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We study the interior of distorted static axisymmetric black holes. We obtain a general interior solution
and study its asymptotics both near the horizon and singularity. As a special example, we apply the
obtained results to the case of the so-called ‘‘caged’’ black holes.
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I. INTRODUCTION

The uniqueness theorem proved by Israel [1] tells us that
the only static vacuum black-hole solution of the Einstein
equations in an asymptotically flat spacetime is the
Schwarzschild one. In the application to a real astrophys-
ical problem this solution, even in the absence of rotation,
is highly idealized. For example, the presence of matter,
e.g. in the form of an accretion disk, distorts the metric. If a
static distribution of matter is localized outside the black-
hole horizon, the spacetime in the vicinity of the horizon
remains vacuum. We call such a solution a distorted black
hole. The metric near the horizon of a general (not neces-
sarily axisymmetric) static distorted black hole was studied
in [2].

If the distribution of matter outside a black hole is
axisymmetric, the metric of the distorted black hole allows
a detailed description. The reason is that the vacuum metric
outside the matter is the Weyl solution. This metric con-
tains two functions of two variables. One of the functions,
which has the meaning of the gravitational potential, obeys
the linear Laplace equation in a flat 3D space, while the
other can be obtained from it by a simple integration.
Axially symmetric distorted black holes were studied in
several publications (see e.g. [3–9]). Such axially symmet-
ric distorted black holes arise naturally in the models where
one of the (large) spatial dimensions is compactified. For
the general discussion of such solutions in higher dimen-
sions, see e.g. [10,11]. In 4D spacetime, such caged black-
hole solutions are again the Weyl metric. The properties of
4D caged black holes were studied in [12,13].

In the previous studies of distorted black holes the
attention has mainly been focused on the properties of
the black-hole exterior. But any distribution of matter in
the black-hole exterior region distorts the metric not only
outside the black hole, but also in its interior. The purpose
of this paper is to study this effect. Namely, we consider the
interior of an axially symmetric distorted black hole. In
particular, we study the structure of the spacetime in the
vicinity of the black-hole singularity. We start with an
analysis of a general axially symmetric solution which is
static outside the black hole and has a regular horizon. The

external metric is determined by the solution of the 3D flat
Laplace equation for the corresponding gravitational po-
tential. The latter can be uniquely characterized by its
multipole moments. We demonstrate that these multipole
moments determine both the shape of the horizon of the
distorted black hole and the spacetime structure near its
singularity. As a special example we consider an applica-
tion of the obtained results to the case of the so-called
caged black hole. For such a black hole the distortion
multipole moments are fixed by the regularity condition
of the compactified spacetime, and they depend only on the
ratio of the black-hole size to the size of the compactified
dimension. We discuss the internal structure of caged black
holes.

The paper is organized as follows. In Sec. II we collect
the equations for the vacuum axisymmetric distorted black
hole in the exterior and interior regions. In Sec. III we
obtain a solution for the interior of a distorted black hole
and discuss its properties. An asymptotic form of this
solution near the black-hole horizon and singularity is
obtained in Secs. IV and V respectively. Special examples
of exact interior solutions and their properties are consid-
ered in Sec. VI. In Sec. VII we consider properties of
the interior and singularity of 4D caged black holes.
Section VIII contains a summary and discussions of the
results obtained. Additional technical details and calcula-
tions used in the main part of the paper are collected in the
appendixes. In this paper we use the units where G � c �
1, and the sign conventions adopted in [14].

II. METRIC OF A DISTORTED BLACK HOLE

In the absence of distortion a static vacuum black hole is
described by the Schwarzschild metric

 ds2 � ��1� 2m=r�dt2 � �1� 2m=r��1dr2 � r2d!2;

(1)

where m is the black-hole mass, and d!2 � d�2 �
sin2�d�2 is the metric on a unit round sphere. In what
follows, we shall use two other forms of this metric,

 ds2 �
1� cosh ~ 

1� cosh ~ 
dt2 �m2�1� cosh ~ �2�d ~ 2 � d!2�

(2)
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and

 ds2 �
1� cos 
1� cos 

dt2 �m2�1� cos �2��d 2 � d!2�:

(3)

The metric (2) is valid outside the Schwarzschild black-
hole horizon, r > 2m, and r � m�cosh ~ � 1�, where ~ >
0, while the metric (3) covers the Schwarzschild black-hole
interior 0< r < 2m, and r � m�1� cos �, where 0<
 <�. These two metrics are connected by the analytical
continuation

 

~ ! i : (4)

The Carter-Penrose diagram for the interior metric in the
coordinates � ; �� is shown in Fig. 1. The lines  � � �
const are null rays propagating within the 2D section
�t; �� � const. It should be stressed that this diagram is
different from the usual Carter-Penrose diagram for the
radial sector �t; r� of the Schwarzschild black hole.

Following [7,8] we present the metric for the vacuum
axisymmetric static distorted black hole in the form
 

ds2 �
1� cosh ~ 

1� cosh ~ 
e2Ûdt2 �m2�1� cosh ~ �2

� e�2Û�e2V̂�d�2 � d ~ 2� � sin2�d�2	; (5)

 

ds2 �
1� cos 
1� cos 

e2Ûdt2 �m2�1� cos �2

� e�2Û�e2V̂�d�2 � d 2� � sin2�d�2	: (6)

The metric (5), where Û and V̂ are functions of � ~ ; ��, is
valid in the black-hole exterior. The metric (6), where Û
and V̂ are functions of � ; ��, describes the interior of the
distorted black hole. The black-hole horizon H is defined
by the equation

 

~ �  � 0; 0 
 � 
 �: (7)

For a regular black hole the functions Û and V̂ must be

smooth and finite at the horizon. In particular, these func-
tions, which define the geometry of the 2D horizon surface,
must be continuous across the horizon. The metrics (5) and
(6) are regular along the axis of symmetry (no conical
singularities), provided

 V̂j��0 � V̂j��� � 0: (8)

Denote

 D Û � Û;  � cot Û; ; (9)

 D�Û � Û;�� � cot�Û;�: (10)

Then, the vacuum Einstein equations for the metric (6)
reduce to the following relations:

 D Û � D�Û; (11)

 V̂ ;� � F���� ; ��; (12)

 V̂ ; � F� �� ; ��: (13)

Here
 

F���� ; �� � N�sin2 cos��Û2
;� � Û

2
; �

� 2 sin cos sin�Û�Û � 2 sin cos�Û; 

� 2 cos sin�Û;�	; (14)

 

F� �� ; �� � N�2sin2 cos�Û;�Û; 

� sin cos sin��Û2
;� � Û

2
; �

� 2 sin cos�Û;� � 2 cos sin�Û; 	; (15)

 N � sin��sin2 � sin2���1: (16)

The functions F��� and F� � obey the relation

 F���; � F� �;� : (17)

Thus, after solving Eq. (11), one can obtain V̂ by simple
integration,

 V̂� ; �� �
Z � ;��
� 0;�0�

�F� �d � F���d�	; (18)

where the integral is taken along any path connecting
� 0; �0� and � ; ��.

The factor N is singular along the lines  � � and  �
�� �. Nevertheless, as we shall demonstrate in the next
section, the solutions for V̂ for the distorted black holes
which are regular at the horizon remain smooth and regular
along these lines.

Let us focus on Eq. (11). Since D Û � D� Û, a solu-
tion to this equation can be presented as a sum of two
solutions, one being odd and the other being an even
function of  . Because of the presence of the factor cot 
inD , this operator is singular at  � 0; hence, the regular

FIG. 1. The Carter-Penrose diagram for the � -�� sector of the
Schwarzschild black-hole interior.
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at the horizon solution must be an even function of  . This
solution remains real after Wick’s rotation (4).

Studying the exterior solution

 D ~ Û �D�Û � 0; (19)

Geroch and Hartle [7] demonstrated that if Û is a regular
smooth function in any small open neighborhood of the
horizon H (including H itself ) determined by Eq. (7)
which takes the same values, u0, on both ends of the
segment (7),

 Û�0; 0� � Û�0; �� � u0; (20)

then the solution is regular at the horizon and describes a
distorted black hole.

The surface gravity of the distorted black hole is

 �0 �
e2u0

4m
: (21)

If the distortion source obeys the strong energy condition,
u0 has to be nonpositive [7].

Let us emphasize that Eq. (19) for the ‘‘distortion po-
tential’’ Û in the exterior region is elliptic, while the
interior equation (11) is of the hyperbolic type. This is in
accordance with the general property of black holes.
Namely, the direction to the singularity in the inner region
is the direction to the future, and the evolution of the metric
in this region obeys dynamical equations. After solving the
equations in the exterior region we obtain boundary con-
ditions at the horizon for the inner dynamical equations. In
our particular case the solutions of the exterior and interior
problems are connected by the analytical continuation (4).

It is convenient to consider the dimensionless form of
the metric dS2, connected to the metric ds2 as follows:

 ds2 � 4m2e�2u0dS2: (22)

Introducing the quantities

 T � �0t; U � Û� u0; (23)

one can write the metric dS2 in the form
 

dS2 � 4
1� cos 
1� cos 

e2UdT2 �
1

4
�1� cos �2

� e�2U�e2V̂�d�2 � d 2� � sin2�d�2	: (24)

In what follows, we shall study the metric (24) and its
properties. In order to obtain the corresponding character-
istics of the ‘‘physical’’ solution (6), it is sufficient to use
the scaling transformations (23).

III. INTERIOR SOLUTION

A. Gravitational potential in the inner region

Our goal is to study the interior of a distorted black hole.
To find the metric inside the distorted black hole we start
with Eq. (11). This equation allows a separation of varia-

bles Û � R� �S���,

 S;�� � cot�S;� � �S � 0; (25)

 R;  � cot R; � �R � 0: (26)

Since the polar points � � 0, � are regular, the functions S
must be finite at these points. The solutions of this eigen-
value problem are

 S � Pn�cos��; � � n�n� 1�; n � 0; 1; . . . :

(27)

Expanding Û over the complete set of the Legendre poly-
nomials of the first kind, Pn�cos��, one has

 Û� ; �� �
X
n�0

Rn� �Pn�cos��: (28)

Since at the horizon surface Û is finite and regular, one
must omit infinitely growing at  � 0 solutions of (26).
Thus, we obtain the following solution for Û:

 Û� ; �� �
X
n�0

anPn�cos �Pn�cos��; (29)

where an are the coefficients called multipole moments.
For a given value of Û on the horizon, these coefficients are

 an � �n� 1=2�
Z �

0
d� sin�Û�0; ��Pn�cos��: (30)

The condition (20) implies

 

X
k�0

a2k�1 � 0;
X
k�0

a2k � u0: (31)

Since the Legendre polynomials have the symmetry
property

 Pn��z� � ��1�nPn�z�; (32)

the function Û is invariant under the transformation

 I: � ; �� ! ���  ;�� ��; (33)

that is,

 Û���  ;�� �� � Û� ; ��: (34)

This relation implies, in particular, that the values of Û at
the singularity  � � are determined by its values on the
horizon  � 0,

 Û��;�� �� � Û�0; ��: (35)

In other words, there exists an interesting duality between
the horizon and singularity. It should be emphasized that
the functions F��� and F� � [see (14) and (15)] contain both
symmetric and antisymmetric parts with respect to the
reflection (33). This means that the function V̂ does not
possess the symmetry (34). Nevertheless, since the func-
tion Û and boundary conditions (8) determine V̂ uniquely,
the relation (34) greatly simplifies the study of the space-
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time structure near the singularity. We return to this point
in Sec. V.

B. Boundary values of Û and V̂

Let us denote

 u���� �
X
n�0

��1�nanPn�cos�� � u0: (36)

It is easy to check that

 u���� � u���� ��; (37)

 u��0� � u���� � 0: (38)

One has (see Fig. 2)

 U �0; �� � u����; U��; �� � u����; (39)

 U � ; 0� � u�� �; U� ;�� � u�� �: (40)

We call these data the boundary values of U. The regular-
ity of u� follows from the regularity of the distortion Û on
the horizon and the condition (37).

The boundary values of V̂ can be obtained from (18).
Namely, integrating F��� along the lines  � 0, �0 � 0,
and  � �, �0 � 0, one obtains (see Appendix B)

 V̂�0; �� � 2u����; V̂��; �� � �2u����: (41)

The boundary values of V̂ are summarized in Fig. 3.

C. Proper time of free fall to the singularity along the
symmetry axis

Suppose a function u���� for a distorted black hole is
given. Then the boundary data for U and V̂ described
above allow one to calculate, for example, a proper time
of a free fall of a test particle from the horizon to the
singularity along the symmetry axis. Consider a particle
with zero energy and angular momentum which is moving
along T � const and � � 0. The proper time � of its free
fall from the horizon to the singularity along the symmetry
axis calculated for the metric (24) is given by

 �� �
1

2

Z �

0
d �1� cos �e�u�� �: (42)

The� signs are for � � 0 and � � � axes, respectively. To
illustrate how the distortion of the black hole affects this
time, we consider two simple cases. As the first example,
we consider the quadrupole distortion when only a0 and a2

do not vanish. Taking into account that a0 � u0 � a2 [see
(31)] one has

 u� � �
3
2a2sin2 : (43)

The integral (42) can be calculated exactly,

 �� �
�
2
e3a2=4I0�3a2=4�; (44)

where I0�z� is the modified Bessel function. A plot of � as a
function of the quadrupole moment a2 is shown in
Fig. 4(a).

FIG. 2. The boundary value of U for the interior of a distorted
black hole. The dashed line,  � 0, is the horizon, and the dotted
line,  � �, is the singularity.

FIG. 3. The boundary values of V̂ for the interior of a distorted
black hole. The dashed line,  � 0, is the horizon, and the dotted
line,  � �, is the singularity.

FIG. 4. (a): Quadrupole distortion: The proper time, �, as a
function of the quadrupole moment a2. (b) Octupole distortion:
The proper time, ��, as a function of the octupole moment a3. A
plot for �� can be obtained from this one by the reflection a3 !
�a3. The proper time for the Schwarzschild black hole is �Sch �
�=2  1:571.
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As a second example we consider the octupole distortion
when only a1 and a3 do not vanish. Because of (31) one has
a1 � �a3, and

 u� � �
5
2a3 cos sin2 : (45)

To obtain �� we used numerical integration. The plot of ��
as a function of the octupole moment a3 is shown in
Fig. 4(b). The minimal value of ��  1:353 corresponds
to a3  �0:9166. The similar plot for �� can be obtained
by the reflection a3 ! �a3.

IV. NEAR HORIZON GEOMETRY

A. Shape of a distorted horizon

The form of the horizon surface for the metric (24) is
determined by the following line element (see also [7]):

 d�2
� � e2u�d�2 � e�2u�sin2�d�2

� e2u�
dz2

1� z2 � e
�2u��1� z2�d�2: (46)

This metric is obtained from (24) as the limit  ! 0 of the
metric on the 2D section  � const of T � const. The
horizon area is A � 4�.

The Gaussian curvature of the metric d�2
� isK� � R=2,

where R is the Ricci scalar curvature. It is given by the
following expression:

 K� � e�2u��1� �1� z2��u00� � 2�u0��
2	 � 4zu0�	;

� e�2u��1� u�;�� � 3 cot�u�;� � 2u2
�;��; (47)

where the prime denotes a derivative with respect to z �
cos�.

As special examples, we consider the quadrupole and
octupole distortions with functions u� given by (43) and
(45), respectively. The Gaussian curvature for these dis-
tortions is

 

�2�K� � e3a2sin2��1� 3a2�1� 5cos2��

� 18a2
2cos2�sin2�	; (48)

 

�3�K� �
1
2e

5a3 cos�sin2��2� 10a3 cos��9cos2�� 5�

� 25a2
3sin2��1� 3cos2��2	: (49)

For the quadrupole distortion the Gaussian curvature be-
comes negative at both of the poles, � � 0 and � � �, for
a2 > 1=12. Similarly, for the octupole distortion, the
Gaussian curvature becomes negative at one of the poles
for ja3j> 1=20. This means that for these values of the
parameters the horizon surface of the distorted black hole
cannot be isometrically embedded in a flat 3D space (see
e.g. [15] and references therein). For a2 
 1=12 (in the
quadrupole case) and ja3j 
 1=20 (in the octupole case)
isometric embeddings are possible.

To construct the embedding we consider a surface

 � � ����; z � z��� (50)

in 3D Euclidean space with the metric

 dl2 � dz2 � d�2 � �2d�2: (51)

The geometry induced on this surface,

 dl2 � �z2
;� � �

2
;��d�

2 � �2d�2; (52)

coincides with the horizon surface geometry (46) if

 � � e�u� sin�; z �
Z �=2

�
d�Q; (53)

 Q2 � e2u� � e�2u��cos�� u�;� sin��2: (54)

Figure 5 shows the embedding diagrams of the distorted
event horizon surface for the quadrupole and octupole
distortions.

B. Kretchmann invariant

The Gaussian curvature discussed in the previous sub-
section characterizes the shape of the 2D surface of the
distorted horizon. In this subsection we study the 4D
curvature of the spacetime near the distorted horizon. We
demonstrate that the 4D curvature is greater at the points
where the horizon surface is more ‘‘sharp.’’

The components of the curvature tensor depend on the
coordinate choice. Hence, to characterize the strength of

FIG. 5. The shape of the horizon surface of the distorted black
hole. The embedding diagram for the horizon surface can be
obtained by rotation of the curves on the plots around the vertical
axis. The left plot (a) shows the rotation curves for the quadru-
pole distortion of a2 � 1=12 (line 1) and a2 � �1=12 (line 2).
The right plot (b) shows the rotation curves for the octupole
distortion of a1 � �a3 � 1=20 (line 1) and a1 � �a3 � 1=6
(line 2). The region of negative Gaussian curvature is schemati-
cally illustrated in plot b by the dashed horizontal line. The
rotation curves for positive octupole moments a3 can be obtained
by the reflection of the lines in plot b with respect to the
horizontal axis. Dashed lines in both the plots are round circles
of radius 1.
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the curvature one needs to consider curvature invariants.
The simplest one is the Kretchmann scalar K �

R	
��R
	
��. We demonstrate that there is a simple rela-

tion between the Kretchmann invariant and the Gaussian
curvature at the surface of the distorted black hole.

The function u����, which specifies the geometry of the
horizon surface, uniquely determines the geometry of the
black-hole interior. In particular, one can obtain expansion
of U and V̂ at the vicinity of the horizon (see Appendix B).
The first two terms of this expansion in the powers of  are

 U � u� �
1
4u
�2�
�  

2 � . . . ; (55)

 V̂ � 2u� �
1
2�u
�2�
� � u

2
�;� � 2 cot�u�;�� 2 � . . . : (56)

Here and later we use the dots . . . for the omitted terms of
higher order in  . We also defined

 u�2�� ��� �
X
n�0

��1�nann�n� 1�Pn�cos��: (57)

In this approximation the metric near the black-hole hori-
zon reads

 dS2
� � A�dT

2 � B��d�
2 � d 2� � C�d�

2; (58)

 

A� �
1
6 

2e2u��6� �3u�2�� � 1� 2 � . . .	;

B� �
1
2e

2u��2� �u�2�� � 4 cot�u�;� � 2u2
�;� � 1� 2 � . . .	;

C� �
1
2e
�2u�sin2��2� �u�2�� � 1� 2 � . . .	: (59)

This expansion, for example, can be used to determine the
value of the Kretchmann scalar K � R	
��R

	
�� at the
horizon surface. Using (59) calculations give

 K� � 12e�4u��1� u�;�� � 3 cot�u�;� � 2u2
�;��

2:

(60)

For the undistorted Schwarzschild black hole KSch;� �

12. Figure 6 illustrates the ratio, k �K�=KSch;� , of the
Kretchmann scalars of the distorted and Schwarzschild
black holes.

Comparing this result with (47) one can arrive at the
following relation valid on the horizon surface of a dis-
torted black hole:

 K� � 12K2
�: (61)

This relation is valid not only for the axisymmetric case but
also for an arbitrary static distorted black hole (see
Appendix A). It is possible to show that the metric of the
distorted spherical black hole is of type D both on the
horizon and on the axis of azimuthal symmetry [16].

V. SPACETIME NEAR THE SINGULARITY OF A
DISTORTED BLACK HOLE

A. Asymptotic form of the metric

Because of the symmetry property (34), the asymptotic
form of Û near the singularity  � � can be easily ob-
tained from its asymptotic expansion near the horizon  �
0. After this, the relation (18) allows one to find the
expansion of V̂. The expansions for Û and V̂ near the
singularity are given in Appendix B. Using these expan-
sions one can obtain the asymptotic form of the metric (24)
at  � � ��  ! 0,

 dS2
� � A�dT

2 � B��d�
2 � d 2

�� � C�d�
2; (62)

 

A��
8e2u�

3 2
�

�6��3u�;���3cot�u�;��1� 2
� . . .	;

B��
e�6u�

96
 4
��6��9u�;���3cot�u�;��6�u�;��

2�1� 2
�

� . . .	;

C��
e�2u�

96
sin2� 4

��6��3u�;���3cot�u�;��1� 2
� . . .	:

(63)

Expressions (63) are sufficient to calculate the Kretchmann
scalar near the singularity up to the second order in  �
corrections,

 K� �
49 152e12u�

 12
�

�1� ~K�2�
�  

2
� � . . .	; (64)

 

~K �2�
� �

1
2�1� 3u�;�� � 6�u�;��2 � 3 cot�u�;�	: (65)

Higher order terms can be obtained by using the relations
given in Appendix B. In the absence of distortion, when
u� � 0, the Kretchmann scalar does not depend on �,

FIG. 6. The ratio k �K�=KSch;� of the Kretchmann scalar
K� on the horizon of the distorted black hole to its undistorted
value k �KSch;� . Curves in plot (a) show k for the quadrupole
distortion of a2 � 1=12 (line 1) and a2 � �1=12 (line 2).
Similar curves in plot (b) show k for the octupole distortion of
a1 � �a3 � 1=20 (line 1) and a1 � �a3 � 1=6 (line 2). The
dashed horizontal lines at k � 1 correspond to the Schwarzschild
black hole.

VALERI P. FROLOV AND ANDREY A. SHOOM PHYSICAL REVIEW D 76, 064037 (2007)

064037-6



 K Sch;� �
49 152

 12
�

: (66)

This is the value of K� for the Schwarzschild geometry.
Using the results of [16] it can be shown that the metric of a
distorted black hole is of type D near the singularity.

B. Stretched singularity

For the Schwarzschild geometry the metric near the
singularity,

 dS2
�  �

1

16
 4
�d 2

� �
16

 2
�

dT2 �
 4
�

16
d!2; (67)

can be written in the form

 dS2
�  �d�

2 �
16

�12��2=3
dT2 �

�12��4=3

16
d!2: (68)

Here � � � 3
�=12 is the proper time of a free fall to the

singularity along the geodesic T, �, � � const. The quan-
tity � is negative, and it reaches 0 at the singularity. The
metric (68) has the Kasner-like behavior with indices
��1=3; 2=3; 2=3�. It describes a metric of a collapsing
anisotropic universe, that shrinks in �-� directions and
expands in the T direction.

The Kretchmann invariant as a function of the proper
time has the following asymptotic form:

 K Sch;� 
64

27�4 : (69)

This relation shows that the surface of constant KSch;� is,
at the same time, a surface of constant �.

Spacetime in the region where the curvature is of order
of the Planckian curvature requires quantum gravity for its
description. For the Schwarzschild geometry at the surface
where KSch;� � l

�4
Pl the proper time � is of order of the

Planckian time �Pl. Since one cannot rely on the classical
description in this domain, it is natural to cut the region
where the curvature is higher than the Planckian one and to
consider its boundary as the stretched or physical singu-
larity. For the Schwarzschild metric the stretched singu-
larity surface has the topology R1 � S2. Its metric is a
direct sum of the metric of a round two-sphere and a line.

What happens to the stretched singularity when the
metric of the black hole is distorted? To answer this ques-
tion we use the asymptotic form of the metric near the
singularity, (62). Consider a timelike geodesic lying on the
‘‘plane’’ T � const, � � const. We call such a geodesic
‘‘radial.’’ It can be shown (see Appendix C) that a radial
geodesic is uniquely determined by the limiting value # of
its angular parameter � at which it crosses the singularity.
Denote by � the proper time along the radial geodesic to its
end point at the singularity. In coordinates ��; #� the metric
dS2
� is given by (68) where d!2 is replaced by

 d�2
� � e�2u�d�2 � e2u�sin2�d�2: (70)

We can use ��; #� as new coordinates in the vicinity of the
singularity. Relations (C14) and (C15) connect these
‘‘new’’ coordinates with the ‘‘old’’ ones � �; ��. The
Kretchmann scalar (64) and (65) in new coordinates reads

 K� �
64

27�4 �1�K�2�
� �

2=3 �O��4=3�	; (71)

 K �2�
� �

1
2�12�2=3e2u��#��1� 3u�;## � 6�u�;#�

2

� 3 cot�u�;#	: (72)

The expansion (71) coincides in the leading order with
(69). Hence, in the presence of distortion, surfaces of equal
K are again (in the leading order) surfaces of constant �.

C. Shape of equicurvature surfaces

Let �� be a surface where the Kretchmann scalar has
constant value K� �K0. In the vicinity of the singularity
(in the leading order in  �)  � and � on �� are related as
follows,

  � � ��eu� ; �� � �49 152=K0�
1=12; (73)

and one has the relation  �;� �  �u�;�. Consider the
induced geometry on ��. Using this relation one can
conclude that the d 2

� term in (62) gives quadratic in  �
corrections only. Neglecting all such terms in (62) we
obtain the following expression for the leading asymptotic
for the induced metric dl2� on ��:

 dl2� 
16

�2
�

dT2 �
�4
�

16
d�2
�; (74)

where d�2
� is given by (70). The surface �� has the same

topology R1 � S2 as in the absence of distortion, but its
geometry is different. This difference manifests itself in the
shape of T � const 2D surfaces. The information about the
shape is encoded in the 2D metric d�2

�. The total area of
the surface is 4�. The metric (70) can be obtained from the
horizon metric d�2

�, (46), by the simple change u� !
�u�. Under this transformation the odd multipole mo-
ments are invariant, while the even moments change their
sign [see (36)]. In particular, the embedding diagrams for
the metric (70) are those with opposite value of the quad-
rupole moment a2 and with the same value of a3 [see
Figs. 5(a) and 5(b), respectively].

VI. EXACT SOLUTIONS

For any given set of multipole moments an that deter-
mine Û, the corresponding function V̂ can be found ex-
plicitly in terms of elementary functions. Since the general
expression for V̂ is rather cumbersome we do not present it
here. Instead, we consider the special case of the quadru-
pole and octupole distortions when the gravitational po-
tential U is of the form
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 U � �3
2a2P 3=2 �

5
2a3 cos cos�P 5=2; (75)

where

 P q � sin2 � sin2�� qsin2 sin2�: (76)

Substituting this solution into Eqs. (14) and (15), and
integrating according to Eq. (18), we derive

 V̂ � 1
2sin2���6a2 cos � 5a3 cos��1� 3cos2 �	

� 1
2sin2 sin2��a2

2V 22 � 2a2a3V 23 � a2
3V 33	;

(77)

where

 

V 22 � 9�1� P 9=8	;

V 23 �
15

2
cos cos��2� 3P 3=2	;

V 33 �
25

4
�4� 12P 39=24 � 18P 2

2 � 27P 2
11=6	:

(78)

The exterior metric for a black hole distorted by a quad-
rupole field was derived in [17].

Using the GRTENSORII package we calculated the
Kretchmann scalar K for this distortion. We made the
calculations for both the internal and external regions. It
is easy to check that K’s in these regions are related by the
analytical continuation (4). Figures 7 and 8 show the con-
tour lines of K for the quadrupole and octupole distor-
tions, respectively. In order to plot both the exterior and
interior regions simultaneously, we introduce a new coor-
dinate,

 y �
�

cos ; for  2 �0; ��;
cosh ~ ; for ~ 2 �0;1�:

The sector y 2 ��1; 1�, z 2 ��1; 1	, where z � cos�, cov-
ers the inner region, and the sector y 2 �1;1�, z 2 ��1; 1	
covers the exterior of the black hole.

VII. INTERIOR OF A CAGED BLACK HOLE

In this section we apply the obtained results to the
special case of the so-called ‘‘caged’’ black hole. Such a
black hole is a solution of the vacuum Einstein equations
for a spacetime where one (or more) spatial dimension(s) is
compactified. Caged black holes in 4D spacetime were
discussed in [13] (see also [10,12]). As a result of com-
pactification the event horizon of the black hole is dis-
torted. The metric is axisymmetric and is a special case of
the Weyl solution. The value of Û at the horizon found in
[13] [Eq. (62)] gives

 Û�0; �� �

�

ln�4�� �
1

2
ln
�
f
�
� z

2

�
f
�
� z

2

��
; (79)

where jzj 
  and 0<<�. In this case z �  cos�, 
is a dimensionless parameter equal to the ratio of the black-
hole mass, m, to the radius of compactification, L,  �
m=L, and

 f�x� �
1

�2 x sinx�2�x=��: (80)

The function f�x� has the following properties:

 f�0� � 1; f��=2� � 1
2; f��� � 0; (81)

and at the interval 0 
 x 
 � it can be approximated by a
linear function,

 f�x�  1�
x
�
; (82)

with an accuracy of 1%. The moments an for the solution
(79) can be obtained from (30). Let us emphasize that,
since the function Û�0; �� is invariant under the transfor-
mation �! �� �, the moments an for odd n vanish [see
Eqs. (36) and (37)]. This implies that u� � u� and the
boundary value of Û at  � � coincides with the boundary
value of this function at the horizon,  � 0 [see Eq. (39)],
and we have [see Eq. (20)]

FIG. 8. The contour lines of K for the octupole distortion of
a1 � �a3 � 1=20 (a) and a1 � �a3 � 1=6 (b). The horizontal
line y � 1 represents the event horizon.

FIG. 7. The contour lines of K for the quadrupole distortion of
a2 � 1=12 (a) and a2 � �1=12 (b). The horizontal line y � 1
represents the event horizon.
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 u0 �

�

ln�4�� �
1

2
ln�f��	: (83)

From Eqs. (79) and (83) we derive

 u��� � u���� 
1

2
ln
�
4����� �2sin2�

4�����

�
: (84)

The metric (46) on the surface of the horizon is
 

d�2
� 

�
1�

2sin2�
4�����

�
d�2

�

�
1�

2sin2�
4�����

�
�1

sin2�d�2: (85)

Using Eqs. (60), (61), (71), and (72) we can calculate the
Kretchmann scalar at the horizon surface of a caged black
hole,

 K�  12�4������4

�
�4����� �2 � 32cos2��2

�4����� �2sin2��6
; (86)

and in the vicinity of its physical singularity,

 K� 
64

27�4 �1�K�2��2=3 �O��4=3�	; (87)

 

K�2�
� 

1
2�12�2=3��8����� �2sin2��2

� 34sin2��13sin2�� 16�	

� �16������4����� �2sin2��	�1: (88)

Applying Eqs. (53) and (54), and the transformation
u� ! �u�, respectively, we can construct an embedding
of these surfaces. Figure 9 illustrates the shapes of the

distorted event horizon surface and the ratio of the
Kretchmann scalars, k �K�=KSch;� , of the caged and
Schwarzschild black holes. The metric (70) on the surface
of the stretched singularity is
 

d�2
� 

�
1�

2sin2�
4�����

�
�1
d�2

�

�
1�

2sin2�
4�����

�
sin2�d�2: (89)

The shape of the distorted physical singularity is illustrated
in Fig. 10.

VIII. DISCUSSIONS

Let us summarize the obtained results. We considered
the geometry of static vacuum axisymmetric distorted
black holes. We focused mainly on the properties of the
horizon and the interior of such black holes. The geometry
of a distorted black hole is uniquely determined by the
‘‘gravitational potential’’ U which is a solution of the 3D
flat Laplace (in the exterior) or d’Alembert (in the interior)
equation. After solving this ‘‘master’’ equation, the second
function V, which enters the metric, can be obtained by a
simple integration.

The gravitational potential U can be written as a super-
position of the Schwarzschild potential USch and the dis-
tortion potential Û. The distortion Û is determined by the
values of the multipole moments an obeying the con-
straints (31). The distortion potential in the black-hole
interior possesses a remarkable discrete symmetry (34)
which relates the value of Û in the vicinity of the singu-
larity to its value at the horizon. Thus, the functions u����
[see (36)] determine the shape of the horizon and the
physical singularity, as well as the leading asymptotics of
the metric and curvature invariants near the horizon and
singularity of a distorted black hole.

Qualitatively, the shape of the event horizon surface of a
distorted black hole is similar to the shape of equipotential

FIG. 9. (a) The shape of the distorted event horizon surface for
the caged black hole. Line 1:  � 2=3�; line 2:  � 6=7�. The
dashed circle corresponds to the Schwarzschild black hole. The
embedding surface is obtained by rotation of these curves around
the vertical axis. (b) The Kretchmann scalar ratio k �
K�=KSch;� on the horizon for the same values of  (lines 1
and 2). The dashed horizontal line corresponds to the
Schwarzschild black hole.

FIG. 10. The shape of the distorted physical singularity for the
caged black hole of  � 2=3� (line 1) and  � 6=7� (line 2).
The region of negative Gaussian curvature is schematically
illustrated by the dashed horizontal lines. The dashed circle
corresponds to the Schwarzschild black hole. The embedding
surface is obtained by rotation of these curves around the vertical
axis.
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surfaces in linearized (Newtonian) gravity. Namely, con-
sider a pointlike mass M. In the presence of a quadrupole
distortion its Newtonian gravitational potential reads (up to
constant a0)

 � � �
M
R
���; �� �

a2

2
R2�3cos2�� 1�; (90)

where R �
���������������������������
x2 � y2 � z2

p
is the radial distance from the

massM, and a2 is the value of the quadrupole moment. For
positive a2 such a distortion is generated, for example, by a
ring of mass m and radius d� R located in the equatorial
plane. For such a ring a2 � m=�2d3�. Similarly, a negative
a2 is generated, for example, by two point masses m
located on the axis of symmetry on the opposite sides of
the mass M at the distance d� R. In this case a2 �
�2m=d3. We consider R�M and assume that the distor-
tion �� is small. Then the change �R in the position of the
equipotential surface for (90) with respect to the position of
the unperturbed surface of R0 � const is

 �R � �
a2R4

0

2M
�3cos2�� 1�: (91)

Thus the quadrupole distortion deforms the equipotential
surfaces and makes them either oblate (for a2 > 0) or
prolate (for a2 < 0). This property is similar to the property
of the horizon surface for the distorted black hole [see
Fig. 5(a)].

It should be emphasized that the linear approximation is
not sufficient for the ‘‘explanation’’ of the Kretchmann
invariant properties. Really, in the linear approximation

 ds2 � ��1� 2��dt2 � �1� 2���dx2 � dy2 � dz2�;

(92)

the Kretchmann scalar is

 K  8�;ij�
;ij � 48

�
a2

2 �
M�M� 2R��

R6

�
: (93)

Its variation under the small distortion �� is

 �K � �
2M2

R7
0

�R: (96)

Hence in the weak field approximation, K is larger at the
points where �R< 0, such as at the poles of the oblate
equipotential surface (for a2 > 0), and in the equatorial
points of the prolate surface (for a2 < 0). This behavior of
K in the weak field limit is opposite to the behavior of K
on the horizon of the distorted black hole [see e.g. (60)].
This difference demonstrates that nonlinear effects and the
spatial curvature are important near the horizon.

The property (61) has an important consequence for
caged black holes discussed in Sec. VII. For  close to
�, when the ‘‘north’’ and ‘‘south’’ poles of the caged black
hole are close to each other, the Gaussian curvature (and
hence the Kretchmann invariant) becomes large at the
poles. In other words, in the infinitely slow merger tran-

sition the region of a very high curvature ‘‘leaks’’ through
the horizon in the vicinity of the black-hole poles. When
this curvature reaches the Planckian value, one can say that
the physical singularity (as defined Sec. V B) becomes
naked. This may indicate that during the phase transition
between black-hole and black-string phases one can expect
the formation of a naked physical singularity. Whether this
conclusion remains valid for higher dimensional caged
black holes and beyond the adiabatic approximation is an
interesting open question.
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APPENDIX A: KRETCHMANN INVARIANT AND
GAUSSIAN CURVATURE ON THE HORIZON OF A

STATIC BLACK HOLE

In this appendix we show that the Kretchmann invariant
K � R	
��R

	
�� calculated at the horizon of a 4D static
distorted black hole is related to the Gaussian curvature of
the 2D horizon surface K0 as follows:

 K � 12K2
0 : (A1)

Let us emphasize that this relation is valid for an arbitrary
(not necessarily axisymmetric) distorted black hole. To
establish this relation we use the results of Ref. [2].

The metric near the horizon of a static vacuum distorted
black hole can be written in the Israel coordinates [1] as
follows:

 ds2 � �Xdt2 �
dX2

4�2X
� habd�ad�b; (A2)

where�X � �2
t is the square of the timelike Killing vector

�t � @t,

 � � 1
2D

1=2; D � �2�ajb�ajb � �X � X�1�rX�2:

(A3)

Here �. . .�ajb means the covariant derivative with respect to
the 2D metric hab; r and � are the operators associated
with this metric. Using the properties of the Killing vector
one can show that in the Ricci flat spacetime the following
relations are valid:

 @Xhab � ��1kab; @X� � �
1
2k; (A4)

 @a� � �X�kja � ka
b
jb�; k � habkab; (A5)

 X@Xka
b � �ka

b � 1
2k�a

b � 1
2��
�1�
ja
ja (A6)

 � �4���1X��kcdkcd � k2��ab � 2kkab	; (A7)

VALERI P. FROLOV AND ANDREY A. SHOOM PHYSICAL REVIEW D 76, 064037 (2007)

064037-10



 K � �k� 1
2X�kabk

ab � k2�: (A8)

Here K is the Gaussian curvature of the 2D surface X �
const. The Kretchmann invariant for the metric (A2) can be
written as follows [see Eq. (4.18) of [2]]

 K � 8�2�kabk
ab � k2 � 2�X�2��1�ja�

ja	: (A9)

One can show that the quantities hab, kab, and � are finite at
the horizon, and at its vicinity they allow a representation
in the form of the Taylor series,

 � � �0 � �1X�O�X2�; �0ja � 0; (A10)

 kab �
1
2k0�ab �O�X�; (A11)

 K � K0 �O�X�; K0 � �0k0: (A12)

Equations (A10) imply that the third term in the square
brackets of (A9) vanishes at the horizon X � 0. Using
(A11) and (A12) one can simplify the other two terms
and obtain (A1).

APPENDIX B: ASYMPTOTIC EXPANSIONS NEAR
THE HORIZON AND SINGULARITY

The solution (29) can be used to find the asymptotic
behavior of U near the horizon,  � 0, and singularity,
 � �. To deal with both the cases simultaneously, we
denote  � �  and  � � ��  . The function U is an
even function of  � (� � �), and it has the following
expansion:

 U �
X1
n�0

U�2n��  2n
� : (B1)

Here U�2n�� are functions of the angle �. The operator D in
(9) has the same form D� for both the variables  �,

 D� � @2
 �
� cot �@ �: (B2)

Using the series expansion for cot �

 cot � �  �1
�

�
1�

X1
m�1

c2m 2m
�

�
; (B3)

 c2m �
��1�m�122mB2m

�2m�!
; (B4)

where B2m are the Bernoulli numbers

 B2 �
1

6
; B4 � �

1

30
; B6 �

1

42
. . . ; (B5)

the relation

 D� 
2n
� � 4n2 2�n�1�

� � 2n
X1
m�1

c2m 
2�n�m�1�
� ; (B6)

and Eq. (11), one obtains

 

U�0�� � u�; (B7)

 

U�2�� � 1
4�u�;�� � cot�u�;��; (B8)

 

U�4�� �
1

16

�
U�2��;�� � cot�U�2��;� �

2

3
U�2��

�
; (B9)

 

..

.

 

U�2n�2�
� �

1

4�n� 1�2

�
D�U

�2n�
�

� 2
Xn
m�1

�n�m� 1�c2mU
�2�n�m�1��
�

�
: (B10)

Similarly, the asymptotic expression for V̂ near the
horizon and singularity can be written in the form

 V̂ �
X1
n�0

V�2n��  2n
� ; (B11)

where V�2n�� are functions of the angular variable �.
Substituting expansion (B1) into Eq. (18) one can deter-
mine the functions V�2n�� . The first three of these functions
are

 V�0�� � 2�u�; (B12)

 V�2�� � 2�U�2�� � � cot�u�;� �
1
2�u�;��

2

� 1
2���u�;�� � cot�u�;�	 � �u�;��

2�; (B13)

 

V�4�� �
1

12
f��24U�4�� � 6�1� 2cot2��U�2�� � 6 cot�U�2��;�

� �5� 6cot2�� cot�u�;�	 � 6u�;�U
�2�
�;�

� �1� 3cot2���u�;��
2 � 12 cot�U�2�� u�;�

� 12�U�2�� �2g: (B14)

APPENDIX C: GEODESIC MOTION NEAR THE
SINGULARITY

For a free particle moving in the black-hole interior there
exist two integrals of motion connected with the spacetime
symmetry,

 E � �pT � ��

�T�p; L � p� � �

���p: (C1)

The first has the meaning of the conserved momentum
along the T axis, and the second one is the angular
momentum.

Consider a point � 0
�; �

0; T0; �0� near the singularity of
a distorted black hole. What is the proper time �0 required
to fall from this point to the singularity? This time depends
on the value of E and L. We consider the proper time for
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the special value of these parameters E � L � 0. In this
case, for a moving particle T � const and � � const. For
the Schwarzschild geometry this is the radial motion. We
also call the motion in the interior of a distorted black hole
radial when E � L � 0. This type of motion is a geodesic
in the 2D metric

 d�2 � B��d�
2 � d 2

��; (C2)

obtained by dimensional reduction from (62).
Let us denote

 	 � 1
2�lnB��; � ; 
 � 1

2�lnB��;�: (C3)

Then the Christoffel symbols for the metric d�2 are

 � � � � � ��� � � � ��� � 	; (C4)

 �� � � � ���� � � �� � � 
: (C5)

The geodesic equation

 

d2x

d�2
� ���

dx�

d�
dx�

d�
� 0 (C6)

for the metric (C2) takes the form

 

� � � 	� _ 2
� � _�2� � 2
 _ � _� � 0; (C7)

 

��� � 
� _ 2
� � _�2� � 2	 _ � _� � 0: (C8)

Here the overdot denotes a derivative with respect to the
proper time �. These equations obey the constraint

 B�� _ 2
� � _�2� � 1; (C9)

that is, the normalization condition, uu � �1, for the 4-
velocity.

Using expansions (63) for the metric near the singularity
we have

 lnB� � 4 ln � � 6u� � ln16�O� 2
��: (C10)

Thus, in the leading order 	  2= � and 
  �3u�;�. In
the leading order the geodesic equations (C7) and (C8) and
the constraint (C9) take the following form, respectively,

  � � � � 2� _ 2
� � _�2� � 6u�;� � _ � _�  0; (C11)

  � ��� 3u�;� �� _ 2
� � _�2� � 4 _ � _�  0; (C12)

 e�6u� 4
�� _ 2

� � _�2�  16: (C13)

According to (C10), the order of approximation in the
geodesic equations corresponds to the order of approxima-
tion of the metric (62).

We use the ambiguity in the choice of � to put � � 0 at
the singularity for each of the radial geodesics approaching
the singularity. Since � grows along geodesics directed to
the singularity, it is negative before the geodesic ap-
proaches the singularity.

The point � � 0 is a singular point of Eqs. (C11)–(C13).
To find an approximate solution to the geodesic equations
one can apply the method of asymptotic splittings de-
scribed in [18]. A radial geodesic approaching the singu-
larity is uniquely determined by the limiting value # � �
at � � 0. The asymptotic expansion of  � and � near � �
0 is of the form

  � � ~�1=3 � 2
5u

2
�;#�#�~��O�~�

4=3�; (C14)

 � � # � 1
2u�;#�#�~�

2=3 �O�~�4=3�; (C15)

where ~� � �12e3u��#��.
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