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Quantum field theory in a semiclassical background can be derived as an approximation to quantum
gravity from a weak-coupling expansion in the inverse Planck mass. Such an expansion is studied for
evolution on ‘‘nice slices’’ in the spacetime describing a black hole of mass M. Arguments for a
breakdown of this expansion are presented, due to significant gravitational coupling between fluctuations,
which is consistent with the statement that existing calculations of information loss in black holes are not
reliable. For a given fluctuation, the coupling to subsequent fluctuations becomes of order unity by a time
of order M3. Lack of a systematic derivation of the weakly coupled/semiclassical approximation would
indicate a role for the nonperturbative dynamics of gravity, and possibly for the proposal that such
dynamics has an essentially nonlocal quality.
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I. INTRODUCTION

Hawking’s discovery of black hole radiance [1] has
produced a paradox that may be as important to finding a
quantum description of gravity as the paradox of the clas-
sical instability of matter was in the foundation of quantum
mechanics. There is no commonly accepted explanation
for what is wrong with Hawking’s original argument that
black holes destroy information [2]. This is despite wide-
spread belief that black holes respect unitary quantum
evolution, which is now shared by the originator of the
paradox himself [3].

From the beginning it has seemed that the challenge of
Hawking radiation requires a major conceptual advance.
Any proposal regarding the fate of information apparently
conflicts with a cherished principle of physics.1 Hawking’s
original proposal of information loss violates unitary quan-
tum evolution, and closer studies of the resulting dynamics
[6,7] argue it leads to drastic violations of energy conser-
vation. Alternatively, unitary evolution might be preserved
if information escapes after Hawking’s calculation breaks
down in the Planck phase of evaporation. But basic quan-
tum restrictions on how rapidly information can be trans-
mitted with a given energy then apparently imply a long-
lived remnant. Remnants seem equally disastrous; to en-
code the information from an arbitrarily large black hole,
they are expected to come in infinite species, and corre-
spondingly they would be infinitely produced in any pro-
cess with sufficient total energy. These outcomes suggest
that information must escape early in black hole evapora-
tion, but Hawking’s argument to the contrary apparently
requires only very basic assumptions such as locality.

Attempts at a resolution of this paradox have increas-
ingly focussed on some breakdown of locality [8–10], and
this possibility is also strongly suggested by aspects of
string theory such as the anti-de Sitter/conformal field

theory (AdS/CFT) correspondence [11]. However, what
has not been clear in much of this discussion is the mecha-
nism for a breakdown of locality that obviates Hawking’s
argument.

The apparently fundamental nature of the paradox sug-
gests comparison with the paradoxes that arose in the
transition from classical to quantum physics, and the in-
stability of the classical atomic model seems particularly
apt. In a gedanken history, were it not for the fact that the
stability of matter is so critical, classical physicists might
have reasoned that the problem lay in the singularity in
classical evolution, when the electron reaches the charge
center, and might have tried various methods to regulate
this singularity. History shows us this is not the correct
approach; indeed, the problem is that classical physics
simply ceases to be a valid description long before a
classical electron reaches the nucleus. Classical physics
does not exhibit a breakdown, but rather quantum physics
supplants it at scales set by the Bohr radius.

This suggests a possible way that the black hole paradox
could be resolved: a local quantum field theory description
simply ceases to be a good description in the vicinity of the
Schwarzschild radius, long before it breaks down near
the singularity. Like in the case of the classical atom, we
may not see the failure in the present physical framework.
What is of course missing is the more complete framework
within which such a statement could be properly
understood.

Another different alternative is that local quantum field
theory actually does signal its limitations through some
explicit failure, following a slightly different path than that
from classical to quantum. It is worth pursuing this possi-
bility as far as possible, in an effort to find any relevant
clues to the problem.

This paper will investigate the question of the validity of
Hawking’s argument for loss of information [1,2]. With
more recent refinements, the argument goes as follows.
First, one can draw a family of smooth spacelike slices
through the interior of a black hole of large mass M,
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avoiding the region of strong curvature, and asymptoting to
usual time slices. Away from the singularity, the geometry
does not fluctuate, so the evolution on these slices can be
described in terms of local quantum field theory on a
semiclassical background. This evolution produces states
on late-time slices that contain significant quantum entan-
glement between interior and exterior. Tracing over inter-
nal states gives a density matrix that describes physics
outside, and the entanglement implies that this density
matrix has large entropy, of order M2. This parametrizes
missing information assumed to vanish with the black hole.

We begin by describing in general the steps that can be
used to justify the approximation of quantum field theory
in a semiclassical background; this arises from a weak-
coupling expansion in the inverse Planck mass Mp. This
approximation is described both from the functional and
canonical perspectives, and then a more complete argu-
ment for information loss is given. Section III then care-
fully examines the validity of this expansion in the specific
situation of evolution on the slices described above, called
‘‘nice slices’’ in [12]. Such a careful treatment reveals an
apparent flaw in this weak-coupling expansion, arising
from strong coupling between fluctuations at early and
late times. This effect is uniquely gravitational.
Section IV then examines this effect more carefully, dis-
cussing the diagrammatic expansion, the connection to
large relative boosts in the black hole geometry, possible
lessons for locality, possible extensions to inflationary
cosmology, and other issues. Concluding remarks appear
in Sec. V.

This paper is thus consistent with the second possibility
above, that the semiclassical approximation breaks down
due to strong gravitational effects.2 This has been previ-
ously advocated in [16–21].3 If indeed there is no reliable
calculation of the information destroyed by a black hole,
there is no information paradox. This paper improves on
the previous arguments, accounting for the effects of fluc-
tuations on the nice-slice states used to calculate the den-
sity matrix and thus its entropy. Reference [12] attempted
to produce a related conclusion due to effects of long
strings, but failed to find an unambiguous effect [22];
moreover, [20] argues that in high-energy collisions (which
are closely related to black hole evolution) there is no
apparent evidence for the relevant such long-string effects,
but rather strong gravitational dynamics plays a central
role.

II. PERTURBATIVE GRAVITY AND THE
SEMICLASSICAL DESCRIPTION

A good starting point is a description of the quantization
of gravity, reviewing its perturbative quantization either in

path integral or canonical terms. Let us particularly focus
on the origin of the semiclassical approximation. This has
been previously described in [23–25] as derived in a WKB
approach, but we will find that in a slightly different
approach it can be derived in a weak-coupling expansion
about a semiclassical spacetime. We will find that this
approximation indeed yields dynamics described as quan-
tum field theory in a curved background, and thus demon-
strate how Hawking’s argument for information loss arises.

A. Path-integral quantization

A concrete approach to quantization is the path integral.
Consider a theory with gravity coupled to matter, which
will for simplicity be taken to be a single massless scalar
field, with Lagrangian

 S�g;�� � �
1

2

Z
d4x

�������
�g
p

�r��2: (2.1)

Also for simplicity we work in four dimensions, although
the generalization to higher dimensions is straightforward.
The gravitational action is taken to be

 S�g� �
M2
p

2

Z
d4x

�������
�g
p

R�M2
p

I ��������
j3gj

q
K; (2.2)

which includes the well-known extrinsic-curvature surface
term, and whereMp is the Planck mass, defined asMp

�2 �

8�G.
In order to have a well-defined time, we will work with

such amplitudes defined over geometries that are asymp-
totically flat. Consider, in particular, a geometry described
in terms of a family of spatial slices, with coordinates xi,
labeled by a time variable t. The Arnowitt-Deser-Misner
(ADM) decomposition of the metric is

 ds2 � ��N2 � NiNi�dt2 � 2Nidtdxi � gijdxidxj; (2.3)

where N is the lapse, Ni is the shift, and spatial (latin)
indices are raised and lowered with the spatial metric gij
which describes the intrinsic geometry of the slices. For
asymptotically flat geometries, the asymptotic time is

 T �
Z
dtN�1�: (2.4)

We are interested in amplitudes for transitions between
slices with definite asymptotic time difference. These can
be defined as
 

A��i;�f; T� �
Z �f

�i

DgD�eiS�g��iS�g;��

� �
�
T �

Z
dtN�1�

�
: (2.5)

In this expression, the state is expressed in terms of data on
the metric and field and their momenta. For example, in the
field representation, one might specify the metric gij�x�
and the field ��x� on the initial and final slices.

2For other potential sources of breakdown, see [13–15].
3This issue has also been explored in unpublished work by N.

Arkani-Hamed.
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A standard approach is to expand the metric as a fluctu-
ating field about some background metric,

 g�� � g0�� �M
�1
p h��: (2.6)

For example, in such an expansion the ground-state wave
function has been derived in the quadratic approximation
in [26]. To do so, one rewrites (2.5) in terms of an integral
over the perturbations h��, and gauge fixes. The expansion
of the action (2.2) in powers of M�1

p is of the form
 

S�g0 � h� � S�g0� �
Z
d4x

����������
�g0
p

�
Mp

�1h�gS�g0�

�
1

2
�Dh�2 �M�1

p h�rh�2 � 	 	 	
�

�
X
n

Sgn: (2.7)

Here �Dh�2 is the kinetic term for h (integration of �Dh�2

by parts gives the Lichnerowicz Laplacian), and this and
higher terms can be straightforwardly worked out in detail.
One can likewise expand S�g;�� in an expansion in h and
�. For simplicity we assume that the classical background
for � vanishes (although this could easily be generalized),
and as a result
 

S�g0 � h;�� �
Z
d4x

����������
�g0
p

�
�

1

2
�r0��2 �

1

2
M�1
p h��T���

�M�2
p O�h2�@��2�

�
�
X
n

S�n ; (2.8)

where the leading term is n � 2, to match (2.7).
A well-defined amplitude requires gauge fixing the dif-

feomorphism symmetry

 g�� ! g�� �M
�1
p L�g��

� g�� �M�1
p L�g0�� �M�2

p L�h��; (2.9)

whose linearized version is thus

 �h�� � 2r0
�����: (2.10)

This is accomplished by applying a suitable gauge condi-
tion; one useful example at the linear level and in vauco is
Hilbert-DeDonder gauge, defined via

 

�h �� � h�� �
1
2g0��h (2.11)

as

 r
�
0

�h�� � 0: (2.12)

Such a gauge has a residual set of symmetries, correspond-
ing to diffeomorphisms satisfying

 r2
0�� � 0: (2.13)

These are fixed by also specifying conditions on h on the
initial/final surfaces, resulting in the expected 10� 4�

4 � 2 degrees of freedom; these slice conditions can alter-
nately be thought of as a choice of the initial/final slices.

Denote the general such combined gauge conditions by

 CI�h� � 0; (2.14)

these are enforced by inserting the expression

 ��CI�h�� det��CI� (2.15)

into the path integral, where � is a functional delta func-
tion, and det��CI� is the corresponding Fadeev-Popov
determinant.

The resulting amplitude takes the form
 

A��i;�f; ;T� � eiS�g0�
Z �f

�i

Dg0�hhDg0�h���CI�h��

� det��CI�eiM
�1
p

R
d4x

�������
�g0
p

h�gS�g0�

� ei�S2�S3�			�: (2.16)

Here, as is explicitly indicated, the integration measures
depend on the perturbation, as does the gauge-fixing mea-
sure, and we define Sn � Sgn � S

�
n . The initial and final

states are specified by giving wave functionals of the
perturbations 3h of the three-geometry and fields on the
initial/final slices. In the case with g0�� � ���, Ref. [26]
computes an explicit ground-state wave function for the
linearized theory from such an expression.

To simplify the perturbation expansion about a more
general metric g0, one should choose it to eliminate the
linear terms in h. There is both the explicit term and the
terms from the measures. A useful prescription starts from
the quantum stress tensor in the initial state,

 hT��ii � h�ijT��j�ii � 2iMp
�

�h��
ln�Zi�; (2.17)

where Zi is the functional integral (2.16) without the
classical and linear terms, and with T � 1 and �f �

�i. Specifically, define g0 as a solution to

 2
�S
�g��

�g0� � hT��ii: (2.18)

In a black hole spacetime, such an equation precisely
determines the semiclassical metric sourced by the average
Hawking flux; such equations were studied explicitly in the
two-dimensional context in [27]. For such a g0, the linear
term is eliminated, with the understanding [19] that at the
same time we must replace T� in (2.8) by its ‘‘normal-
ordered’’ version,

 �T� � T� � hT�ii; (2.19)

and likewise for the corresponding quadratic expression in
rh in (2.7) that corresponds to a gravitational stress pseu-
dotensor. The final result is of the form
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 A ��i;�f;T� � eiS�g0;T�
Z �f

�i

Dh��CI�h��

� det��CI�D�ei�S2�S3�			� (2.20)

with the replacement (2.19) implicit.
The semiclassical limit now appears as the weak-

coupling limit Mp ! 1, or more specifically pi 	 pj 

M2
p where pi 	 pj is a typical momentum invariant. In this

case, one drops all terms beyond S2 in (2.20), as in [26].
The corresponding expression computes quantum ampli-
tudes for the field � and the spin-two perturbation h�� in
the fixed background geometry g0 —this limiting proce-
dure precisely produces the amplitudes of quantum field
theory in a curved background. For a black hole, taking this
limit holding M=M2

p fixed preserves a nontrivial geometry.
Of course, when one attempts to evaluate (2.20) beyond

quadratic order, one finds the usual UV divergences of
quantum gravity. These are commonly believed to be
short-distance issues. One could imagine regulating these
by a cutoff, and working with an effective description of
gravity below the cutoff. For example, in the context of a
higher-dimensional theory, one could even think of string
theory as a mechanism to provide a UV regulator. We will
thus regard (2.20) as a useful effective description of long-
distance gravity. A focus of this paper will be, assuming
that such short-distance problems can be cured, are there
any unanticipated issues in the macroscopic dynamics of
gravity, that can be understood from this expression?

B. Hamiltonian quantization

The Hamiltonian description of quantization gives a
complementary perspective which will be particularly use-
ful for considering evolution on time slices. This is of
course directly connected to the path-integral description.
For example, beginning with (2.5), differentiate with re-
spect to T to determine the form of the evolution equation.
The quantity T only enters through the asymptotic separa-
tion of the time slices at infinity. To be more specific, let us
imagine that the amplitudes are defined in a region inside
some very large radius R, in which case the slice separation
and surface term in (2.2) are determined at R. The time
derivative of (2.5) with respect to T then gives
 

i
@
@T

A��i;�f; T� �
Z �f

�i

DgD�eiS�g��iS�g;��

� �
�
T �

Z
dtN�R�

�
Ĥ; (2.21)

where

 Ĥ � �M2
p

Z
R
d2�

������
2g

p
K (2.22)

is, in the limit R! 1, the Bondi energy.
Suppose that the asymptotic form of the background

metric is g0 � ��M�1
p h0, and thus the full metric (2.6)

behaves asymptotically as

 g! ��M�1
p �h0 � h�: (2.23)

Then the energy (2.22) becomes

 Ĥ � M0 �M2
p

Z
R
d2��

�����
2g

q
K �

�������
2g0

q
K0� � M0 �H;

(2.24)

where M0 is the mass of the background solution4 g0. The
latter term can be derived as the spatial integral of a total
derivative, which is the term in the projected constraint

 NH � �Mp
2NG?? � NT

�
?? (2.25)

that is linear in h. From the constraint equation H � 0,
one then finds an expression for the Hamiltonian H in
terms of an integral over the slices:

 H �
Z
d3x

�������
3g0

q
N0�T

�
?? � t

grav
??�; (2.26)

where T� is the stress tensor for matter, and tgrav, which
arises from the quadratic and higher terms in h in the
constraint (2.25), is a gravitational energy-momentum
pseudotensor. Thus, to summarize so far, the derivation
of an analog of the Schrödinger equation for T evolution
has been outlined, with Hamiltonian given by (2.24) and
(2.26).

The Hamiltonian (2.26) generates the expected evolu-
tion of the fields on the time slices labeled by T. To see this,
first consider the scalar action, written in terms of the
metric decomposition (2.3),

 S�g;�� �
1

2

Z
d4xN

�����
3g

q �
1

N2 �@0�� Ni@i��2

� gij@i�@j�
�
: (2.27)

The canonical momentum is

 �� � N
�S

� _�
�

1

N
�@0�� Ni@i��; (2.28)

and canonical commutation relations are

 ����x�; ��y�� � �i
1�����
3g

p �3�x� y�: (2.29)

One can likewise find the canonical momentum conjugate
to the metric, which is given in terms of the extrinsic
curvature K of the time slices by

 �ij �
Mp

2

2
�Kij � gijK�: (2.30)

The constraint equation takes the form

4Note that in the case of the semiclassical metric satisfying
(2.18), this mass will actually be T dependent due to the average
Hawking flux.
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0 � NH � 2M�2
p N

�
�ij�

ij �
1

2
��i

i�
2

�
�
Mp

2

2
N�3R�

�
N
2
��2

� � g
ij@i�@j��: (2.31)

Add to this the spatial diffeomorphism constraint, 0 �
NiH i, where

 H i � �2Dj�ij ���@i�: (2.32)

The matter part is thus

 NH� �
N
2

�
�2
� � g

ij@i�@j�� 2
Ni

N
��@i�

�
: (2.33)

This precisely generates, via the commutators (2.29), the
evolution equation (2.28), and likewise the equation for
@0��. The gravitational piece H h of �H � NH �

NiH i similarly generates evolution of the metric pertur-
bation h.

Corresponding to the expansions of the action in powers
of h, (2.7) and (2.8), there is an expansion of �H in powers
of h,

 

�H �
X
n

H n: (2.34)

Keeping the quadratic term in this expansion corresponds
to the approximation of free quantum fields � and h in the
background g0, as described at the end of the preceding
subsection. Terms with n � 3 describe interactions be-
tween these fluctuations. For validity of the weak-coupling
approximation, these terms should be small.

C. Hawking’s argument for information loss

We are now prepared to review the argument for infor-
mation loss [1,2]. Let g0 describe the metric of a
Schwarzschild black hole of initial large mass, M0 �

Mp; we could imagine that this black hole is formed in
the distant past by a collapsing distribution of�matter, but
the details of this will not concern us. The evolution
equation (2.18) actually tells us that the geometry evolves
as it radiates Hawking quanta, and, in particular, that its
mass evolves as

 

dM
dT
� ��

Mp
4

M2 (2.35)

with � a near-constant factor. Since the black hole is large,
curvatures are weak away from the singularity and the last
instant of evaporation. This was argued to justify use of the
semiclassical approximation, which we see corresponds to
keeping only S2 and H 2 in our preceding description.5

Thus the state of the matter field (as well as the fluctuat-
ing metric h) can be derived from the viewpoint of quan-

tum field theory in the background metric g0. Specifically,
choose a set of slices that asymptote to constant
Schwarzschild time slices far from the black hole, but
that smoothly cross the horizon into the black hole and
stay away from the singularity. Explicit descriptions of
such nice slices were given by [28,12,22,19], and will
appear in the next section. Standard quantum field theory
methods show that an initial state such as the vacuum
evolves to the form

 j�i �
X
	;	̂

�	̂	j	̂ij	i; (2.36)

where the states j	̂i, j	i form bases for perturbations in-
side and outside the black hole, respectively. Outside ob-
servations are described by a density matrix,

 
 � Tr	̂j�ih�j; (2.37)

and one easily argues that this density matrix has entropy

 S � �Tr�
 ln
� (2.38)

which is of order the Bekenstein-Hawking value,

 S SBH � M2
0=2Mp

2: (2.39)

Moreover, locality/causality of quantum field theory in
the background imply that the missing information de-
scribed by the entropy S cannot escape, at least until
evolution breaks down when the black hole approaches
the Planck size. The simplest possibility is that the black
hole completely and rapidly evaporates once it reaches this
regime. But in this case, basic considerations of energy and
entropy imply that the missing information cannot imme-
diately escape the black hole. Indeed, as argued by Page
[29], if information is to escape, it must begin to do so by
the time the black hole has appreciably evaporated, say to
size M0=2, and thus on time scales Tevap M

3
0. As a

consequence, information was argued to be destroyed,
violating unitary quantum evolution [2]. Another alterna-
tive is that a black hole leaves behind a long-lived remnant
containing the information, but such scenarios appear ruled
out by their prediction of infinite remnant species and thus
divergent production rates.

This scenario produces a paradox, since an effective
description of such information loss was argued [6,7] to
lead to violent conflict with energy conservation, corre-
sponding to effective vacuum temperatures of order Mp.

III. QUANTIZATION ON NICE SLICES

To improve our understanding of the information loss
argument, let us examine it in the context of our description
of quantum gravity and the emergence of the weak-cou-
pling/semiclassical approximation.

5One could clearly generalize this to describe interacting
matter weakly coupled to gravity.
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A. Nice slices and semiclassical states

Begin with a more precise characterization of nice sli-
ces. As stated in the previous section, these should asymp-
tote to slices of constant Schwarzschild time, but also enter
the horizon while avoiding the singularity. Such a choice of
slicing corresponds to a particular choice of gauge. There
are many ways to choose such slices, but they all share
certain characteristics. In particular, remaining spatial
while avoiding the strong-curvature regime requires that
inside the black hole they be closely spaced together in the
large T limit; in other words, the lapse N becomes ex-
tremely small, roughly of order 1=T. There are various
ways that one could choose the bound on how close such
slices get to the singularity; in the semiclassical approxi-
mation one could specify an explicit constraint on the
minimum radius rc, or alternatively on the maximal tetrad
components of the curvature, maximal extrinsic curvature
of the slice, etc. When reformulated in the quantum frame-
work, all of these correspond to different choices of gauge,
specifically the surface conditions described below
Eq. (2.13).

Let us give an explicit example. One family of nice
slices that is particularly convenient for our purposes can
be constructed by taking a constant Schwarzschild time
slice down to some outside radius ro  10M0. At this
point, we attach an arc, with moderate extrinsic curvature,
that smoothly joins the r > r0 piece of the slice to the curve
r � rc inside the horizon. Once these curves meet, the rest
of the nice slice, at Schwarzschild t coordinate before the
joining point, is simply taken to be the surface r � rc,
where, say, rc M0=10. The family of slices is generated
by acting on this slice by a Schwarzschild time translation6

(see Fig. 1). In particular, note that in this gauge the lapseN
vanishes where the slices degenerate at r � rc. Evolution
is frozen here. This makes sense from the perspective of
the scalar Lagrangian, (2.27): fluctuations of @0� around
Ni@i� are suppressed—the only possible evolution is due
to a nontrivial shift.

An interesting feature of such nice slices is that they
continuously grow by stretching.7 Specifically, consider a
point P on the rc section of the T nice slice, and compute
the distance in the intrinsic slice geometry to the point at
radius ro. Then consider a later slice, with time T � �T.
The distance from the point P to ro along this slice is larger
by an amount

 �s � �T

�����������������
2M
rc
� 1

s
: (3.1)

This arises because an extra piece has been added to the
slice at r � rc; the rest of the slice is the same. While the
precise formula (3.1) is particular to our choice of slices,
the generic phenomena holds for other choices, perhaps
with more complicated formulas for the stretch.

Next consider the state on the nice slice that is predicted
by Hawking’s arguments [1] and subsequent refinements.
In the semiclassical approximation, quanta are produced in
pairs near the horizon. These have a thermal distribution of
asymptotic energies and wavelengths at the Hawking tem-
perature

 TH �
Mp

2

M
: (3.2)

One can work in a basis where the asymptotic quanta are
wave packets, which when described in terms of asymp-
totic retarded time u have widths �u � M. A correspond-
ing basis can be chosen for the paired quanta inside the
black hole. Specifically, if we consider the initial state of
the � field to be the (in) vacuum, we have

 j0i �
X
fnkg

e�E�fnkg�=2TH jfn̂kg; fnkgi; (3.3)

where fn̂kg and fnkg label the states by occupation numbers
for the inside and outside wave packet bases. (For more
details, see [19].) One can think of a ‘‘typical’’ state as a

FIG. 1. A sketch of two nice slices in the Eddington-
Finkelstein representation of the black hole geometry. The dotted
line is the horizon. The stretching effect is easily seen, as the
distance from point P to radius ro on subsequent slices increases
linearly with T.

6More carefully, the geometry g0 does not have an exact
Killing vector; so one duplicates this construction for later
Schwarzschild times, requiring a small deformation in the arc
piece for large times. This will not be critical to our arguments.

7For one description of this phenomenon and an attempt to
connect it to the breakdown of the semiclassical approximation,
see [30].
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state where one Hawking quantum of wavelength M is
emitted from the black hole for each (asymptotic) time
step �T � M; this indeed reproduces the evolution law
(2.35). Correspondingly, the inside partner quanta (with
paired correlations described by the state (3.3)) evolve
towards r � 0 and in the nice-slice description freeze at
r � rc. For asymptotic time step �T, the corresponding
proper-distance separation between the ‘‘impact points’’ of
the centers of the inside wave packets on the nice slice is

 �s � �T

�����������������
2M
rc
� 1

s
; (3.4)

and this formula also gives their characteristic proper-
distance width. So, in summary, the Hawking state consists
of a sum over states with paired inside and outside quanta,
where the inside and outside quanta are spaced by typical
proper distances along the slice �s and �T, respectively.

B. Perturbations in nice-slice gauge

As explained in both Secs. II A and II B, the approxima-
tion of quantum field theory in a semiclassical background
can be derived by taking the leading order terms in an
expansion in Mp

�1h. Specifically, one drops the terms S3

and higher in (2.7) and (2.8), or H 3 and higher in (2.34),
that describe couplings of the fluctuations in � and h to h.
Moreover, as argued in Sec. II C, this is precisely the
approximation in which a refined version of Hawking’s
argument for information loss is made.

In examining the validity of the argument for informa-
tion loss, one would like to assess the validity of such a
weak-coupling expansion. In particular, this means exam-
ining the relative size of the subleading terms in the
expansion (2.34). For a measure of this, phrase the question
in the context of usual perturbation theory. If we have a
quantum-mechanical system with Hamiltonian H � H0 �
H0, where H0 is considered a perturbation of H0, the effect
of the perturbation can be easily described in the interac-
tion picture. The time-dependent perturbed state takes the
form

 j �t�i � T exp
�
�i

Z t
dtH0�t�

�
j i0; (3.5)

where j i0 is the unperturbed state. Perturbation theory is
valid as long as matrix elements of

R
dtH0�t� are small. In

contrast, suppose that

 h �t�j i0 � 0 (3.6)

for some t. This would be an indicator that perturbation
theory has broken down, since in this case h� j i0 � �1:
the perturbation has effect of order unity.

Specifically, in the present context, think of the terms S2

and H 2 as describing the unperturbed evolution, and the
terms Sn and H n for n � 3 as describing a perturbation of
the Hamiltonian. One would like to assess whether these

higher-order terms indeed have small effect on the evolu-
tion, for example, as measured by their effect on the state
as described in the preceding paragraph.

Thus we will consider the difference in evolution and, in
particular, in final nice-slice states with and without the
n � 3 terms. In order to most cleanly exhibit the effect,
consider an initial state that is a small perturbation of the
‘‘vacuum’’ black hole state. Specifically, one could con-
sider a perturbation that corresponds to throwing one
quantum into the black hole, at some early time, designated
T � 0, changing its mass by m. A minimal such change is

 mMp
2=M; (3.7)

corresponding to the energy of one Hawking quantum. Or,
if we think of the black hole evaporation as a statistical
process, there will be fluctuations. The average energy flux
is given by (2.18), but we might consider a state where
there is a (typical) fluctuation such that one expected
Hawking quantum fails to be emitted. This can be made
explicit by, for example, projecting the state (3.3) onto
states with a ‘‘missing’’ quantum in a particular mode k
corresponding to an outgoing Hawking particle at time
T � 0. This will change the mass of the hole by m, also
given by (3.7). Such a fluctuation is representative of a
typical fluctuation of the full quantum dynamics. Our goal
is to compute the difference in the resulting state at some
later time T, in either of these cases, that arises from
including or excluding the n � 3 terms in the Hamiltonian.

Of course, the approximation where n � 3 terms are
dropped is precisely the approximation where the back-
reaction of the fluctuation on the metric is neglected; in this
case the state j��T�i is simply given by the original
Hawking calculation, as described above.

One can estimate the effects of the perturbation terms by
considering a perturbation that is purely s wave, as is in
fact typical of the Hawking quanta. To compute the result-
ing state, one can shift the background g0 to include the
effect of the perturbation. For example for an infalling
quantum of mass m, this would be a new metric that is
approximately described as an ingoing Vaidya solution
[31], together with the effects of Hawking radiation de-
scribed as in (2.18). Or, for a perturbation such that one
Hawking quantum fails to escape, this would be a solution
that looks like outgoing Vaidya, with the source stress
tensor (2.19) describing a positive energy particle falling
into the singularity, and the outside fluctuation represented
by a negative energy particle travelling out to infinity,
raising the mass of the hole bym at T � 0, with subsequent
evolution again given by (2.18).

For simplicity, in evaluating the effect of the perturba-
tion m we will ignore the Hawking flux represented by the
stress tensor in (2.18), although analogous statements can
be argued to hold there as well. Thus, we treat the per-
turbed geometry as simply Schwarzschild with mass
M0 �m.
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How is the nice-slice state changed? This of course
depends on the choice of slicing, i.e. gauge. In other words,
clearly one can take a slicing of the perturbed spacetime
such that there appears to be a big effect. To avoid this, one
tries to specify gauge conditions that are ‘‘as nice as
possible,’’ in the sense that they lead to minimal change
in the resulting state. Outside the black hole, one can in this
spirit take the new nice slices to still be described as
Schwarzschild time slices far from the black hole, and
take some small modification of the arc crossing the hori-
zon. Inside the black hole, there are a number of options.
The simplest is to keep the nice slices at the radius rc
determined by the original geometry; in this case the
angular part of the intrinsic geometry of the slices is fixed.
Alternately, one might choose a gauge such that ri �hij � 0
on the slices, or �Kij � 0, or even such that components of
the Riemann tensor are fixed on the slices. Any of these
conditions, and a multitude of others, will lead to a frac-
tional change of M=rc of order m=M * Mp

2=M2. In par-
ticular, this means a small change of the relation (3.1) for
stretch versus asymptotic time,

 �s � �T

�����������������
2M
rc
� 1

s
�1�O�m=M��: (3.8)

Likewise the description of the evaporation changes by
O�m=M� in the Hawking temperature, and thus energy of
the typical outgoing Hawking quanta on the nice slices, as
well as in the spacing �s of the wave packet crests hitting
the nice slice, and in their widths.

We might compare the resulting perturbed nice-slice
state j�0�T�i to the state where we ignore the effects of
H 3, etc., by taking their inner products. Considering, for
example, the r � rc part of the slice, they both have
corresponding wave packets that hit the slices at proper
distance intervals separated by �s or �s0, which are nearly
identical. Thus the contribution to the inner product from
corresponding wave packets is essentially unity, to
O�m2=M2�. Quantum by quantum, the states are nearly
identical.

However, if we take into account the contributions of
quanta corresponding to Hawking emission at very late
times, this changes. For a first estimate, note that the
cumulative shift in the center of the nth quantum in the
perturbed state, relative to the unperturbed state, is of order

 s0n � sn  n
m

Mp
2

�����������������
2M
rc
� 1

s
: (3.9)

A crude estimate is that when this becomes of order the
size of the wave packets, (3.4), then the overlaps of the
wave packets, and thus the states, nearly vanish, as illus-
trated in Fig. 2. This occurs for a time T given by

 T 
nM

Mp
2 

M2

mMp
2 ; (3.10)

or, in a D-dimensional generalization,

 T 
�
M
Mp

�
�D�2�=�D�3� 1

m
: (3.11)

For an initial perturbation of size (3.7), this is

 T M3=Mp
4; (3.12)

with generalization

 T Mp
�1

�
M
Mp

�
�D�1�=�D�3�

: (3.13)

For a larger perturbation m, it occurs even earlier.
Therefore, by the time (3.12) the perturbations

P
n�3H n

have an effect that is of order one, by a criterion analogous
to (3.6); the same effect also deforms the state outside the
black hole. This effect indicates that this perturbative
expansion is not valid at such times. One way of thinking
of this is that the shift in the Hamiltonian is very small.
However, over long times it has a coherent effect on the
state, and thus can have a significant net effect. This is a
failure of the leading order treatment of the problem in the
weak-coupling expansion. As a result, the leading order
n � 2 perturbative treatment, which we have seen pro-
duces the semiclassical description of [1], does not accu-
rately compute the state at times given by (3.10), or the
corresponding density matrix.

Indeed, note that the net effect on the nice-slice state
becomes important even before the time (3.12).
Specifically, given the offset (3.9) and for Gaussian wave
packets of width M, the inner product between the nth
perturbed wave packet and the nth unperturbed wave
packet is thus of order

 P n � e��nm=M�
2
: (3.14)

The inner product between perturbed and unperturbed
states, accounting for the first N quanta, is thus estimated
as

 P �
YN
n�1

P n  e�N
3�m=M�2 : (3.15)

FIG. 2. An illustration of the comparison of the state on the
internal part of a nice slice with and without the effects of the
perturbations H n, n � 3. Vertical marks represent the centers of
corresponding wave packets. Initially the mismatch is small, but
it increases along the slice. A similar mismatch develops on part
of the slice outside the black hole.
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This product is small past the time

 T 
M

Mp
2 N 

M5=3

m2=3Mp
2
; (3.16)

or T M7=3 in Planck units, form given by (3.7). The time
estimate (3.10) is an estimate for where the effect on each
quantum becomes significant, but before this, at the time
(3.16), the net effect on the state becomes significant.
(Notice that the argument of [29] only tells us by what
time scale there must be some interactions that relay
information if information is to emerge in the Hawking
radiation.)

IV. DISCUSSION

A. Diagrammatics

To better understand the result of the preceding section,
begin by describing it in terms of Feynman diagrammatics,
arising from expanding the functional integral (2.20), or
equivalently the evolution operator derived from the
Hamiltonian (2.34), order by order in 1=Mp about the
quadratic approximation, so perturbatively in the terms
n � 3 of the action or Hamiltonian.

Notice that in the black hole context, there is a general-
ization of loop diagrams. In particular, simply in the qua-
dratic approximation, one can have a nonzero amplitude of
the form

 h�fj�T��j0i; (4.1)

where the operator �T��, which could be the energy-
momentum tensor either for � or for h fluctuations, is
normal ordered as in (2.19) with respect to an in basis,
and thus can create a nontrivial out state with an extra pair
of particles: one escapes to infinity, and the other falls into
the strong-curvature regime.

When one includes the cubic and higher interactions,
one also has diagrams with such ‘‘open loops’’ connected
by graviton propagators. For example, the second-order
term in the expansion of expfiS3g has a contribution cor-
responding to a pair of vacuum fluctuations connected by a
graviton propagator. The case where the vacuum fluctua-
tions are separated by a large time T is the case described in
the preceding section. Specifically, the effect of the first
fluctuation on the metric was computed, and then this in
turn interacted with the second fluctuation to produce a
state that deviates from the state with no interaction terms.
This amplitude could equally be represented by a Feynman
diagram (illustrated in Fig. 3), of the form

 h�0fj�T��D
��;���T��j0i; (4.2)

where we consider states �0f on the late-time nice slice that
contains both the early and late fluctuations. HereD��;�� is
the graviton propagator. The large phase shift described in

the preceding section corresponds to the amplitude (4.2)
giving a large correction. Likewise, one could consider
higher-order amplitudes, e.g. expanding to higher order
in S3 or in higher terms in the action.

B. Large boosts

From this perspective an obvious question is the origin
of the large effect. One way of thinking of this is to note
that for large time separations T, there is a large relative
boost between the two fluctuations. This boost can be
estimated by integrating the extrinsic curvature along the
nice slice. Specifically, the change in the normal to the slice
under a small displacement dl is

 dni � Kijdlj: (4.3)

Since the extrinsic curvature takes the constant value

 Ktt � �
M

r2
c

�����������������
2M
rc
� 1

s
(4.4)

along the slice, the net boost parameter between two points
separated by T is

FIG. 3. A Feynman diagram representation of the coupling
between fluctuations at different times. The wavy line is the
graviton propagator.
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Z
EtKttdt �

M

r2
c
T (4.5)

where E is the unit vector in the t direction. Thus the boost
is exponentially large in the time separation T. This was
argued in [16,19,21,32] to explain how small early fluctu-
ations could have large effects on the late metric and late
fluctuations, since large boosts magnify gravitational
fields. In the preceding section, we have indeed argued
that the effect on the late-time state is large. While this is
apparently related to the large boost, the relevant calcula-
tion of the graviton propagator in nice-slice gauge yields an
effect on the state that only grows as T. In any case, the
significant coupling between perturbations appears closely
parallel to the origin of strongly coupled gravity in a high-
energy collision in a flat background [20].

C. Lessons and nonlocality

The results of this paper suggest the following conclu-
sions. First of all, the present weak-coupling (or semiclas-
sical) expansion of quantum gravity, which we have shown
produces the approximation of quantum field theory in a
curved background, apparently breaks down for the pur-
poses of calculating late-time states on nice slices. Validity
of the semiclassical approximation has been assumed in [1]
and in subsequent calculations of the state. It may be that
there is a different way of constructing a perturbative
expansion that gives a controlled calculation of the state,
but this author does not see the concrete evidence for this at
the present.

This approximation may certainly yield valid results for
some quantities, like the expectation value of the stress
tensor outside the black hole, etc., as such quantities can be
computed without explicit reference to the state on the nice
slice. However, a calculation critical to the information
paradox is that of the density matrix describing the outside
world, and its entropy. Existing calculations of this rest
heavily on calculating the combined state inside and out-
side the black hole, and tracing over the internal state, and
the most precise extant versions of these apparently rest on
logic that amounts to using nice-slice states. For the pur-
poses of computing the density matrix and its entropy, one
must do a very fine-grain and precise calculation. In the
present approach to this calculation we have exhibited an
apparent failure of the semiclassical approximation.

If the state and density matrix cannot be reliably calcu-
lated, this calls into serious question the arguments given
for an information paradox—and if reliance on an unreli-
able calculation produces a paradox, the conclusion ap-
pears obvious. However, one would like to go further and
understand how one could perform a reliable calculation,
and how such a calculation would demonstrate information
escape from the black hole. The preceding discussion is
consistent with the suggestion that such a calculation must
be given in the context of a nonperturbative description of

quantum gravity, since the perturbative approach appears
to fail over macroscopic distances.

In particular, it could be that there is a nonperturbative
calculation of the precise analog of a nice-slice state and
outside density matrix that retains the essential features of
local quantum field theory, and, in particular, implies that
the nice-slice state has information content deep inside the
black hole that is not revealed to the outside world. This
author regards this assumption about the nonperturbative
dynamics as in doubt, as it returns us to the original
paradox.

Thus one might consider other alternative assumptions
about nonperturbative gravitational dynamics. There are
several reasons to question the assumption of locality.
First, there are no known precisely local observables in a
quantum theory of gravity; the best one can apparently do
is to construct certain relational protolocal observables that
approximately reduce to local observables in certain states
[33,34]. This suggests that there is no precise notion of
locality in quantum gravity. Second, if one attempts to
probe locality via the S matrix, in high-energy scattering,
one finds characteristic growth of the cross section with
energy / E2 in four dimensions, which violates expected
bounds on local theories. Third, recent developments in
string theory, and, in particular, the AdS/CFT correspon-
dence [11], suggest that there may be a complete ‘‘holo-
graphic’’ boundary description of dynamics in a spacetime
region, in contrast to the tenets of local field theory. Finally,
there is the paradox itself, which seems inevitable if phys-
ics is local.

In fact, the effects described in the preceding section,
while indicating a breakdown of reliable calculations, ap-
pear to hint at a nonlocal effect, as the fluctuations on the
nice slice deep within the black hole develop unanticipated
correlations with the fluctuations in the vicinity of the
horizon. And, as described above, the origin of the effect
appears closely connected with the dynamics of high-
energy gravitational scattering.

Thus, these arguments suggest a possible entree for an
alternative assumption about nonperturbative gravitational
dynamics, that of a nonlocality principle [19,16,17,20,21],
stating that gravitational dynamics is indeed fundamentally
quantum mechanical, but that the dynamics that unitarizes
gravity at strong coupling does not have the usual locality
properties of local quantum field theory. Criteria for op-
eration of such a nonlocality principle were suggested in
[21,16,17]; in a flat background these were phrased in
terms of a locality bound (with n-particle generalization
in [20]), stating that when two modes with sufficiently high
center-of-mass energy (i.e. relative boost) have sufficiently
small separation, a description via local quantum field
theory (QFT) fails. As we have seen above, the present
criterion for the breakdown of the semiclassical approxi-
mation appears closely related, and, in particular, the
breakdown of the perturbative expansion arising in the
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black hole geometry apparently prevents a straightforward
semiclassical treatment.

One can guess at how such nonlocal dynamics could
yield unitary evolution. Specifically, a nontrivial state
which initially appears of the form

 j ii �
X
	;	̂

 		̂j	̂iinj	iout; (4.6)

and thus contains entanglement between inside and outside
degrees of freedom, might by such nonlocal dynamics
evolve to a state of the form

 j fi � jBHiinj fiout (4.7)

as described from the perspective of the outside observer,
where the state jBHi is an internal state that does not
contain information about the initial state. This is essen-
tially the final state proposal of [35]. What was lacking in
that proposal was an explanation of how local physics
could be violated to give such evolution; a breakdown of
the semiclassical approximation together with the pro-
posed nonlocality principle would provide such a
rationale.8

As stated, a reasonable viewpoint is that the black hole
information paradox is a challenge to local quantum field
theory of the same magnitude of the challenges to classical
physics that ultimately catalyzed the invention of quantum
mechanics. Specifically, the classical instability of matter
serves as a sharp example of what is wrong with the
classical model of the atom. While one could imagine a
naive classical physicist approaching this as a mathemati-
cal problem to be resolved by some modification of the
singularity in classical evolution where the electron
reaches the charge center, we know that this approach is
far from the mark: the classical description fails to be the
correct description, and must be replaced by a quantum
description, at scales set by the Bohr radius. Classical
physics is invalid at the Bohr radius, without there being
any explicit signal within the classical theory that it fails
there.

Likewise, many gravity theorists have been perplexed
about the dynamics at a black hole singularity, and have
made various proposals about what smooths singularities.
But the information paradox suggests that local quantum
theory could break down on scales of order the
Schwarzschild radius. This could plausibly be the ulti-
mately correct picture, whether or not we had found a
signal within existing theory in the form of an explicit
breakdown of local QFT at the Schwarzschild radius. The
arguments of the preceding section indeed suggest that
history has not repeated itself precisely: they are consistent
with an actual breakdown of a local quantum analysis. But
whether or not this is an ultimate indicator of new nonlocal

quantum physics, such nonlocal physics could be the cor-
rect description of quantum dynamics on Schwarzschild
scales, just as quantum dynamics replaces classical dynam-
ics at atomic scales.

Independent of the preceding arguments, there is another
argument suggesting that one question the argument for
information loss. This is Wheeler’s paraphrase of Bohr’s
dictum: ‘‘no phenomenon is a real phenomenon until it is
an observed phenomenon.’’ The information loss argument
relies heavily on the notion of the internal state on a nice
slice. But one must be careful in specifying a gauge-
invariant description of this internal state. Consider what
would be needed to actually measure this state, in the spirit
of the discussion of protolocal observables of [33,34]. In
essence, the state can only be measured by constructing
detectors that it correlates with. So, one could construct
detectors at infinity, and build them with sensors that
activate measurements when they reach the radius corre-
sponding to the nice slice. A family of such ‘‘depth-
charge’’ detectors thus in principle could apparently deter-
mine the state on the nice slice. However, to do so accu-
rately one would have to make a measurement for each
spatial interval of size �s given in (3.4). An absolute (and
unrealistically low) minimum for the energy each detector
would have is estimated as O�Mp

2=M�. A family of such
infalling detectors would thus have a huge effect on the
black hole—and, in particular, it would deviate from the
undisturbed black hole on the M3 time scale, by failing to
evaporate. Notice that these ideas that we must be able to
measure the state actually involve a weaker assumption
than those of black hole complementarity [37], in that the
latter discussion describes both local measurements and
moreover requires that the results be relayed to a common
observer.

D. Inflationary cosmology

One anticipates similar effects might play a role in the
breakdown of perturbative local effective theory in other
spacetimes with horizons, and, in particular, in inflationary
cosmologies. This is suggested by the following rough
argument. Consider de Sitter space. Here one can think
of the spheres of the global description as ‘‘nice slices.’’
Thermal de Sitter radiation corresponds to the de Sitter
horizon emitting roughly one quantum of wavelength �
RdS in each efolding time RdS.

For simplicity, focus on the swave sector with respect to
a definite observer taken by convention to reside at the
north pole. In analogy with the black hole, pairs of quanta
are produced on either side of this observer’s horizon.
These follow the trajectories shown in Fig. 4. Regions I
and III are de Sitter, but region II should be Schwarzschild-
de Sitter, resulting from the energy perturbation. The ob-
server O thus appears to experience late evolution in this
Schwarzschild-de Sitter region. This observer is expected
to see a thermal spectrum with a temperature shifted by the

8For one discussion of the nonlocality of the final state
proposal, see [36].
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fractional amount �m=RdS where as in (3.7) we expect the
minimum such change given by �m 1=RdS. Cor-
respondingly, after a time T, the state on the nice slice is
expected to experience a net shift in the positions of the
quanta analogous to (3.9). Thus, for T  R3

dS, the shifts are
estimated to become of order RdS. This would suggest that
the perturbative expansion producing local field theory
breaks down after N  SdS  R2

dS efoldings, and at this
time an original region of size RdS has inflated to size
RdSe

SdS . For later times/larger volumes, this argument
suggests a perturbative local description is not valid.
Similar statements have been inferred from the general
analogy between black hole and de Sitter horizons by
Arkani-Hamed [38]. There may be other manifestations
of breakdown of local field theory in de Sitter space as
well; some previous work on this subject includes [39– 45]
and these issues are presently under investigation [46].

V. CONCLUSION

This paper has described an attempt to carefully justify
the derivation of the state on a set of nice slices through a
black hole geometry, in a semiclassical approximation like

that used in [1], and in subsequent improvements, to argue
for fundamental information loss. While one can in prin-
ciple derive local quantum field theory in a leading order
approximation, in the limit Mp ! 1, to either the path
integral or to a corresponding Hamiltonian evolution, there
are apparently circumstances where such a perturbative
approach fails. One example is that of high-energy scat-
tering [20,21], and this paper has presented arguments
apparently consistent with the statement that perturbative
gravity fails to give accurate results in computing precise
states on nice slices for times T * O�M3�. Thus the present
approach to perturbative gravity does not appear to accu-
rately give the density matrix or its entropy. This happens
by a time scale of order the time by which information
would need to escape the black hole [29] if evolution is
indeed unitary.

Since assuming a valid perturbative calculation appar-
ently leads to the information loss paradox, an invalidity
offers a welcome possible out. Specifically, if as it appears,
there is no reliable calculation of the information destroyed
by a black hole, there is no information paradox. Beyond
this, to actually explain how information escapes a black
hole, one would apparently require some new dynamics of
an essentially nonlocal character. There are several reasons
to question the essential nature of locality in nonperturba-
tive quantum gravity: rapid growth of high-energy scatter-
ing amplitudes, fundamental limitations on local
observation [33,34], suggestions from string theory via
the AdS/CFT correspondence, and finally the magnitude
of the paradox itself. Thus, the combined evidence plau-
sibly indicates the existence of a gravitational nonlocality
principle, stating that the nonperturbative dynamics of
gravity has a certain nonlocal quality, or alternatively,
that the usual notion of locality is not an essential part of
the theory and is only recovered in an approximation. If
this is correct, a key question is: what is this dynamics?

ACKNOWLEDGMENTS

The author wishes to thank N. Arkani-Hamed,
G. Horowitz, D. Marolf, S. Mathur, and especially
J. Hartle for important discussions. This work was sup-
ported in part by the Department of Energy under Contract
No. DE-FG02-91ER40618, and by Grant No. RFPI-06-18
from the Foundational Questions Institute (fqxi.org).

[1] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975); 46,
206(E) (1976).

[2] S. W. Hawking, Phys. Rev. D 14, 2460 (1976).
[3] S. W. Hawking, Phys. Rev. D 72, 084013 (2005)

[arXiv:hep-th/0507171].

[4] S. B. Giddings, arXiv:hep-th/9412138; arXiv:hep-th/
9508151.

[5] A. Strominger, arXiv:hep-th/9501071.
[6] J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos, and M.

Srednicki, Nucl. Phys. B241, 381 (1984).

FIG. 4. An extended Penrose diagram for de Sitter space.
Horizontal lines correspond to D� 1 spheres which are thought
of as nice slices; N and S label the north and south poles,
respectively. A fluctuation that is s wave with respect to the
observer at N produces a pair of particles (shown as dashed
lines) on either side of the horizon. Regions I and III are thus de
Sitter space, but region II is described as Schwarzschild-de
Sitter. The observer at O is as a result expected to see a
significant late-time phase shift in the nice-slice state, relative
to the corresponding state without backreaction included.

STEVEN B. GIDDINGS PHYSICAL REVIEW D 76, 064027 (2007)

064027-12



[7] T. Banks, L. Susskind, and M. E. Peskin, Nucl. Phys.
B244, 125 (1984).

[8] S. B. Giddings, Phys. Rev. D 46, 1347 (1992) [arXiv:hep-
th/9203059].

[9] G. ’t Hooft, arXiv:gr-qc/9310026.
[10] L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995)

[arXiv:hep-th/9409089].
[11] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);

Int. J. Theor. Phys. 38, 1113 (1999) [arXiv:hep-th/
9711200].

[12] D. A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius, and
J. Uglum, Phys. Rev. D 52, 6997 (1995) [arXiv:hep-th/
9506138].

[13] D. N. Page, Phys. Rev. Lett. 44, 301 (1980).
[14] G. T. Horowitz, J. High Energy Phys.08 (2005) 091

[arXiv:hep-th/0506166].
[15] G. T. Horowitz and E. Silverstein, Phys. Rev. D 73,

064016 (2006) [arXiv:hep-th/0601032].
[16] S. B. Giddings and M. Lippert, Phys. Rev. D 65, 024006

(2001) [arXiv:hep-th/0103231].
[17] S. B. Giddings and M. Lippert, Phys. Rev. D 69, 124019

(2004) [arXiv:hep-th/0402073].
[18] D. Lowe and L. Thorlacius, Phys. Rev. D 73, 104027

(2006) [arXiv:hep-th/0601059].
[19] S. B. Giddings, Phys. Rev. D 74, 106005 (2006)

[arXiv:hep-th/0605196].
[20] S. B. Giddings, Phys. Rev. D 74, 106006 (2006)

[arXiv:hep-th/0604072].
[21] S. B. Giddings, Phys. Rev. D 74, 106009 (2006)

[arXiv:hep-th/0606146].
[22] J. Polchinski, arXiv:hep-th/9507094.
[23] T. Banks, Nucl. Phys. B249, 332 (1985).
[24] J. B. Hartle, in Proceedings of ASI, Cargese, 1986, edited

by B. Carter and J. B. Hartle (Plenum, New York, 1987),
p. 329.

[25] C. Kiefer, Int. Ser. Monogr. Phys. 124, 1 (2004).
[26] J. B. Hartle, Phys. Rev. D 29, 2730 (1984).

[27] C. G. Callan, S. B. Giddings, J. A. Harvey, and A.
Strominger, Phys. Rev. D 45, R1005 (1992) [arXiv:hep-
th/9111056].

[28] R. M. Wald (unpublished).
[29] D. N. Page, Phys. Rev. Lett. 71, 3743 (1993) [arXiv:hep-

th/9306083].
[30] S. D. Mathur, Int. J. Mod. Phys. A 15, 4877 (2000)

[arXiv:gr-qc/0007011].
[31] P. C. Vaidya, Proc. Indian Acad. Sci. A 33, 264 (1951).
[32] T. Banks and W. Fischler, arXiv:hep-th/0606260.
[33] S. B. Giddings, D. Marolf, and J. B. Hartle, Phys. Rev. D

74, 064018 (2006) [arXiv:hep-th/0512200].
[34] M. Gary and S. B. Giddings, Phys. Rev. D 75, 104007

(2007) [arXiv:hep-th/0612191].
[35] G. T. Horowitz and J. Maldacena, J. High Energy Phys. 02

(2004) 008 [arXiv:hep-th/0310281].
[36] D. Ahn, Phys. Rev. D 74, 084010 (2006) [arXiv:hep-th/

0606028].
[37] L. Susskind, L. Thorlacius, and J. Uglum, Phys. Rev. D 48,

3743 (1993) [arXiv:hep-th/9306069].
[38] N. Arkani-Hamed, in Proceedings of the Conference on

String Phenomenology, KITP, UC Santa Barbara, 2006
(unpublished).

[39] T. Banks, arXiv:hep-th/0007146.
[40] W. Fischler (unpublished); W. Fischler, in Proceedings of

the Role of Scaling Laws in Physics and Biology
(Celebrating the 60th Birthday of Geoffrey West), Santa
Fe, 2000 (unpublished).

[41] R. Bousso, arXiv:hep-th/0205177.
[42] L. Dyson, M. Kleban, and L. Susskind, J. High Energy

Phys. 10 (2002) 011 [arXiv:hep-th/0208013].
[43] T. Banks, W. Fischler, and S. Paban, J. High Energy Phys.

12 (2002) 062 [arXiv:hep-th/0210160].
[44] N. Goheer, M. Kleban, and L. Susskind, J. High Energy

Phys. 07 (2003) 056 [arXiv:hep-th/0212209].
[45] T. Banks, arXiv:astro-ph/0305037.
[46] S. B. Giddings and D. Marolf (work in progress).

QUANTIZATION IN BLACK HOLE BACKGROUNDS PHYSICAL REVIEW D 76, 064027 (2007)

064027-13


