
transverse vertex. If 7 is expressed in Feynman parametric
form,
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9] jl do(l — o) [(m? — p*o)=2 — (p — k)]
0

N e22m? + k> + p? —2¢*)I'(3 —

(4m)¢

9 fl do(1 — o)t! [] duuD!3
0 -1

- DE - -mTA-0 (1
+ ﬂ)da’(l o) 2],1(1”“@ 4

(4m)

(23)

with D = m? — ¢*(1 — o)(1 — u?)/4 — p*o(1 + u)/2 — k>0(1 — u), then with the above substitution, an ansatz for the

nonperturbative transverse vertex in 4d emerges:

4e*T(—y)

(p* = K)7(p k, q) = W

ﬁ Ldo(1 = o[ — p2a)? — (p— k)]

e’2m?> + k> + p> —2¢q

(4)?

L €= D = m))(p? = AT -

2 _
=y ]1 do(l — o)'t? ]1 duuD? ™!
0 -1

(47)?

That the anomalous dimension of the scalar field makes an
appearance should come as no surprise: the WFGTI is at
work. What is rather interesting about the form (24) is that
for ¢g> = 0 it takes the form [F(p?) — F(k*)]/(p* — k?)
even though it is associated with the transverse piece; but
for g> # 0 this particular structure disappears as one can
see from the form of D. Note anyway that (23) and (24)
both have intrinsic dependences on all three variables p?,
k?, and ¢* (or p - k).

iy = [Cawr P
S7p) [nde [p*— W2 + ie]

? f Ldo(1 - o) f - duDr, (24)
0 —1

A third way of going nonperturbative relies upon dis-
persion relations; while these are well established for
the two-point function, in the form of the Lehmann-
Killén representation, they are trickier for the vertex
function but can nevertheless be found as follows for
graphs with triangular topology. Make the change of vari-
able o — m?/W? in Eq. (23)—so that W? runs from m? to
00—in the denominator . This means we can generally
write

25
P(W?, u) 2

0 1
7(p, k, q) = ]mz dw? ‘[71 du [p2(1 +u)/2 + k(1 — u)/2 + q2(1 —u?)(W? — mz)/4 - W2+ ie]

The idea is then to determine p and P self-consistently
through the Schwinger-Dyson equations for the propagator
and the vertex; the latter inevitably brings in the 4-point
function, but we can use its own WGFTI to approximate it
by connected 3-point graphs. While we have not solved
this problem for P, the idea has been taken to fruition [20]
for p in SQED and QED, giving results that coincide with
perturbation theory up to order e* for the charged field
propagators. There is much more work involved in obtain-
ing the spectral function P accurately to order e* and
higher and this has not yet been done. These ansditze are
unlikely to be the whole story. However, one may ask how
close these are to the real vertex and how these can be
compared to each other. By construction, our ansditze agree
with perturbtion theory at the one-loop order.
(i) Ansatz (20) agrees with perturbation theory to O(e?)
in all momentum regimes, dimensions, and gauges.
To see whether this relation between the vertex and
the propagator survives at O(e*), one needs to know

[

these Green functions at that order.

(i1) Ansatz (24) would be in accord with the real vertex in
4 dimensions for large k% and p? but would fail for k2
and p? = m>. As one knows y to O(e?), it amounts
to knowing the vertex to all orders in the leading
logarithm approximation for asymptotically large
values of momenta.

(iii) Ansatz (25) would agree with perturbation theory
order by order depending upon the exact knowledge
of the p and P functions to a given order. In princi-
ple, one could evaluate these functions nonperturba-
tively through SDEs. However, this exercise for P is
a hard nut to crack.

A full two-loop calculation of the vertex should narrow
down possible forms of any ansatz. Techniques for the two-
loop vertex calculation, have been developed in [21-23].
All the master integrals for massless two-loop vertex dia-
gram with three off-shell legs have been calculated in [24].
These advances indicate that the calculation of the two-
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loop transverse vertex should not be too difficult, at least
for the massless case. This work is under progress.

V. ON THE TRANSVERSE TAKAHASHI
IDENTITIES

Equation (20) is effectively a Ward-identity type relation
linking the transverse vertex to the scalar propagator. There
have been attempts to look for formal relations of this kind.
Takahashi [25] discovered what are called transverse iden-
tities whose implications for the vertex have been exam-
ined for spinor QED [26-29]. In the case of SQED, as
there is just one unknown which remains undetermined by
the conventional WFGTI, it is tempting to look for a
transverse Takahashi identity, hoping one might be able
to determine the three-point vertex more realistically.

It should be noted that the general form of the vertex (7)
shows that the transverse coefficient contributes to both
basis vectors P, = (p + k), and ¢, = (k — p),. The curl
of the vertex ¢,I', — ¢,I',, will eliminate the component
of I' proportional to ¢, leaving us with the kinematic
mixture g, P, — ¢, P,, multiplying the coefficient

S V(p) = S'(k)
p2 _ k2

+ @7(p% K2 ¢2)/2,

which is unwieldy. However the same kinematic combina-
tion can also be obtained by forming the ‘“modified curl”
p,I', — P,I',; this has the advantage of killing off the
longitudinal part of I' and only bringing in 7. We suggest
that new identities involving the modified curl are more
appropriate and will prove more promising for SQED.
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APPENDIX

In this appendix we summarize the results for various
integrals involved in the calculation of the 3-point vertex
for quick reference. We write down the results for arbitrary
d as well as small € =2 — € and d = 3. This way we aim
to present all the integrals including the ones which have
not been considered in the articles [6,7,9-11]. Wherever
possible, we compare the results of specific cases with the
ones in the above-mentioned articles.

1. Subsidiary quantities

There are a number of quantities which arise in various
integrations that constantly appear later on, so we shall
summarize them first and invoke them as they turn up.
Unless specified we work in general dimension 2¢:

PHYSICAL REVIEW D 76, 065009 (2007)
2
4m? 1 -4 4+
S=1-""mn <
¢\ fT- -
= 24/4m?*/q* — larctan(1/4/4m?/q*> — 1),
1(p?) = (1/4/—p?) arctany|— p*/m?,

L(p*) = (1 —m*/p*)In(1 — p*/m?),
Q1(k) = (mm*) 2T(1 = 0,F, (2 = €, 1,6 K> /m?),
€0,(k) = (mm?) T2 — 0),F,2 — €, 1;€ + 1, k*/m?),
m?Qs(k) = (7m?) 2T (1 — €),F,3 — €, 2; €, k*/m?),
m*Qy(k) = (mm?)2(2 = O (=)
X, F (3= 4€,2;€+ 1;k*/m?),
Qs(k) = —2im*(wm?) 212 — ¢)
X ,F (1/2,1;€ — 1;4m?*/ g%,
Qs(p) = im' (€ = 3)(m») L1 = 0)
X 2F1(1’ 4 -4 ¢, p2/m2)’
x =m*(k> = p?)* + (m* = &) (m*> = p*)q’.
x represents (12 X volume)? of a tetrahedron constructed

with base triangle lengths v—k2, \/— p2, v/—¢? and lateral
sides to the apex of lengths m, m, 0; thus it has geometrical
significance. It is worth noting the zero mass limits of the
Q; as we will consider such situations later:

Q0(k) = —(—mk>) T2 (€ — DI (2 — €)/T(2€ - 2)
=-05"(k),
27050 (k) = (—mk?) T2 (€ = 2)T(3—€)/T(2¢ — 4)
= w05 (k)
(m2)* % (k)— —2im'T (2~ ¢),
Q&0 (k) /m>— im (—k?) 4T (OI (€ —2)/T(2€ — 4)
xO=K2p?q? very simply.

2. The K integrals
K in the list (12) for arbitrary d = 2€ equals

imKy/2 = K©

_ .y 2\6—2 3. 9>
— inTQ - O)(m?) 2F1<1, 2 — 6,5,4—}”2),
(A1)

T2 — DI2 — €)
T2 —2)

K5y = im'(—q?) (A2)

Corresponding massive and massless expressions in the
neighborhood of 4d (¢ = 2 — {) are:
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KY,., =im[C—S]
im[C — In(—¢*/m?)],

(A3)
0
fozze,o =

where

1
C=——vy—In(mm?) +2. (A4)
€

The first of the results (A3) agrees with Egs. (44, 46—48) of
[7]. When d = 3, this integral simplifies even more:

Ky = im [y~

Expressions (A5) coincide with (A1) of [10] and (A3) of
[11], respectively. For the Kﬂ) integral in (12), it is easy to
show that Kﬂ) =(p +k),K)/2.

KO = im1(g*/4), (A5)

3. The J integrals

The J© integral can be found in various sources
[7,8,10,11,30,31] the most general case (massive scalars
and any d) has been discussed in [31]; we shall simply cite
the known answers. J, is probably the most difficult one to
work out as it brings in dilogarithmic or Spence (Sp)
functions when € is integer. For any ¢ the massless case
has been given a completely elegant representation by
Davydychev [30]:

T2 — D2 — €)
X))

JO = 2i(=im) (& p* ¢*) 2

2\2—¢
% [%2F (1 1/2:6—1/2,
A
BT k2)2> + two perms
]

For massive scalars, like we have, the result Jé'"" in 4d is
too lengthy (and uninformative) to quote. It is given in
Eq. (16) of Ref. [7] and involves Spence functions of
complicated arguments. In 3d the result is [11] easy to
state:

Jo™ = m(k, pI(n*(k, p)x/4) + n(p, DI(*(p, k) x/4);
) — m2(k2 — p2)2m? — k2 — p?) + x
nik, p x(m? = K2 '

In the massless limit one obtains [8,10] from all of these
forms,
2 prqg—A p-qg+A
40 _
3 =) o)

1/p>+p-q— 2
Sy
2\p*+p-q+A) \p

(A7)

(A8)

PHYSICAL REVIEW D 76, 065009 (2007)

JS'O =m(XK>+ P?)/KPQ; —k2,
(A9)
P=\-p Q=4-7¢
4. The J, integral
In its most general form, this can be written as
B = —[k Jalk, p) + p,Jg(k p);
Jalk, p) = Jg(p, k).
We find
1
Julk, p) = _W{[PZ — k- plKo + [p*(K* — m?)
— k- p(p* =m*) Wy +2p*Q(p) — 2k - pQ, (H)}.
(A10)

In the massless case,

Tk, p) = 2A2 —A[p?* — k- plK® + P[> — k- plJg?°

+2p20%(p) — 2k - pOH(k)}.

For small € = 2 — €, Eq. (A10) reduces to the following
expressions (see (A16, A17, 3.9(a,b,c)) of [6] and (39-44)
of [7])

(A11)

—LZEM 1 —LZEM
T = ol g+ PP g
+ 2k - pL(k) — 2p*L(p) — 2p - ¢S},
Ji2e0 = ?{pz(k cp— Iy + 2(p? — k- p)

X In(—g?) — 2p*In(—p?) + 2k - pIn(—k?)},
(A12)

Similar results for d = 3 are:

m 1 m
5" =l p = 1)+ m(p? — k- p)}g

+2(k - p — pHI(g*/4) + 4p*1(p?) — 4k - pI(K?)},
2ar

7= 2A2‘{[p2(k p — k)5’ H(p —k-p)
2mp? 2wk p
+ - . Al3
= =1 (A13)

The first of these expressions coincides with Eq. (A5) of
[11] and the second with Eq. (A3) of [10] after the appro-
priate change of notation.

5. The J integral

From symmetry considerations, the integral Jﬁf,), of the
list (12) can be expanded out as follows:
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8 1/ k2 (k p) p2
J(2) 2 [ 2’} <k k, g,uvﬁ)JC + (p#ky +kupPy — 8uv 7 )JD (pﬂpu - g,wﬁ>JE}.

The coefficients J, Jp, and J in the above expressions are:

Jelk, p) = =) Az{[(213 2)(p* —mAk - p — 2€ — (K> — m*)p*1J, — (p* — m})p*Jp

+[2 = Op* + (£ — Dk plKy — 4(€ — Dk - pO,(k)},
JE(k’ P) = JC(p’ k)’

Jp(k, p) = 2 20k p(k* —m?) + 2 = 20k*(p* — m*) s + [2€(p* — m*)k - p + (2 = 20)p*(k* — m*)]J

1
8¢ —1)
—[(€ = Dg* + 2k - plKo + 4(€ — DK Q,(k) + p*Oa(p)]}- (Al4)

In the massless case we obtain the following expressions:

Tk, p) = € —2)p?k - p — (2 — DE2p*YS° = p*Ig° +[2 — Op* + (¢ — Dk - p]KS®

1
4(¢€ — 1)A2{[
—4(¢ — Dk - pO3°(k)},

= Wll)Az{[%k CpkE 4 (2 = 20k2p2 40 + [2€p%k - p + (2 — 20) p2k2]IE°

—[(€ = Dg* + 2k pIKg° + 4(¢ = DIKQSK) + p>05°(p)]- (A15)
Then for small € = 2 — ¢, we arrive at (compare Eq. (A16) with Egs. (A18—A20) of [6] and Egs. (49-51) of [7])

T30k, p)

Jé_ze’m = 4A2 —{2p® +2mPk - p/k* — 2k - pS + 2(k - p)(1 — m?/K*)L(k) + [2k - p(p> — m?) + 3(m?* — kz)pz]J4 2em

+ p ( 2 _ 2)J4*26,m}

T = W{2k Pl = mA)J 72" + (p? = mAJg 2" — 1] = [m* — KBS + (K — m?)L(k)
+ K2 (p? — mAJ, "] = [m? = p*S + (p* — m)L(p) + p*(2 — m?)Jy > ). (A16)
J472e,0 — _2{p2[2k “p - 3k2]‘];§*26,0 _ p4Jj;72e,O + 2p2 + 2k - pln(kz/qz)},
4A (A17)
=g Az — [k - p — PPV + [p22k - p — KRVE 20 + K2 In(>/k2) + p* In(¢?/p?) — 2k - p}.
Also for d = 3,
1 2%k -
JEm = W{[(p2 —m?k - p—2p*(K> — m®))3" — p*(p? —m p — K)I(k?)
k .
+ e+ I/ —2m L
1
I3 = 2 Gk p = p) = m*Gk - p = KAWL" + [p*Gk- p = p?) = m* Bk - p = p2)V"
= 2(m* — IA)I(K*) = 2(m*> — p>)I(p*) — (k + p)*1(g*/4) + 4m}, (A18)
T = W{pz(k p—2075° = p*Iy° — mk - p/N=K + 7p - (p + k)/\[— ¢}
(A19)
Iy = 4A2{k2(3k p =3+ PGk p = PV + wK N =K + mp\[=p® — @k + pP /=g
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Equation (A18) is in agreement with (A6, A7) of [11] and
Eq. (A19) with (A4) of [10].

6. The IV integral

The massive [, integral in arbitrary dimensions is given
by
1
10 = S {4C — OG0 + k- plI + (@4m? ~ ¢)05(q)
X

+[(¢* = 2m*)(p* — m?) + 2m*(k* — m*)1Q4(p)
+[(¢* = 2m»)(K* — m?) + 2m*(p* — m?)]1Q4(k)}.

(A20)
Hence the massless case reduces to
(0) im d,0 2 ~d,0 2 Hd,0
Id,() = ksz[(z - €)k : p-]() —k Q3 (k) - P Q3 (P)
+4205°(q)) (A21)
When € = 2 — £ is small, we have
1
7 em iwz{—[—qzs
4-2 Y
L2 [(p* — mD)g? + 2m*(k* — p?)] L
pP (pz — m2)2 (P)
L [(k* — m?)q? — 2m*(k* — p?)] Lk
(k2 _ m2)2 ( )
B cC—-2
(p* — m*)(k* — mz)}’
2 2.2
©0) i k°p
1, 2—C+In R A22
250 k2 2|: <q m2>:| ( )

whereas for d = 3,

1
1 = L et

) 2 k2 _ 2\ k2 2 k2 + 2
n ”sz[q (k* —m )(k2(— mz)l; )(k* + m?)
g*(p* — m?) + (K — p?)(p* + m?)
" (7 —m) ﬂ

k-
9= p IO,

k2
The first of Eq. (A23) agrees with (A8) of [11].

(A23)

7. The Ig) integral

In analogy with the integral J E}), 1 ﬂ) can be expanded out
as

1) = —[k I4(k, p) + p,Ig(k, p)];

Ip(k, p) = I4(p, k), (A24)

PHYSICAL REVIEW D 76, 065009 (2007)

where

1
Iy(k, p) = W{[k - p(p? — m?) — pA(K* — m*)]l,
+ [k p— p*Wo + 2k pOs(k) — 2p*Qs(p)}.
In the massless case

ok p = KUG" + [k~ p — p*lg"

—2p20%°(p)}.

IZ‘O(k; p) 2A2 {p

+ 2k - pQYO(k) (A25)

Near 4 dimensions

1

I4—2€,m —
2A2

{ k- qJé 2em — g2 (m? — k?)

X (k> — k- p)S/x + [2

+ p2g* (kK> — m*)(m? + k- P)/X]

+2R2P0m2 + k- p)L(K)/ X}, (A26)

14—25,0 2A2 {[k p— pZ]Jé—Ze,O _ 2[/( -p— k2]

_ 2 .
y ln(kzq ) N 2kk2p

In(—p?) — 2 1n(—k2)}.
(A27)

Equation (A26) is in agreement with the expression (53) of
[7]. Similar answers for d = 3 are

" 2 I3,m
B = gk = m?) = p20 = m?)
Jom mp? mk - p
+k-p—p 1=+ - }
4 (m2 — p2)2 (m2 _ k2)2
(A28)
=-—"___ (A29)
PN

Equation (A28) agrees with (A11) of [11].

8. The Iﬁf,, integral

The integral 7,55 @) of the list (12) may be decomposed as
follows:

@ _ 17 [8ur kK
I _T[zﬂe J0+<kMkV_g,U«Vﬁ IC+ p,u,ku
kp p2
+ k,l.LpV - g/.LVT>ID + <p,upv - g’“’2€>1E}
(A30)

065009-10



3-POINT OFF-SHELL VERTEX IN SCALAR QED IN ... PHYSICAL REVIEW D 76, 065009 (2007)

Ig(k, p) = Ic(p, k), (A31) _ 1 2 2N gy — _
otk p) = g ya7 (200 = m)k- p = (20 =2)
where, in arbitrary dimensions, X (p? — mOKL, + [2€(p — mDk - p
S SO — (26 = 2)( = m2)p? M + [26k - p
AP L= 1)A? pr— ke — (26— K2V, — 4k - pJy + [20k - p
= € = 1)(k* = m*)p*]l, — (p* — m*)p*ly —(2€ —2)p g — 4 — 1)
+[@20—2)k-p—@2€—1)p*Ys — pis X [p204(p) + R0, (k)] (A33)
+ 2p%Jy + 4(€ — Dk - pQ4(k)}, (A32)
For the massless case, we arrive at the following simplified
results
1
10 = DA 2 P26 =2k p - 20 - DESY = p*1g° +[(2€ = 2k - p — (2¢ — 1)p*V5°
= PP+ 2p205° + 4(€ = Dk - pQi (R},
1
130 = m{[(?k cp— (€= Dp2AUE° + KT0) + [k - p — (€ — DEZ]ILC + p*18°)

— 2k - pJ§° —2(¢ — D[P*05°(p) + K2 QT (k)] (A34)

Near 4 dimensions, these expressions yield

_ 1 _ 4k - 2L(k
Iéé 2e,m __ {2p2Jé 2e,m __ p<1 + (m ( )

AA? K2 K2 — m2)> {2k p =32 = Ay e

4A?

F L2k pln® = )+ 3p — UL+ pR o = pPt

_ 1 _ m2L(k) m?L(p) _
Iy = —— =2k - p)Jg 2" +2( 1+ ——— ) +2(1 + + 2k - p — k)T
D 4A2{ (k- p)Js & — m) K2 — m2) ( p )Wy
+ (2k “p— p2)]§—2e,m + [k2(m2 _ p2) — 2k - p(mZ _ k2)]1i—2s,m
+ [p2m® — k) — 2k - p(m? — pz)]l;‘;zf’"’}, (A35)

4-2€0 _
I =

—2€ kp —2¢, —2€ —2€ —2€
W{szJé 0 AT Qe p = 3pAT0 = Py 0 = A+ PRk p = 3 ’0},

—LE 1 —LE, —LE, —LE —LE,
Igz’ozm{—Zk-pJé 20 44+ 2k p — K0 + k- p — pAIy 20 — K2(p? — 2k - p)Iy 0

— p?(k* = 2k - p)I >}, (A36)
Finally for d = 3, we have
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2mk - p 2k p

kK2 (m? — k2 )

uk%}

2m

+ Bk p— K)IX" + Gk p — pOI" —

2m

PHYSICAL REVIEW D 76, 065009 (2007)

—{2p205" + [p2k - p = 2K3) — m*(k - p = 2p2) " — p*(p* — mA)I" + (k- p — 2p2)J3"

—M~pﬁm+R%%-p—p%—m%%-p—ﬂﬂﬁm+@%%-p—k%—m%%-p—p%ym
0 A B

PPk p =213 —

o o

NE

8k-p }

+
\/—k2p2q2

m2_k2

41%'0 +(k-p— 2]72)13"0 —

m2_

2]3,0 _

SENse
{Eekp PR + p?Bk - p — KO + Bk - p — kI + Bk - p — p2)J3°

ﬁ+mw+mw*

k- p

477'p2 }

(A37)

9. The I, ®) o integral

The integral I «p comes contracted with vectors p® and kP so it is straightforward to show that

—QnparB3
8pekPI 5 =

—2p“(k2 2)1(2)

+ ik, [0 (k) — (K — m?) Q4(k)].

2p*J3h + imp [ 0(p)

— (P2 — m)Qu(p)] — 2kE(p? — m)I%)

kB Q)
2P0
(A38)

Therefore, we have p“kﬁlfl p n terms of integrals we already know.
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