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We investigate the quantum particle creation during the circularly symmetric collapse of a 2� 1 dust
cloud, for the cases when the cosmological constant is either zero or negative. We derive the Ford-Parker
formula for the 2� 1 case, which can be used to compute the radiated quantum flux in the geometric
optics approximation. It is shown that no particles are created when the collapse ends in a naked
singularity, unlike in the 3� 1 case. When the collapse ends in a Banados-Teitelboim-Zanelli black hole,
we recover the expected Hawking radiation.
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I. INTRODUCTION

There are many analytical examples of formation of
black holes and naked singularities in the classical theory
of general relativity [1]. In order to study physical phe-
nomena in the vicinity of the spacetime singularity, where
the curvature is extremely high, one must take into account
quantum effects such as particle creation, and also the
effects resulting from quantization of the gravitational
field. In the case of a black hole, the presence of the event
horizon makes the study relatively easier, and particle
creation is described by the well-known Hawking radia-
tion, except possibly in the end stages of black hole evapo-
ration, where quantum gravitational effects can modify
physics in a manner that is not yet properly understood.

In the investigation of quantum particle creation in the
vicinity of a naked singularity, one cannot apply standard
methods from black hole physics, such as Bogoliubov
transformations, because the presence of a Cauchy horizon
leads to a breakdown of predictability, and the future null
infinity in the spacetime is not well defined [2].
Nonetheless, useful information about the energy associ-
ated with the quantum particle creation in the approach to a
naked singularity can be obtained through approximate
methods. One such approximation, developed by Ford
and Parker [3], is to calculate the radiated power, in the
geometric optics approximation, when one quantizes a
massless scalar field on the background of a collapsing
spherical body. Another useful method is to calculate the
vacuum expectation value of the two dimensional stress-
energy tensor of a quantized scalar field, by suppressing the
angular coordinates [4], in a collapsing spherical geometry.
In more recent times, the study of quantum mechanics of
naked singularities was heralded by Vaz and Witten [5,6].

In a series of papers [7–11] we have applied both these
methods to study quantum particle creation in the spherical
four dimensional collapse of a pressureless inhomogene-
ous dust cloud, described by the Lemaitre-Tolman-Bondi
(LTB) model. The nature of singularities in classical LTB

collapse, and their dependence on initial data, has been
studied in great detail [12–14]. For some initial data, the
LTB collapse ends in a black hole, and for other (generic)
initial data it ends in a naked singularity. When the LTB
collapse ends in a black hole, the quantum particle creation
is described by Hawking radiation, as expected.

However, when the collapse ends in a naked singularity,
the nature of particle creation is very different—it is
typically found that in the approach to the Cauchy horizon
the integrated quantum flux diverges. This signals a break-
down of the semiclassical approximation and the need for a
full quantum gravitational treatment, as the Cauchy hori-
zon is approached. This conclusion is reaffirmed by the
result that if the semiclassical analysis is terminated at the
epoch when curvatures reach Planck scale, the integrated
flux is only of the order of one Planck unit [15].

Subsequently, in order to study the role of quantum
gravity effects in LTB collapse, we set up a midisuperspace
quantization scheme, in the framework of canonical quan-
tum general relativity [16], following earlier pioneering
work by Vaz and Witten [17,18]. A Wheeler-DeWitt equa-
tion for describing the quantum gravitational collapse of a
spherical dust cloud, matched to a Schwarzschild exterior,
was set up. In order to arrive at a solution of the Wheeler-
Dewitt equation, it is necessary to implement a regulariza-
tion, and we investigated the consequences of a lattice
regularization. We could show how Hawking radiation
arises as an approximation to quantum gravity, when the
classical collapse results in a black hole [19–22]. However,
as things stand, it is not clear that the lattice regularization
is well suited to address the behavior of the collapse near
the curvature singularity, in particular, near the naked
singularity.

Considering the difficulty encountered in finding a suf-
ficiently general and useful regularization scheme for the
midisuperspace Wheeler-DeWitt equation in the 3� 1
case, it was felt desirable to adapt the above quantization
program to the lower dimensional 2� 1 case of circularly
symmetric dust collapse. In the first of this series of papers
on 2� 1 dust collapse [23], classical inhomogeneous dust
collapse was studied. For the relatively less interesting case
of a flat exterior spacetime with a zero cosmological con-
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stant, it was found that the collapse ends in a naked
singularity. When a negative cosmological constant is
present and the exterior is an AdS spacetime, then for
certain initial conditions the collapse ends in the well-
known Banados-Teitelboim-Zanelli (BTZ) black hole
[24], whereas for other initial conditions it ends in a naked
singularity.

In this paper, which is the second in this series on
quantization of lower dimensional collapse, we will apply
the methods of Ford and Parker to calculate the quantum
particle creation, both in the black hole case and in the
naked singularity case, with and without the cosmological
constant. This study serves as a prelude to the full quantum
gravitational treatment of the 2� 1 collapse using canoni-
cal methods, which will be taken up subsequently. The
unusual structure of the spacetime infinity in the AdS case
necessitates a careful treatment of the quantum field theo-
retic problem on an AdS background (in particular the
definition of an initial quantum vacuum), which has been
undertaken in [25]. Following the work of [26,27] we will
assume reflecting boundary conditions at spacelike infinity.
Hawking radiation in 2� 1 collapse has been studied also
by [28].

The plan of this paper is as follows. In Sec. II we recall
the key results from [23] on classical 2� 1 dust collapse.
In order to study particle creation in the geometric optics
approximation, the Ford-Parker formula for the case of a
zero cosmological constant is worked out in Sec. III. In
Sec. IV this formula is used to show that no particle
creation takes place when the collapse ends in a naked
singularity. One of the key results of this paper is given in
Sec. V, where we derive, from first principles, the Ford-
Parker formula on an AdS background. In Secs. VI, VII,
and VIII, this formula is used to show that while the BTZ
black hole resulting from collapse emits Hawking radia-
tion, the collapse ending in a naked singularity on an AdS
background again gives rise to no quantum particle
creation.

It is important to ask why one should investigate gravi-
tational collapse in the apparently ‘‘physically unrealistic’’
2� 1 dimensional case, considering that the observed
Universe has at least four spacetime dimensions. Is such
a study carried out only because it is simpler than the four
dimensional case, with the simplification having been
bought at the expense of introducing ‘‘physical unreal-
ism’’? The answer is no. One can definitely learn useful
physics about gravitational collapse in four or higher di-
mensions by examining the corresponding situation in 2�
1 dimensions. This is because there are no gravitational
waves in 2� 1 gravity, since the Weyl tensor here is
exactly zero. Yet, gravity in a 2� 1 spacetime is nontrivial;
it admits the formation of the BTZ black hole, and also of a
naked singularity. The absence of gravitational waves
holds out the promise that one can build an exact model
of a quantum black hole in 2� 1 dimensions, something

that may well be impossible in complete generality in a
3� 1 quantum gravity. Such a 2� 1 model may well
possess features (such as counting of microstates that
lead to the Bekenstein-Hawking entropy) which are uni-
versal and independent of spacetime dimensions; but this is
something which we can ascertain only after we have built
such a model. It is just that the presence of a nonzero Weyl
tensor in four or higher dimensions complicates attempts to
construct a general exact model of a quantum black hole.
Further, the 2� 1 BTZ black hole is the simplest nontrivial
and useful black hole system. (An exact solution with a
black hole might exist in 1� 1 dimensions [29], but since
there is only one space dimension, the horizon of the black
hole consists of only two points and hence one cannot
meaningfully talk of the area of a black hole horizon in
this case.)

Furthermore, one could question the introduction of a
negative cosmological constant, as is done in this paper,
when the observed Universe has a cosmological constant
which is perhaps positive, or at best zero, but certainly not
negative. The reason is that in 2� 1 dimensions a black
hole solution arises only when the cosmological constant is
negative. When it is zero or positive, the gravitational
collapse necessarily ends in a naked singularity. Thus, if
we want to build an exact quantum model of the BTZ black
hole, we must restrict ourselves to the case of a negative
cosmological constant. There are also reasons to believe
that it would not make sense to directly construct a quan-
tum black hole model in a higher dimensional space with a
positive cosmological constant, because quantum gravity
in such a spacetime may not exist nonperturbatively
[30,31]. Pure quantum gravity with a positive cosmological
constant may hence not exist as an exact theory, but only as
a part of a larger system [31].

Thus, for the reasons described in the previous two
paragraphs, it is useful to investigate semiclassical gravi-
tational collapse in 2� 1 dimensions, as is done in this
paper, as a prelude to constructing a model of a quantum
gravitational black hole.

II. INHOMOGENEOUS DUST COLLAPSE IN (2� 1)
DIMENSIONS

We summarize here the classical collapse solution for
inhomogeneous dust collapse for the cases with zero and
negative cosmological constant, analyzed in [23]. The
collapse of homogeneous dust in (2� 1) dimensions was
first studied by [32]. This was followed by other interesting
work in (2� 1) dimensions, including shell collapse,
[33,34] and other scenarios [35–37]. We consider circu-
larly symmetric dust and set up a comoving and synchro-
nous coordinate system

 ds2 � �dt2 � e2b�t;r�dr2 � R�t; r�2d�2; (1)

where t is the comoving time, r is the shell label, and � is
the angular coordinate. We evaluate the Einstein equations
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and solve for the metric components. For the case with zero
cosmological constant the metric (1) becomes

 ds2 � �dt2 �
�c01t� 1�2dr2

c2
1 � 2�

R
r
0 �i�s�sds� 1

� �c1t� r�
2d�2;

(2)

where c1 is a function of r alone and 0 denotes derivative
with respect to r. R � c1�r�t� r has the interpretation of
being the physical radius of a shell with label r. c1 is
interpreted as the initial velocity of the shell with label r.
The function �i�s� is the initial density profile of the dust.
A curvature singularity develops when the physical radius
of a shell becomes zero. A shell becomes singular only if
the initial velocity c1 is negative. The time for singularity
formation for a given shell is given by t � �r=c1. The
analysis of outgoing null rays shows that the singularity is
always locally naked. In (2� 1) dimensions the circularly
symmetric vacuum solution for the case of zero cosmo-
logical constant is a flat conical spacetime [34] of the form

 ds2 � �dT2 � dR2 � �2R2d�2; (3)

where T is the time coordinate, R is the radial coordinate,
and � is the angle, with the deficit angle given by 2��1�
�� when � goes from 0 to 2�.

The spacetime exterior to the collapsing dust cloud is
given by Eq. (3). Matching the first and second fundamen-
tal forms across the outer boundary (rb) of the collapsing
cloud yields the value

 � �

������������������������������������������
1� 2�

Z rb

0
�i�s�sds

s
: (4)

Solving the Einstein equations with a negative cosmo-
logical constant case yields the following metric,

 ds2 � �dt2 �
� cos�

����
�
p

t� � B0 sin�
����
�
p

t��2dr2

�r2 ��B2 � 2�
R
r
0 �i�s�sds� 1

� �r cos�
����
�
p

t� � B sin�
����
�
p

t��2d�2; (5)

where � is the absolute value of the cosmological constant.
The function B�r� defines the initial velocity profile of
the dust cloud. The physical radius is given by R �
r cos�

����
�
p

t� � B sin�
����
�
p

t�. A shell with label r becomes
singular when the physical radius R shrinks to zero
size. The shell becomes singular at the time ts �
arctan��r=B�=

����
�
p

. The nature of the singularity can be
deduced by analyzing the outgoing null rays. It is shown in
[23] that the outgoing null rays can emerge from the
singularity until the time when the critical shell becomes
singular. The critical shell is defined as the shell rc for
which

Rrc
0 �i�s�sds � 1=�. This implies that during the

collapse the singularity will be at least locally naked until
the time when the critical shell becomes singular. The
singularity is therefore timelike for the shells r < rc. It
becomes null for r � rc and is spacelike for r > rc. The

exterior spacetime in the case of a negative cosmological
constant in (2� 1) dimensions is given by the BTZ metric
[24] with zero angular momentum,

 ds2 � ���R2 �M�dT2 �
dR2

��R2 �M�
� R2d�2: (6)

Matching the first and second fundamental forms across
the boundary of the cloud yields

 M � 2�
Z rb

0
�i�s�sds� 1: (7)

As demonstrated in [23,32], when M is negative, the
collapse ends in a naked singularity, whereas it ends in a
BTZ black hole when M is positive. For suitable initial
conditions the naked singularity is globally naked—we
will show below that in such a case no quantum particle
creation takes place.

III. FORD-PARKER FORMULA FOR ZERO
COSMOLOGICAL CONSTANT

If one considers the quantization of a massless scalar
field on the classical gravitational background of a collaps-
ing spherical object, the radiated flux can be calculated in
the geometric optics approximation, using point-splitting
regularization [3]. This calculation yields the correct
Hawking flux for a black hole, and is especially useful
for computing the quantum flux in the approach to the
Cauchy horizon, when the background collapse terminates
in a naked singularity. The key input in the calculation is
the map from ingoing null rays coming from I� to out-
going null rays arriving at I�. In this section we will adapt
the Ford-Parker formula to the case of the 2� 1 circular
collapse with zero cosmological constant. The 2� 1 Ford-
Parker formula in an AdS exterior background is derived in
Sec. V.

The exterior spacetime metric is given by (3). A mass-
less scalar field � propagating in the background geometry
satisfies the equation �� � 0. We analyze the mode so-
lutions when R goes to infinity. We assume that the scalar
field is purely incoming on I�. The radial ingoing modes
pass through the collapsing cloud, get reflected about the
point r � 0, and reemerge as outgoing modes. The ingoing
null ray v � t� r on I� gets mapped to u � F�v� where
u � t� r on I�. Retracing back from I� to I� gives a
mapping v � G�u�. Given a map between the ingoing and
outgoing modes [G�u�], the particle flux can be calculated
in the asymptotic region using the method of Ford and
Parker [3].

Let f!m be the solution of the massless scalar wave
equation with the form given by

 f!m �
e�im�����������

2��
p

�
e�i!v � e�i!G�u����

r
p �����������

4�!
p

�
: (8)

The scalar field � can be expanded in terms of negative
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and positive frequency modes given by

 � �
X
m

Z 1
0
d!�a!mf!m � a

y
!m �f!m�; (9)

which corresponds to an outgoing plane wave on I�. It is
normalized using the scalar product defined by

 �f; h� � �i
Z

�
d�� ������

g�
p
�f�@�h�� � �@�f�h��; (10)

where � is a spacelike hypersurface. This implies the
normalization,

 �f!m; f!0m0 � � ��!�!0��mm0 : (11)

The a!m; a
y
!m have the interpretation of creation and an-

nihilation operators, respectively. The energy-momentum
tensor for the scalar field is given by the expression

 T�� � �;��;� �
1
2g���;��;�: (12)

The energy radiated to I� can be calculated from the
expectation value of the energy-momentum tensor,
h0jTRTj0i, where the component TRT is given by the ex-
pression

 TRT �
1
2��;T�;R ��;R�;T�: (13)

This operator is ill defined because it is quadratic in fields
given at the same spacetime point. The expectation value
h0jTRTj0i is evaluated using the point-splitting regulariza-
tion, as in [3]. The leading order for the energy radiated to
I� works out to be the same as the expression obtained by
[3] in the four dimensional case, except for the factor of
1=4�R. We obtain

 h0jTRTj0i �
1

�4�R��2���

X
m

je�im�j
�

1

4

�
G00

G0

�
2
�

1

6

G000

G0

�
;

(14)

where a prime on G denotes derivative with respect to u.
The power radiated across a disk of radius R in the asymp-
totic region is given by integrating over the angle �,

 P �
Z
h0jTRTj0iRd� �

X
m

Pm�u�

�
1

4�

X
m

�
1

4

�
G00

G0

�
2
�

1

6

G000

G0

�
; (15)

where Pm�u� is the power radiated for the mode m.

IV. PARTICLE CREATION: CASE WITH ZERO
COSMOLOGICAL CONSTANT

In order to apply the Ford-Parker formula (15) for the
case with zero cosmological constant, we now calculate the
map G�v� using the classical solution summarized in
Sec. II. As noted above, for zero cosmological constant
the collapse ends in a naked singularity. A radial null ray
from I� in the exterior passes through the dust cloud, goes

through the center, and reemerges as an outgoing null ray
which escapes to I�. To evaluate the quantum particle
creation by the singularity, we note that the nonsingular
spacetime terminates on the Cauchy horizon. We then
obtain the map between the ingoing and the outgoing
null rays in the neighborhood of the Cauchy horizon and
calculate the quantum flux using the Eq. (15).

The conical exterior spacetime is given by (3). The
radial null rays in the exterior are given by V � T � R
and U � T � R. These are obtained by using the null
condition on the metric. In the interior of the dust cloud,
the metric is given by (2). The expressions for the radial
null rays are obtained by imposing the null condition on the
metric. This gives the following equation:

 

dt
dr
� 	

�c01t� 1���������������������������������������������������
c2

1 � 2�
R
r
0 �i�s�sds� 1

q : (16)

We can integrate the equation and get v � t� F��r�
and u � t� F��r� where

 F	 � �e
	
R
�c01dr=

���������������������������������
c2

1�2�
R
r

0
�i�s�sds�1

q
�
�




�Z e
�
R
�c01dr=

���������������������������������
c2

1�2�
R
r

0
�i�s�sds�1

q
���������������������������������������������������

c2
1 � 2�

R
r
0 �i�s�sds� 1

q � b
�
: (17)

Now the functions F	�r� are differentiable in r. (They are
independent of time, and if they are not well behaved for
some r it implies there is a problem defining the null
geodesics at all times at that r. We exclude such possibil-
ities.) The function c2

1 � 2�
R
r
0 �i�s�sds� 1 should be

positive for the metric (2) to be well defined.
The singularity is first formed at t � 0, r � 0. The first

null ray which escapes from the singularity is the Cauchy
horizon. The ingoing null ray which passes through the
coordinate �0; 0� is given by

 v0 � t� F��r� � 0� F��0� � F��0�: (18)

This null ray becomes an outgoing null ray which passes
through the same point �0; 0�. The outgoing null ray is
given by

 u0 � t� F��r� � 0� F��0� � �F��0�: (19)

This null ray forms the Cauchy horizon. We want to find
out the map between the null rays V0 (defined in the
exterior, which becomes v0 in the interior) and U0 (the
ray in the exterior which is formed when the interior null
ray u0 reaches the outer boundary of the collapsing cloud).
Let the outer boundary of the dust cloud be denoted by rb.
The interior time ti when the null ray v0 � t� F��r� �
F��0� was at rb is given by ti � F��0� � F��rb�. Now the
exterior time is given in terms of the time in the interior
cloud as
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 T � t
����������������������
1� c2

1�rb�
q

: (20)

At the boundary rb, the null ray V becomes v. The map is
linear of the form V � av� b, where a; b are constants.
The reasoning is as follows. The physical radius R�t; rb� is
c1�rb�t� rb. So the ingoing exterior null ray V � T � R is

 V � t
����������������������
1� c2

1�rb�
q

� c1�rb�t� rb � kt� rb; (21)

where k is a constant. Similarly, at the boundary the
interior null ray is v � t� F��rb�. Hence the map is of
the form V � av� b. The outgoing null ray u in the
interior is given by u � t� F��rb� at the outer boundary.
By a similar analysis, it can be shown that the map between
the interior outgoing rays and the exterior outgoing rays is
linear, of the form U � cu� d. The map between the
ingoing and outgoing modes at r � 0 is v � u. So since
all the relations are linear, the map between exterior V and
U is linear. Hence the map V � G�U� is linear.

To analyze the particle creation due to the singularity,
we use the formula (15). When the function is linear, the
particle flux is zero since the formula involves second and
third derivatives of G�U� with respect to U. This is to be
contrasted with the (3� 1) case [8,10] where a similar
analysis in the neighborhood of the singularity yields an
infinite flux of particles. The present result is not unex-
pected, considering that the 2� 1 exterior (for zero cos-
mological constant) is conical spacetime.

V. THE FORD-PARKER FORMULA FOR ADS
BACKGROUND

The AdS spacetime can be obtained by embedding a
hyperboloid�U2 � V2 � X2 � Y2 � ��2 in a spacetime
which has a metric given by ds2 � �dU2 � dV2 � dX2 �
dY2. The induced metric expressed in global coordinates
(covering AdS) is [38]

 ds2 � sec2���dt2 � d�2� � tan2�d�2: (22)

The BTZ spacetime can be constructed by dividing the
hyperboloid into three regions [26] and making one of the
coordinates periodic. The BTZ spacetime can be consid-
ered a patch of the AdS spacetime covered by the global
coordinates. A quantum vacuum can be constructed in
global coordinates and can be expressed in terms of modes
of the BTZ black hole to derive the Hawking radiation. In
this section we derive the radiated flux of a massless scalar
field in an AdS spacetime. The particle creation in AdS
black holes of arbitrary dimension was studied in [27].
Following their approach, we compute a way of deriving
radiation from the map of incoming and outgoing null rays
in the asymptotic region. We assume that in the far past, the
AdS spacetime is in a vacuum state constructed using the
global AdS coordinates. The normalizable modes for the
global AdS coordinates can be found in [26]. We consider a
massless scalar field propagating in the AdS background.

We adopt the reflecting boundary condition at spatial in-
finity. In the AdS case this is necessary since the spatial
infinity is timelike. There is no Cauchy surface for the AdS
case since the timelike nature of the spatial infinity allows
information to enter through the spatial infinity. So we
assume a reflecting boundary condition. The Klein-
Gordon equation in the global coordinates is given by
�� � 0, written explicitly as

 

1

sec2�

�
�
@2�

@t2
�
@2�

@�2

�
�

1

tan�
@�

@�
�

1

tan2�

@2�

@�2 � 0:

(23)

We assume the solution to be of the variables separable
type �� � �t�����. We find the spherical wave solution
by putting @2��=@�

2 � 0. The equation for the time
dependent part is @2�t=@t2 �!2�t � 0. The equation
for �� becomes

 

@2��

@�2
�

sec2�
tan�

@��

@�
�!2�� � 0: (24)

We change the variables to x � cos�2�� to bring this
equation to a known form called the Jacobi differential
equation. Then the equation becomes

 �1� x2��00� � �1� x��0� �
!2

4
�� � 0: (25)

Now comparing the above equation to the standard Jacobi
differential equation [39], which is
 

�1� x2��00� � �	� �� ��� 	� 2�x��0�

� n�n� �� 	� 1� � 0; (26)

we get � � 0, 	 � �1, and n � !=2. This implies that !
cannot have arbitrary values. The solution is convergent if
! is an even integer. The solution is the Jacobi polynomial
P��	�n �cos2��. So the positive frequency solution is of the
form

 �n � e�i!ntP�0;�1�
n �cos2��: (27)

The high frequency limit for Jacobi polynomials is given
by [39]

 P��	�n �cos�
�� �
cos��n� 1

2 ��� 	� 1��
� ��
2 �

�
4��������

�n
p

�sin�
=2����1=2�cos�
=2��	�1=2
:

(28)

For n � !=2, � � 0 and 	 � �1, and 
 � 2�, the form
of the asymptotic modes can be written as

 �!n
�

���������������������
1

2�
2 cot�
�!n

s
e�i!nt cos

�
!n��

�
4

�
: (29)

The modes are required to be orthonormal under the norm
(10) which can be written as
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 ��1;�2� � i
Z

�
ddx

���
g
p
gtt���1�@t�2� � �@t�

�
1��2�: (30)

Taking the positive frequency solution and the negative
frequency solution of Eq. (29) and calculating the norm in
the high frequency limit (!n � 2n) n;m� 1, we get
 Z �

2

0

Z 2�

0

1

2�
4n��������������
�n�m
p tan���

�������������
cot���

q �������������
cot���

q


 cos
�
2n��

�
4

�
cos

�
2m��

�
4

�
d�d
 � �mn: (31)

The scalar field in the collapse geometry, where the in-
going null rays become outgoing null rays after being
reflected at the center, can then be expanded in terms of
the mode functions

 � �
X
!n

�a!n
�n � a

y
!n

��n�; (32)

where the modes are given by the standard form in the
collapse setting,

 �n �

������������������
1

2�
2

�!n

s
� cot����1=2�e�i!nF�V� � e�i!nU�; (33)

where U;V are the outgoing and ingoing rays defined by
U � t� � and V � t� �. Computing h0jTt�j0i using the
modes of the asymptotic form (33) where � � �=2 (put-
ting sin�=2 � 1) gives
 

h0jTt�j0i �
1

2�2 cos���
X
!n

�!n�F0�V�F0�V � ��


 ei!n�F�V����F�V�� � ei!��� (34)

 �
1

�2 �1� F
0�V��

X
!n

sin�!n�F�V� �U��; (35)

where � is introduced for regularization. The expression is
split into two parts (34) and (35). The expression (35)
vanishes because in the collapsing solution the map of
rays satisfies U � F�V�. The expression (34) is a sum
over even integers. In the high frequency limit the sum
can be replaced by an integral. Evaluating the integral and
integrating over the disk of radius tan� (at � � �=2) gives
the flux of particles. The quantum flux is evaluated to give

 

Z 2�

o
h0jT�tj0i tan���d
 �

1

12�

�
F000

F03
�

3

2

�
F00

F02

�
2
�
: (36)

For simplicity, we have worked out only the case m � 0
(eim� � 1), and, as before, carried out a point-splitting
regularization. Written in terms of the inverse function
V � G�U� the expression (36) for the radiated power
becomes

 P �
Z
h0jT�tj0iRd� �

1

2�

�
1

4

�
G00

G0

�
2
�

1

6

G000

G0

�
; (37)

which should be compared with the expression for the
radiated power (15) in the flat case. The two expressions
are essentially identical, except for a factor of 2.

VI. NULL RAYS FOR COLLAPSE ON AN ADS
BACKGROUND

The interior metric in the AdS case is given by (5) and
the BTZ exterior by (6). In this section we evaluate the
formula required to derive the map between the ingoing
and outgoing null rays. In the exterior, the null geodesic
equation is given by V � T � R� and U � T � R�, where
V is an ingoing null ray and U is an outgoing null ray. R� is
the tortoise coordinate defined as

 dR� �
dR

�R2 �M
: (38)

For the case M< 0, we have

 R� �
tan�1�

�����������
�=m

p
R���������

m�
p ; (39)

where m � �M. For the case M � 0, we have

 R� � �
1

�R
: (40)

For the case M> 0, we have

 R� �
logj�

���
�
p

R�
����
M
p���

�
p

R�
����
M
p �j

2
���������
M�
p : (41)

The exterior time T can be expressed in terms of the
interior time t by matching the first fundamental form.
Comparing the coefficients of d�2 for the metrics (5)
and (6) yields

 R � r0 cos�
����
�
p

t� � B sin�
����
�
p

t�; (42)

where r0 is the outer boundary of the dust cloud.
Comparing the remaining coefficients of the first funda-
mental form gives

 � dt2 � ���R2 �M�dT2 �
dR2

��R2 �M�
: (43)

Equation (42) can be differentiated with respect to t to
obtain _R. This gives

 

dT
dt
�

�����������������������������������
�r2

0 ��B2 �M
q

�R2 �M

�
q

��r0 cos�
����
�
p

t� � B sin�
����
�
p

t��2 �M
; (44)

where q �
�����������������������������������
�r2

0 ��B2 �M
q

. The above equation is
solved for the three cases. For M> 0, we get

 T �
1

2
���������
�M
p ln

jq�
�����
M
p

tan�t0�j

jq�
�����
M
p

tan�t0�j
: (45)
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For M � 0, we have

 T �
tan�t0��������

�q
p � c: (46)

For M< 0, we define m � �M, and get

 T �
1��������
�m
p arctan

� ����
m
p

tan�t0�
q

�
; (47)

where t0 �
����
�
p

t� s and s � arccos�r0=
����������������
r2

0 � b
2

q
�.

For the interior, the radial null geodesic equation is
obtained by imposing the null condition on the metric
(5). We take the initial velocity B�r� and the initial density
�0�r� to be constants b, 2k, respectively. We get

 dt sec�
����
�
p

t� � 	
dr����������������������������������������������

�r2 ��b2 � kr2 � c
p : (48)

Solving the above equation we can show the interior in-
going null ray v to be

 v �
1����
�
p lnj sec�

����
�
p

t� � tan�
����
�
p

t�j �
1���
d
p sinh�1

���
d
a

s
r;

(49)

and the interior outgoing null ray u is

 u �
1����
�
p lnj sec�

����
�
p

t� � tan�
����
�
p

t�j �
1���
d
p sinh�1

���
d
a

s
r;

(50)

where a � �b2 � c and d � ��� k�r2.

VII. PARTICLE CREATION FOR THE NAKED
CASE M< 0

For the case M< 0, we have the relation between the
interior and the exterior time coordinates, given by (47)

 T �
1��������
�m
p arctan

� ����
m
p

tan�t0�
q

�
; (51)

where t0 �
����
�
p

t� s and s � arccos�r0=
����������������
r2

0 � b
2

q
�. And

the outer shell is given by R0�t0� �
����������������
r2

0 � b
2

q
cos�t0�. The

interior null rays are given by (49) and (50). The exterior
null rays are given by V � T � R� and U � T � R�,
where R� is the tortoise coordinate given by (39).
Singularity forms when t � 0 for the central shell r � 0.
Let the ingoing null ray in the interior coordinates which
gets mapped onto the Cauchy horizon be v0. Putting t �
0; r � 0 in Eq. (49), we get the equation for v0 to be

 v0 � 0 �
lnj sec�

����
�
p

t� � tan�
����
�
p

t�j����
�
p �

1���
d
p sinh�1

���
d
a

s
r:

(52)

The time t0 at which this null ray entered the dust cloud is

given by putting the value of r to be the outer shell radius r0

and solving for t0. From this T can be computed using
Eq. (51). The exterior R can be computed using the relation

R0�t0� �
����������������
r2

0 � b
2

q
cos�t0�. So V0 (the null ray in the exte-

rior which finally becomes the Cauchy horizon) can be
evaluated. Now the functions T�t0�, R0�t0� are differentiable
functions in the domain under consideration, so the incom-
ing null rays can be Taylor expanded about V0 (which gets
mapped onto v0). The mapping in the neighborhood of V0

is V � pv� i (p; i are constants) since _T�t0� and _R0�t
0� are

approximately constant. A dot denotes derivative with
respect to t. At the center the ingoing null rays get mapped
onto outgoing null rays with the linear relation v � u. Let
the Cauchy horizon be u0. When the interior outgoing null
ray reaches the outer shell, it becomes the outgoing null ray
in the exterior. At the boundary, the relation between the
exterior and interior outgoing null rays becomes U �
wu� y where w; y are constants. So the map U � F�V�
between V and U is linear even near the Cauchy horizon.
For a linear map, Eq. (36) implies that the particle flux is
zero since the formula involves second and third deriva-
tives of the map U � F�V�. This is unlike in the case of
3� 1 spherical dust collapse, where the emitted quantum
flux diverges on the Cauchy horizon.

VIII. PARTICLE CREATION FOR THE BLACK
HOLE CASE M> 0

For the case M> 0, we have

 R� �
logj�

���
�
p

R�
����
M
p���

�
p

R�
����
M
p �j

2
���������
M�
p : (53)

T in terms of the interior time t is given by

 T �
1

2
���������
�M
p ln

jq�
�����
M
p

tan�t0�j

jq�
�����
M
p

tan�t0�j
: (54)

Null geodesics are given byU � T � R� and V � T � R�.
The interior null geodesics are given by Eqs. (49) and (50).
We shall consider the case where a null ray V0 enters the
dust cloud to become v0. It gets mapped onto an outgoing
null ray u0 which forms the event horizon. We analyze the
map of the null rays which enter the dust cloud just before
the null ray V0 enters. The event horizon forms when the
outer shell’s physical radius becomes Rh �

�����������
M=�

p
.

Expressed in terms of the interior time, the physical radius

of the outer shell is Rh � r0 cos�
����
�
p

t� � b sin�
����
�
p

t� �����������������
r2

0 � b
2

q
cos�t0�, where t0 �

����
�
p

t� s. So cos�t0� �������������������������������
M=��r2

0 � b
2�

q
. The mapping around V0 when the null

ray enters the outer edge will be linear since the functions
R� and T are well behaved at the sufficiently earlier epoch
when there is no event horizon formed. So V � pv� f.
p; f are constants. The mapping at the center of the cloud is
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linear u � v. The mapping from u to U is nontrivial
because T in Eq. (54) tends to infinity since q ������
M
p

tan�t0� at the horizon. Similarly, R� tends to infinity
since �R2 �M goes to zero. Let t0 be the interior time
when the event horizon gets formed; we Taylor expand the
expressions inside the logarithms. For R tending to Rh we
get

 T �
�1

2
���������
�M
p ln

����������r2
0 � b

2��t00 � t
0������

M
p

��������; (55)

and R� is given in the limit R tending to Rh by

 R� �
1

2
���������
�M
p lnjq�t00 � t

0�j: (56)

So U, which is given by U � T � R�, becomes

 U�U0 �
lnjy�t0 � t�j���������

�M
p ; (57)

where y �
�������������������������������������
q��r2

0 � b
2�=

�����
M
pq

. Now t0 � t � a�V0 �

V� � h since the mapping is linear until the null ray comes
out of the outer edge. Hence the map for V < V0 is

 U�U0 � F�V� �
lnjy�V0 � V�j���������

�M
p : (58)

Following the method in Sec. VII we derive the
Hawking flux in our model of 2� 1 circular dust collapse,
using the map of incoming and outgoing null rays in the
asymptotic region, found in Eq. (58) above. Substituting
the map (58) in Eq. (33) we get

 �n �

��������������������������������
1

2�
2

�!n
cot���

s
�e�i!n�1=

������
�M
p

� ln�y�V�V0�� � e�i!nU�:

(59)

For the given modes, we can compute the total power
radiated using the formula (36); we get P � �M=24�.
The rate of absorption of radiation by a black hole im-
mersed in a thermal bath of temperature T is given by
�T2=6 in (2� 1) dimensions [40]. Equating the two ex-
pressions for power the temperature T of the black hole is
found to be

 Th �

���������
�M
p

2�
�

�
2�

; (60)

where � is the surface gravity of the black hole [41].
The temperature can be obtained also by computing the

Bogoliubov transformation between the modes of the ‘‘in’’
region and the ‘‘out’’ region. The modes in the ‘‘in’’ region
and the ‘‘out’’ region can, respectively, be taken to be of the
form [11,42]

 �n �

��������������������������������
1

2�
2

�!n
cot���

s
�e�i!nV�; (61)

 �m �

���������������������������������
1

2�
2

�!m
cot���

s
�e�i!mF�V��: (62)

The Bogoliubov coefficients are given by the expressions

 �!n!m
� ��n;�m�; (63)

 	!n!m
� ���n;��m�; (64)

where the bracket is the norm defined in (30). The mean
particle number with the frequency !m is given byP
nj	!n!m

j2. The expression for (64), upon integrating
over the angular variable, gives

 	!n!m
�

4

�

�������
!n

!m

s Z V0

�1
dVe�i!nVe�i!mF�V�: (65)

Equation (65) is evaluated for the map (58). It is a standard
integral [42] and can be shown to yield a Planckian spec-
trum with the mean number of particles given by

 N!n
�
X
!m

j	!n!m
j2 �

1

e�2�=
������
�M
p

�!n � 1
: (66)

Hence the temperature can be obtained to be T ����������
�M
p

=2�, which agrees with the temperature deduced
above from the radiated power.

IX. CONCLUDING REMARKS

Unlike in the case of 3� 1 dust collapse, no particle
creation takes place when a naked singularity forms in 2�
1 collapse. This suggests that the quantum gravitational
investigation of singularity avoidance in the 2� 1 case
may be more tractable compared to the 3� 1 case.
Further, these results were found using the Ford-Parker
formula that we derived afresh for the 2� 1 case. Since
the Ford-Parker method used here yields the expected
Hawking radiation when the collapse ends in a BTZ black
hole, the approach can be assumed to be reliable and
robust. In a forthcoming work, we will build upon the
results presented here to set up a canonical quantum gravi-
tational treatment of 2� 1 circularly symmetric dust
collapse.

Nonetheless, one should also inquire about the physical
reason(s) which make the result in the 2� 1 dimensional
spacetime different from that in the 3� 1 case. The reason
for this difference is the presence of a negative cosmologi-
cal constant in the 2� 1 case. This constant softens the
radiated power due to the way in which an incoming wave
is blueshifted and then, as it turns outgoing, is redshifted
along the Cauchy horizon. The difference also arises be-
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cause the singularities in the 2� 1 case are conical in
nature. In a future work we also plan to investigate the
role of dimensionality—if one studies quantum particle
creation in a higher dimensional AdS spacetime admitting
a naked singularity, is the radiated power zero or not?

The occurrence of a naked singularity in gravitational
collapse in an AdS spacetime is possibly generic, and
allowed also in four dimensions, as discussed in
[33,43,44]. In [43] the gravitational collapse of a scalar
field with a potential V��� in a 4D AdS spacetime was
considered. It was then numerically shown that for a large
class of potentials an open set of initial data evolves to
naked singularities in asymptotically AdS solutions. In
[44] asymptotically AdS solutions in N � 8 supergravity
having a negative total energy were examined. Some of
these negative energy solutions were shown to contain
classical evolution of regular initial data leading to naked
singularities. These numerical results are supported by the
analytical work of [23,33].

These results possibly have very important consequen-
ces for the AdS/CFT correspondence, which maps a ‘‘bulk
gravity theory’’ in an AdS spacetime to a quantum confor-
mal field theory (CFT) on the AdS boundary. Will this
correspondence survive if the gravity theory generically
admits a naked singularity? This significant issue remains
open and deserves to be investigated carefully; it has been
argued in [44] that the AdS/CFT correspondence will
imply the absence of singularities in a quantum theory of
gravity. It is also possible that the occurrence of a naked
singularity could compel us to redefine the classical gravity
theory and/or the quantum conformal field theory in the
AdS/CFT correspondence.
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